WO2022037137A1 - 定子铁芯、磁悬浮轴承、电机 - Google Patents

定子铁芯、磁悬浮轴承、电机 Download PDF

Info

Publication number
WO2022037137A1
WO2022037137A1 PCT/CN2021/093064 CN2021093064W WO2022037137A1 WO 2022037137 A1 WO2022037137 A1 WO 2022037137A1 CN 2021093064 W CN2021093064 W CN 2021093064W WO 2022037137 A1 WO2022037137 A1 WO 2022037137A1
Authority
WO
WIPO (PCT)
Prior art keywords
circumferential wall
stator core
yoke
straight line
magnetic suspension
Prior art date
Application number
PCT/CN2021/093064
Other languages
English (en)
French (fr)
Inventor
郭伟林
龚高
张芳
李欣
邓哲浩
王建辉
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP21857238.6A priority Critical patent/EP4203245B1/en
Publication of WO2022037137A1 publication Critical patent/WO2022037137A1/zh
Priority to US18/158,150 priority patent/US12294241B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/047Details of housings; Mounting of active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0493Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor
    • F16C32/0497Active magnetic bearings for rotary movement integrated in an electrodynamic machine, e.g. self-bearing motor generating torque and radial force
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2380/00Electrical apparatus
    • F16C2380/26Dynamo-electric machines or combinations therewith, e.g. electro-motors and generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present disclosure belongs to the technical field of magnetic suspension bearings, and in particular relates to a stator iron core, a magnetic suspension bearing and a motor.
  • the structure of the active radial magnetic suspension bearing stator core 1' is symmetrically distributed up and down and left and right.
  • the bearing stator iron core 1' is evenly distributed on each pole 3', and the number of coil turns is the same.
  • each magnetic pole generates an electromagnetic force in each degree of freedom through the coil current. The electromagnetic force generated is mainly to overcome the gravity of the rotor 4' and adjust the radial displacement of the rotor 4'.
  • the upper half of the radial magnetic suspension bearing outputs the force of the magnetic pole If the output force is greater than the lower half of the magnetic pole, the excess electromagnetic force will cancel each other out, so the radial winding coil 2' needs to generate a large unilateral magnetic force to overcome the gravity of the rotor through a large current, resulting in a large volume and power consumption; specifically, The radial magnetic suspension bearing overcomes the gravity mainly by the electromagnetic attraction force of the upper half of the bearing, and the resultant force of the upper half of the bearing is larger than the resultant force of the lower half of the electromagnetic force. In the case of symmetrical structure, it is necessary to increase the number of coil turns or the size of the current to increase the output, which makes the magnetic suspension bearing. The volume or power consumption becomes larger.
  • the technical problem to be solved by the present disclosure is to provide a stator iron core, a magnetic suspension bearing, and a motor.
  • the stator iron core is a non-centrally symmetric structure, so that the magnetic circuit cross-sectional area of the stator iron core in some regions is increased, which is beneficial to Improve the output of the magnetic suspension bearing.
  • a stator core used in a magnetic suspension bearing comprising an annular yoke
  • the annular yoke has an inner circumferential wall and an outer circumferential wall, wherein the outer circumferential wall has a plurality of oriented
  • D For the poles extending in the axial direction of the inner circumferential wall, there is a distance D between the axis of the outer circumferential wall and the axis of the inner circumferential wall, where D ⁇ 0.
  • the inner circumferential wall has a center O
  • the outer circumferential wall has a center S
  • the D is the distance between the center O and the center S
  • the stator core is symmetrical about the straight line OS.
  • a straight line passing through the center O and perpendicular to the straight line OS is a first straight line, and the first straight line divides the annular yoke portion into a first yoke portion and a second yoke portion, The area A1 of the first yoke is larger than the area A2 of the second yoke.
  • the radius of the outer circumferential wall is R
  • the radius of the inner circumferential wall is r
  • the circumferential width W1 of the pole on the first yoke is greater than the circumferential width W2 of the pole on the second yoke.
  • the present disclosure also provides a magnetic suspension bearing, including the above-mentioned stator iron core.
  • the present disclosure also provides a motor including the above-mentioned magnetic suspension bearing.
  • the present disclosure provides a stator iron core, a magnetic suspension bearing, and a motor.
  • the stator iron core is a non-centrally symmetric structure, and the output of the magnetic suspension bearing corresponding to a region with a larger magnetic circuit cross-sectional area is improved.
  • the stator iron core satisfies The requirement of small operating current when the bearing is output can greatly improve the reliability and stability of the magnetic suspension bearing during operation, greatly reduce the loss of silicon steel sheets, reduce the cost, and reduce the weight of the bearing, and the reliability of the magnetic suspension bearing system can also be improved. .
