WO2020073550A1 - 轴向磁悬浮轴承 - Google Patents

轴向磁悬浮轴承 Download PDF

Info

Publication number
WO2020073550A1
WO2020073550A1 PCT/CN2019/070664 CN2019070664W WO2020073550A1 WO 2020073550 A1 WO2020073550 A1 WO 2020073550A1 CN 2019070664 W CN2019070664 W CN 2019070664W WO 2020073550 A1 WO2020073550 A1 WO 2020073550A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
axial
iron core
magnetic
thrust
Prior art date
Application number
PCT/CN2019/070664
Other languages
English (en)
French (fr)
Inventor
李欣
张小波
张芳
龚高
张超
苏久展
董如昊
刘鹏辉
邓明星
王飞
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2020073550A1 publication Critical patent/WO2020073550A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit

Definitions

  • This application belongs to the technical field of bearings, and specifically relates to an axial magnetic bearing.
  • Magnetic suspension bearings use magnetic force to suspend the rotor in the air, so that there is no mechanical contact between the rotor and the stator.
  • the principle is that the magnetic induction line is perpendicular to the magnetic levitation line, and the shaft core is parallel to the magnetic levitation line, so the weight of the rotor is fixed on the running track, and the almost unloaded shaft core is propped in the direction of the anti-magnetic levitation line to form the entire
  • the rotor is suspended on a fixed running track.
  • the rotor can run to a high speed, with low mechanical wear, low energy consumption, low noise, long life, no lubrication, and no oil pollution And other advantages, especially suitable for high-speed, vacuum, ultra-clean and other special environments.
  • Fig. 1 the structure of the existing active axial magnetic bearing is shown in Fig. 1, including the front axial iron core 1, the front axial bearing control coil 2, the thrust plate 3, the rear axial bearing control coil 4, the rear Axial bearing iron core 5 and shaft 6, of which front axial iron core 1, thrust disk 3 and rear axial bearing iron core 5 are all made of magnetically conductive material, and thrust disk 3 is fixedly installed on shaft 6.
  • the coil When the coil is energized, according to Ampere's law, a magnetic field is formed in the axial iron core, which provides an electromagnetic attraction force to the thrust plate 3, and the electromagnetic attraction force increases as the current increases.
  • the distribution of magnetic lines of force is shown in Figure 2, the direction of the coil current is taken as an example, and the simulation of magnetic lines of force shows the distribution of the magnetic lines of force obtained when the single coil is energized.
  • a current in any direction flows into the front axial bearing control coil 2 to form a magnetic field between the front axial iron core 1 and the thrust disk 3
  • An electromagnetic attraction force is provided to the thrust plate 3 so that the shaft can move forward to the core 1 side.
  • the shaft shifts to the front axial iron core 1 side, current flows in any direction into the rear axial bearing control coil 4 to form a magnetic field between the rear axial bearing iron core 5 and the thrust disk 3 , Provides electromagnetic attraction to the thrust plate 3, so that the shaft can move to the rear axial bearing core 5 side.
  • the existing active axial magnetic bearing structure has two axial iron cores to provide a one-way electromagnetic attraction to the thrust disc, and the size of the current flowing through the coil is controlled by the bearing to ensure that the thrust disc is in the two bearing iron
  • the central position of the core ensures the axial position of the entire shaft and realizes the axial suspension.
  • the technical problem to be solved by the present application is to provide an axial magnetic levitation bearing, which can reduce the bearing space occupation and reduce the production cost.
  • an axial magnetic levitation bearing which includes an axial iron core, a control coil and a thrust disk.
  • the axial iron core and the thrust disk are oppositely arranged, the control coil is arranged in the axial iron core, and the shaft
  • the magnetic levitation bearing also includes a repulsive force generating component for providing repulsive force to the axial iron core and the thrust disk.
  • the repulsive force generating assembly includes a pair of magnets, the pair of magnets includes a first magnet and a second magnet, the first magnet is disposed on the axial iron core, and the second magnet is disposed on the thrust disc corresponding to the first magnet, the first The opposite poles of the magnet and the second magnet are the same.
  • the first magnet and the second magnet are magnetic rings.
  • a1 ⁇ x1 is satisfied between the wall thickness a1 of the first magnet and the wall thickness x1 of the second magnet.
  • the first magnet is embedded at one end of the axial iron core facing the thrust disc, and is located at the radial outer periphery of the axial iron core, and the second magnet is opposite to the first magnet, and is located at the thrust disc facing the axial direction One end of the iron core.
  • the pair of magnets further includes a third magnet and a fourth magnet
  • the third magnet is disposed on the axial iron core
  • the fourth magnet corresponds to the third magnet disposed on the thrust disk
  • the third magnet and the fourth magnet The magnetic poles on the opposite side are the same.
  • the third magnet and the fourth magnet are magnetic rings.
  • a2 ⁇ x2 is satisfied between the wall thickness a2 of the third magnet and the wall thickness x2 of the fourth magnet.
  • the axial iron core includes a winding slot for mounting a control coil, the first magnet is located radially outside the winding slot, and the third magnet is located radially inside the winding slot.
  • the total width of the outer magnetic pole of the axial iron core is l1
  • the total width of the inner magnetic pole of the axial iron core is l2
  • the output width of the outer magnetic pole of the axial iron core is b1
  • the output width of the inner magnetic pole of the axial iron core is b2
