WO2014172833A1 - 压电驱动器及压电马达 - Google Patents

压电驱动器及压电马达 Download PDF

Info

Publication number
WO2014172833A1
WO2014172833A1 PCT/CN2013/074519 CN2013074519W WO2014172833A1 WO 2014172833 A1 WO2014172833 A1 WO 2014172833A1 CN 2013074519 W CN2013074519 W CN 2013074519W WO 2014172833 A1 WO2014172833 A1 WO 2014172833A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric
electrode
electrode layer
piezoelectric actuator
piezoelectric body
Prior art date
Application number
PCT/CN2013/074519
Other languages
English (en)
French (fr)
Inventor
董蜀湘
慈鹏弘
陈治江
Original Assignee
北京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学 filed Critical 北京大学
Priority to PCT/CN2013/074519 priority Critical patent/WO2014172833A1/zh
Publication of WO2014172833A1 publication Critical patent/WO2014172833A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/026Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors by pressing one or more vibrators against the driven body
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0015Driving devices, e.g. vibrators using only bending modes

Definitions

  • the present invention relates to a piezoelectric motor technology, and more particularly to a piezoelectric actuator and a piezoelectric motor. Background technique
  • the piezoelectric motor utilizes the inverse piezoelectric effect of the piezoelectric element and the ultrasonic vibration of the elastic body. By the friction between the stator and the mover, the micro-amplitude vibration of the elastic body is converted into a linear motion of the moving body, thereby directly pushing Load movement.
  • the piezoelectric motor has been widely used because of its compact structure and small size.
  • the piezoelectric motor mainly comprises a piezoelectric actuator and a sliding component, the piezoelectric actuator is a stator, and the sliding component is a mover, and the driving voltage is supplied to the piezoelectric driver through the driving circuit, so that the piezoelectric actuator generates a specific microscopic motion, thereby pushing
  • the sliding assembly produces a macroscopic motion.
  • linear piezoelectric motors generally work with the principle of piezoelectric L1-B2 dual vibration coupling degeneracy mode.
  • the piezoelectric actuator operates in the first-order longitudinal vibration mode (L1) and the second-order bending vibration mode. (B2), by synthesizing the first-order longitudinal vibration and the second-order bending vibration coupling and synthesizing the microscopic elliptical trajectory motion, thereby pushing the slider assembly to perform macroscopic linear motion through the elliptical trajectory motion, which can be widely applied to precise Linear positioning, ultra-fine lens precision drive, etc.
  • the existing linear piezoelectric motor of the piezoelectric L 1 -B2 double vibration coupling degeneracy mode principle has the following problems: (1) to ensure that the piezoelectric actuator remains in the first-order longitudinal vibration mode and the second In the order of bending vibration mode, the piezoelectric actuator structure size control precision is extremely high, which leads to complicated preparation process of the piezoelectric actuator, which is not conducive to large-scale preparation and increases the preparation cost; (2) The piezoelectric actuator operates in the first-order longitudinal vibration mode and In the second-order bending mode, the resonant frequencies of the two operating modes may be out of sync due to external interference, resulting in a disorder of the synthetic elliptical trajectory generated by the piezoelectric actuator, causing the drive to fail; (3) when the piezoelectric actuator is miniature When it is reduced to the millimeter size, the piezoelectric actuator is often too high in resonance frequency due to its operation in the L1 mode, which increases the power consumption of the driving circuit and makes the driving circuit difficult to manufacture.
  • the existing piezoelectric motor is used in a piezoelectric driving motor that operates in a first-order longitudinal vibration mode and a second-order bending vibration mode.
  • the piezoelectric actuator has a complicated structure and requires high production precision, so that the pressure is high.
  • the manufacturing process of the electric drive is complicated, which is not conducive to the mass production of the piezoelectric motor.
  • the piezoelectric actuator operates in a coupled degenerate mode of two vibrations, which is easily decoupled by external disturbances and causes the drive to fail.
  • the piezoelectric actuator works.
  • the first-order longitudinal mode the resonant frequency tends to be too high, resulting in excessive power consumption of the driving circuit, and the driving circuit is difficult to manufacture.
  • the present invention provides a piezoelectric actuator and a piezoelectric motor, which can effectively overcome the problems of the conventional piezoelectric actuator having two coupling working modes, such as complicated manufacturing process, high power consumption, and easy external interference, so that the piezoelectric actuator
  • the structure is simple, easy to manufacture, and works in the simplest bending vibration mode.
  • the invention provides a piezoelectric actuator, comprising:
  • the piezoelectric body is a square plate-like structure, and the piezoelectric body is polarized in a thickness direction;
  • a first electrode layer is disposed on the first end main plane of the piezoelectric body in the thickness direction, and a second electrode layer is disposed on the second end main plane of the piezoelectric body in the thickness direction;
  • the first electrode layer includes a plurality of electrode regions
  • the second electrode layer includes at least one piezoelectric actuator that is excited to generate a bending vibration in a first step along a diagonal, so that the piezoelectric actuator is in the
  • the diagonal vibration along the diagonal in the first step produces a reciprocating linear path motion, or the driver excitation produces two mutually perpendicular curved vibrations along the diagonal of the first step surface so that the piezoelectric actuator is in place
  • the bending vibration synthesis along the diagonal in the two mutually orthogonal first step planes produces an elliptical trajectory motion.
  • the present invention also provides a piezoelectric motor comprising a piezoelectric actuator and a sliding assembly, the piezoelectric actuator being the piezoelectric actuator provided by the above invention;
  • the sliding assembly includes: a guide rail, a sliding member disposed along the guide rail; the piezoelectric actuator is provided with a friction head and an elastic pressing member, and the friction head is provided by the elastic pressing member Elastic contact with the sliding member under the action of the pressing force;
  • the friction head is fixedly disposed on a side of the piezoelectric body of the piezoelectric actuator where no electrode is disposed The top corner of the face or the end position near the top corner.
  • the piezoelectric actuator and the piezoelectric motor provided by the invention pass the piezoelectric body of a square plate structure and polarize the piezoelectric body in the thickness direction, and the piezoelectric actuator has a simple structure and is convenient to manufacture, and the piezoelectric actuator can be realized.
  • FIG. 1 is a schematic structural view of a piezoelectric motor according to Embodiment 1 of the present invention.
  • FIG. 2A is a schematic structural view of a piezoelectric actuator according to Embodiment 2 of the present invention.
  • FIG. 2B is a schematic diagram showing the motion mode of the piezoelectric body when a voltage is applied to the first electrode region and the third electrode region in FIG. 2A;
  • 2C is a schematic diagram showing the motion mode of the piezoelectric body when a voltage is applied to the second electrode region and the fourth electrode region in FIG. 2A;
  • FIG. 3 is a schematic structural view of a piezoelectric actuator according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic structural view of a piezoelectric actuator according to Embodiment 4 of the present invention.
  • FIG. 5 is a schematic structural diagram of a piezoelectric actuator according to Embodiment 5 of the present invention.
  • FIG. 6 is a schematic structural view of a piezoelectric motor according to Embodiment 6 of the present invention.
  • FIG. 7A is a schematic structural view of a piezoelectric actuator according to Embodiment 7 of the present invention.
  • FIG. 7B is a schematic view showing a motion mode of the piezoelectric body when a voltage is applied to the first electrode region and the third electrode region in FIG. 7A;
  • FIG. 7C is a schematic diagram showing the motion mode of the piezoelectric body when a voltage is applied to the second electrode region and the fourth electrode region in FIG. 7A;
  • FIG. 8 is a schematic structural view of a piezoelectric actuator according to Embodiment 8 of the present invention.
  • FIG. 9 is a schematic structural diagram of a piezoelectric actuator according to Embodiment 9 of the present invention.
  • FIG. 10 is a schematic structural diagram of a piezoelectric actuator according to Embodiment 10 of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION In view of the conventional piezoelectric L1-B2 dual vibration mode piezoelectric motor, the piezoelectric actuator has a complicated structure and manufacturing process, and the piezoelectric actuator has high mass production cost, and the like, the present invention provides a piezoelectric actuator that can work.
  • the single mode of operation of the diagonal vibration along the diagonal in the first step plane effectively simplifies the structure of the piezoelectric actuator.
  • a single working mode and a simple square plate structure can effectively reduce the manufacturing cost of the piezoelectric actuator.
  • the driving circuit design can be simplified, and the driving failure caused by external interference when working in two modes can be avoided.
  • the driver provided by the present invention may include a piezoelectric body having a square plate-like structure, and the piezoelectric body is polarized in a thickness direction; the first main plane of the piezoelectric body in the thickness direction is disposed a first electrode layer, the second main layer of the piezoelectric body is disposed at a second end of the thickness direction; the first electrode layer includes a plurality of electrode regions, and the second electrode layer includes at least one of the piezoelectric actuators to generate the first The bending vibration along the diagonal inside the step surface, so that the piezoelectric actuator generates a reciprocating linear trajectory movement along the diagonal bending vibration in the first step plane, or causes the two first order orthogonal to each other to be generated.