  • FIG. 1 is a schematic structural diagram of a magnetically suspended axial bearing in the related art
  • FIG. 2 is a schematic structural diagram of a stator core according to an embodiment of the disclosure
  • FIG. 3 is a schematic structural diagram of a magnetic suspension bearing according to an embodiment of the disclosure.
  • annular yoke 101, inner circumferential wall; 102, outer circumferential wall; 103, first straight line; 104, first yoke; 105, second yoke; 20, pole; 30, winding coil; 40 , rotor; 1', stator core; 2', winding coil; 3', pole; 4', rotor.
  • a stator core for use in a radial magnetic suspension bearing comprising an annular yoke 10 , the annular yoke 10 has an inner circumferential wall 101 and a The outer circumferential wall 102, wherein the outer circumferential wall 102 has a plurality of poles 20 extending toward the axial direction of the inner circumferential wall 101, the axis of the outer circumferential wall 102 and the axis of the inner circumferential wall 101 are between There is a distance D, D ⁇ 0, that is, the axes of the outer circumferential wall 102 and the inner circumferential wall 101 do not overlap and there is a deviation distance.
  • the stator iron core of the present disclosure is of a non-centrosymmetric structure, and the output of the magnetic suspension bearing corresponding to the area with a larger cross-sectional area of the magnetic circuit is improved.
  • the stator iron core of the present disclosure meets the requirement that the working current is small when the bearing is output, can greatly improve the reliability and stability of the magnetic suspension bearing during operation, greatly reduce the loss of silicon steel sheets, reduce the cost, and reduce the weight of the bearing. The reliability of the system can also be improved.
  • the inner circumferential wall 101 has a center O
  • the outer circumferential wall 102 has a center S
  • the D is the center O and the center of the circle
  • the distance of S, the stator core is symmetrical about the straight line OS, and the stator core at this time is a mirror-symmetric structure about the straight line OS, which can simplify the control difficulty of the magnetic suspension bearing under the premise that the output of the magnetic suspension bearing is increased in some areas.
  • a straight line passing through the center O and perpendicular to the straight line OS is a first straight line 103
  • the first straight line 103 divides the annular yoke 10 into a first yoke 104 , a first straight line 103
  • the area A1 of the first yoke part 104 is larger than the area A2 of the second yoke part 105 .
  • the radius of the outer circumferential wall 102 is R
  • the radius of the inner circumferential wall 101 is r.
  • the maximum value between A1 and A2 is found below based on the theoretical basis. Optimal range:
  • the magnitude of the electromagnetic force generated by the radial magnetic bearing is
  • ⁇ 0 is the air permeability
  • N is the number of turns of the coil
  • A is the cross-sectional area of the magnetic circuit of the stator core
  • i is the coil current
  • x is the length of the air gap
  • A depends on the outer ring of the stator core (that is, the annular yoke). ) and the cross-sectional area of the pole.
  • the electromagnetic force of the bearing is mainly used to overcome the gravity and adjust the radial displacement of the rotor, so that the resultant force of the vertical upward electromagnetic force of the bearing is F1, the resultant downward force is F2, the adjustment force is a times the gravity, and the adjustment force is mainly during the rotor rotation process.
  • the possible disturbance force and the centrifugal force generated by the unbalance of the rotor itself, a takes 0.1 to 20, then
  • the cross-sectional area of the magnetic circuit is changed by adjusting the structure of the annular yoke 10 and the pole post 20 in the radial bearing stator core, thereby changing the electromagnetic force generated by the bearing stator.
  • the annular yoke portion 10 of the stator core is specifically shown in FIG.
  • the distance D between the centers of the two circles is within the range of formula (6), and the bearing has an optimal structure.
  • the width of the pole 20 at each position is consistent with the width of the corresponding annular yoke 10 .
  • the width of the upper half of the stator core pole is 1.2 to 6 times the width of the lower half. That is, the circumferential width W1 of the pole 20 on the first yoke 104 is greater than the circumferential width W2 of the pole 20 on the second yoke 105 , 1.2W2 ⁇ W1 ⁇ 6W2.
  • the present disclosure also provides a magnetic suspension bearing, comprising the above-mentioned stator iron core, a winding coil 30 wound on the pole post 20 , and a rotor 40 located in the inner hole of the stator iron core .
  • the present disclosure also provides a motor including the above-mentioned magnetic suspension bearing.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本公开提供一种定子铁芯、磁悬浮轴承、电机,其中一种定子铁芯,用于磁悬浮轴承中,包括环形轭部,所述环形轭部具有内圆周壁与外圆周壁,其中所述外圆周壁上具有多个朝向所述内圆周壁的轴心方向延伸的极柱,所述外圆周壁的轴线与所述内圆周壁轴线之间具有间距D,D≠0。根据本公开的一种定子铁芯、磁悬浮轴承、电机,定子铁芯为非中心对称结构,使定子铁芯在部分区域的磁路横截面积增大,这有利于提高磁悬浮轴承的出力。

