WO2022037003A1 - 一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法 - Google Patents

一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法 Download PDF

Info

Publication number
WO2022037003A1
WO2022037003A1 PCT/CN2021/071268 CN2021071268W WO2022037003A1 WO 2022037003 A1 WO2022037003 A1 WO 2022037003A1 CN 2021071268 W CN2021071268 W CN 2021071268W WO 2022037003 A1 WO2022037003 A1 WO 2022037003A1
Authority
WO
WIPO (PCT)
Prior art keywords
control
permanent magnet
current command
axis current
axis
Prior art date
Application number
PCT/CN2021/071268
Other languages
English (en)
French (fr)
Inventor
胡东海
王晶
何洪文
衣丰艳
李中延
李江
李中
周稼铭
Original Assignee
江苏大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏大学 filed Critical 江苏大学
Priority to US17/425,340 priority Critical patent/US11671041B2/en
Publication of WO2022037003A1 publication Critical patent/WO2022037003A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0085Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed
    • H02P21/0089Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for high speeds, e.g. above nominal speed using field weakening
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • H02P21/0021Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control using different modes of control depending on a parameter, e.g. the speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors

Definitions

  • the invention belongs to the field of ultra-high-speed permanent magnet synchronous motor control, and in particular relates to a transient current planning method for an ultra-high-speed permanent magnet synchronous motor which improves the speed regulation response capability.
  • Ultra-high-speed permanent magnet synchronous motors are used in scenarios such as ultra-high-speed motorized spindles and high-power fuel cell-specific air compressors, and are important core components.
  • ultra-high-speed permanent magnet synchronous motors have been able to meet the limit speed requirements in ultra-high-speed application scenarios, however, their speed regulation response capabilities are still unsatisfactory.
  • the current planning of the ultra-high-speed permanent magnet synchronous motor is based on the steady-state voltage model to derive the current trajectory, the current operating point deduced during the motor speed regulation process is not the output at this speed. The highest electromagnetic torque makes the motor speed control response limited.
  • Chinese patent (CN107425769A) discloses an active disturbance rejection control method and system for a permanent magnet synchronous motor speed control system, which adopts a fuzzy adaptive sliding mode speed control method to reduce the overshoot phenomenon in the speed control process and speed up the system response speed;
  • the feedback compensation of the extended state observer is adopted to enhance the anti-disturbance capability of the system, and the internal model current control strategy is used to speed up the response speed of the d and q axis currents.
  • the problem with this patent is: essentially, the method of disturbance compensation is used to improve the anti-disturbance ability, thereby improving the speed regulation response, but the maximum torque that the motor can output during the speed regulation process cannot be improved, so the speed regulation response capability is limited. .
  • Cico patent discloses a permanent magnet synchronous motor control system and control method for electric vehicles.
  • a pre-established disturbance-adapted active disturbance rejection model is used to process the rotor and current signals to obtain the control output signal, and the expansion state observation is used.
  • the controller observes the load torque, which improves the adjustment accuracy of the control gain, thereby improving the anti-interference ability of the permanent magnet synchronous motor speed control system, thereby improving the speed control response.
  • This patent improves the anti-interference ability by improving the adjustment accuracy of the control gain, but still does not improve the maximum electromagnetic torque output ability of the motor at a certain speed, and there is still a lot of room for improvement in the speed regulation response ability.
  • the present invention provides a transient current planning method for an ultra-high-speed permanent magnet synchronous motor that improves the speed regulation response capability, so that the motor can output the highest electromagnetic torque when running at any rotational speed, and improves the motor's performance. Speed responsiveness.
  • the present invention achieves the above technical purpose through the following technical means.
