WO2021135276A1 - 磁悬浮轴承、压缩机、空调器 - Google Patents

磁悬浮轴承、压缩机、空调器 Download PDF

Info

Publication number
WO2021135276A1
WO2021135276A1 PCT/CN2020/110800 CN2020110800W WO2021135276A1 WO 2021135276 A1 WO2021135276 A1 WO 2021135276A1 CN 2020110800 W CN2020110800 W CN 2020110800W WO 2021135276 A1 WO2021135276 A1 WO 2021135276A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
axial
magnetic suspension
suspension bearing
radial
Prior art date
Application number
PCT/CN2020/110800
Other languages
English (en)
French (fr)
Inventor
董明珠
胡余生
陈彬
张小波
张芳
龚高
张超
邓明星
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP20910748.1A priority Critical patent/EP4086470B1/en
Priority to US17/765,329 priority patent/US11905994B2/en
Publication of WO2021135276A1 publication Critical patent/WO2021135276A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0463Details of the magnetic circuit of stationary parts of the magnetic circuit with electromagnetic bias, e.g. by extra bias windings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0461Details of the magnetic circuit of stationary parts of the magnetic circuit
    • F16C32/0465Details of the magnetic circuit of stationary parts of the magnetic circuit with permanent magnets provided in the magnetic circuit of the electromagnets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • F16C32/0468Details of the magnetic circuit of moving parts of the magnetic circuit, e.g. of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2362/00Apparatus for lighting or heating
    • F16C2362/52Compressors of refrigerators, e.g. air-conditioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type