  • the radial wall thickness of the first magnet is a1
  • the radial wall thickness of the second magnet is x1
  • the radial wall thickness of the third magnet is a2
  • the radial wall thickness of the fourth magnet is x2, where l1 ⁇ a1 + b1, l2 ⁇ a2 + b2.
  • the first magnet and the third magnet have opposite magnetic poles facing the same side of the thrust disc.
  • the axial magnetic levitation bearing provided by this application includes an axial iron core, a control coil and a thrust disk, the axial iron core and the thrust disk are arranged oppositely, the control coil is arranged in the axial iron core, and the axial magnetic levitation bearing also includes It is a repulsive force generating component that provides repulsive force for the axial iron core and thrust disk.
  • the axial magnetic levitation bearing generates a repulsive force between the axial iron core and the thrust disc through the repulsive force generating component, and generates an attractive force between the axial iron core and the thrust disc through the control coil.
  • the axial magnetic levitation shaft reduces an axial iron core without increasing the space in the radial direction, saves assembly space, improves the structural design margin, and reduces The bearing space is occupied and the production cost is reduced.
  • Figure 1 is a schematic diagram of the structure of an axial magnetic bearing in the related art
  • FIG. 2 is a diagram of the magnetic circuit structure of an axial magnetic bearing in the related art
  • FIG. 3 is a schematic structural diagram of an axial magnetic suspension bearing according to an embodiment of the present application.
  • FIG. 4 is an enlarged size relationship diagram at L in FIG. 3;
  • FIG. 5 is an enlarged size relationship diagram at M of FIG. 3;
  • FIG. 6 is a structural diagram of a magnetic circuit of an axial magnetic suspension bearing according to an embodiment of the present application when the control coil is powered off;
  • FIG. 7 is a structural diagram of a magnetic circuit of an axial magnetic suspension bearing according to an embodiment of the present application when the control coil is energized;
  • the axial magnetic levitation bearing includes an axial iron core 1, a control coil 2 and a thrust disk 3, and the axial iron core 1 and the thrust disk 3 are oppositely arranged,
  • the control coil 2 is disposed in the axial iron core 1, and the axial magnetic levitation bearing further includes a repulsive force generating component for providing a repulsive force for the axial iron core 1 and the thrust disk 3.
  • the axial magnetic levitation bearing generates a repulsive force between the axial iron core 1 and the thrust disc 3 through the repulsive force generating assembly, and generates an attractive force between the axial iron core 1 and the thrust disc 3 through the control coil 2, so it needs to be adjusted
  • the distance between the axial iron core 1 and the thrust disk 3 under the joint action of the control coil 2 and the repulsive force generating component, it is only necessary to change the magnitude of the current flowing into the control coil 2 to realize the axial iron core 1 and The conversion of repulsive force and attractive force between the thrust disc 3 realizes the axial suspension of the shaft by a single iron core.
  • the axial magnetic levitation shaft reduces an axial iron core without increasing the space in the radial direction, saves assembly space, improves the structural design margin, and reduces The bearing space is occupied and the production cost is reduced.
  • Both the thrust disk 3 and the axial iron core 1 are sleeved on the rotating shaft 9, wherein the thrust disk 3 and the rotating shaft 9 are fixedly arranged, and the axial iron core 1 and the rotating shaft 9 are clearance-fitted.
  • the repulsive force generating assembly includes a pair of magnets including a first magnet 4 and a second magnet 5, the first magnet 4 is disposed on the axial iron core 1, and the second magnet 5 is disposed corresponding to the first magnet 4
  • the magnetic poles of the opposite faces of the first magnet 4 and the second magnet 5 are the same.
  • Both the first magnet 4 and the second magnet 5 are magnetized in the axial direction, and the opposite magnetic poles of the first magnet 4 and the second magnet 5 are the same. Because the opposite magnet attracts and the same magnet repels, the first magnet 4 and the second magnet 5 A repulsive force is generated between the magnets 5, so that the axial iron core 1 and the thrust disc 3 are away from each other.
  • the electromagnetic magnetic circuit generated by the current in the axial magnetic levitation bearing is shown in FIG. 7.
  • the electromagnetic magnetic circuit forms the electromagnetic magnetic circuit with the thrust disc 3 through the b1 and b2 sections on the axial iron core 1 ,
  • the axial iron core 1 attracts the thrust plate 3.
  • the attractive force of the axial iron core 1 to the thrust disk 3 increases.
  • the attractive force of the axial iron core 1 to the thrust disk 3 will be greater than that of the axial iron core.
  • the repulsive force generated between the magnets on 1 and the thrust disc 3 shows an attractive force between the axial iron core 1 and the thrust disc 3.
  • the repulsive force and attractive force of the axial iron core 1 to the thrust disk 3 can be converted.
  • the thrust disk 3 is far from the axial iron core 1, the axial iron core 1 and thrust
  • the attraction between the discs 3 is such that when the thrust disc 3 is close to the axial iron core 1, the repulsive force is between the axial iron core 1 and the thrust disc 3, thereby achieving the axial suspension of the shaft.
  • the first magnet 4 and the second magnet 5 are magnetic rings.
  • the first magnet 4 and the second magnet 5 can also be expressed in other structural forms, for example, a plurality of block-shaped first magnets 4 are circumferentially spaced on the end surface of the axial iron core 1 facing the thrust disc 3, and At a corresponding position on the end surface of the push plate 3, a plurality of block-shaped second magnets 5 are provided, and the second magnets 5 and the first magnets 4 can be arranged in a one-to-one correspondence.