  • a transient current planning method for an ultra-high-speed permanent magnet synchronous motor that improves speed regulation response capability includes a transient current planning module, and the transient current planning module includes MTPA control subsystem, common field weakening control subsystem, MTPV control subsystem and mode switching condition judgment subsystem; the MTPA control subsystem calculates the d and q-axis current command values under MTPA control, and the common field weakening control subsystem The system calculates the d and q-axis current command values of the common field weakening control stage, the MTPV control subsystem calculates the d and q-axis current command values of the MTPV control stage, and the mode switching condition judgment subsystem judges that the control mode is MTPA control or Ordinary field weakening control or MTPV control, send the d and q axis current command values in the corresponding control mode to the voltage decoupling control module, and the voltage decoupling control module calculates the d and
  • the transient current planning method includes the steps of:
  • Step (1) the mode switching condition judgment subsystem judges whether to switch to common field weakening control or MTPV control, if yes, then enter step (2), otherwise enter step (5);
  • the switching point is determined by judging whether the d and q axis voltage values reach the limit value, and the judgment formula is:
  • Step (2) the mode switching condition judgment subsystem judges whether the electrical angular velocity sampling value ⁇ r is greater than the MTPV control starting point rotational speed ⁇ Vs , if not, then enter step (3), if so, enter step (4);
  • Step (3) the common field weakening control subsystem receives the d and q axis current command values of the MTPA control stage and Sampling value of electrical angular velocity, calculate the current command value of d and q axis in ordinary field weakening control stage
  • I max is the maximum stator current
  • ⁇ PM is the permanent magnet flux linkage
  • L d is the d-axis inductance
  • L q is the q-axis Inductance
  • I q is the initial value of the q-axis current command
  • I d is the initial value of the d-axis current command
  • Step (4) the MTPV control subsystem receives the electrical angular velocity sampling value ⁇ r and the d and q axis current sampling values id and i q , and calculates the d and q axis current command values of the MTPV control stage
  • step (5) the voltage decoupling control module receives the d and q axis current command values sent by the transient current planning module, calculates the d and q axis voltage commands, and realizes the control of the ultra-high-speed permanent magnet synchronous motor.
  • the process of obtaining the d and q-axis current command values in the MTPA control stage is: judging whether I q is greater than the q-axis current maximum value I qmax1 , and if so, the calculation formula of the d and q-axis current command values is: If not, the calculation formula of d and q axis current command value is: where sign(n * ) is the sign function.
  • I d max1 is the maximum value of d-axis current under MTPA control.
  • the initial value of the q-axis current command is determined by and Obtained, where Te is the electromagnetic torque, ⁇ ref is the target rotational speed, ⁇ t is the sampling interval, J is the moment of inertia of the shaft system, and n p is the number of pole pairs.
  • the rotational speed at the starting point of the MTPV control is obtained simultaneously from the d and q current command values of the MTPV control stage and the current limit circle equation, specifically:
  • I dr and I qr are the current sampling values of the d and q axes respectively;
  • I d1 and I q1 are the command values of the d and q axes of the ordinary field weakening control stage respectively, and are specifically:
  • I d2 and I q2 are the d and q-axis current command values of the MTPV control stage respectively, and are specifically:
  • the present invention establishes a transient current planning module, uses a voltage model that considers current transient changes, calculates the current command value of the ultra-high-speed permanent magnet synchronous motor in the ordinary field weakening control stage and the MTPV control stage, and obtains the current
  • the mode switching condition judgment subsystem judges whether the ultra-high-speed permanent magnet synchronous motor should adopt MTPA control, ordinary field weakening control or MTPV control, and outputs the d and q-axis current commands in this control stage to the voltage decoupling control module, and the voltage
  • the decoupling control module calculates the d and q axis voltage command values, so as to realize the control of the ultra-high-speed permanent magnet synchronous motor.
  • the invention can effectively improve the dynamic characteristics of the speed regulation process of the ultra-high-speed permanent magnet synchronous motor, make the torque output capability of the motor more accurate, enable the motor to output the highest electromagnetic torque that the motor can exert when running at any speed, and improve the speed regulation response ability.
  • FIG. 1 is a control architecture diagram of the ultra-high-speed permanent magnet synchronous motor according to the present invention
  • Fig. 3 is a current trajectory change trend diagram before and after considering transient current changes.