Definitions

  • the present disclosure belongs to the technical field of magnetic suspension bearing manufacturing, and specifically relates to a magnetic suspension bearing, a compressor, and an air conditioner.
  • Magnetic suspension bearing is a kind of bearing that uses electromagnetic force to realize the stable suspension operation of the rotor system without mechanical contact. Compared with traditional mechanical bearings, magnetic bearings have excellent characteristics such as no friction, no wear, no need for sealing lubrication, high speed, high precision, long life and low maintenance costs. They are used in high-speed motors, high-speed electric spindles, and high-speed flywheel energy storage systems. And other high-speed transmission fields have broad application prospects.
  • magnetic suspension bearings can be divided into active magnetic bearings, passive magnetic bearings and hybrid magnetic bearings (also called permanent magnet bias magnetic bearings).
  • hybrid magnetic bearing uses the magnetic field generated by the permanent magnet as the static bias magnetic field, it not only reduces the number of turns of the electromagnet, greatly reduces the power consumption of the power amplifier, but also reduces the volume and weight of the magnetic bearing. Therefore, hybrid magnetic bearings have become a research hotspot.
  • the integration of axial and radial levitation control to form a three-degree-of-freedom magnetic bearing has the advantages of high integration, small size, and small weight.
  • the radial and axial magnetic circuits of this kind of magnetic bearing are prone to coupling, which greatly Increased the difficulty of controlling the magnetic bearing.
  • the technical problem to be solved by the present disclosure is to provide a magnetic suspension bearing, a compressor, and an air conditioner, which can effectively reduce the coupling degree between the radial electromagnetic control magnetic circuit and the axial electromagnetic control magnetic circuit, and reduce the control difficulty of the magnetic suspension bearing.
  • the present disclosure provides a magnetic suspension bearing, including a radial stator, the radial stator has a plurality of stator teeth extending inward in the radial direction, and the stator teeth are respectively provided on both sides in the axial direction.
  • An axial stator, a radial control coil is wound on the stator teeth, and the radial control coil is outside the area covered by the two axial stators.
  • a plurality of the stator teeth are evenly spaced along the circumferential direction of the radial stator, and the number of the stator teeth is 2N, and N ⁇ 2.
  • the side of the axial stator facing the stator teeth is configured with a first ring groove, and an axial control coil is arranged in the first ring groove.
  • the current directions of the axial control coils on both sides of the stator tooth axis are the same.
  • the first ring groove has a first groove wall close to the axial stator axis side, and the diameter of the first groove wall is D.
  • the outer diameter of the rotor of the rotating shaft is d, d ⁇ D.
  • the side of the axial stator facing the stator teeth is further configured with a second ring groove, and a permanent magnet is arranged in the second ring groove.
  • the maximum diameter of the second ring groove is H, H ⁇ D.
  • the permanent magnet is a ring-shaped permanent magnet, and/or, there is an interference fit between the permanent magnet and the second ring groove.
  • the present disclosure also provides a compressor including the above-mentioned magnetic suspension bearing.
  • the present disclosure also provides an air conditioner, including the above-mentioned compressor.
  • the present disclosure provides a magnetic suspension bearing, a compressor, and an air conditioner.
  • the radial control coil is arranged outside the area covered by the two axial stators, and the radial control coil can be physically structured.
  • the generated corresponding radial electromagnetic control magnetic circuit no longer passes through the axial stator, thereby effectively reducing the degree of coupling between the radial electromagnetic control magnetic circuit on the axial stator and the axial electromagnetic control magnetic circuit, thereby reducing the magnetic suspension
  • the control of the bearing is difficult.
  • FIG. 1 is a schematic diagram of the internal structure of a magnetic suspension bearing according to an embodiment of the disclosure (including a schematic diagram of assembly with a rotating shaft);
  • Fig. 2 is a schematic diagram of the radial electromagnetic control magnetic circuit formed by the radial stator and the radial control coil in Fig. 1;
  • Fig. 3 is a schematic diagram of the axial electromagnetic control magnetic circuit and the axial permanent magnet control magnetic circuit formed by the axial stator, the axial control coil and the permanent magnet in Fig. 1;
  • Figure 4 is a schematic diagram of the magnetic circuit of Figure 3 after the combined radial electromagnetic control magnetic circuit.