  • the first magnets 4 are embedded in the axial iron core 1
  • the second magnet 5 is embedded in the thrust plate 3.
  • a1 ⁇ x1 is satisfied between the wall thickness a1 of the first magnet 4 and the wall thickness x1 of the second magnet 5.
  • a winding slot 8 is provided on the axial iron core 1 for installing the control coil 2, so the magnetic path width of the axial iron core 1 on both sides of the winding slot 8 is smaller, which is different from that of the axial iron core. 1
  • the magnetic path width of the opposite thrust plate 3 is large, so when the wall thickness a1 of the first magnet 4 is greater than the wall thickness x1 of the second magnet 5, the magnetic path length of the first magnet 4 on the thrust plate 3 is also Longer, the attractive force due to the magnetic leakage of the first magnet 4 is also relatively large.
  • the wall thickness x1 of the second magnet 5 is greater than the wall thickness a1 of the first magnet 4, due to the limitation of the winding groove 8, the magnetic force of the axial core 1 affected by the magnetic leakage of the second magnet 5 is affected
  • the width of the circuit is also limited, that is, the attractive force generated by the magnetic flux leakage of the second magnet 5 is limited, and when the power is not supplied, the attractive force generated by the magnetic flux leakage should be minimized to the first magnet 4 and the second magnet 5
  • the influence of the repulsive force between them therefore, making a1 ⁇ x1 can more effectively reduce the attractive force of the first magnet 4 to the thrust plate 3.
  • a1 x1.
  • the first magnet 4 is embedded at the end of the axial iron core 1 facing the thrust disc 3 and is located on the radial outer periphery of the axial iron core 1, and the second magnet 5 is disposed opposite to the first magnet 4, It is located at the end of the thrust disk 3 facing the axial iron core 1.
  • a repulsive force can be generated between the first magnet 4 and the second magnet 5 on the radial outer side of the axial iron core 1. Since the first magnet 4 and the second magnet 5 are both magnetic rings, the repulsive force can be distributed It is more uniform, the axial force is more balanced, and the structure is more stable.
  • the magnet pair further includes a third magnet 6 and a fourth magnet 7, the third magnet 6 is disposed on the axial iron core 1, and the fourth magnet 7 is disposed on the thrust disk 3 corresponding to the third magnet 6
  • the opposite magnetic poles of the third magnet 6 and the fourth magnet 7 are the same.
  • the third magnet 6 and the fourth magnet 7 can also form a pair of magnets. Since the opposite magnetic poles of the third magnet 6 and the fourth magnet 7 are the same, a repulsive force can be generated between the third magnet 6 and the fourth magnet 7 so that the shaft The iron core 1 and the thrust disc 3 are far away from each other.
  • the working principle and process of the third magnet 6 and the fourth magnet 7 are the same as those of the first magnet 4 and the second magnet 5, and will not be described in detail here.
  • the magnetic poles of the first magnet 4 and the third magnet 6 facing the same side of the thrust disc 3 are opposite, for example, the end of the first magnet 4 facing the thrust disc 3 is the S pole, and the third magnet 6 is facing the thrust disc 3
  • One end is N pole
  • this structure is to make the first magnet 4 and the second magnet 5 and the third magnet 6 and the fourth magnet 7 generate repulsive force at the same time, can form a closed permanent magnet magnetic circuit structure, thus The permanent magnet magnetic circuit is shared with the original electromagnetic magnetic circuit path, and no additional magnetic circuit structure needs to be arranged in the radial direction to reduce the radial size of the iron core.
  • the third magnet 6 and the fourth magnet 7 are magnetic rings.
  • the third magnet 6 and the fourth magnet 7 may also be expressed in other structural forms, such as block magnets arranged at intervals in the circumferential direction of the thrust plate 3.
  • the wall thickness a2 of the third magnet 6 and the wall thickness x2 of the fourth magnet 7 satisfy a2 ⁇ x2.
  • a2 x2.
  • the axial core 1 includes a winding slot 8 for mounting the control coil 2, the first magnet 4 is located radially outside the winding slot 8, and the third magnet 6 is located radially inside the winding slot 8.
  • the two magnet pairs can form a repulsive force on the axial iron core 1 and the thrust disk 3 on the radial sides of the winding groove 8 respectively, so that the force between the axial iron core 1 and the thrust disk 3 is more uniform.
  • the structure is more stable.
  • the total width of the outer magnetic pole of the axial iron core 1 is l1, the total width of the inner magnetic pole of the axial iron core 1 is l2, the output width of the outer magnetic pole of the axial iron core 1 is b1, and the inner width of the axial iron core 1
  • the magnetic pole output width is b2
  • the radial wall thickness of the first magnet 4 is a1
  • the radial wall thickness of the second magnet 5 is x1
  • the radial wall thickness of the third magnet 6 is a2
  • the radial wall of the fourth magnet 7 The thickness is x2, where l1 ⁇ a1 + b1 and l2 ⁇ a2 + b2.
  • FIG. 8 is a graph of the relationship between the force and current between the axial iron core 1 and the thrust disc 3 under a certain structural parameter, where the positive and negative force indicates the direction of the force. It can be seen from the figure that the greater the current, the smaller the repulsion and the greater the attraction.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种轴向磁悬浮轴承,包括轴向铁芯(1)、控制线圈(2)和止推盘(3),轴向铁芯(1)和止推盘(3)相对设置,控制线圈(2)设置在轴向铁芯(1)内,轴向磁悬浮轴承还包括用于为轴向铁芯(1)和止推盘(3)提供排斥力的斥力发生组件。轴向磁悬浮轴承,能够减小轴承空间占用,降低生产成本。