  • an ultra-high-speed permanent magnet synchronous motor transient current planning system that improves the speed regulation response capability, establishes a transient current planning module, which receives the target rotational speed ⁇ ref , the electrical angular velocity sampled values ⁇ r , d, The q-axis current sampling values id and i q are used to calculate the current command value of the ultra-high-speed permanent magnet synchronous motor under MTPA control, ordinary field weakening control and MTPV control by using the voltage model considering the current transient change, and obtain the current trajectory; , the transient current planning module uses the given switching rules to determine the control mode (MTPA control or ordinary field weakening control or MTPV control) that the ultra-high-speed permanent magnet synchronous motor should take, and outputs the control mode to the voltage decoupling control module d and q-axis current commands under The d and q axis voltage command values are calculated by the voltage decoupling control module So as to realize the control of ultra-high-speed permanent magnet
  • the transient current planning module includes an MTPA control subsystem, a common field weakening control subsystem, an MTPV control subsystem, and a mode switching condition judgment subsystem.
  • a transient current planning method for an ultra-high-speed permanent magnet synchronous motor that improves the speed regulation response capability specifically includes the following steps:
  • Step (1) the speed command input.
  • the transient current planning module receives the target rotational speed ⁇ ref , the electrical angular velocity sampled value ⁇ r and the d and q-axis current sampled values id and i q .
  • Step (3) obtain the initial value I q of the q-axis current command through the speed regulator and the PI regulator, and input I q into the MTPA control subsystem
  • the initial value I q of the q-axis current command is obtained by the following methods:
  • ⁇ t is the sampling interval
  • J is the moment of inertia of the shaft system
  • n p is the number of pole pairs
  • ⁇ PM is the permanent magnet flux linkage
  • L d is the d-axis inductance
  • L q is the q-axis inductance
  • Step (4) the MTPA control subsystem calculates the d and q-axis current command values of the MTPA control stage
  • I d max1 is the maximum value of the d-axis current under MTPA control
  • I max is the maximum value of the stator current
  • sign(n * ) is the sign function
  • Step (5) the mode switching condition judgment subsystem judges whether to switch to common field weakening control or MTPV control, if so, then enter step (6), otherwise enter step (9);
  • Judging whether to switch to ordinary field weakening control or MTPV control is to judge whether the d and q axis voltage values reach the limit value as the switching point.
  • the judgment formula is:
  • U max is the limit value of the terminal voltage
  • Step (6) the mode switching condition judgment subsystem judges whether the electrical angular velocity sampling value is greater than the MTPV control starting point rotational speed, i.e. ⁇ r 3 ⁇ Vs ; if not, then enter step (7), if yes, then enter step (8);
  • step (7) the common field weakening control subsystem receives the d and q-axis current command values and the electrical angular velocity sampling values calculated in step (4), calculates the d and q-axis current command values in the common field weakening control stage, and enters the step (9);
  • R is the stator resistance
  • I d is the initial value of the d-axis current command
  • the control system proposed by the present invention considers the transient current voltage drop term.
  • formulas (8) and (9) are written as m files, which is convenient for calculating the d and q-axis current command values of any electrical angular velocity sampling value in the ordinary field weakening control stage.
  • the MTPV control subsystem receives the electrical angular velocity sampled value ⁇ r and the d and q-axis current sampled values id and i q , and calculates the d and q-axis current command values of the MTPV control stage.
  • the current transient changes are considered to improve the accurate response of the torque in the MTPV control stage, expand the torque output range of the motor, and achieve the purpose of improving the speed regulation response capability;
  • the calculation formula of the d-axis current command value in the MTPV control stage is:
  • formulas (10) and (11) are written as m files, which can easily calculate the d and q-axis current command values of any electrical angular velocity sampling value in the MTPV control stage.
  • E is a variable
  • the difference between I d2 and I q2 and the d and q-axis current sampling values I dr and I qr , respectively, can be calculated by the PID regulator to calculate the values of MTPV control stages A and B.