  • the in-plane diagonal vibration of the diagonal is such that the piezoelectric actuator is combined along the diagonal bending vibrations in the two mutually orthogonal first step planes to produce an elliptical trajectory motion.
  • the piezoelectric actuator provided by the invention adopts a piezoelectric body of a square plate structure, and the piezoelectric actuator has a simple structure and is convenient to manufacture, and at the same time, the piezoelectric actuator can be at a preset voltage through an electrode region disposed on a main plane of the piezoelectric body. It can work in a simple first-order bending vibration mode, avoiding the problems of multi-mode coupling of conventional piezoelectric actuators.
  • a piezoelectric actuator that generates linear trajectory motion and elliptical trajectory motion and its corresponding piezoelectric motor will be described below.
  • FIG. 1 is a schematic structural view of a piezoelectric motor according to a first embodiment of the present invention.
  • the piezoelectric actuator in the piezoelectric motor provided in this embodiment can generate the linear motion described above.
  • the piezoelectric motor includes a driver 10 and a sliding assembly, and the sliding assembly includes a sliding member 201 and a guide rail 202.
  • the sliding member 201 is slidable along the guide rail 202.
  • the guide rail 202 is a linear guide rail, so that the sliding member 201 can move linearly along the guide rail 202.
  • the piezoelectric actuator 10 is provided with two friction heads 30 at a specific position, and is elastically pressed.
  • the member 40 and the elastic fixing member 50 are elastically coupled to the sliding member 201 under the action of the pressing force F provided by the elastic pressing member 40.
  • the friction head 30 is fixed on the end surface of the piezoelectric actuator 10 where the electrode side is not disposed near the top corner.
  • the piezoelectric actuator 10 is provided with two friction heads 30, and is disposed on the side of the electrode where the electrode is not disposed.
  • the friction head 30 can reciprocate diagonally with the piezoelectric actuator 10, thereby relying on the friction head 30 and sliding
  • the frictional contact between the members 201 drives the sliding member 201 to move linearly along the guide rails 202.
  • the piezoelectric motor of the embodiment of the invention further includes a driving circuit for providing a predetermined driving voltage for each electrode region on each electrode layer on the piezoelectric actuator to drive the piezoelectric actuator to generate the above-mentioned diagonal reciprocating straight line motion.
  • the two friction heads 30 may be spherical, hemispherical, cylindrical or other shapes, and are made of a wear resistant material.
  • the friction head 30 is cylindrical, and
  • the friction head 30 can be adhesively fixed to the piezoelectric actuator 10 by an epoxy resin;
  • the elastic pressing member 40 can be a spring, and the piezoelectric actuator 10 and the friction head 30 can be pressed against the sliding by a suitable preload force.
  • the piezoelectric actuator provided by the present invention will be described in detail.
  • the piezoelectric actuator provided in this embodiment operates in the standing wave mode and can generate linear motion in the diagonal direction, and can be used as the piezoelectric actuator in the piezoelectric motor shown in FIG.
  • the piezoelectric actuator of this embodiment includes a piezoelectric body 1 which is a square plate-like structure, the piezoelectric body 1 is polarized in the thickness direction, and the pole of the entire piezoelectric body The direction of polarization is the same, the direction of polarization is the P direction shown in FIG.
  • the first end main plane of the piezoelectric body 1, the front end surface of the piezoelectric body 1 shown in FIG. 2A, is provided with a first electrode layer 21, a second end main plane of the piezoelectric body 1, as shown in FIG. 2A, a rear end surface of the piezoelectric body 1 is provided with a second electrode layer 22;
  • the first electrode layer 21 is orthogonally divided into four equal portions, The four aliquots of the electrode regions are all square regions, that is, the four electrode regions are respectively the first electrode region 21 1 , the second electrode region 212 , the third electrode region 213 and the fourth electrode region 214 , wherein
  • the electrode region 21 1 and the third electrode region 213 are disposed diagonally, and the second electrode region 212 and the fourth electrode region 214 are diagonally disposed
  • the second electrode layer 22 is an electrode region of an integral shape, that is, the electrode of the second electrode layer 22 One Body structure.
  • each electrode region on the first electrode layer 21 can be connected to an input voltage provided by a driving circuit in the piezoelectric motor, and the second electrode layer 22 can serve as a voltage ground end through the first electrode.
  • the line direction i.e., the 2-2 or 1-1 direction shown in Fig. 2A, produces a linear motion of the reciprocating motion.
  • the preset voltage operating frequency is the resonant frequency of the bending vibration along the diagonal in the first step of the piezoelectric body, the maximum vibration amplitude can be obtained.
  • the driving voltage supplied from the driving circuit on the piezoelectric motor includes a plurality of input voltages applied to the respective electrode regions on the first electrode layer 21.
  • the first electrode region 211 and the third electrode region 213 on the first electrode layer 21 are respectively connected to an input driving voltage +Vsin c t, -Vsin c t; and the second electrode layer 22 is grounded.
  • +Vsin ct and -Vsin ct applied to the first electrode region 21 1 and the third electrode region 213 the piezoelectric body 1 can be produced in the first step plane in the 2-2 direction as shown in FIG. 2A.
  • the bending vibration along the diagonal causes the piezoelectric body to produce a reciprocating linear motion in the diagonal direction (i.e., the 2-2 direction).
  • the second electrode layer 22 is grounded, and the first direction can be generated in the 1-1 direction shown in FIG. 2A.
  • the bending vibration along the diagonal inside the step surface causes the piezoelectric body to generate a reciprocating linear motion in the diagonal direction (ie, the 1-1 direction).
  • FIG. 2B is a schematic diagram showing a motion mode of the piezoelectric body when a voltage is applied to the first electrode region and the third electrode region in FIG. 2A;
  • FIG. 2C is a motion of the piezoelectric body when a voltage is applied to the second electrode region and the fourth electrode region in FIG. 2A.
  • Schematic diagram As shown in FIGS. 2A and 2B, when the alternating voltages +Vsin ⁇ t and -Vsin ⁇ t are applied to the first electrode region 211 and the third electrode region 213, respectively, the piezoelectric body 1 excites one in the 2-2 direction. The first-order bending vibration causes the piezoelectric body to produce a reciprocating linear motion in a diagonal direction (i.e., a 2-2 direction).
  • the piezoelectric body 1 is at 1-1.
  • the direction excites a first-order bending vibration that causes the piezoelectric body to produce a reciprocating linear motion in a diagonal direction (ie, a 1-1 direction).
  • the size and frequency of V can be set to an appropriate value as needed to ensure that the sliding member of the piezoelectric motor can be moved while the piezoelectric actuator is operating.
  • the piezoelectric body 1 has a square shape and may be a plurality of piezoelectric sheets.
  • the material of the piezoelectric body 1 may be a piezoelectric ceramic material or a piezoelectric single crystal material.
  • the structure can also be a composite plate structure composed of an elastic metal piece and a piezoelectric ceramic or a piezoelectric crystal piece.
  • the piezoelectric body 1 is a piezoelectric ceramic plate made of a piezoelectric ceramic material.
  • the piezoelectric actuator provided in the embodiment of the present invention uses a piezoelectric body of a square plate structure and polarizes the piezoelectric body in a thickness direction.
  • the piezoelectric actuator has a simple structure and is convenient to manufacture. Mass production of the piezoelectric actuator can be realized; by providing a plurality of electrode regions at the end of the piezoelectric body, the piezoelectric actuator is excited at a preset driving voltage and frequency to generate a resonance in the first step plane diagonally
  • the bending vibration mode can effectively reduce the difficulty of the driver manufacturing, and the piezoelectric actuator only works in the diagonal vibration mode of the diagonal in the first step, which can avoid the piezoelectric interference caused by the external interference in the two modes. Drive failure issue.
  • FIG. 3 is a schematic structural diagram of a piezoelectric actuator according to Embodiment 3 of the present invention.
  • the piezoelectric actuator of the present embodiment is also applied to the standing wave mode, and can be applied to the piezoelectric motor shown in FIG. 1.
  • the difference from the technical solution of the embodiment shown in FIG. 2A is that, as shown in FIG. 3, in this embodiment, The polarization directions of the corresponding portions of the two electrode regions in the thickness direction of the piezoelectric body 1 are opposite, that is, the polarization directions of the first electrode region 21 1 and the third electrode region 213 are opposite, as shown in the direction P1 of FIG. In the direction P2, the polarization directions of the corresponding portions of the second electrode region 212 and the fourth electrode region 214 are also opposite.
  • the symmetrically disposed two electrode regions have opposite polarizations in opposite portions of the piezoelectric body, so that the piezoelectric body 1 can generate a diagonal vibration along the diagonal in the first step, diagonally disposed.