Description

定子铁芯、磁悬浮轴承、电机
本公开要求于2020年08月20日提交中国专利局、申请号为202010842317.5、发明名称为“定子铁芯、磁悬浮轴承、电机”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于磁悬浮轴承技术领域,具体涉及一种定子铁芯、磁悬浮轴承、电机。
背景技术
相关技术中主动式径向磁悬浮轴承定子铁芯1’结构为上下、左右对称分布。一般情况下,主动式径向磁悬浮轴承有N个极(即N个齿和N个槽),极数N为:N=8,16,32……,径向绕组线圈2’绕在径向轴承定子铁芯1’各个极柱3’上均匀分布,线圈匝数相同。径向磁悬浮轴承中各个磁极通过线圈电流在各自由度上产生电磁力,其中产生的电磁力主要是为了克服转子4’重力和调整转子4’径向位移,径向磁悬浮轴承上半部分磁极出力大于下半部分磁极出力,多余电磁力会相互抵消,这样需要径向绕组线圈2’通过较大电流来产生较大单边磁力来克服转子重力,导致其体积和功耗较大;具体的,径向磁悬浮轴承克服重力主要为轴承上半部分电磁吸力,上半部分合力大小大于下半部分电磁力合力,在结构对称情况下需提高线圈匝数或电流大小来增大出力,这使磁悬浮轴承体积或功耗变大。
发明内容
因此,本公开要解决的技术问题在于提供一种定子铁芯、磁悬浮轴承、电机,定子铁芯为非中心对称结构,使定子铁芯在部分区域的磁路横截面积增大,这有利于提高磁悬浮轴承的出力。
为了解决上述问题,本公开提供一种定子铁芯,用于磁悬浮轴承中,包括环形轭部,所述环形轭部具有内圆周壁与外圆周壁,其中所述外圆周壁上具有多个朝向所述内圆周壁的轴心方向延伸的极柱,所述外圆周壁的轴线与所述内 圆周壁轴线之间具有间距D,D≠0。
在一些实施方式中,在所述环形轭部的任一径向面上投影,所述内圆周壁具有圆心O,所述外圆周壁具有圆心S,所述D为圆心O与圆心S的间距,所述定子铁芯关于直线OS对称。
在一些实施方式中,经过所述圆心O且垂直于所述直线OS的直线为第一直线,所述第一直线将所述环形轭部分隔为第一轭部、第二轭部,所述第一轭部的面积A1大于所述第二轭部的面积A2。
在一些实施方式中,1.2A2≤A1≤6A2。
在一些实施方式中,在所述环形轭部的任一径向面上投影,所述外圆周壁的半径为R,所述内圆周壁的半径为r,
Figure PCTCN2021093064-appb-000001
在一些实施方式中,处于所述第一轭部上的极柱的周向宽度W1大于处于所述第二轭部上的极柱的周向宽度W2。
在一些实施方式中,1.2W2≤W1≤6W2。
在一些实施方式中,处于所述第一轭部上的极柱关于所述直线OS对称,所述直线OS与所述内圆周壁以及所述外圆周壁交点之间的距离为H1,所述H1以及所述极柱处于所述圆心O的同侧,W1=H1;和/或,处于所述第二轭部上的极柱20关于所述直线OS对称,所述直线OS与所述内圆周壁以及所述外圆周壁交点之间的距离为H2,所述H2以及所述极柱处于所述圆心O的同侧,W2=H2。
本公开还提供一种磁悬浮轴承,包括上述的定子铁芯。
本公开还提供一种电机,包括上述的磁悬浮轴承。
本公开提供的一种定子铁芯、磁悬浮轴承、电机,定子铁芯为非中心对称结构,磁路横截面积较大的区域对应的磁悬浮轴承的出力得到提高,与此同时,定子铁芯满足轴承出力时工作电流较小的要求,能大大提高磁悬浮轴承运行时的可靠稳定性,很大程度减小硅钢片的损耗、降低成本、减小轴承重量,磁悬浮轴承系统的可靠性也能够得到提升。
附图说明
图1为相关技术中的磁悬浮轴向轴承的结构示意图;
图2为本公开实施例的定子铁芯的结构示意图;
图3为本公开实施例的磁悬浮轴承的结构示意图。
附图标记表示为:
10、环形轭部;101、内圆周壁;102、外圆周壁;103、第一直线;104、第一轭部;105、第二轭部;20、极柱;30、绕组线圈;40、转子;1’、定子铁芯;2’、绕组线圈;3’、极柱;4’、转子。
具体实施方式