  • the calculation formula is:
  • Step (9) the voltage decoupling control module receives the d and q-axis current command values sent by the transient current planning module Calculate d and q axis voltage commands
  • Step (10) the coordinate transformation module converts the d and q axis voltage commands into Converted to U a and U b , and the SVPWM module outputs the six-pulse IGBT control signal; at the same time, the angular velocity calculation module and the position detection module detect the rotor position and the sampling value of the electrical angular velocity in real time, which are used for the calculation of the above steps to complete the motor. control.
  • the current trajectory used in the current ultra-high-speed permanent magnet synchronous motor is obtained from the steady-state-based voltage and current model, and its trajectory is OA ⁇ AB 1 ⁇ B 1 C 1 , where the OA segment is MTPA (maximum torque to current ratio) control stage, AB 1 stage is the common field weakening control stage, B 1 C 1 stage is the MTPV (maximum torque to voltage ratio) control stage, since the influence of transient current is not considered in the calculation of this trajectory , so higher torque output capability cannot be achieved.
  • MTPA maximum torque to current ratio
  • AB 1 stage is the common field weakening control stage
  • B 1 C 1 stage is the MTPV (maximum torque to voltage ratio) control stage
  • the voltage limit ellipse will move upward to the right (the shifted voltage limit ellipse is represented by a dotted line), at this time, the AB 1 segment becomes the shorter AB 2 , and the B 1 C 1 segment will also move toward the upper right. Moving to the upper right becomes B 2 C 2 . At this time, the torque of the B 2 C 2 segment will be larger than that of the B 1 C 1 segment, so that a higher torque output range can be obtained in the MTPV control stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

提供了一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法,属于超高速永磁同步电机控制领域。瞬态电流规划模块利用考虑电流瞬态变化的电压模型,计算超高速永磁同步电机在MTPA控制、普通弱磁控制以及MTPV控制下的电流指令值,模式切换条件判断子系统判断控制模式为MTPA控制或普通弱磁控制或MTPV控制,将相应控制模式下的d、q轴电流指令值发送给电压解耦控制模块,电压解耦控制模块计算控制电机的d、q轴电压指令值,实现超高速永磁同步电机的控制。由此扩大了超高速永磁同步电机实际输出的最高电磁转矩,从根本上解决超高速永磁同步电机调速响应弱的问题。