  • the two electrode regions can be applied with the same input voltage. Specifically, as shown in FIG. 3, the first electrode region 211 and the third electrode region 213 can be simultaneously connected to the alternating voltage Vsin ct, and the second electrode layer 22 is grounded. Under the action of the applied alternating voltage Vsin ct, the piezoelectric body 1 can generate a bending vibration along the diagonal in the first step surface as shown in FIG. 2B, thereby causing the piezoelectric body to be diagonally oriented (ie, 2-2).
  • the driving circuit in the piezoelectric motor can provide the same AC voltage for the two electrode regions disposed diagonally, so that the design of the driving circuit can be made simpler and more convenient to manufacture.
  • FIG. 4 is a schematic structural view of a piezoelectric actuator according to Embodiment 4 of the present invention.
  • the piezoelectric actuator of the embodiment also operates in the standing wave mode and can be applied to the piezoelectric motor shown in FIG. 1.
  • the second electrode layer and the second electrode layer One electrode layer is the same, that is, it also has four electrode regions. Specifically, as shown in FIG.
  • a represents a schematic overall view of the piezoelectric body 1
  • b represents a schematic view of the electrode layers of the front and rear ends of the piezoelectric body 1, that is, the first electrode layer 21 and the second electrode layer 22, the first electrode layer 21 and the second electrode layer 22 have the same structure, that is, the second electrode layer 22 also has four electrode regions, which are the fifth electrode region 221, the sixth electrode region 222, the seventh electrode region 223, and the eighth electrode region 224, respectively.
  • the first electrode region 211 and the seventh electrode region 223 may be electrically connected together and serve as a ground electrode; the third electrode region 213 and the fifth electrode region 221 are electrically connected together, and the input voltage Vsin ct is connected. .
  • the piezoelectric body 1 can generate a bending vibration along the diagonal in the first step as shown in FIG. 2B, thereby causing the piezoelectric body to be diagonally oriented (ie, 2- 2 directions) produces a reciprocating linear motion.
  • the piezoelectric body 1 can produce a reciprocating linear motion in the direction of the diagonal 1-1 when only the input voltage Vsin c t is present.
  • FIG. 5 is a schematic structural diagram of a piezoelectric actuator according to Embodiment 5 of the present invention.
  • This embodiment is also applicable to the standing wave mode, and can be applied to the piezoelectric motor shown in FIG. 1.
  • the piezoelectric actuator in this embodiment may include The plurality of layers are such that, under the same preset voltage driving, each piezoelectric body can generate a reciprocating linear path motion formed by a diagonal vibration along a diagonal in the first step surface, and the entire piezoelectric actuator can pass The plurality of piezoelectric bodies produce the desired reciprocating linear trajectory motion.
  • c in FIG. 5 represents an overall structural diagram of the piezoelectric actuator
  • d represents a schematic diagram of the assembled structure of the piezoelectric actuator.
  • the piezoelectric actuator includes four stacked piezoelectric bodies, each of which The piezoelectric body may have the same electrode layer, and may have the same electrode layer as that of FIG. 2A described above, and the electrode layers of the corresponding shapes are disposed together, such as the first piezoelectric body 10 and the second piezoelectric body 20 therein, having 4 The end faces of the electrode regions are disposed opposite to each other, and the third piezoelectric body 30 and the fourth piezoelectric body 40 also have the same arrangement.
  • the structure of the upper electrode layer of the piezoelectric body in this embodiment can also be the same as that of FIG. 2A to FIG. 3, and the driving voltage of the driver formed can refer to the single piezoelectric in FIG. 2A to FIG. 3 described above.
  • the driving voltage of the body can be such that the entire driver can produce a linear motion along the diagonal.
  • the number of layers is any number of layers greater than 2, and the following effects can be obtained by using the multilayer piezoelectric structure: (1) In the case where the thickness of each layer of the piezoelectric body is constant, the piezoelectric actuator can be improved. The input power is used to obtain a larger driving force; (2) The multilayer structure can effectively reduce the operating voltage of the piezoelectric actuator while the total thickness of the piezoelectric actuator is constant.
  • the piezoelectric actuators provided in the above-mentioned FIGS. 2A to 5 can be applied to the diagonal bending vibration in the first step of the piezoelectric motor resonance shown in FIG. 1, and the reciprocating linear path for driving the sliding member is integrally generated. motion.
  • FIG. 6 is a schematic structural view of a piezoelectric motor according to Embodiment 6 of the present invention.
  • the piezoelectric actuator in the piezoelectric motor provided by the present invention can generate an elliptical trajectory movement. Specifically, as shown in FIG.
  • the piezoelectric motor includes a driver 10 and a slide assembly
  • the slide assembly includes a member 201 and a guide rail 202
  • the slide member 201 is slidable along the guide rail 202, which is a linear guide rail, so that the sliding member 201 can move linearly along the guide rail 202
  • the piezoelectric actuator 10 is provided with a friction head 30, an elastic pressing member 40 and an elastic support 50, the friction The head 30 is elastically contacted with the sliding portion 201 by the pressing force F provided by the elastic pressing member 40.
  • the friction head 30 is fixed on the side corner of the piezoelectric actuator 10 where the electrode is not disposed, and the piezoelectric actuator 10 is generated.
  • the friction head 30 can be moved in an elliptical trajectory with the piezoelectric actuator 10, so that the sliding contact between the slider member 201 and the sliding member 201 can be driven to linearly move the slider member 201 along the guide rail 202.
  • the specific structure of the piezoelectric actuator will be described in detail later.
  • the piezoelectric motor of the embodiment of the present invention further includes a driving circuit for supplying a predetermined driving voltage to each electrode region on each of the electrode layers on the piezoelectric actuator to drive the piezoelectric actuator to generate the elliptical trajectory motion described above.
  • the friction head 30 may be spherical, hemispherical, or circular. a cylindrical shape or other shape, and is made of a wear resistant material.
  • the friction head 30 is cylindrical, and the friction head 30 can be bonded and fixed together with the piezoelectric actuator 10 by an epoxy resin;
  • the pressing member 40 may be a spring that can press the piezoelectric actuator 10 and the friction head 30 against the sliding member 201 with a suitable preload force.
  • the piezoelectric actuator provided by the present invention will be described in detail below by taking a specific structure of a piezoelectric actuator that can generate an elliptical trajectory as an example.
  • FIG. 7A is a schematic structural view of a piezoelectric actuator according to Embodiment 7 of the present invention.
  • the piezoelectric actuator of this embodiment can operate in a traveling wave mode, and can generate an elliptical trajectory motion for driving the movement of the sliding member, which can be applied to the piezoelectric motor shown in Fig. 6. Specifically, as shown in FIG.
  • the piezoelectric actuator of the present embodiment includes a piezoelectric body 1 which is also a square plate-like structure, the piezoelectric body 1 is polarized in the thickness direction, and the entire piezoelectric body is The polarization direction is the same, the polarization direction is the P direction shown in the figure; the first end main plane of the piezoelectric body, the front end surface of the piezoelectric body 1 shown in FIG. 7A, is provided with the first electrode layer 21, The second end main plane of the piezoelectric body 1, as shown in FIG.
  • the rear end surface of the piezoelectric body 1 is provided with a second electrode layer 22;
  • the first electrode layer 21 is orthogonally divided into four equal portions, respectively The first electrode region 211, the second electrode region 212, the third electrode region 213, and the fourth electrode region 214;
  • the second electrode layer 22 is an electrode region having an integral shape, that is, the electrode of the second electrode layer 22 is an integral structure.
  • each electrode region on the first electrode layer 21 can be connected to an input voltage provided by a driving circuit in the piezoelectric motor, and the second electrode layer 22 can serve as a voltage ground end through the first electrode.
  • the piezoelectric body 1 can be excited to generate two mutually perpendicular bending vibrations in the first step surface, so that the piezoelectric actuator as a whole can be An elliptical trajectory motion is produced under the combined bending vibrations of the two first step planes along the diagonal.
  • the preset voltage operating frequency is the resonant frequency of the bending vibration along the diagonal in the first step of the piezoelectric body, the maximum vibration amplitude can be obtained.
  • the input voltages are respectively applied to the respective electrode regions on the first electrode layer 21.
  • the first electrode region 211, the second electrode region 212, the third electrode region 213, and the fourth electrode region 214 on the first electrode layer 21 are respectively connected with an input driving voltage +Vsin ct, + Vcos t, -Vsin ct, -Vcos t;
  • the second electrode layer 22 is grounded.
  • the illustrated 1-1 direction produces a first-order in-plane diagonal bending vibration; under the action of +Vcos ⁇ t and -Vcos ⁇ t applied to the second electrode region 212 and the fourth electrode region 214, the piezoelectric The body 1 can generate a diagonal vibration along the diagonal in the first step plane in the 2-2 direction as shown in FIG. 7A, so that the piezoelectric body 1 as a whole is in the two interacting orthogonal first step planes.
  • the elliptical trajectory motion is generated by bending synthesis under the diagonal vibration, wherein the 1-1 direction and the 2-2 direction are two orthogonal directions of the plane of the first electrode layer.