结合参见图1至图3所示,根据本公开的实施例,提供一种定子铁芯,用于径向磁悬浮轴承中,包括环形轭部10,所述环形轭部10具有内圆周壁101与外圆周壁102,其中所述外圆周壁102上具有多个朝向所述内圆周壁101的轴心方向延伸的极柱20,所述外圆周壁102的轴线与所述内圆周壁101轴线之间具有间距D,D≠0,也即所述外圆周壁102与所述内圆周壁101的轴线不重合而存在偏离距离,此时,将在客观上导致相关技术中的圆环形状的轭部的径向厚度存在差异,也即有的部位的环形轭部10的径向厚度厚一些,而有的部位的环形轭部10的径向厚度则薄一些,具体的,如图2所示出的具有两个极柱20的定子铁芯类似,其上部的轭部径向厚道要大于下部的轭部径向厚度,如此,定子铁芯的磁路横截面积在一个区域大于另一个区域,也即与相关技术中的对称结构的定子铁芯相比较,本公开的定子铁芯为非中心对称结构,磁路横截面积较大的区域对应的磁悬浮轴承的出力得到提高,与此同时,本公开的定子铁芯满足轴承出力时工作电流较小的要求,能大大提高磁悬浮轴承运行时的可靠稳定性,很大程度减小硅钢片的损耗、降低成本、减小轴承重量,磁悬浮轴承系统的可靠性也能够得到提升。
在一些实施方式中,在所述环形轭部10的任一径向面上投影,所述内圆周壁101具有圆心O,所述外圆周壁102具有圆心S,所述D为圆心O与圆心S的间距,所述定子铁芯关于直线OS对称,此时的定子铁芯为关于直线OS镜像对称结构,在实现磁悬浮轴承部分区域出力增大的前提下还能够简化磁悬浮轴承的控制难度。
在一些实施方式中,经过所述圆心O且垂直于所述直线OS的直线为第一直线103,所述第一直线103将所述环形轭部10分隔为第一轭部104、第二轭部105,所述第一轭部104的面积A1大于所述第二轭部105的面积A2。在所述环形轭部10的任一径向面上投影,所述外圆周壁102的半径为R,所述内圆周壁101的半径为r,以下结合理论基础寻求A1与A2之间的最优范围:
径向磁悬浮轴承产生的电磁力大小为
Figure PCTCN2021093064-appb-000002
μ0为空气磁导率、N为线圈匝数、A为定子铁芯磁路横截面积、i为线圈电流、x为气隙长度,A取决于定子铁芯外圆环(也即环形轭部)和极柱的横截面积。线圈匝数一定时,电磁力与线圈电流、磁路横截面积成正比,与气隙的大小成反比。轴承电磁力主要用来克服重力和调整转子径向位移,令轴承竖直向上电磁力合力大小为F1、向下合力大小为F2,调整力大小为a倍重力,调整力主要为转子旋转过程中可能受到的扰动力及转子自身不平衡量产生的离心力,a取0.1~20,则
Figure PCTCN2021093064-appb-000003
上、下磁路横截面积A1、A2与电磁力F1、F2关系为
Figure PCTCN2021093064-appb-000004
Figure PCTCN2021093064-appb-000005
其中,本公开技术如附图2及3所示,通过调整径向轴承定子铁芯中的环形轭部10和极柱20结构来改变磁路横截面积,从而改变轴承定子产生的电磁力。定子铁芯的环形轭部10具体见附图3,可通过改变环形轭部10的内圆周壁101及外圆周壁102的圆心距离D(0<D<R-r)来改变环形轭部10各个位置的宽度(定子铁芯外圆环上半部分宽度约为L=R-r+D,下半部分宽度约为l=R-r-D),从而改变定子铁芯磁路横截面积,满足式(4)即可。
考虑轴承线圈绕线和出力等问题,调整力取0.2~5倍重力时(0.2≤a≤5),轴承结构最优,性能最佳,定子铁芯外圆环上半部分面积为下半部分面积的1.2~6倍(1.2A2≤A1≤6A2)。
Figure PCTCN2021093064-appb-000006
Figure PCTCN2021093064-appb-000007
两圆心距离D在式(6)范围内轴承有最优结构。
各个位置的极柱20宽度与相对应的环形轭部10的宽度保持一致,性能最佳时,定子铁芯极柱上半部分宽度为下半部分的1.2~6倍。也即,处于所述第一轭部104上的极柱20的周向宽度W1大于处于所述第二轭部105上的极柱20的周向宽度W2,1.2W2≤W1≤6W2。
在一些实施方式中,处于所述第一轭部104上的极柱20关于所述直线OS对称,所述直线OS与所述内圆周壁101以及所述外圆周壁102交点之间的距离为H1,所述H1以及所述极柱20处于所述圆心O的同侧,W1=H1;和/或,处于所述第二轭部105上的极柱20关于所述直线OS对称,所述直线OS与所述内圆周壁101以及所述外圆周壁102交点之间的距离为H2,所述H2以及所述极柱20处于所述圆心O的同侧,W2=H2。也即所述极柱20的宽度与其对应位置的轭部的径向厚度相同,以保证形成磁悬浮轴承的性能更佳。
如图3所示出,本公开还提供一种磁悬浮轴承,包括上述的定子铁芯、绕设于所述极柱20上的绕组线圈30、以及处于所述定子铁芯内孔中的转子40。
本公开还提供一种电机,包括上述的磁悬浮轴承。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (10)