Description

一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法 技术领域
本发明属于超高速永磁同步电机控制领域,尤其涉及一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法。
背景技术
超高速永磁同步电机应用于超高速电主轴、大功率燃料电池专用空压机等场景,是重要的核心部件。当前,超高速永磁同步电机已经能够满足超高速应用场景下的极限转速需求,然而,其调速响应能力仍然差强人意。实际上,由于超高速永磁同步电机在进行电流规划时,均是基于稳态的电压模型来推导电流轨迹,在电机调速过程中所推导出的电流工作点并不是该转速下所输出的最高电磁转矩,使得电机调速响应受到限制。
现有技术多在自抗扰控制方面提高超高速永磁同步电机调速响应能力。中国专利(CN107425769A)公开了一种永磁同步电机调速系统的自抗扰控制方法及系统,采用模糊自适应滑模速度控制方法来减弱速度控制过程中的超调现象,加快系统响应速度;采用了扩展状态观测器的反馈补偿,增强系统的抗扰动能力,使用内模电流控制策略,加快d、q轴电流响应速度。该专利存在的问题是:本质上是利用扰动补偿的方法提高抗扰动能力,以此改善调速响应,无法提高电机在调速过程中所能输出的最大转矩,因此调速响应能力提升有限。
中国专利(CN110289795A)公开了一种电动汽车用永磁同步电机控制系统及控制方法,采用预先建立的扰动适应的自抗扰模型对转子及电流信号处理,得到控制输出信号,使用了扩张状态观测器对负载转矩进行观测,提高了控制增益的调节精确度,从而提高永磁同步电机调速系统的抗干扰能力,以此提高调速响应。该专利通过提高控制增益的调节精确度来提高抗干扰能力,仍然没有改善电机在某一转速下的最大电磁转矩输出能力,调速响应能力还有很大提升空间。
发明内容
针对现有技术中存在不足,本发明提供了一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法,使电机运行在任意转速时都能输出最高电磁转矩,提高电机的调速响应能力。
本发明是通过以下技术手段实现上述技术目的的。
一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法,所述瞬态电流规划方法基于的瞬态电流规划系统,包括瞬态电流规划模块,所述瞬态电流规划模块包括MTPA控 制子系统、普通弱磁控制子系统、MTPV控制子系统以及模式切换条件判断子系统;所述MTPA控制子系统计算MTPA控制下的d、q轴电流指令值,所述普通弱磁控制子系统计算普通弱磁控制阶段的d、q轴电流指令值,所述MTPV控制子系统计算MTPV控制阶段的d、q轴电流指令值,所述模式切换条件判断子系统判断控制模式为MTPA控制或普通弱磁控制或MTPV控制,将相应控制模式下的d、q轴电流指令值发送给电压解耦控制模块,电压解耦控制模块计算控制电机的d、q轴电压指令值;
所述瞬态电流规划方法包括步骤:
步骤(1),模式切换条件判断子系统判断是否切换为普通弱磁控制或MTPV控制,若是,则进入步骤(2),否则进入步骤(5);
所述是否切换通过判断d、q轴电压值是否达到限幅值作为切换点,判断公式为:
Figure PCTCN2021071268-appb-000001
若判断公式成立,则切换为MTPA控制,否则转入步骤(2);
步骤(2),模式切换条件判断子系统判断电角速度采样值ω r是否大于MTPV控制开始点转速ω Vs,若否,则进入步骤(3),若是,则进入步骤(4);
步骤(3),普通弱磁控制子系统接收MTPA控制阶段的d、q轴电流指令值
Figure PCTCN2021071268-appb-000002
Figure PCTCN2021071268-appb-000003
电角速度采样值,计算普通弱磁控制阶段的d、q轴电流指令值
所述普通弱磁控制阶段的d轴电流指令值为:
Figure PCTCN2021071268-appb-000004
式中,a 1、a 2、b 1、b 2、A、B均为变量,且a 1=ω rL d,a 2=ω rλ PM+L qB,B=dI q/dt,b 1=ω rL q,b 2=L dA,A=dI d/dt;I max为定子电流最大值,λ PM为永磁体磁链,L d为d轴电感,L q为q轴电感,I q为q轴电流指令初始值,I d为d轴电流指令初始值;
所述普通弱磁控制阶段的q轴电流指令值为:
Figure PCTCN2021071268-appb-000005
步骤(4),MTPV控制子系统接收电角速度采样值ω r以及d、q轴电流采样值i d和i q,计算MTPV控制阶段的d、q轴电流指令值