  • FIG. 7B is a schematic diagram showing a motion mode of the piezoelectric body when a voltage is applied to the first electrode region and the third electrode region in FIG. 7A;
  • FIG. 7C is a motion of the piezoelectric body when a voltage is applied to the second electrode region and the fourth electrode region in FIG. 7A.
  • Schematic diagram As shown in FIGS. 7A and 7B, when the alternating voltages +Vsin ct and -Vsin ct are applied to the first electrode region 211 and the third electrode region 213, respectively, the piezoelectric body 1 generates a bend in the 1-1 direction, When the alternating voltage is input, the bending vibration in the direction of 1-1 is excited; similarly, as shown in FIGS.
  • the polarization directions of the piezoelectric body 1 as a whole are the same, in order to cause bending vibrations of the portions of the piezoelectric body 1 corresponding to the two electrode regions that are symmetrical to each other, it is only necessary to apply opposite directions in the diagonal electrode regions. Two alternating voltages are sufficient; at the same time, in order to make the piezoelectric body 1 as a whole, two mutually orthogonal bending vibrations in the first step are diagonally generated, and the adjacent two electrode regions i or the applied alternating voltage Should be quadrature voltage.
  • the amplitude of the input voltage that is, the magnitude of the voltage V
  • the driving circuit in the piezoelectric motor should provide two or two pairs of positive voltages at a specific frequency for the piezoelectric actuator.
  • the piezoelectric actuator can generate the resonant bending vibration along the diagonal in the first step, and the resonant vibration of the diagonal along the diagonal of the two first steps generated by each or each pair of driving voltages is positive. cross.
  • the piezoelectric body 1 has a square shape and may be a plurality of piezoelectric sheets.
  • the material of the piezoelectric body 1 may be a piezoelectric ceramic material or a piezoelectric single crystal material.
  • the structure can also be a composite plate structure composed of an elastic metal piece and a piezoelectric ceramic or a piezoelectric crystal piece.
  • the piezoelectric body 1 is a piezoelectric ceramic plate made of a piezoelectric ceramic material.
  • the piezoelectric actuator provided in the embodiment of the present invention has a piezoelectric body of a square plate structure and polarized the piezoelectric body in the thickness direction.
  • the piezoelectric actuator has a simple structure and is convenient to manufacture. Realizing large-scale production of piezoelectric actuators; by providing a plurality of electrode regions at the ends of the piezoelectric body, the piezoelectric actuators are excited at a driving voltage of a predetermined specific frequency to generate two first-order inner edges of mutually orthogonal resonance
  • the diagonal bending vibration mode can effectively reduce the difficulty of manufacturing the driver, and the piezoelectric actuator only works in the diagonal vibration mode of the diagonal in the first step, which can avoid the external interference existing in the two modes. The resulting piezoelectric actuator failure problem.
  • FIG. 8 is a schematic structural view of a piezoelectric actuator according to Embodiment 8 of the present invention.
  • the piezoelectric actuator of the embodiment is also used in the traveling wave mode, and can be applied to the piezoelectric motor shown in FIG. 6.
  • the difference from the technical solution of the embodiment shown in FIG. 7A is as shown in FIG. 8.
  • the polarization directions of the diagonal portions of the two electrode regions opposite to each other in the thickness direction of the piezoelectric body 1 are opposite, that is, the polarization directions of the first electrode region 211 and the third electrode region 213 are opposite, as shown in the direction P1 of FIG.
  • the polarization directions of the corresponding portions of the second electrode region 212 and the fourth electrode region 214 are also opposite.
  • the symmetrically disposed two electrode regions have opposite polarizations in opposite directions on the piezoelectric body, so that the piezoelectric body 1 can generate a diagonal vibration along the diagonal in the first step, diagonally
  • the two electrode regions are disposed to apply the same input voltage.
  • the first electrode region 211 and the third electrode region 213 can simultaneously connect the alternating voltage Vsin ct, the second electrode region and the fourth electrode region.
  • the AC voltage Vcos t is connected, and the second electrode layer 22 is still grounded.
  • the piezoelectric body 1 can generate a bending vibration along the diagonal of the first step surface as shown in FIG. 7B.
  • the electric body 1 can generate a bending vibration along the diagonal line in the first step surface as shown in FIG. 7C, so that the piezoelectric body 1 can simultaneously generate two under the action of the applied two alternating voltages Vsin ct and Vcos t.
  • the diagonal vibrations of the first-order planes that are orthogonal to each other are diagonally vibrated, and the elliptical trajectory motion is generated by the bending vibrations along the diagonals of the two mutually orthogonal first step planes.
  • the driving circuit in the piezoelectric motor can provide the same alternating voltage for the two electrode regions symmetrically disposed, and the adjacent two electrode regions i or the applied alternating voltage should be a quadrature voltage for piezoelectric
  • the body produces two mutually perpendicular curved vibrations along the diagonal in the first step plane at two alternating voltages.
  • FIG. 9 is a schematic structural view of a piezoelectric actuator according to Embodiment 9 of the present invention.
  • the piezoelectric actuator of the embodiment is also used in the traveling wave mode, and can be applied to the piezoelectric motor shown in FIG. 6.
  • the second electrode layer and the second electrode layer One electrode layer is the same, that is, it also has four electrode regions. Specifically, as shown in FIG.
  • a represents a schematic overall view of the piezoelectric body 1
  • b represents a schematic view of the electrode layers of the front and rear ends of the piezoelectric body 1, that is, the first electrode layer 21 and the second electrode layer 22, the first electrode layer 21 and the second electrode layer 22 have the same structure, that is, the second electrode layer 22 also has four electrode regions, which are the fifth electrode region 221, the sixth electrode region 222, the seventh electrode region 223, and the eighth electrode region 224, respectively.
  • the first electrode region 211, the fourth electrode region 214, the sixth electrode region 222, and the seventh electrode region 223 may be electrically connected together, and serve as a ground electrode
  • the second electrode region 212 and the eighth electrode are The regions 224 are electrically connected together, and are connected to the input voltage Vsin ct to electrically connect the third electrode region 213 and the fifth electrode region 221 to the input voltage Vcos ⁇ ⁇ .
  • the piezoelectric body 1 can generate a bending vibration along the diagonal in the first step as shown in FIG. 7C.
  • the piezoelectric body 1 When only the input voltage Vcos t is available, the piezoelectric body 1 can The bending vibration along the diagonal in the first step surface as shown in FIG. 7B is generated, so that the piezoelectric body 1 as a whole can generate two mutual interactions under the action of the applied two input voltages Vsin ⁇ t and Vcos ⁇ t An orthogonal first-order bending vibration, and an elliptical trajectory motion is generated by a combination of diagonal bending vibrations in two mutually orthogonal first step planes.
  • FIG. 10 is a schematic structural diagram of a piezoelectric actuator according to Embodiment 10 of the present invention.
  • the piezoelectric actuator of the embodiment also operates in the traveling wave mode, and can be applied to the piezoelectric motor shown in FIG. 6.
  • the pressure in this embodiment is
  • the electric driver may include a plurality of piezoelectric bodies stacked in a stack, and an electrode layer between the piezoelectric bodies is in the circuit The upper is connected in parallel.
  • each piezoelectric body can generate an elliptical trajectory motion composed of two mutually orthogonal first-order planes along the diagonal bending vibration, and the entire piezoelectric actuator is
  • the desired elliptical trajectory motion can be generated by the plurality of piezoelectric bodies.
  • 10 is a schematic view showing the overall structure of the piezoelectric actuator
  • d is a schematic view showing the assembled structure of the piezoelectric actuator.
  • each piezoelectric body may have the same electrode layer, and may have the same electrode layer as that of FIG. 7A described above, and the electrode layers of the corresponding shapes are disposed in the same manner.
  • the end faces having the four electrode regions are disposed opposite to each other, and the third piezoelectric body 30 and the fourth piezoelectric body 40 also have the same arrangement.
  • the structure of the upper electrode layer of the piezoelectric body in this embodiment can also be the same as that of FIG. 7A to FIG. 8
  • the driving voltage of the driver formed can refer to the single piezoelectric in FIG. 7A to FIG. 8 described above.
  • the driving voltage of the body can be such that the entire driver can produce an elliptical motion.
  • the following effects can be obtained by using the multilayer piezoelectric structure: (1) In the case where the thickness of each layer of the piezoelectric body is constant, the input power of the piezoelectric actuator can be increased, thereby obtaining a larger driving force. (2) The multilayer structure can effectively reduce the operating voltage of the piezoelectric actuator under the condition that the total thickness of the piezoelectric actuator is constant.
  • the piezoelectric actuators provided in the above-mentioned FIGS. 7A-10 can be applied to the diagonal bending vibrations in the first step plane orthogonal to the piezoelectric motor shown in FIG. 6, and in the first two orthogonal to each other. Under the curved vibration of the step along the diagonal, the elliptical trajectory motion that drives the movement of the sliding member is generated as a whole.