Description

轴向磁悬浮轴承
本申请要求于2018年10月08日提交中国专利局、申请号为201811169033.3、发明名称为“轴向磁悬浮轴承”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于轴承技术领域,具体涉及一种轴向磁悬浮轴承。
背景技术
磁悬浮轴承是利用磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触。其原理是磁感应线与磁浮线成垂直,轴芯与磁浮线是平行的,所以转子的重量就固定在运转的轨道上,利用几乎是无负载的轴芯往反磁浮线方向顶撑,形成整个转子悬空在固定运转轨道上。
与传统的滚动轴承、滑动轴承以及油膜轴承相比,磁轴承不存在机械接触,转子可以运行到很高的转速,具有机械磨损小、能耗低、噪声小、寿命长、无需润滑、无油污染等优点,特别适用于高速、真空、超净等特殊环境中。
一般而言,现有主动式轴向磁悬浮轴承结构形式如图1所示,包括前轴向铁芯1、前轴向轴承控制线圈2、止推盘3、后轴向轴承控制线圈4、后轴向轴承铁芯5、轴6,其中前轴向铁芯1、止推盘3、后轴向轴承铁芯5均采用导磁材料,止推盘3固定安装在轴6上。当线圈通电后,根据安培定律,轴向铁芯中会形成磁场,对止推盘3提供电磁吸引力,且电磁吸引力随电流增大而增大.
磁力线分布如图2所示,线圈电流方向为举例示意,磁力线仿真图为单线圈通电时仿真得到的磁力线分布情况。当轴发生向后轴向轴承铁芯5侧的偏移时,在前轴向轴承控制线圈2中通入任意方向电流,可在前轴向铁芯1与止推盘3之间形成磁场,对止推盘3提供电磁吸引力,使轴可以向前轴向铁芯1侧移动。
同理,当轴发生向前轴向铁芯1侧的偏移时,在后轴向轴承控制线圈4中通入任意方向电流,可在后轴向轴承铁芯5与止推盘3形成磁场,对止推盘3提供电磁吸引力,使轴可以向后轴向轴承铁芯5侧移动。现有主动式轴向磁悬浮轴承结构形式由两个轴向铁芯分别对止推盘提供单方向的电磁吸引力,通过控制轴承控制线圈通入电流的大小,保证止推盘处于两个轴承铁芯的中心位置,保证整个轴的轴向位置,实现轴向悬浮。
然而现有主动式轴向磁悬浮轴承结构必须要安装两个轴向轴承铁芯及止推盘才能实现轴向悬浮,占用空间较大,成本较高。
发明内容
因此,本申请要解决的技术问题在于提供一种轴向磁悬浮轴承,能够减小轴承空间占用,降低生产成本。
为了解决上述问题,本申请提供一种轴向磁悬浮轴承,包括轴向铁芯、控制线圈和止推盘,轴向铁芯和止推盘相对设置,控制线圈设置在轴向铁芯内,轴向磁悬浮轴承还包括用于为轴向铁芯和止推盘提供排斥力的斥力发生组件。
可选地,斥力发生组件包括磁体对,磁体对包括第一磁体和第二磁体,第一磁体设置在轴向铁芯上,第二磁体对应于第一磁体设置在止推盘上,第一磁体和第二磁体的相对面磁极相同。
可选地,第一磁体和第二磁体为磁环。
可选地,第一磁体的壁厚a1与第二磁体的壁厚x1之间满足a1≤x1。
可选地,第一磁体嵌设在轴向铁芯朝向止推盘的一端,并位于轴向铁芯的径向外周,第二磁体与第一磁体相对设置,并位于止推盘朝向轴向铁芯的一端。
可选地,磁体对还包括第三磁体和第四磁体,第三磁体设置在轴向铁芯上,第四磁体对应于第三磁体设置在止推盘上,第三磁体和第四磁体的相对面磁极相同。
可选地,第三磁体和第四磁体为磁环。
可选地,第三磁体的壁厚a2与第四磁体的壁厚x2之间满足a2≤x2。
可选地,轴向铁芯包括用于安装控制线圈的绕线槽,第一磁体位于绕线槽的径向外侧,第三磁体位于绕线槽的径向内侧。
可选地,轴向铁芯的外磁极总宽度为l1,轴向铁芯的内磁极总宽度为l2,轴向铁芯的外磁极出力宽度为b1,轴向铁芯的内磁极出力宽度为b2,第一磁 体的径向壁厚为a1,第二磁体的径向壁厚为x1,第三磁体的径向壁厚为a2,第四磁体的径向壁厚为x2,其中l1≤a1+b1,l2≤a2+b2。
可选地,第一磁体和第三磁体朝向止推盘的同一侧磁极相反。