  • Radial stator 11. Stator teeth; 12. Radial control coil; 2. Axial stator; 21. First ring slot; 22. Axial control coil; 23. Second ring slot; 24. Permanent magnet; 100. Rotating shaft; 101. Rotor; 200. Radial electromagnetic control magnetic circuit; 301. Axial electromagnetic control magnetic circuit; 302. Axial permanent magnet control magnetic circuit.
  • a magnetic suspension bearing in particular a three-degree-of-freedom magnetic suspension bearing, including a housing (not shown in the figure), the housing is provided with a diameter To the stator 1.
  • the radial stator 1 has a plurality of stator teeth 11 extending radially inwardly thereof.
  • Axial stators 2 are respectively provided on both axial sides of the stator teeth 11.
  • a radial control coil 12 is wound on the stator teeth 11.
  • the radial control coil 12 is outside the area covered by the two axial stators 2 relatively, that is, the outer diameter of the axial stator 2 is smaller than the smallest diameter of the radial control coil 12.
  • the radial control coil 12 is arranged outside the area relatively covered by the two axial stators 2, and the corresponding radial electromagnetic control generated by the radial control coil 12 can be physically structured.
  • the magnetic circuit 200 no longer passes through the axial stator 2, thereby effectively reducing the degree of coupling between the radial electromagnetic control magnetic circuit 200 on the axial stator 2 and the axial electromagnetic control magnetic circuit 301, thereby reducing the magnetic bearing Control difficulty.
  • stator teeth 11 are evenly spaced along the circumferential direction of the radial stator 1, and the number of the stator teeth 11 is 2N, N ⁇ 2, two adjacent stator teeth
  • the direction of the current in the radial control coil 12 on the 11 is exactly opposite, so as to form the closed loop of the radial electromagnetic control magnetic circuit 200 between the two adjacent stator teeth 11 and the rotor 101.
  • the side of the axial stator 2 facing the stator teeth 11 is configured with a first ring groove 21.
  • the first annular groove 21 is provided with an axial control coil 22, that is, the axial control coil 22 along the circumference of the rotating shaft 100 can also be understood as being wound along the circumference of the rotor 101, This simplifies the winding process of the coil.
  • the side of the axial stator 2 facing the stator teeth 11 is further configured with a second ring groove 23.
  • a permanent magnet 24 is arranged in the second ring groove 23.
  • the purpose of the permanent magnet 24 is to provide a bias magnetic field, that is, to provide a magnetic field that enables the rotor 101 to be statically centered.
  • This magnetic field is the axial permanent magnet control magnetic circuit 302.
  • the strength of the axial electromagnetic control magnetic circuit 301 the current strength in the axial control coil 22
  • the axial control coil 22 is controlled and adjusted.
  • the current direction of the axial control coil 22 on both sides of the stator tooth 11 is the same.
  • the first ring groove 21 has a current direction close to the axial stator. 2
  • the first groove wall on one side of the axis, the diameter of the first groove wall is D.
  • the outer diameter of the rotor 101 of the rotating shaft 100 is d, d ⁇ D, so that the axial electromagnetic control magnetic circuit 301 can pass through the axial stator 2 on the one side to
  • the rotor 101 then goes to the axial stator 2 on the other side, and then returns to the axial stator 2 on the one side via the radial stator 1 to form a closed magnetic circuit.
  • both the axial electromagnetic control magnetic circuit 301 and the radial electromagnetic control magnetic circuit 200 will pass through the radial stator 1 in space, the two magnetic circuits are actually The intersection of the three-dimensional space is extremely low in the degree of magnetic circuit coupling, and further speaking, the axial electromagnetic control magnetic circuit 301 at this time will not pass through the air gap between the radial stator 1 and the rotor 101.
  • the radial electromagnetic control magnetic circuit 200 forms a coupling at the air gap.
  • the maximum diameter of the second ring groove 23 is H, H ⁇ D.
  • the permanent magnet 24 is a plurality of permanent magnets 24 with a tile-like structure and is arranged in the second annular groove 23.
  • the permanent magnet 24 is a ring-shaped permanent magnet, and/or, there is an interference fit between the permanent magnet 24 and the second ring groove 23.
  • a compressor including the above-mentioned magnetic suspension bearing.
  • an air conditioner including the above-mentioned compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种磁悬浮轴承、压缩机、空调器。其中一种磁悬浮轴承,包括径向定子(1),所述径向定子(1)具有多个沿其径向向内延伸的定子齿(11),所述定子齿(11)的轴向两侧分别各设有轴向定子(2),所述定子齿(11)上绕设有径向控制线圈(12),所述径向控制线圈(12)处于两个轴向定子(2)相对涵盖的区域之外。该磁悬浮轴承、压缩机、空调器,能够有效降低径向电磁控制磁路与轴向电磁控制磁路的耦合程度,降低磁悬浮轴承的控制难度。