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

一种压电驱动器及采用该压电驱动器的压电马达,其中压电驱动器包括压电本体(1),压电本体为正方形板状结构且沿厚度方向极化,并在厚度方向的第一端主平面设置有第一电极层(21),在厚度方向的第二端主平面设置有第二电极层(22);第一电极层包括多个电极区域(211,212,213,214),第二电极层包括至少一个电极区域。该压电驱动器可工作于简单的第一阶弯曲振动模式,产生往复的直线轨迹运动,或者椭圆轨迹运动,结构简单,并可克服传统压电驱动器存在的问题。

Description

压电驱动器及压电马达 技术领域 本发明涉及压电马达技术, 尤其涉及一种压电驱动器及压电马达。 背景技术
压电马达是利用压电元件的逆压电效应和弹性体的超声振动, 通过定 子和动子之间的摩擦作用, 把弹性体的微幅振动转换为运动体宏观的直线 运动, 从而直接推动负载运动。 由于压电马达具有结构紧凑、 体积小等优 点, 得到了广泛运用。 其中压电马达主要包括压电驱动器和滑动组件, 压 电驱动器为定子, 滑动组件为动子, 通过驱动电路为压电驱动器提供驱动 电压, 就可使压电驱动器产生特定的微观运动, 进而推动滑动组件产生宏 观运动。
目前,直线压电马达普遍釆用压电 L1-B2双振动耦合简并模式原理工 作, 压电马达工作时, 压电驱动器工作在第一阶纵振模式 (L1)和第二阶弯 曲振动模式 (B2) , 通过产生的第一阶纵振动和第二阶弯曲振动耦合简并合 成微观的椭圓轨迹运动, 从而通过椭圓轨迹运动推动滑块组件做宏观直线 运动, 可广泛应用于精密的直线定位、 超微镜头精密驱动等。 但是, 现有 釆用的压电 L 1 -B2双振动耦合简并模式原理的直线压电马达存在以下的 问题:(1)为确保压电驱动器保持工作在第一阶纵振模式和第二阶弯曲振动 模式, 压电驱动器结构尺寸控制精度要求极高, 导致压电驱动器制备工艺 复杂, 不利于大规模制备, 增加了制备成本; (2)压电驱动器工作在第一阶 纵振模式和第二阶弯曲模式时, 两种工作模式的谐振频率可能会因为外界 的干扰而不同步, 因而导致压电驱动器产生的合成椭圓轨迹运动紊乱, 使 驱动失效; (3)当压电驱动器微型化至毫米尺寸时, 压电驱动器因工作在 L1模式, 其谐振频率往往过高, 这会增加驱动电路的功耗, 并为驱动电 路的制作带来困难。
综上, 现有的压电马达釆用工作在第一阶纵振模式和第二阶弯曲振动 模式的压电驱动马达中, 压电驱动器结构复杂, 制作精度要求高, 使得压 电驱动器制作工艺复杂, 不利于压电马达的大规模生产; 同时, 压电驱动 器工作于两个振动的耦合简并模式, 易于受到外界干扰造成去耦合而使驱 动失效; 此外,压电驱动器工作于第一阶纵振模式时,谐振频率往往过高, 导致驱动电路的功耗过大, 且驱动电路制作困难。 其他复合模式工作原理 的压电马达也存在类似的问题。 发明内容 本发明提供一种压电驱动器及压电马达, 可有效克服传统釆用两种耦 合工作模式的压电驱动器存在制作工艺复杂、 功耗大以及易于受外界干扰 的问题, 使得压电驱动器的结构简单, 制作方便, 且可工作于最简单的弯 曲振动模式。
本发明提供一种压电驱动器, 包括:
压电本体, 所述压电本体为正方形板状结构, 所述压电本体沿厚度方 向极化;
所述压电本体在厚度方向的第一端主平面设置有第一电极层, 所述压 电本体在厚度方向的第二端主平面设置有第二电极层;
所述第一电极层包括多个电极区域, 所述第二电极层包括至少一个电 述压电驱动器激发产生第一阶面内沿对角线的弯曲振动, 以便所述压电驱 动器在所述第一阶面内沿对角线的弯曲振动产生往复的直线轨迹运动, 或 驱动器激发产生两个相互正交的第一阶面内沿对角线的弯曲振动, 以便所 述压电驱动器在所述两个相互正交的第一阶面内沿对角线的弯曲振动合 成产生椭圓轨迹运动。
本发明还提供一种压电马达, 包括压电驱动器和滑动组件, 所述压电 驱动器为釆用上述本发明提供的压电驱动器;
所述滑动组件包括: 导轨、 沿所述导轨滑动设置的滑动部件; 所述压电驱动器上设置有摩擦头和弹性压紧部件, 所述的摩擦头在所 述的弹性压紧部件提供的预紧力作用下与所述的滑动部件弹性接触;
所述的摩擦头固定设置在压电驱动器的压电本体上未设置电极的侧 面的顶角处或靠近顶角的端部位置。
本发明提供的压电驱动器及压电马达, 通过釆用正方形板状结构的压 电本体, 并沿厚度方向极化该压电本体, 压电驱动器的结构简单, 制作方 便, 可实现压电驱动器的大规模生产; 通过在压电本体端部设置多个电极 区域, 使得压电驱动器可在预设驱动电压驱动下激发产生一个或者两个相 互正交的第一阶面内沿对角线的弯曲振动, 驱动器工作在一个简单的第一 阶面内沿对角线的弯曲振动模式, 可以避免工作于两种模式时存在的外界 干扰而导致的压电驱动器失效问题; 同时, 压电驱动器具有较小的功耗, 降低驱动电路的设计和制作成本。 附图说明
图 1为本发明实施例一提供的压电马达的结构示意图;
图 2 A为本发明实施例二提供的压电驱动器的结构示意图;
图 2B为图 2A中第一电极区域和第三电极区域施加电压时压电本体 的运动模态示意图;
图 2C为图 2A中第二电极区域和第四电极区域施加电压时压电本体 的运动模态示意图;
图 3为本发明实施例三提供的压电驱动器的结构示意图;
图 4为本发明实施例四提供的压电驱动器的结构示意图;
图 5为本发明实施例五提供的压电驱动器的结构示意图;
图 6为本发明实施例六提供的压电马达的结构示意图;
图 7A为本发明实施例七提供的压电驱动器结构示意图;
图 7B为图 7A中第一电极区域和第三电极区域施加电压时压电本体 的运动模态示意图;
图 7C为图 7A中第二电极区域和第四电极区域施加电压时压电本体 的运动模态示意图;
图 8为本发明实施例八提供的压电驱动器结构示意图;
图 9为本发明实施例九提供的压电驱动器的结构示意图;
图 10为本发明实施例十提供的压电驱动器的结构示意图。 具体实施方式 鉴于传统压电 L1-B2双振动模式压电马达,其压电驱动器存在结构和 制作工艺的复杂, 压电驱动器大规模生产成本较高等问题, 本发明提供一 种压电驱动器可工作在第一阶面内沿对角线的弯曲振动的单一工作模式, 有效的简化了压电驱动器的结构。 单一的工作模式以及简单的正方形板状 结构, 可有效的降低压电驱动器的制造成本; 同时, 也可简化驱动电路设 计, 避免工作于两种模式时因外界干扰而产生的驱动失效问题。
具体地, 本发明提供的驱动器可包括压电本体, 该压电本体为正方形 板状结构, 且压电本体沿厚度方向极化; 该压电本体在厚度方向上的第一 端主平面设置有第一电极层, 压电本体在厚度方向的第二端主平面设置有 第二电极层; 该第一电极层包括多个电极区域, 第二电极层至少包括一个 该压电驱动器激发产生第一阶面内沿对角线的弯曲振动, 以便压电驱动器 在该第一阶面内沿对角线的弯曲振动产生往复的直线轨迹运动, 或者, 使 发产生两个相互正交的第一阶面内沿对角线的弯曲振动, 以便压电驱动器 在该两个相互正交的第一阶面内沿对角线的弯曲振动合成产生椭圓轨迹 运动。 本发明提供的压电驱动器釆用正方形板结构的压电本体, 压电驱动 器结构简单, 制作方便, 同时通过在压电本体的主平面设置的电极区域, 使得压电驱动器可在预设电压下可工作于简单的第一阶弯曲振动模式下, 避免了传统压电驱动器多模式耦合存在的问题。
下面将以产生直线轨迹运动和椭圓轨迹运动的压电驱动器及其对应 的压电马达进行说明。
图 1为本发明实施例一提供的压电马达的结构示意图。 本实施例提供 的压电马达中的压电驱动器可产生上述的直线轨迹运动, 具体地, 如图 1 所示, 压电马达包括驱动器 10和滑动组件, 滑动组件包括滑动部件 201 和导轨 202 , 该滑动部件 201可沿导轨 202滑动, 该导轨 202为直线导轨, 使得滑动部件 201可沿导轨 202做直线运动; 该压电驱动器 10上设置有 在特定位置的两个摩擦头 30、 弹性压紧部件 40和弹性固支 50 , 该摩擦头 30可在弹性压紧部件 40提供的压紧力 F作用下, 与滑动部件 201弹性接 触,摩擦头 30固设在压电驱动器 10上未设置电极侧面靠近顶角的端面上, 具体地, 该压电驱动器 10上设置有两个摩擦头 30 , 且设置在未设置电极 的侧面的两个靠近顶角的端面上, 压电驱动器 10产生沿对角线的往复直 线运动时, 摩擦头 30可随压电驱动器 10做沿对角线的往复运动, 从而可 依靠摩擦头 30与滑动部件 201之间的摩擦接触, 驱动滑动部件 201沿导 轨 202做直线运动。 其中压电驱动器 10的具体结构以及产生直线运动的 具体实现将在后面做详细说明。
本发明实施例压电马达还包括驱动电路, 用于为压电驱动器上的各电 极层上的各电极区域提供预设驱动电压, 以驱动压电驱动器可产生上述的 沿对角线的往复直线运动。
本发明提供的压电马达中, 所述的两个摩擦头 30可为球形、 半球形、 圓柱形或者其他形状, 且由耐磨材料制作得到, 本实施例中摩擦头 30为 圓柱形,且该摩擦头 30可通过环氧树脂与压电驱动器 10粘接固定在一起; 所述的弹性压紧部件 40可以为弹簧, 可以合适的预紧力将压电驱动器 10 和摩擦头 30压在滑动部件 201上。 例, 对本发明提供的压电驱动器做详细的说明。
图 2A为本发明实施例二提供的压电驱动器的结构示意图。 本实施例 提供的压电驱动器工作于驻波模式, 可产生沿对角线方向的直线运动, 可 作为上述图 1所示的压电马达中的压电驱动器。 具体地, 如图 2A所示, 本实施例压电驱动器包括压电本体 1 , 该压电本体 1为正方形板状结构, 该压电本体 1沿厚度方向极化, 且整个压电本体的极化方向一致, 极化方 向如图 2A中所示的 P方向; 压电本体 1的第一端主平面, 如图 2A所示 的压电本体 1的前端面,设置有第一电极层 21 ,压电本体 1的第二端主平 面, 如图 2A所示的压电本体 1的后端面, 设置有第二电极层 22; 第一电 极层 21被正交的划分为四等份区域, 该四等份的电极区域均为正方形区 域, 即该四个电极区域中, 分别为第一电极区域 21 1、 第二电极区域 212、 第三电极区域 213和第四电极区域 214 , 其中, 第一电极区域 21 1与第三 电极区域 213呈对角设置, 第二电极区域 212和第四电极区域 214呈对角 设置; 第二电极层 22为一体形状的电极区域, 即第二电极层 22电极为一 体结构。