本申请提供的轴向磁悬浮轴承,包括轴向铁芯、控制线圈和止推盘,轴向铁芯和止推盘相对设置,控制线圈设置在轴向铁芯内,轴向磁悬浮轴承还包括用于为轴向铁芯和止推盘提供排斥力的斥力发生组件。该轴向磁悬浮轴承通过斥力发生组件在轴向铁芯和止推盘之间产生斥力,通过控制线圈在轴向铁芯和止推盘之间产生吸引力,因此在需要调整轴向铁芯与止推盘之间的间距时,在控制线圈和斥力发生组件的共同作用下,只需要改变控制线圈中通入电流的大小即可实现轴向铁芯与止推盘之间排斥力与吸引力的转换,实现由单个铁芯对轴的轴向悬浮。由于永磁体磁路和电磁磁路路径共用,因此无需在径向方向额外布置磁路结构,能够减小铁芯径向尺寸。与原有主动式轴向磁悬浮轴承相比,该轴向磁悬浮轴在不增加径向方向空间的情况下,减少了一个轴向铁芯,节省了装配空间,提高了结构设计余量,减小了轴承空间占用,降低了生产成本。
附图说明
图1为相关技术中的轴向磁悬浮轴承的结构示意图;
图2为相关技术中的轴向磁悬浮轴承的磁路结构图;
图3为本申请实施例的轴向磁悬浮轴承的结构示意图;
图4为图3的L处的放大尺寸关系图;
图5为图3的M处的放大尺寸关系图;
图6为本申请实施例的轴向磁悬浮轴承的在控制线圈断电时的磁路结构图;
图7为本申请实施例的轴向磁悬浮轴承的在控制线圈通电时的磁路结构图;
图8为本申请实施例的轴向磁悬浮轴承的轴向铁芯与止推盘之间受力与电流关系曲线图。
附图标记表示为:
1、轴向铁芯;2、控制线圈;3、止推盘;4、第一磁体;5、第二磁体;6、第三磁体;7、第四磁体;8、绕线槽;9、转轴。
具体实施方式
结合参见图3至图8所示,根据本申请的实施例,轴向磁悬浮轴承包括轴 向铁芯1、控制线圈2和止推盘3,轴向铁芯1和止推盘3相对设置,控制线圈2设置在轴向铁芯1内,轴向磁悬浮轴承还包括用于为轴向铁芯1和止推盘3提供排斥力的斥力发生组件。
该轴向磁悬浮轴承通过斥力发生组件在轴向铁芯1和止推盘3之间产生斥力,通过控制线圈2在轴向铁芯1和止推盘3之间产生吸引力,因此在需要调整轴向铁芯1与止推盘3之间的间距时,在控制线圈2和斥力发生组件的共同作用下,只需要改变控制线圈2中通入电流的大小即可实现轴向铁芯1与止推盘3之间排斥力与吸引力的转换,实现由单个铁芯对轴的轴向悬浮。由于永磁体磁路和电磁磁路路径共用,因此无需在径向方向额外布置磁路结构,能够减小铁芯径向尺寸。与原有主动式轴向磁悬浮轴承相比,该轴向磁悬浮轴在不增加径向方向空间的情况下,减少了一个轴向铁芯,节省了装配空间,提高了结构设计余量,减小了轴承空间占用,降低了生产成本。
止推盘3和轴向铁芯1均套设在转轴9上,其中止推盘3与转轴9固定设置,轴向铁芯1与转轴9之间间隙配合。通过调整止推盘3与轴向铁芯1之间的作用力,能够有效实现转轴9的轴向悬浮。
在本实施例中,斥力发生组件包括磁体对,磁体对包括第一磁体4和第二磁体5,第一磁体4设置在轴向铁芯1上,第二磁体5对应于第一磁体4设置在止推盘3上,第一磁体4和第二磁体5的相对面磁极相同。第一磁体4和第二磁体5均为轴向方向充磁,且第一磁体4和第二磁体5的相对面磁极相同,由于异性相吸,同性相斥,因此第一磁体4和第二磁体5之间产生斥力,从而使得轴向铁芯1和止推盘3之间相互远离。
在控制线圈2不通电时,轴向磁悬浮轴承磁路如图6所示。因第一磁体4、第二磁体5相对方向磁性相同,产生排斥力。此时由于漏磁,套设在轴向铁芯1上的第一磁体4会对止推盘3产生一小部分吸引力,但要小于第一磁体4与第二磁体5之间的排斥力,总体上轴向铁芯1与止推盘3之间表现为排斥力。
在控制线圈2通入电流时,轴向磁悬浮轴承因电流产生的电磁磁路如图7所示,电磁磁路通过轴向铁芯1上的b1、b2段与止推盘3形成电磁磁路,轴向铁芯1对止推盘3产生吸引力。随着电流增大,轴向铁芯1对止推盘3产生吸引力增大,当电流足够大时,轴向铁芯1对止推盘3产生吸引力会大于套设在轴向铁芯1和止推盘3上的磁体间产生的排斥力,轴向铁芯1与止推盘3之间表现为吸引力。
因此,通过改变电流的大小,可以实现轴向铁芯1对止推盘3的排斥力与 吸引力的转换,当止推盘3远离轴向铁芯1时,轴向铁芯1与止推盘3之间为吸引力,当止推盘3靠近轴向铁芯1时,轴向铁芯1与止推盘3之间为排斥力,进而实现对轴的轴向悬浮。