  1. 一种定子铁芯,用于磁悬浮轴承中,包括环形轭部(10),所述环形轭部(10)具有内圆周壁(101)与外圆周壁(102),其中所述外圆周壁(102)上具有多个朝向所述内圆周壁(101)的轴心方向延伸的极柱(20),所述外圆周壁(102)的轴线与所述内圆周壁(101)轴线之间具有间距D,D≠0。
  2. 根据权利要求1所述的定子铁芯,其中,在所述环形轭部(10)的任一径向面上投影,所述内圆周壁(101)具有圆心O,所述外圆周壁(102)具有圆心S,所述D为圆心O与圆心S的间距,所述定子铁芯关于直线OS对称。
  3. 根据权利要求2所述的定子铁芯,其中,经过所述圆心O且垂直于所述直线OS的直线为第一直线(103),所述第一直线(103)将所述环形轭部(10)分隔为第一轭部(104)、第二轭部(105),所述第一轭部(104)的面积A1大于所述第二轭部(105)的面积A2。
  4. 根据权利要求3所述的定子铁芯,其中,1.2A2≤A1≤6A2。
  5. 根据权利要求4所述的定子铁芯,其中,在所述环形轭部(10)的任一径向面上投影,所述外圆周壁(102)的半径为R,所述内圆周壁(101)的半径为r,
    Figure PCTCN2021093064-appb-100001
  6. 根据权利要求1至5中任一项所述的定子铁芯,其中,处于所述第一轭部(104)上的极柱(20)的周向宽度W1大于处于所述第二轭部(105)上的极柱(20)的周向宽度W2。
  7. 根据权利要求6所述的定子铁芯,其中,1.2W2≤W1≤6W2。
  8. 根据权利要求6所述的定子铁芯,其中,处于所述第一轭部(104)上的极柱(20)关于所述直线OS对称,所述直线OS与所述内圆周壁(101)以及所述外圆周壁(102)交点之间的距离为H1,所述H1以及所述极柱(20)处于所述圆心O的同侧,W1=H1;和/或,处于所述第二轭部(105)上的极柱(20)关于所述直线OS对称,所述直线OS与所述内圆周壁(101)以及所述外圆周壁(102)交点之间的距离为H2,所述H2以及所述极柱(20)处于所述圆心O的同侧,W2=H2。
  9. 一种磁悬浮轴承,包括权利要求1至8中任一项所述的定子铁芯。
  10. 一种电机,包括权利要求9所述的磁悬浮轴承。
PCT/CN2021/093064 2020-08-20 2021-05-11 定子铁芯、磁悬浮轴承、电机 WO2022037137A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21857238.6A EP4203245B1 (en) 2020-08-20 2021-05-11 Stator core, magnetic suspension bearing, and motor
US18/158,150 US12294241B2 (en) 2020-08-20 2023-01-23 Stator core, magnetic levitation bearing, and motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010842317.5A CN112003391B (zh) 2020-08-20 2020-08-20 定子铁芯、磁悬浮轴承、电机
CN202010842317.5 2020-08-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/158,150 Continuation US12294241B2 (en) 2020-08-20 2023-01-23 Stator core, magnetic levitation bearing, and motor