本实施例中, 如图 2A所示, 第一电极层 21上的各个电极区域可连接 压电马达中驱动电路提供的输入电压, 第二电极层 22可作为电压地端, 通过在第一电极层 21和第二电极层 22上施加预设的驱动电压, 就可以激 发压电本体 1整体产生一个第一阶面内沿对角线的弯曲振动, 使得压电驱 动器沿压电本体的对角线方向即图 2A中所示的 2-2或 1-1方向产生往复 运动的直线运动。 特别的, 该预设电压工作频率为压电本体第一阶面内沿 对角线的弯曲振动的谐振频率时, 可获得最大的振动幅度。
本实施例中, 压电马达上的驱动电路提供的驱动电压中, 包括多个输 入电压, 分别施加在第一电极层 21上的各电极区域。 具体地, 如图 2A所 示, 第一电极层 21上的第一电极区域 211和第三电极区域 213分别连接 有输入驱动电压 +Vsin c t、 -Vsin c t; 第二电极层 22接地。 这样在施加在 第一电极区域 21 1和第三电极区域 213上的 +Vsin c t和 -Vsin c t作用下, 压电本体 1可在如图 2A所示的 2-2方向产生第一阶面内沿对角线的弯曲 振动, 从而使压电本体沿对角线方向(即 2-2方向)产生往复的直线运动。 同样地,在第二电极区域 212和第四电极区域 214上施加 +Vsin c t和 -Vsin co t作用下, 在第二电极层 22接地, 可在图 2A所示的 1-1方向产生第一 阶面内沿对角线的弯曲振动,从而使压电本体沿对角线方向(即 1-1方向) 产生往复的直线运动。
图 2B为图 2A中第一电极区域和第三电极区域施加电压时压电本体 的运动模态示意图; 图 2C为图 2A中第二电极区域和第四电极区域施加 电压时压电本体的运动模态示意图。 如图 2A和图 2B所示, 当交流电压 +Vsin ω t和 -Vsin ω t分别施加到第一电极区域 211和第三电极区域 213时, 压电本体 1就会在 2-2方向激发一个第一阶弯曲振动, 其使压电本体沿对 角线方向 (即 2-2方向)产生往复的直线运动。 同样地, 如图 2A和图 2C 所示, 当交流电压 + Vsin ω t和- Vsin ω t分别施加到第二电极区域 212和第 四电极区域 214时,压电本体 1就会在 1-1方向激发一个第一阶弯曲振动, 其使压电本体沿对角线方向 (即 1-1方向)产生往复的直线运动。
本实施例中, 由于压电本体 1整体的极化方向相同, 为使得压电本体 1上相互对称的两个电极区域对应的部分产生弯曲振动, 只需要在相互对 称的电极区域施加方向相反的两个交流电压即可。
本领域技术人员可以理解, 上述输入电压的幅值和工作频率, 即电压
V的大小和频率,可根据需要而设定合适的值,以确保压电驱动器工作时, 可驱动压电马达的滑动部件运动。
本实施例中, 压电本体 1的形状为正方形, 可以是多个压电片层叠而 成, 其中, 压电本体 1的材料可以为压电陶瓷材料或者压电单晶材料; 压 电本体 1的结构也可以使弹性金属片与压电陶瓷或者压电晶体片构成的复 合板结构。 本实施例中, 压电本体 1为压电陶瓷材料制作而成的压电陶瓷 板。
综上可以看出, 本发明实施例中提供的压电驱动器, 通过釆用方形板 状结构的压电本体, 并沿厚度方向极化该压电本体, 压电驱动器的结构简 单, 制作方便, 可实现压电驱动器的大规模生产; 通过在压电本体端部设 置多个电极区域, 使得压电驱动器在预设驱动电压和频率下激发产生一个 谐振的第一阶面内沿对角线的弯曲振动模式, 可有效的降低驱动器制作难 度, 且压电驱动器仅工作在第一阶面内沿对角线的弯曲振动模式, 可避免 工作于两种模式时存在的外界干扰而导致的压电驱动器失效问题。
图 3为本发明实施例三提供的压电驱动器的结构示意图。 本实施例压 电驱动器同样工作于驻波模式, 可应用于图 1所示的压电马达, 与上述图 2A所示实施例技术方案不同的是, 如图 3所示, 本实施例中, 压电本体 1 沿厚度方向上相对的 2个电极区域对应部分的极化方向相反, 即第一电极 区域 21 1和第三电极区域 213的极化方向相反, 如图 3所示的方向 P1和 方向 P2, 同样的, 第二电极区域 212和第四电极区域 214对应部分的极化 方向也相反。
本实施例中, 对称设置的两个电极区域在压电本体上对应部分的极化 反向相反, 为使得压电本体 1可产生第一阶面内沿对角线的弯曲振动, 对 角设置的两个电极区域可施加相同的输入电压, 具体的, 如图 3所示, 第 一电极区域 211和第三电极区域 213可同时连接交流电压 Vsin c t, 第二 电极层 22接地。 在施加的交流电压 Vsin c t作用下, 压电本体 1可产生如 图 2B所示的第一阶面内沿对角线的弯曲振动, 从而引起压电本体沿对角 线方向(即 2-2方向)产生往复的直线运动。 同样地, 在第二电极区域 212 和第四电极区域 214上施加交流电压 Vsin c t, 在第二电极层接地, 同样 可在压电本体 1上产生如图 2C所示的第一阶面内沿对角线的弯曲振动, 从而引起压电本体沿对角线方向 (即 1-1方向) 产生往复的直线运动。
可以看出, 本实施例中, 压电马达中的驱动电路可为对角设置的两个 电极区域提供相同的交流电压, 这样, 可使得驱动电路的设计更加简单, 制作也更方便。
图 4为本发明实施例四提供的压电驱动器的结构示意图。 本实施例压 电驱动器同样工作于驻波模式, 可应用于图 1所示的压电马达, 与上述图 2A所示实施例技术方案不同的是, 本实施例中, 第二电极层与第一电极 层相同, 即也具有 4个电极区域。 具体的, 如图 4所示, 其中 a表示压电 本体 1整体示意图, b表示压电本体 1前后两端面的电极层即第一电极层 21和第二电极层 22的示意图, 第一电极层 21和第二电极层 22具有相同 的结构,即第二电极层 22也具有 4个电极区域,分别为第五电极区域 221、 第六电极区域 222、 第七电极区域 223和第八电极区域 224。
本实施例中, 可将第一电极区域 211、 第七电极区域 223电连接在一 起, 并作为接地电极; 将第三电极区域 213和第五电极区域 221电连接在 一起, 接输入电压 Vsin c t。 这样, 在仅有输入电压 Vsin c t时, 压电本体 1可产生如图 2B所示的第一阶面内沿对角线的弯曲振动, 从而引起压电 本体沿对角线方向 (即 2-2方向)产生往复的直线运动。 类似地, 在仅有 输入电压 Vsin c t时, 压电本体 1可产生沿对角线 1-1方向的往复直线运 动。
图 5为本发明实施例五提供的压电驱动器的结构示意图。 本实施例同 样工作于驻波模式, 可应用于图 1所示的压电马达, 与上述图 2A所示实 施例技术方案不同的是, 如图 5所示, 本实施中压电驱动器可包括多个层 这样, 在相同的预设电压驱动下, 每个压电本体均可产生由一个第一阶面 内沿对角线的弯曲振动形成的往复直线轨迹运动, 整个压电驱动器就可以 通过该多个压电本体产生所需要的往复直线轨迹运动。 其中, 图 5中的 c 表示压电驱动器的整体结构示意图, d表示压电驱动器组装结构示意图。
本实施例中, 如图 5所示, 压电驱动器包括 4个层叠的压电本体, 各 压电本体上可具有相同的电极层, 具有可与上述图 2A相同, 并且对应形 状的电极层对合设置在一起, 如其中的第一压电本体 10和第二压电本体 20, 具有 4个电极区域的端面对合设置, 第三压电本体 30和第四压电本 体 40也具有相同的设置方式。 本领域的技术人员可以理解, 本实施例中 压电本体上电极层的结构还可与图 2A-图 3相同, 其形成的驱动器的驱动 电压可参考上述图 2A-图 3中的单个压电本体的驱动电压, 只要可使得整 个驱动器产生沿对角线的直线运动的效果即可。
本实施例中, 层数为大于 2 的任意层数, 利用多层压电体结构可以获 得如下效果: (1)在各层压电本体的厚度不变的情况下, 可以提高压电驱动 器的输入功率, 从而获得更大的驱动力; (2)在压电驱动器总厚度不变的情 况下, 多层结构可以有效的降低压电驱动器的工作电压。
上述图 2A-图 5提供的各压电驱动器可应用在如图 1所示的压电马达 个谐振的第一阶面内沿对角线的弯曲振动, 整体产生驱动滑动部件运动的 往复直线轨迹运动。
图 6为本发明实施例六提供的压电马达的结构示意图。 本发明提供的 压电马达中的压电驱动器可产生椭圓轨迹运动, 具体地, 如图 6所示, 压 电马达包括驱动器 10和滑动组件, 滑动组件包括部件 201和导轨 202, 该 滑动部件 201可沿导轨 202滑动, 该导轨 202为直线导轨, 使得滑动部件 201可沿导轨 202做直线运动; 该压电驱动器 10上设置有摩擦头 30、 弹 性压紧部件 40和弹性支撑 50 , 该摩擦头 30可在弹性压紧部件 40提供的 压紧力 F作用下, 与滑动部分 201弹性接触, 摩擦头 30固设在压电驱动 器 10上未设置电极的侧面顶角上, 压电驱动器 10产生椭圓轨迹运动时, 摩擦头 30可随压电驱动器 10做椭圓轨迹运动, 从而可依靠 30与滑动部 件 201之间的摩擦接触,驱动滑块部件 201沿导轨 202做直线运动。其中, 压电驱动器的具体结构将在后面做详细说明。
本发明实施例压电马达还包括驱动电路, 用于为压电驱动器上的各电 极层上的各电极区域提供预设驱动电压, 以驱动压电驱动器可产生上述的 椭圓轨迹运动。
本发明提供的压电马达中, 所述的摩擦头 30可为球形、 半球形、 圓 柱形或者其他形状, 且由耐磨材料制作得, 本实施例中摩擦头 30为圓柱 形, 且该摩擦头 30可通过环氧树脂与压电驱动器 10粘接固定在一起; 所 述的弹性压紧部件 40可以为弹簧, 可以合适的预紧力将压电驱动器 10和 摩擦头 30压在滑动部件 201上。
下面将以可产生椭圓轨迹运动的压电驱动器的具体结构为例, 对本发 明提供的压电驱动器进行详细的说明。
图 7A为本发明实施例七提供的压电驱动器结构示意图。 本实施例压 电驱动器可工作于行波模式, 可产生驱动滑动部件运动的椭圓轨迹运动, 可应用在图 6所示的压电马达中。 具体地, 如图 7A所示, 本实施例压电 驱动器包括压电本体 1 , 该压电本体 1同样为正方形板状结构, 该压电本 体 1沿厚度方向极化, 且整个压电本体的极化方向一致, 极化方向如图中 所示的 P方向; 压电本体的第一端主平面, 如图 7A所示的压电本体的 1 的前端面, 设置有第一电极层 21 , 压电本体 1的第二端主平面, 如图 7A 所示的压电本体 1的后端面, 设置有第二电极层 22; 第一电极层 21被正 交的划分为四等份区域, 分别为第一电极区域 211、 第二电极区域 212、 第三电极区域 213和第四电极区域 214;第二电极层 22为一体形状的电极 区域, 即第二电极层 22电极为一体结构。