Description

磁悬浮轴承、压缩机、空调器
相关申请
本公开要求2019年12月31日申请的,申请号为2019114113559,名称为“磁悬浮轴承、压缩机、空调器”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本公开属于磁悬浮轴承制造技术领域,具体涉及一种磁悬浮轴承、压缩机、空调器。
背景技术
磁悬浮轴承是一种利用电磁力实现转子系统无机械接触稳定悬浮运行的轴承。相较于传统的机械轴承,磁悬浮轴承具有无摩擦、无磨损、无需密封润滑、高速度、精度高、寿命长及维护成本低等优良特性,在高速电机、高速电主轴、高速飞轮储能系统等高速传动领域具有广泛的应用前景。
按照激励方式的不同,磁悬浮轴承可以分为主动磁轴承、被动磁轴承和混合式磁轴承(也称永磁偏置磁轴承)。由于混合式磁轴承使用永磁体产生的磁场作为静态偏置磁场,不仅使得电磁铁的线圈匝数减小,大大降低了功率放大器的功耗,而且还缩小了磁轴承的体积,减轻了重量,因此混合式磁轴承已成为研究的热点。一般的,将轴向和径向悬浮控制集成在一起形成三自由度磁悬浮轴承具有集成程度高、体积小、重量小等优点,但这种磁轴承径向、轴向磁路容易产生耦合,大大增加了磁悬浮轴承的控制难度。
发明内容
因此,本公开要解决的技术问题在于提供一种磁悬浮轴承、压缩机、空调器,能够有效降低径向电磁控制磁路与轴向电磁控制磁路的耦合程度,降低磁悬浮轴承的控制难度。
为了解决上述问题,本公开提供一种磁悬浮轴承,包括径向定子,所述径向定子具有多个沿其径向向内延伸的定子齿,所述定子齿的轴向两侧分别各设有轴向定子,所述定子齿上绕设有径向控制线圈,所述径向控制线圈处于两个轴向定子相对涵盖的区域之外。
在一个实施例中,多个所述定子齿沿所述径向定子的周向均匀间隔设置,且所述定子齿的为2N个,N≥2。
在一个实施例中,所述轴向定子朝向所述定子齿的一侧构造有第一环槽,所述第一环槽中设置有轴向控制线圈。
在一个实施例中,所述定子齿轴向两侧的轴向控制线圈的电流方向相同。
在一个实施例中,所述第一环槽具有靠近所述轴向定子轴心一侧的第一槽壁,所述第一槽壁的直径为D,当所述磁悬浮轴承与转轴组装时,所述转轴的转子外径为d,d≥D。
在一个实施例中,所述轴向定子朝向所述定子齿的一侧还构造有第二环槽,所述第二环槽内设置有永磁体。
在一个实施例中,所述第二环槽的最大直径为H,H<D。
在一个实施例中,所述永磁体为环状永磁体,和/或,所述永磁体与所述第二环槽之间过盈配合。
本公开还提供一种压缩机,包括上述的磁悬浮轴承。
本公开还提供一种空调器,包括上述的压缩机。
本公开提供的一种磁悬浮轴承、压缩机、空调器,将所述径向控制线圈设置于所述两个轴向定子相对涵盖的区域之外,能够在物理结构上对所述径向控制线圈产生的相应径向电磁控制磁路不再经过所述轴向定子,从而有效降低了径向电磁控制磁路在轴向定子上与轴向电磁控制磁路之间的耦合程度,从而降低了磁悬浮轴承的控制难度。
附图说明
图1为本公开实施例的磁悬浮轴承的内部结构示意图(含与转轴组装的示意);
图2为图1中径向定子与径向控制线圈形成的径向电磁控制磁路示意;
图3为图1中轴向定子与轴向控制线圈及永磁体形成的轴向电磁控制磁路及轴向永磁控制磁路示意;
图4为图3复合径向电磁控制磁路后的磁路示意。
附图标记表示为:
1、径向定子;11、定子齿;12、径向控制线圈;2、轴向定子;21、第一环槽;22、轴向控制线圈;23、第二环槽;24、永磁体;100、转轴;101、转子;200、径向电磁控制磁路;301、轴向电磁控制磁路;302、轴向永磁控制磁路。
具体实施方式
结合参见图1至图4所示,根据本公开的实施例,提供一种磁悬浮轴承,尤其是一种三自由度磁悬浮轴承,包括外壳(图中未示出),所述外壳内设有径向定子1。所述径向定子1具有多个沿其径向向内延伸的定子齿11。所述定子齿11的轴向两侧分别各设有轴向定子2。所述定子齿11上绕设有径向控制线圈12。所述径向控制线圈12处于两个轴向 定子2相对涵盖的区域之外,也即,所述轴向定子2的外径小于所述径向控制线圈12的最小圈直径。该技术方案中,将所述径向控制线圈12设置于所述两个轴向定子2相对涵盖的区域之外,能够在物理结构上对所述径向控制线圈12产生的相应径向电磁控制磁路200不再经过所述轴向定子2,从而有效降低了径向电磁控制磁路200在轴向定子2上与轴向电磁控制磁路301之间的耦合程度,从而降低了磁悬浮轴承的控制难度。
如图2所示出,多个所述定子齿11沿所述径向定子1的周向均匀间隔设置,且所述定子齿11的为2N个,N≥2,相邻的两个定子齿11上的径向控制线圈12中的电流方向正好相反,以在相邻的两个定子齿11与转子101之间形成所述径向电磁控制磁路200闭环。
作为所述轴向定子2的一种具体结构形式,在一个实施例中,所述轴向定子2朝向所述定子齿11的一侧构造有第一环槽21。所述第一环槽21中设置有轴向控制线圈22,也即所述轴向控制线圈22沿着所述转轴100的周向也可以理解为沿着所述转子101的周向绕设,从而简化了线圈的绕设工序。
在一个实施例中,所述轴向定子2朝向所述定子齿11的一侧还构造有第二环槽23。所述第二环槽23内设置有永磁体24。所述永磁体24的设置目的在于提供一个偏置磁场,也即提供一个使转子101处于静态居中的磁场。这个磁场即为轴向永磁控制磁路302。在此磁场的基础上,在改变轴向电磁控制磁路301强度(轴向控制线圈22中的电流强弱)时,所述转子101的位置将能够被所述两个轴向定子2中的轴向控制线圈22所控制调节。
如图3及图4所示出,所述定子齿11轴向两侧的轴向控制线圈22的电流方向相同,在一个实施例中,所述第一环槽21具有靠近所述轴向定子2轴心一侧的第一槽壁,所述第一槽壁的直径为D。当所述磁悬浮轴承与转轴100组装时,所述转轴100的转子101外径为d,d≥D,从而使所述轴向电磁控制磁路301能够经由所述一侧的轴向定子2到转子101,再到另一侧的轴向定子2,再经由径向定子1回到所述一侧的轴向定子2,从而形成一个磁路闭环。而此时可以理解的是,所述轴向电磁控制磁路301与所述径向电磁控制磁路200在空间上虽然都将经由所述径向定子1,但是由于两个磁路实际上为立体空间的交叉,其在磁路耦合程度上极低,而进一步的讲,此时的轴向电磁控制磁路301将不会经过所述径向定子1与转子101之间的气隙而与径向电磁控制磁路200在气隙处形成耦合。
在一个实施例中,所述第二环槽23的最大直径为H,H<D。在一个实施例中,所述永磁体24为多个瓦状结构的永磁体24设置于所述第二环槽23内。在一个实施例中,所述永磁体24为环状永磁体,和/或,所述永磁体24与所述第二环槽23之间过盈配合。
根据本公开的具体实施例,还提供一种压缩机,包括上述的磁悬浮轴承。
根据本公开的具体实施例,还提供一种空调器,包括上述的压缩机。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。以上仅是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本公开的保护范围。