可选地,第一磁体4和第二磁体5为磁环。第一磁体4和第二磁体5也可以表现为其它的结构形式,例如在轴向铁芯1朝向止推盘3的端面上沿周向间隔设置多个块状的第一磁体4,在止推盘3端面上的相应位置处,设置有多个块状的第二磁体5,第二磁体5与第一磁体4之间可以一一对应设置,第一磁体4嵌入轴向铁芯1上,第二磁体5嵌入止推盘3内。
可选地,第一磁体4的壁厚a1与第二磁体5的壁厚x1之间满足a1≤x1。一般而言,在轴向铁芯1上会设置绕线槽8用于安装控制线圈2,因此位于绕线槽8两侧的轴向铁芯1的磁路宽度较小,与轴向铁芯1相对的止推盘3的磁路宽度较大,因此当第一磁体4的壁厚a1大于第二磁体5的壁厚x1时,第一磁体4在止推盘3上的磁路长度也较长,由于第一磁体4漏磁所产生的吸引力也相对较大。而如果第二磁体5的壁厚x1大于第一磁体4的壁厚a1时,由于绕线槽8的限制,因此在第二磁体5的漏磁作用下受到影响的轴向铁芯1的磁路宽度也受限,也即受到第二磁体5的漏磁影响所产生的吸引力有限,而在未通电时,应该尽量减少漏磁所产生的吸引力对第一磁体4和第二磁体5之间的排斥力的影响,因此,使得a1≤x1,能够更加有效地减小第一磁体4对止推盘3的吸引力。可选地,a1=x1。
在本实施例中,第一磁体4嵌设在轴向铁芯1朝向止推盘3的一端,并位于轴向铁芯1的径向外周,第二磁体5与第一磁体4相对设置,并位于止推盘3朝向轴向铁芯1的一端。通过上述方式,能够在轴向铁芯1的径向外侧使得第一磁体4与第二磁体5之间产生斥力,由于第一磁体4和第二磁体5均为磁环,因此能够使得斥力分布更加均匀,轴向受力更加平衡,结构更加稳定。
在本实施例中,磁体对还包括第三磁体6和第四磁体7,第三磁体6设置在轴向铁芯1上,第四磁体7对应于第三磁体6设置在止推盘3上,第三磁体6和第四磁体7的相对面磁极相同。第三磁体6和第四磁体7也能够形成磁体对,由于第三磁体6和第四磁体7的相对面磁极相同,因此第三磁体6和第四磁体7之间能够产生排斥力,使得轴向铁芯1与止推盘3之间相互远离。
第三磁体6和第四磁体7的作用原理和过程与第一磁体4和第二磁体5相同,此处不再详述。
可选地,第一磁体4和第三磁体6朝向止推盘3的同一侧磁极相反,例如, 第一磁体4朝向止推盘3的一端为S极,第三磁体6朝向止推盘3的一端为N极,此种结构是为了使第一磁体4和第二磁体5以及第三磁体6和第四磁体7之间均产生斥力的同时,能够形成闭合的永磁体磁路结构,从而使得永磁体磁路与原有电磁磁路路径共用,无需在径向方向额外布置磁路结构,减小铁芯径向尺寸。
可选地,第三磁体6和第四磁体7为磁环。第三磁体6和第四磁体7也可以表现为其它的结构形式,例如沿止推盘3的周向间隔间隔设置的块状磁体等。
第三磁体6的壁厚a2与第四磁体7的壁厚x2之间满足a2≤x2。可选地,a2=x2。
轴向铁芯1包括用于安装控制线圈2的绕线槽8,第一磁体4位于绕线槽8的径向外侧,第三磁体6位于绕线槽8的径向内侧。
两个磁体对能够分别在绕线槽8的径向两侧对轴向铁芯1和止推盘3形成排斥力,使得轴向铁芯1和止推盘3之间的受力更加均匀,结构更加稳定。
可选地,轴向铁芯1的外磁极总宽度为l1,轴向铁芯1的内磁极总宽度为l2,轴向铁芯1的外磁极出力宽度为b1,轴向铁芯1的内磁极出力宽度为b2,第一磁体4的径向壁厚为a1,第二磁体5的径向壁厚为x1,第三磁体6的径向壁厚为a2,第四磁体7的径向壁厚为x2,其中l1≤a1+b1,l2≤a2+b2。通过采用该结构,能够有效提高轴向铁芯1的磁饱和性,提高轴向磁悬浮轴承的磁性能。
图8为某结构参数下轴向铁芯1与止推盘3之间受力与电流关系曲线图,其中力的正负表示受力方向。从图中可以看出,电流越大,斥力越小,吸引力越大。
本领域的技术人员容易理解的是,在不冲突的前提下,上述各有利方式可以自由地组合、叠加。
以上仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本申请的保护范围。