本实施例中, 如图 7A所示, 第一电极层 21上的各个电极区域可连接 压电马达中驱动电路提供的输入电压, 第二电极层 22可作为电压地端, 通过在第一电极层 21和第二电极层 22上施加预设的驱动电压, 就可以激 发压电本体 1整体产生两个相互正交的第一阶面内沿对角线的弯曲振动, 使得压电驱动器整体可在该两个第一阶面内沿对角线的弯曲振动合成下 产生椭圓轨迹运动。 特别的, 预设电压工作频率为压电本体第一阶面内沿 对角线的弯曲振动的谐振频率时, 可获得最大的振动幅度。
本实施例中, 压电马达上的驱动电路提供的驱动电压中, 输入电压分 别施加在第一电极层 21上的各电极区域。 具体地, 如图 7A所示, 第一电 极层 21上的第一电极区域 211、 第二电极区域 212、 第三电极区域 213和 第四电极区域 214分别连接有输入驱动电压 +Vsin c t、 +Vcos t、 -Vsin c t、 -Vcos t; 第二电极层 22接地。 这样在施加在第一电极区域 21 1和第 三电极区域 213上的 +Vsin c t和- Vsin c t作用下,压电本体 1可在如图 7A 所示的 1-1方向产生一阶面内沿对角线的弯曲振动; 在施加在第二电极区 域 212和第四电极区域 214上的 +Vcos ω t和 -Vcos ω t作用下, 压电本体 1 可在如图 7A所示的 2-2方向产生第一阶面内沿对角线的弯曲振动, 这样 压电本体 1整体就会在两个相互作用的正交的第一阶面内沿对角线的弯曲 振动下耦合合成, 产生椭圓轨迹运动, 其中所述的 1-1方向和 2-2方向就 是第一电极层所在平面的两个正交方向。
图 7B为图 7A中第一电极区域和第三电极区域施加电压时压电本体 的运动模态示意图; 图 7C为图 7A中第二电极区域和第四电极区域施加 电压时压电本体的运动模态示意图。 如图 7A和图 7B所示, 当交流电压 +Vsin c t和- Vsin c t分别施加到第一电极区域 211和第三电极区域 213时, 压电本体 1产生一个沿 1-1方向的弯曲, 对于输入交变电压, 就会激发沿 1-1方向的弯曲振动; 同样的, 如图 7A和图 7C所示, 当交流电压 +Vcos ω t和 -Vcos ω t分别施加在第二电极区域 212和第四电极区域 214时, 压 电本体 1沿厚度方向上与第二电极区域 212对应的部分会沿 1-1方向缩短, 与第四电极区域 214对应的部分会沿 1-1方向伸长, 其结果就会使得压电 本体 1整体产生一个 2-2方向的弯曲,对于输入交变电压,就会激发沿 2-2 方向的弯曲振动。 可以看到, 当交流电压士 Vsin c t和士 Vcos t同时施加 在第一电极层 21上的各电极区域时, 压电本体就会同时在 1-1方向和 2-2 方向激发两个正交的第一阶弯曲振动, 它们合成便产生了一个椭圓轨迹运 动。
本实施例中, 由于压电本体 1整体的极化方向相同, 为使得压电本体 1上相互对称的两个电极区域对应的部分产生弯曲振动, 只需要在对角的 电极区域施加方向相反的两个交流电压即可; 同时, 为使得压电本体 1整 体可产生两个相互正交的第一阶面内沿对角线的弯曲振动, 相邻的两个电 极区 i或施加的交流电压应为正交电压。
本领域技术人员可以理解, 上述输入电压的幅值, 即电压 V的大小, 可根据需要而设定合适的值, 以确保压电驱动器工作时, 可驱动压电马达 的滑动部件运动; 同时, 为使得压电驱动器可同时激发两个相互正交的第 一阶面内沿对角线的弯曲振动, 压电马达中的驱动电路应为压电驱动器提 供两路或者两对特定频率下的正交的驱动电压, 在每路或者每对驱动电压 作用下, 压电驱动器均可产生第一阶面内沿对角线的谐振弯曲振动, 且每 路或每对驱动电压下产生的两个第一阶面内沿对角线的谐振弯曲振动正 交。
本实施例中, 压电本体 1的形状为正方形, 可以是多个压电片层叠而 成, 其中, 压电本体 1的材料可以为压电陶瓷材料或者压电单晶材料; 压 电本体 1的结构也可以使弹性金属片与压电陶瓷或者压电晶体片构成的复 合板结构。 本实施例中, 压电本体 1为压电陶瓷材料制作而成的压电陶瓷 板。
综上可以看出, 本发明实施例中提供的压电驱动器, 通过釆用方形板 结构的压电本体,并沿厚度方向极化该压电本体,压电驱动器的结构简单, 制作方便, 可实现压电驱动器的大规模生产; 通过在压电本体端部设置多 个电极区域, 使得压电驱动器在预设特定频率下驱动电压下激发产生两个 相互正交谐振的第一阶面内沿对角线的弯曲振动模式, 可有效的降低驱动 器的制作难度, 且压电驱动器仅工作在第一阶面内沿对角线的弯曲振动模 式, 可避免工作于两种模式时存在的外界干扰而导致的压电驱动器失效问 题。
图 8为本发明实施例八提供的压电驱动器结构示意图。 本实施例压电 驱动器同样工作于行波模式,可应用于图 6所示的压电马达,与上述图 7A 所示实施例技术方案不同的是, 如图 8所示, 本实施例中, 压电本体 1沿 厚度方向上相对的 2个电极区域对角部分的极化方向相反, 即第一电极区 域 211和第三电极区域 213的极化方向相反, 如图 8所示的方向 P1和方 向 P2, 同样的, 第二电极区域 212和第四电极区域 214对应部分的极化方 向也相反。
本实施例中, 对称设置的两个电极区域在压电本体上对角部分的极化 反向相反, 为使得压电本体 1可产生第一阶面内沿对角线的弯曲振动, 对 角设置的两个电极区域可施加相同的输入电压, 具体的, 如图 8所示, 第 一电极区域 211和第三电极区域 213可同时连接交流电压 Vsin c t, 第二 电极区域和第四电极区域同时连接交流电压 Vcos t, 第二电极层 22仍旧 接地,在施加的交流电压 Vsin c t作用下,压电本体 1可产生如图 7B所示 的第一阶面内沿对角线的弯曲振动, 在施加交流电压 Vcos t作用下, 压 电本体 1可产生如图 7C所示的第一阶面内沿对角线的弯曲振动, 这样, 在施加的两个交流电压 Vsin c t和 Vcos t作用下, 压电本体 1就可以同 时产生两个相互正交的第一阶面内沿对角线的弯曲振动, 并通过两个相互 正交的第一阶面内沿对角线的弯曲振动合成产生椭圓轨迹运动。
本实施例中, 压电马达中的驱动电路可为对称设置的两个电极区域提 供相同的交流电压, 且相邻的两个电极区 i或施加的交流电压应为正交电 压, 以便压电本体在两个交流电压下产生两个相互正交的第一阶面内沿对 角线的弯曲振动。
图 9为本发明实施例九提供的压电驱动器的结构示意图。 本实施例压 电驱动器同样工作于行波模式, 可应用于图 6所示的压电马达, 与上述图 7A所示实施例技术方案不同的是, 本实施例中, 第二电极层与第一电极 层相同, 即也具有 4个电极区域。 具体的, 如图 9所示, 其中 a表示压电 本体 1整体示意图, b表示压电本体 1前后两端面的电极层即第一电极层 21和第二电极层 22的示意图, 第一电极层 21和第二电极层 22具有相同 的结构,即第二电极层 22也具有 4个电极区域,分别为第五电极区域 221、 第六电极区域 222、 第七电极区域 223和第八电极区域 224。
本实施例中, 可将第一电极区域 211、 第四电极区域 214、 第六电极 区域 222、 第七电极区域 223电连接在一起, 并作为接地电极, 将第二电 极区域 212和第八电极区域 224电连接在一起, 接输入电压 Vsin c t, 将 第三电极区域 213和第五电极区域 221电连接在一起, 接输入电压 Vcos ω ΐ。 这样, 在仅有输入电压 Vsin c t时, 压电本体 1可产生如图 7C所示 的第一阶面内沿对角线的弯曲振动, 在仅有输入电压 Vcos t时, 压电本 体 1可产生如图 7B所示的第一阶面内沿对角线的弯曲振动, 因此, 在施 加的两个输入电压 Vsin ω t和 Vcos ω t作用下, 压电本体 1整体就可以产 生两个相互正交的第一阶弯曲振动, 并在两个相互正交的第一阶面内沿对 角线的弯曲振动合成作用下产生椭圓轨迹运动。
图 10为本发明实施例十提供的压电驱动器的结构示意图。 本实施例 压电驱动器同样工作于行波模式, 可应用于图 6所示的压电马达, 与上述 图 7A所示实施例技术方案不同的是, 如图 10所示, 本实施例中压电驱动 器可包括多个层叠设置的压电本体, 而且各压电本体之间的电极层在电路 上为并联连接。 这样, 在相同的预设电压驱动下, 每个压电本体均可产生 由两个相互正交的第一阶面内沿对角线的弯曲振动合成的椭圓轨迹运动, 整个压电驱动器就可以通过该多个压电本体产生所需要的椭圓轨迹运动。 其中, 图 10中的 c表示压电驱动器的整体结构示意图, d表示压电驱动器 组装结构示意图。
本实施例中, 如图 10所示, 包括 4个层叠的压电本体, 各压电本体 上可具有相同的电极层, 具有可与上述图 7A相同, 并且对应形状的电极 层对合设置在一起, 如其中的第一压电本体 10和第二压电本体 20 , 具有 4个电极区域的端面对合设置, 第三压电本体 30和第四压电本体 40也具 有相同的设置方式。 本领域的技术人员可以理解, 本实施例中压电本体上 电极层的结构还可与图 7A-图 8相同, 其形成的驱动器的驱动电压可参考 上述图 7A-图 8中的单个压电本体的驱动电压, 只要可使得整个驱动器产 生椭圓运动的效果即可。
本实施例中, 利用多层压电体结构可以获得如下效果: (1)在各层压电 本体的厚度不变的情况下, 可以提高压电驱动器的输入功率, 从而获得更 大的驱动力; (2)在压电驱动器总厚度不变的情况下, 多层结构可以有效的 降低压电驱动器的工作电压。
上述图 7A-图 10提供的各压电驱动器可应用在如图 6所示的压电马达 正交的第一阶面内沿对角线的弯曲振动, 并在两个相互正交的第一阶面内 沿对角线的弯曲振动合成下, 整体产生驱动滑动部件运动的椭圓轨迹运 动。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非 对其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的 普通技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进 行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或 者替换, 并不使相应技术方案的本质脱离本发明各实施例技术方案的范 围。