Claims (11)

  1. 一种磁悬浮轴承,包括:
    径向定子(1),具有多个沿所述径向定子的径向向内延伸的定子齿(11);
    轴向定子(2),在所述定子齿(11)的轴向两侧分别设置;及
    径向控制线圈(12),绕设于所述定子齿(11)上,所述径向控制线圈(12)处于两个轴向定子(2)相对涵盖的区域之外。
  2. 根据权利要求1所述的磁悬浮轴承,其特征在于,多个所述定子齿(11)沿所述径向定子(1)的周向均匀间隔设置,且所述定子齿(11)的数量为2N个,N≥2。
  3. 根据权利要求1所述的磁悬浮轴承,其特征在于,所述轴向定子(2)朝向所述定子齿(11)的一侧构造有第一环槽(21),所述磁悬浮轴承还包括设于所述第一环槽(21)中的轴向控制线圈(22)。
  4. 根据权利要求3所述的磁悬浮轴承,其特征在于,所述定子齿(11)轴向两侧的轴向控制线圈(22)的电流方向相同。
  5. 根据权利要求3或4所述的磁悬浮轴承,其特征在于,所述第一环槽(21)具有靠近所述轴向定子(2)轴心一侧的第一槽壁,所述第一槽壁的直径为D,所述磁悬浮轴承用于与转子(101)外径为d的转轴(100)组装,d≥D。
  6. 根据权利要求5所述的磁悬浮轴承,其特征在于,所述轴向定子(2)朝向所述定子齿(11)的一侧还构造有第二环槽(23),所述磁悬浮轴承还包括设于所述第二环槽(23)内的永磁体(24)。
  7. 根据权利要求6所述的磁悬浮轴承,其特征在于,所述第二环槽(23)的最大直径为H,H<D。
  8. 根据权利要求6所述的磁悬浮轴承,其特征在于,所述永磁体(24)为环状永磁体。
  9. 根据权利要求6或8所述的磁悬浮轴承,其特征在于,所述永磁体(24)与所述第二环槽(23)之间过盈配合。
  10. 一种压缩机,包括磁悬浮轴承,所述磁悬浮轴承包括:
    径向定子(1),具有多个沿所述径向定子的径向向内延伸的定子齿(11);
    轴向定子(2),在所述定子齿(11)的轴向两侧分别设置;及
    径向控制线圈(12),绕设于所述定子齿(11)上,所述径向控制线圈(12)处于两个轴向定子(2)相对涵盖的区域之外。
  11. 一种空调器,包括压缩机,所述压缩机包括磁悬浮轴承,所述磁悬浮轴承包括:
    径向定子(1),具有多个沿所述径向定子的径向向内延伸的定子齿(11);
    轴向定子(2),在所述定子齿(11)的轴向两侧分别设置;及
    径向控制线圈(12),绕设于所述定子齿(11)上,所述径向控制线圈(12)处于两个轴向定子(2)相对涵盖的区域之外。
PCT/CN2020/110800 2019-12-31 2020-08-24 磁悬浮轴承、压缩机、空调器 WO2021135276A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20910748.1A EP4086470B1 (en) 2019-12-31 2020-08-24 Magnetic suspension bearing, compressor, and air conditioner
US17/765,329 US11905994B2 (en) 2019-12-31 2020-08-24 Magnetic bearing, compressor and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911411355.9A CN111102291A (zh) 2019-12-31 2019-12-31 磁悬浮轴承、压缩机、空调器
CN201911411355.9 2019-12-31