Claims (11)

  1. 一种轴向磁悬浮轴承,包括轴向铁芯(1)、控制线圈(2)和止推盘(3),所述轴向铁芯(1)和所述止推盘(3)相对设置,所述控制线圈(2)设置在所述轴向铁芯(1)内,所述轴向磁悬浮轴承还包括用于为所述轴向铁芯(1)和所述止推盘(3)提供排斥力的斥力发生组件。
  2. 根据权利要求1所述的轴向磁悬浮轴承,其中,所述斥力发生组件包括磁体对,所述磁体对包括第一磁体(4)和第二磁体(5),所述第一磁体(4)设置在所述轴向铁芯(1)上,所述第二磁体(5)对应于所述第一磁体(4)设置在所述止推盘(3)上,所述第一磁体(4)和所述第二磁体(5)的相对面磁极相同。
  3. 根据权利要求2所述的轴向磁悬浮轴承,其中,所述第一磁体(4)和所述第二磁体(5)为磁环。
  4. 根据权利要求3所述的轴向磁悬浮轴承,其中,所述第一磁体(4)的壁厚a1与所述第二磁体(5)的壁厚x1之间满足a1≤x1。
  5. 根据权利要求2至4中任一项所述的轴向磁悬浮轴承,其中,所述第一磁体(4)嵌设在所述轴向铁芯(1)朝向所述止推盘(3)的一端,并位于所述轴向铁芯(1)的径向外周,所述第二磁体(5)与所述第一磁体(4)相对设置,并位于所述止推盘(3)朝向所述轴向铁芯(1)的一端。
  6. 根据权利要求5所述的轴向磁悬浮轴承,其中,所述磁体对还包括第三磁体(6)和第四磁体(7),所述第三磁体(6)设置在所述轴向铁芯(1)上,所述第四磁体(7)对应于所述第三磁体(6)设置在所述止推盘(3)上,所述第三磁体(6)和所述第四磁体(7)的相对面磁极相同。
  7. 根据权利要求6所述的轴向磁悬浮轴承,其中,所述第三磁体(6)和所述第四磁体(7)为磁环。
  8. 根据权利要求7所述的轴向磁悬浮轴承,其中,所述第三磁体(6)的壁厚a2与所述第四磁体(7)的壁厚x2之间满足a2≤x2。
  9. 根据权利要求6所述的轴向磁悬浮轴承,其中,所述轴向铁芯(1)包括用于安装所述控制线圈(2)的绕线槽(8),所述第一磁体(4)位于所述绕线槽(8)的径向外侧,所述第三磁体(6)位于所述绕线槽(8)的径向内侧。
  10. 根据权利要求6至9中任一项所述的轴向磁悬浮轴承,其中,所述轴向铁芯(1)的外磁极总宽度为l1,所述轴向铁芯(1)的内磁极总宽度为l2,所述轴向铁芯(1)的外磁极出力宽度为b1,所述轴向铁芯(1)的内磁极出力宽 度为b2,所述第一磁体(4)的径向壁厚为a1,所述第二磁体(5)的径向壁厚为x1,所述第三磁体(6)的径向壁厚为a2,所述第四磁体(7)的径向壁厚为x2,其中l1≤a1+b1,l2≤a2+b2。
  11. 根据权利要求6至9中任一项所述的轴向磁悬浮轴承,其中,所述第一磁体(4)和所述第三磁体(6)朝向所述止推盘(3)的同一侧磁极相反。
PCT/CN2019/070664 2018-10-08 2019-01-07 轴向磁悬浮轴承 WO2020073550A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811169033.3 2018-10-08
CN201811169033.3A CN109026999B (zh) 2018-10-08 2018-10-08 轴向磁悬浮轴承

Publications (1)

Publication Number Publication Date
WO2020073550A1 true WO2020073550A1 (zh) 2020-04-16

Family

ID=64615772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070664 WO2020073550A1 (zh) 2018-10-08 2019-01-07 轴向磁悬浮轴承

Country Status (2)