Claims

权 利 要 求 书
1、 一种压电驱动器, 其特征在于, 包括:
压电本体, 所述压电本体为正方形板状结构, 所述压电本体沿厚度方 向极化;
所述压电本体在厚度方向的第一端主平面设置有第一电极层, 所述压 电本体在厚度方向的第二端主平面设置有第二电极层;
所述第一电极层包括多个电极区域, 所述第二电极层包括至少一个电 述压电驱动器激发产生第一阶面内沿对角线的弯曲振动, 以便所述压电驱 动器在所述第一阶面内沿对角线的弯曲振动产生往复的直线轨迹运动, 或 驱动器激发产生两个相互正交的第一阶面内沿对角线的弯曲振动, 以便所 述压电驱动器在所述两个相互正交的第一阶面内沿对角线的弯曲振动合 成产生椭圓轨迹运动。
2、 根据权利要求 1所述的压电驱动器, 其特征在于, 所述第一电极 层被正交的划分为四等份的电极区域, 且所述四等份的电极区域为正方形 区域。
3、 根据权利要求 2所述的压电驱动器, 其特征在于, 所述压电本体 整体具有相同的极化方向;
或者, 所述压电本体沿厚度方向上, 在所述第一电极层的相对的一对 电极区域对应部分的极化方向相反。
4、 根据权利要求 1所述的压电驱动器, 其特征在于, 所述压电驱动 器包括多个层叠设置的所述压电本体;
各个压电本体之间在电路上并联连接。
5、 根据权利要求 1所述的压电驱动器, 其特征在于, 所述预设驱动 电压的工作频率为压电本体在第一阶面内沿对角线的弯曲振动的谐振频 率, 且可获得最大的振动幅度。
6、 根据权利要求 1-5任一所述的压电驱动器, 其特征在于, 所述第二 电极层为一体形状的电极区域;
或者, 所述第二电极层与第一电极层具有相同形状和数量的电极区 域。
7、 根据权利要求 1所述的压电驱动器, 其特征在于, 所述压电本体 的材料为压电陶瓷材料或者压电单晶材料;
或者, 所述的压电本体为弹性金属片与压电陶瓷片或者压电单晶片组 成的复合板。
8、 一种压电马达, 其特征在于, 包括压电驱动器和滑动组件, 所述 压电驱动器为釆用权利要求 1 -7任一所述的压电驱动器;
所述滑动组件包括: 导轨、 沿所述导轨滑动设置的滑动部件; 所述压电驱动器上设置有摩擦头和弹性压紧部件, 所述的摩擦头在所 述的弹性压紧部件提供的预紧力作用下与所述的滑动部件弹性接触; 所述的摩擦头固定设置在压电驱动器的压电本体上未设置电极的侧 面的顶角或靠近顶角的端部位置。
9、 根据权利要求 8 所述的压电马达, 其特征在于, 还包括: 驱动电 路, 用于为所述压电驱动器上的各个电极层的各电极区域提供预设驱动电 压。
PCT/CN2013/074519 2013-04-22 2013-04-22 压电驱动器及压电马达 WO2014172833A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074519 WO2014172833A1 (zh) 2013-04-22 2013-04-22 压电驱动器及压电马达

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/074519 WO2014172833A1 (zh) 2013-04-22 2013-04-22 压电驱动器及压电马达

Publications (1)

Publication Number Publication Date
WO2014172833A1 true WO2014172833A1 (zh) 2014-10-30

Family

ID=51790967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/074519 WO2014172833A1 (zh) 2013-04-22 2013-04-22 压电驱动器及压电马达

Country Status (1)

Country Link
WO (1) WO2014172833A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083205A1 (en) * 2016-11-02 2018-05-11 Xeryon Ultrasonic actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159403A (ja) * 2002-11-05 2004-06-03 Seiko Epson Corp 圧電アクチュエータ
CN1633022A (zh) * 2004-12-24 2005-06-29 清华大学 压电陶瓷金属复合板面内振动直线超声电机
CN102185096A (zh) * 2011-04-02 2011-09-14 北京大学 压电驱动器及直线压电马达

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004159403A (ja) * 2002-11-05 2004-06-03 Seiko Epson Corp 圧電アクチュエータ
CN1633022A (zh) * 2004-12-24 2005-06-29 清华大学 压电陶瓷金属复合板面内振动直线超声电机
CN102185096A (zh) * 2011-04-02 2011-09-14 北京大学 压电驱动器及直线压电马达

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018083205A1 (en) * 2016-11-02 2018-05-11 Xeryon Ultrasonic actuator
US11356040B2 (en) 2016-11-02 2022-06-07 Xeryon Piezo actuator device and motor

Similar Documents

Publication Publication Date Title
CN103259449B (zh) 压电驱动器及压电马达
JP2014018027A (ja) 振動型アクチュエータ、撮像装置、及びステージ
CN102868315A (zh) 贴片式弯振复合双足超声电机振子
US8299682B2 (en) Ultrasonic motor
CN102497130A (zh) 一种直线超声电机
CN101001054B (zh) 双柱体振子直线超声电机
CN102355160A (zh) 带弹性支撑的纵弯复合模态夹心式双足直线超声电机振子
US8987972B2 (en) Vibrator in vibration type driving apparatus and manufacturing method thereof
US9705425B2 (en) Piezoelectric linear motor
CN101860257B (zh) 一种微型压电单晶直线电机
Ci et al. A square-plate piezoelectric linear motor operating in two orthogonal and isomorphic face-diagonal-bending modes
CN111262471B (zh) 圆环形压电驱动器及压电马达
JP4830165B2 (ja) 超音波モータ用振動子
CN102868316A (zh) 贴片式双足超声电机振子
CN104124891A (zh) 压电振子及包括该压电振子的精密位移平台
US7687974B2 (en) Vibration type driving apparatus
WO2014172833A1 (zh) 压电驱动器及压电马达
CN102569637B (zh) 压电驱动器及压电马达
KR101225008B1 (ko) 초음파모터의 압전진동자
JPH0732613B2 (ja) 超音波振動子およびこの振動子を有する駆動装置
JP2004304963A (ja) 圧電アクチュエータ
JP2574577B2 (ja) リニア型アクチュエータ
JP5612940B2 (ja) 超音波モータ
CN110601589A (zh) 叠层八杆型压电定子推动的直线电机及运行方式
CN114244181B (zh) 一种高功率密度压电驱动器及压电马达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13883033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13883033

Country of ref document: EP

Kind code of ref document: A1