Publications (1)

Publication Number Publication Date
WO2021135276A1 true WO2021135276A1 (zh) 2021-07-08

Family

ID=70424029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110800 WO2021135276A1 (zh) 2019-12-31 2020-08-24 磁悬浮轴承、压缩机、空调器

Country Status (4)

Country Link
US (1) US11905994B2 (zh)
EP (1) EP4086470B1 (zh)
CN (1) CN111102291A (zh)
WO (1) WO2021135276A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111102291A (zh) 2019-12-31 2020-05-05 珠海格力电器股份有限公司 磁悬浮轴承、压缩机、空调器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844410A1 (fr) * 1996-11-25 1998-05-27 AEROSPATIALE Société Nationale Industrielle Palier magnétique actif longitudinalement et transversalement
CN102900761A (zh) * 2012-09-06 2013-01-30 江苏大学 一种永磁偏磁轴向混合磁轴承
CN202883726U (zh) * 2012-09-06 2013-04-17 江苏大学 一种永磁偏磁轴向混合磁轴承
CN105610288A (zh) * 2016-01-26 2016-05-25 江苏大学 一种永磁转矩和磁阻转矩分离型电机及最优效率控制方法
CN105864292A (zh) * 2016-06-08 2016-08-17 淮阴工学院 一种永磁偏置三自由度磁轴承
CN106050918A (zh) * 2016-06-08 2016-10-26 淮阴工学院 一种永磁偏置五自由度集成化磁悬浮支撑系统
CN107579637A (zh) * 2017-08-17 2018-01-12 东南大学 一种轴径向磁通永磁电机
CN111102291A (zh) * 2019-12-31 2020-05-05 珠海格力电器股份有限公司 磁悬浮轴承、压缩机、空调器
CN211550276U (zh) * 2019-12-31 2020-09-22 珠海格力电器股份有限公司 磁悬浮轴承、压缩机、空调器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1333558A3 (en) * 2002-01-31 2005-01-26 Hitachi, Ltd. Rotor for rotating electric machine and method of fabricating the same, for gas turbine power plant
CN101220832B (zh) * 2007-11-28 2010-06-09 江苏大学 径向四极二相交流驱动的径向-轴向混合磁轴承
JP5845874B2 (ja) * 2011-12-16 2016-01-20 ダイキン工業株式会社 回転体
CN103490572B (zh) * 2013-05-28 2016-08-24 南京航空航天大学 一种三自由度磁悬浮开关磁阻电机
CN103441630B (zh) * 2013-06-20 2015-12-02 南京航空航天大学 一种12/4极结构的三自由度磁悬浮开关磁阻电机
CN108547868B (zh) * 2018-04-12 2020-02-07 南京邮电大学 一种半自由度的径向充磁的混合型轴向磁轴承