Publications (1)

Publication Number Publication Date
WO2022037137A1 true WO2022037137A1 (zh) 2022-02-24

Family

ID=73472821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093064 WO2022037137A1 (zh) 2020-08-20 2021-05-11 定子铁芯、磁悬浮轴承、电机

Country Status (4)

Country Link
US (1) US12294241B2 (zh)
EP (1) EP4203245B1 (zh)
CN (1) CN112003391B (zh)
WO (1) WO2022037137A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654015A (zh) * 2022-10-14 2023-01-31 珠海格力电器股份有限公司 一种磁悬浮主动式轴承、电机和压缩机

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112003391B (zh) 2020-08-20 2021-07-20 珠海格力电器股份有限公司 定子铁芯、磁悬浮轴承、电机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845997A (en) * 1972-03-20 1974-11-05 Padana Ag Magnetic bearing assembly for journalling a rotor in a stalor
CN102891545A (zh) * 2011-02-08 2013-01-23 福杨久庆 高效率发电机
CN107005115A (zh) * 2014-08-25 2017-08-01 瓦伦汀·格里戈里耶维奇·利曼斯基 电机
JP2018183021A (ja) * 2017-04-21 2018-11-15 ダイキン工業株式会社 電動機およびそれを備えた流体機械
JP2020162348A (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 圧縮機
CN112003391A (zh) * 2020-08-20 2020-11-27 珠海格力电器股份有限公司 定子铁芯、磁悬浮轴承、电机