Country Link
CN (1) CN109026999B (zh)
WO (1) WO2020073550A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109026999B (zh) * 2018-10-08 2023-07-25 珠海格力电器股份有限公司 轴向磁悬浮轴承
CN110094419B (zh) * 2019-05-20 2020-06-23 珠海格力电器股份有限公司 轴向磁悬浮轴承、电机、压缩机、空调器
JP2023125645A (ja) * 2022-02-28 2023-09-07 国立大学法人 岡山大学 磁気浮上式電動機および磁気浮上式ポンプ
CN114592925B (zh) * 2022-03-31 2023-01-31 北京大臻科技有限公司 一种磁浮氢透平膨胀装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406157A (en) * 1992-08-22 1995-04-11 The Glacier Metal Company Limited Electromagnetic bearing arrangement
DE20211510U1 (de) * 2002-07-13 2003-11-27 Leybold Vakuum Gmbh Magnetlager
CN1687606A (zh) * 2005-05-09 2005-10-26 北京航空航天大学 具有阻尼作用的被动式轴向磁悬浮轴承
CN102449335A (zh) * 2009-05-29 2012-05-09 西门子公司 适用于无接触磁力轴向轴承的轴承结构和包含该轴承的x射线管
CN106958589A (zh) * 2017-04-20 2017-07-18 北京航空航天大学 具有阻尼作用的Halbach永磁被动式轴向磁悬浮轴承
CN109026999A (zh) * 2018-10-08 2018-12-18 珠海格力电器股份有限公司 轴向磁悬浮轴承

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4920291A (en) * 1989-01-19 1990-04-24 Contraves Goerz Corporation Magnetic thrust bearing with high force modulation capability
DE4227013A1 (de) * 1992-08-14 1994-02-17 Budig Peter Klaus Prof Dr Sc T Aktives magnetisches Axiallager für Rotoren mit Notlauflager
JPH07243444A (ja) * 1994-03-08 1995-09-19 Hitachi Ltd スラスト磁気軸受装置
US5894181A (en) * 1997-07-18 1999-04-13 Imlach; Joseph Passive magnetic bearing system
CN104632891B (zh) * 2015-03-03 2017-05-17 武汉理工大学 叠片铁芯式六环冗余轴向磁力轴承
CN208935161U (zh) * 2018-10-08 2019-06-04 珠海格力电器股份有限公司 轴向磁悬浮轴承

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5406157A (en) * 1992-08-22 1995-04-11 The Glacier Metal Company Limited Electromagnetic bearing arrangement
DE20211510U1 (de) * 2002-07-13 2003-11-27 Leybold Vakuum Gmbh Magnetlager
CN1687606A (zh) * 2005-05-09 2005-10-26 北京航空航天大学 具有阻尼作用的被动式轴向磁悬浮轴承
CN102449335A (zh) * 2009-05-29 2012-05-09 西门子公司 适用于无接触磁力轴向轴承的轴承结构和包含该轴承的x射线管
CN106958589A (zh) * 2017-04-20 2017-07-18 北京航空航天大学 具有阻尼作用的Halbach永磁被动式轴向磁悬浮轴承
CN109026999A (zh) * 2018-10-08 2018-12-18 珠海格力电器股份有限公司 轴向磁悬浮轴承

Also Published As

Publication number Publication date
CN109026999A (zh) 2018-12-18
CN109026999B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
WO2020073550A1 (zh) 轴向磁悬浮轴承
CN108591257B (zh) 具有径向被动悬浮力的永磁偏置轴向磁悬浮轴承
CN101846131B (zh) 磁悬浮轴承
CN110748562B (zh) 一种包围式永磁偏置轴向-径向磁悬浮轴承
CN114198403B (zh) 一种五自由度混合磁轴承
CN110332235B (zh) 一种被动式永磁斥力型磁轴承结构
CN103615465B (zh) 一种新型永磁偏置轴向磁悬浮轴承
CN109296640A (zh) 一种高承载能力的永磁悬浮轴承
CN103939465A (zh) 一种单自由度磁轴承
CN109681525B (zh) 磁悬浮轴承及电机
CN108547868B (zh) 一种半自由度的径向充磁的混合型轴向磁轴承
CN108506343B (zh) 一种半自由度的轴向充磁的混合型轴向磁轴承
WO2021135276A1 (zh) 磁悬浮轴承、压缩机、空调器
CN111594547A (zh) 一种低功耗大承载力的永磁偏置式止推磁悬浮轴承
CN208935161U (zh) 轴向磁悬浮轴承
CN105048879A (zh) 磁路解耦的永磁偏置主动与被动混合型径向磁悬浮轴承
CN211623964U (zh) 永磁偏置型磁悬浮轴承
CN211550276U (zh) 磁悬浮轴承、压缩机、空调器
CN209083818U (zh) 一种高承载能力的永磁悬浮轴承
CN209762004U (zh) 一种低功耗大承载力的永磁偏置式止推磁悬浮轴承
CN114165521A (zh) 一种轴向磁悬浮轴承
CN109281936B (zh) 一种永磁悬浮轴承定子
CN102297202B (zh) 一种单轴控制式五自由度微型磁轴承
CN110735859A (zh) 一种并列式永磁偏置轴向-径向磁悬浮轴承
CN113833760B (zh) 大承载力混合充磁式永磁磁轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19870520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19870520

Country of ref document: EP

Kind code of ref document: A1