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844410A1 (fr) * 1996-11-25 1998-05-27 AEROSPATIALE Société Nationale Industrielle Palier magnétique actif longitudinalement et transversalement
CN102900761A (zh) * 2012-09-06 2013-01-30 江苏大学 一种永磁偏磁轴向混合磁轴承
CN202883726U (zh) * 2012-09-06 2013-04-17 江苏大学 一种永磁偏磁轴向混合磁轴承
CN105610288A (zh) * 2016-01-26 2016-05-25 江苏大学 一种永磁转矩和磁阻转矩分离型电机及最优效率控制方法
CN105864292A (zh) * 2016-06-08 2016-08-17 淮阴工学院 一种永磁偏置三自由度磁轴承
CN106050918A (zh) * 2016-06-08 2016-10-26 淮阴工学院 一种永磁偏置五自由度集成化磁悬浮支撑系统
CN107579637A (zh) * 2017-08-17 2018-01-12 东南大学 一种轴径向磁通永磁电机
CN111102291A (zh) * 2019-12-31 2020-05-05 珠海格力电器股份有限公司 磁悬浮轴承、压缩机、空调器
CN211550276U (zh) * 2019-12-31 2020-09-22 珠海格力电器股份有限公司 磁悬浮轴承、压缩机、空调器

Also Published As

Publication number Publication date
EP4086470A1 (en) 2022-11-09
EP4086470A4 (en) 2023-01-25
US20220333644A1 (en) 2022-10-20
CN111102291A (zh) 2020-05-05
US11905994B2 (en) 2024-02-20
EP4086470B1 (en) 2023-10-25

Similar Documents

Publication Publication Date Title
CN102305242B (zh) 一种径向-轴向三自由度交直流混合磁轴承
CN107448474B (zh) 一种车载飞轮电池用五自由度混合磁轴承
CN105782242A (zh) 一种飞轮储能系统及其五自由度磁悬浮支承结构
WO2020073550A1 (zh) 轴向磁悬浮轴承
CN101893038A (zh) 永磁偏置轴向磁轴承
CN102562800A (zh) 永磁偏置轴向磁轴承
CN113202869A (zh) 一种三自由度混合偏置磁轴承
CN103939465B (zh) 一种单自由度磁轴承
CN108757731A (zh) 一种永磁体轴向磁化的径向轴向三自由度磁轴承
WO2021135276A1 (zh) 磁悬浮轴承、压缩机、空调器
CN113839516A (zh) 轴向悬浮用定子组件、磁悬浮电机及直线式电磁执行机构
CN211550276U (zh) 磁悬浮轴承、压缩机、空调器
WO2024078084A1 (zh) 磁悬浮主动式三自由度轴承、电机和压缩机
CN211574040U (zh) 径向无耦合三自由度直流混合磁轴承
CN112953309A (zh) 永磁同步磁悬浮电机
WO2023226404A1 (zh) 一种磁悬浮轴承、压缩机
CN205663761U (zh) 一种低功耗永磁偏置五自由度集成化磁轴承
CN109681525B (zh) 磁悬浮轴承及电机
CN108547868B (zh) 一种半自由度的径向充磁的混合型轴向磁轴承
CN108506343B (zh) 一种半自由度的轴向充磁的混合型轴向磁轴承
CN113833759B (zh) 非对称结构永磁径向磁轴承
CN108825655A (zh) 一种带隔磁环的径向轴向三自由度磁轴承
WO2021143766A1 (zh) 新结构交叉齿四极混合磁轴承
CN208804115U (zh) 一种逆变器驱动式外转子轴向-径向六极混合磁轴承
CN111173838B (zh) 径向无耦合三自由度直流混合磁轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20910748

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020910748

Country of ref document: EP

Effective date: 20220801