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252870A (en) * 1991-03-01 1993-10-12 Jacobsen Stephen C Magnetic eccentric motion motor
JP2000083333A (ja) * 1998-09-04 2000-03-21 Toshiba Corp 回転電機
DE19962821A1 (de) * 1999-12-23 2001-06-28 Mannesmann Vdo Ag Rotor für eine Gleichstrommaschine sowie Verfahren zu seiner Herstellung
WO2001048389A2 (de) * 1999-12-27 2001-07-05 Lust Antriebstechnik Gmbh Magnetisches lagersystem
CN201925346U (zh) * 2010-12-29 2011-08-10 北京奇峰聚能科技有限公司 一种低功耗大承载力永磁偏置混合径向磁轴承
CN106464046B (zh) * 2014-06-17 2019-05-31 三菱电机株式会社 压缩机、制冷循环装置和空调机
WO2016031477A1 (ja) * 2014-08-25 2016-03-03 三菱電機株式会社 電動機及び圧縮機及び冷凍サイクル装置
JP2019080399A (ja) * 2017-10-23 2019-05-23 株式会社デンソー リラクタンスモータ
CN108286569A (zh) * 2018-01-17 2018-07-17 上海浩灵磁电器件有限公司 偏心外环卧式永磁轴承
DE102018113422A1 (de) * 2018-06-06 2019-12-12 Ebm-Papst Mulfingen Gmbh & Co. Kg Motor mit einer Einstrangluftspaltwicklung
CN111425523A (zh) * 2020-02-28 2020-07-17 天津大学 一种混合式径向永磁偏置磁轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845997A (en) * 1972-03-20 1974-11-05 Padana Ag Magnetic bearing assembly for journalling a rotor in a stalor
CN102891545A (zh) * 2011-02-08 2013-01-23 福杨久庆 高效率发电机
CN107005115A (zh) * 2014-08-25 2017-08-01 瓦伦汀·格里戈里耶维奇·利曼斯基 电机
JP2018183021A (ja) * 2017-04-21 2018-11-15 ダイキン工業株式会社 電動機およびそれを備えた流体機械
JP2020162348A (ja) * 2019-03-27 2020-10-01 ダイキン工業株式会社 圧縮機
CN112003391A (zh) * 2020-08-20 2020-11-27 珠海格力电器股份有限公司 定子铁芯、磁悬浮轴承、电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4203245A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115654015A (zh) * 2022-10-14 2023-01-31 珠海格力电器股份有限公司 一种磁悬浮主动式轴承、电机和压缩机

Also Published As

Publication number Publication date
CN112003391A (zh) 2020-11-27
US20230352991A9 (en) 2023-11-02
EP4203245A1 (en) 2023-06-28
US12294241B2 (en) 2025-05-06
CN112003391B (zh) 2021-07-20
US20230155429A1 (en) 2023-05-18
EP4203245A4 (en) 2024-02-21
EP4203245B1 (en) 2025-04-02

Similar Documents

Publication Publication Date Title
CN111075839B (zh) 新结构径向两自由度六极交流/直流混合磁轴承
WO2019119973A1 (zh) 一种磁悬浮轴承、磁悬浮转子支承组件和压缩机
US20200165010A1 (en) Single-gimbal magnetically suspended control moment gyroscope
WO2023029538A1 (zh) 磁悬浮轴承、电机、压缩机和空调器
CN102900761B (zh) 一种永磁偏磁轴向混合磁轴承
WO2021135276A1 (zh) 磁悬浮轴承、压缩机、空调器
CN104632890A (zh) 一种带阻尼线圈一体化结构的四自由度径向磁轴承
WO2022037137A1 (zh) 定子铁芯、磁悬浮轴承、电机
CN117220463B (zh) 云台电机及增稳云台
CN104141685A (zh) 一种主被动内转子磁轴承
WO2020001290A1 (zh) 一种恒流源励磁的三自由度无轴承异步电机
CN211574040U (zh) 径向无耦合三自由度直流混合磁轴承
CN108808916A (zh) 一种新型的三自由度永磁型无轴承电机
CN108708904A (zh) 永磁轴承
CN108895085B (zh) 一种逆变器驱动式外转子轴向-径向六极混合磁轴承
CN111173838B (zh) 径向无耦合三自由度直流混合磁轴承
WO2021143758A1 (zh) 悬浮力对称六极混合磁轴承的设计方法
CN113541351A (zh) 基于永磁体和外转子铁心偏心结构设计的正弦波转子
WO2023226404A1 (zh) 一种磁悬浮轴承、压缩机
CN211574038U (zh) 径向无耦合四极混合磁轴承
CN212272828U (zh) 一种外绕组控制的径向无绕组混合磁轴承
CN106230153B (zh) 转子铁芯、转子及自起动永磁同步电机
CN115654013A (zh) 磁悬浮主动式三自由度轴承、压缩机、电机
CN211574037U (zh) 新结构交叉齿四极混合磁轴承
CN205283275U (zh) 电机及飞行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857238

Country of ref document: EP

Effective date: 20230320

WWG Wipo information: grant in national office

Ref document number: 2021857238

Country of ref document: EP