所述MTPV控制阶段的d轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000006
所述MTPV控制阶段的q轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000007
式中,ρ、C均为变量,ρ=L d/L q,C=ρω rPM/L q+(ρ-1)I d *][L d I d *PM+BL qr];
步骤(5),电压解耦控制模块接收瞬态电流规划模块发送的d、q轴电流指令值,计算d、q轴电压指令,实现超高速永磁同步电机的控制。
进一步的技术方案,所述MTPA控制阶段的d、q轴电流指令值获取过程为:判断I q是否大于q轴电流最大值I qmax1,若是,则d、q轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000008
若否,则d、q轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000009
其中sign(n *)为符号函数。
进一步的技术方案,所述电流最大值I qmax1的计算公式为:
Figure PCTCN2021071268-appb-000010
其中I d max1为MTPA控制下d轴电流最大值。
进一步的技术方案,所述q轴电流指令初始值由
Figure PCTCN2021071268-appb-000011
Figure PCTCN2021071268-appb-000012
得到,其中T e为电磁转矩,ω ref为目标转速,Δt为采样间隔,J为轴系转动惯量,n p为极对数。
进一步的技术方案,所述MTPV控制开始点转速由MTPV控制阶段的d、q电流指令值与电流极限圆方程联立求得,具体为:
Figure PCTCN2021071268-appb-000013
进一步的技术方案,所述普通弱磁控制阶段A、B的值为:
Figure PCTCN2021071268-appb-000014
其中I dr、I qr分别为d、q轴电流采样值;I d1、I q1分别为普通弱磁控制阶段d、q轴电流指令值,具体为:
Figure PCTCN2021071268-appb-000015
进一步的技术方案,所述MTPV控制阶段A、B的值为:
Figure PCTCN2021071268-appb-000016
其中I d2、I q2分别为MTPV控制阶段d、q轴电流指令值,具体为:
Figure PCTCN2021071268-appb-000017
式中E为变量。
本发明的有益效果为:本发明建立瞬态电流规划模块,利用考虑电流瞬态变化的电压模型,计算超高速永磁同步电机在普通弱磁控制阶段及MTPV控制阶段的电流指令值,得到电流轨迹;同时模式切换条件判断子系统判断超高速永磁同步电机应当采取MTPA控制或普通 弱磁控制还是MTPV控制,并向电压解耦控制模块输出在该控制阶段的d、q轴电流指令,电压解耦控制模块计算d、q轴电压指令值,从而实现超高速永磁同步电机的控制。本发明能够有效提升超高速永磁同步电机调速过程的动态特性,使得电机的转矩输出能力更精确,使电机运行在任意转速时能输出电机可发挥的最高电磁转矩,提高调速响应能力。
附图说明
图1为本发明所述超高速永磁同步电机控制架构图;
图2为本发明所述超高速永磁同步电机瞬态电流轨迹规划流程图;
图3为考虑瞬态电流变化前后的电流轨迹变化趋势图。
具体实施方式
下面结合附图以及具体实施例对本发明作进一步的说明,但本发明的保护范围并不限于此。
如图1所示,一种提高调速响应能力的超高速永磁同步电机瞬态电流规划系统,建立瞬态电流规划模块,该模块接收目标转速ω ref、电角速度采样值ω r、d、q轴电流采样值i d、i q,利用考虑电流瞬态变化的电压模型,计算超高速永磁同步电机在MTPA控制、普通弱磁控制以及MTPV控制下的电流指令值,得到电流轨迹;同时,瞬态电流规划模块利用给出的切换规则,判断超高速永磁同步电机应当采取的控制模式(MTPA控制或普通弱磁控制或MTPV控制),并向电压解耦控制模块输出在该控制模式下的d、q轴电流指令
Figure PCTCN2021071268-appb-000018
由电压解耦控制模块计算d、q轴电压指令值
Figure PCTCN2021071268-appb-000019
从而实现超高速永磁同步电机的控制。
所述瞬态电流规划模块包含MTPA控制子系统、普通弱磁控制子系统、MTPV控制子系统以及模式切换条件判断子系统。
如图2所示,一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法,具体包括如下步骤:
步骤(1),转速命令输入。
步骤(2),瞬态电流规划模块接收目标转速ω ref、电角速度采样值ω r以及d、q轴电流采样值i d和i q
步骤(3),通过转速调节器及PI调节器得到q轴电流指令初始值I q,并将I q输入MTPA控制子系统
q轴电流指令初始值I q通过以下方法获取:
1)由转速调节器及PI调节器计算所需电磁转矩,计算公式为:
Figure PCTCN2021071268-appb-000020
式中,Δt为采样间隔,J为轴系转动惯量;
2)根据电磁转矩方程及电流极限方程,计算得到转矩与q轴电流初始值I q之间的关系式:
Figure PCTCN2021071268-appb-000021
式中,n p为极对数,λ PM为永磁体磁链,L d为d轴电感,L q为q轴电感;
由公式(1)、(2),得到电流指令初始值I q
步骤(4),MTPA控制子系统计算MTPA控制阶段的d、q轴电流指令值
1)计算MTPA控制下q轴电流最大值I qmax1,计算公式为:
Figure PCTCN2021071268-appb-000022
式中,I d max1为MTPA控制下d轴电流最大值,I max为定子电流最大值;
2)判断I q是否大于I qmax1,若是,则d、q轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000023
若否,则d、q轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000024
式中:sign(n *)为符号函数;
步骤(5),模式切换条件判断子系统判断是否切换为普通弱磁控制或MTPV控制,若是,则进入步骤(6),否则进入步骤(9);
判断是否切换为普通弱磁控制或MTPV控制是通过判断d、q轴电压值是否达到限幅值作为切换点,判断公式为:
Figure PCTCN2021071268-appb-000025
式中,U max为端电压限幅值;
若公式(6)成立,则切换为MTPA控制;若条件不成立,则转入步骤(6)进一步判断控制方式;
步骤(6),模式切换条件判断子系统判断电角速度采样值是否大于MTPV控制开始点转速,即ω r 3ω Vs;若否,则进入步骤(7),若是,则进入步骤(8);
步骤(7),普通弱磁控制子系统接收步骤(4)所计算的d、q轴电流指令值、电角速度采样值,计算普通弱磁控制阶段的d、q轴电流指令值,并进入步骤(9);
普通弱磁控制下的d、q轴电流指令值推导过程中考虑电流瞬态变化,以提高普通弱磁控制阶段转矩的精确响应,扩大电机的转矩输出范围,达到提高调速响应能力的目的;
考虑电流瞬态变化的电压模型为:
Figure PCTCN2021071268-appb-000026
式中,R为定子电阻,I d为d轴电流指令初始值;
当前的应用中,为推导电流轨迹指令更加方便,通常把公式(7)中的瞬态电流压降项
Figure PCTCN2021071268-appb-000027
省略,本发明提出的控制系统考虑了瞬态电流压降项。
在考虑电流瞬态变化后,普通弱磁控制阶段的d轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000028
式中,a 1、a 2、b 1、b 2、A、B均为变量,a 1=ω rL d,a 2=ω rλ PM+L qB,B=dI q/dt,b 1=ω rL q,b 2=L dA,A=dI d/dt;
普通弱磁控制阶段的q轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000029
在搭建Simulink控制模型时,将公式(8)、(9)写为m文件,方便计算普通弱磁控制阶段任意电角速度采样值时的d、q轴电流指令值。
步骤(8),MTPV控制子系统接收电角速度采样值ω r以及d、q轴电流采样值i d、i q,计算MTPV控制阶段的d、q轴电流指令值
MTPV控制阶段的d、q轴电流指令值推导过程中考虑电流瞬态变化,以提高MTPV控制阶段转矩的精确响应,扩大电机的转矩输出范围,达到提高调速响应能力的目的;在考虑 电流瞬态变化后,MTPV控制阶段的d轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000030
MTPV控制阶段的q轴电流指令值计算公式为:
Figure PCTCN2021071268-appb-000031
式中,ρ、C均为变量,ρ=L d/L q,C=ρω rPM/L q+(ρ-1)I d *][L d I d *PM+BL qr];
在搭建Simulink控制模型时,将公式(10)、(11)写为m文件可方便计算MTPV控制阶段任意电角速度采样值时的d、q轴电流指令值。
此外,MTPV控制开始点转速由MTPV控制阶段的d、q电流指令值与电流极限圆方程联立求得;计算公式为:
Figure PCTCN2021071268-appb-000032
上述过程中,考虑电流瞬态变化,需计算电流瞬态变化值,计算方法如下:
对于普通弱磁控制阶段,不考虑电流瞬态变化,联立电压极限椭圆方程及电流极限圆方程,可得d、q轴电流指令值如下:
Figure PCTCN2021071268-appb-000033
将I d1与I q1分别与d、q轴电流采样值I dr、I qr做差,并由PID调节器即可计算出普通弱磁控制阶段A、B的值,计算公式为:
Figure PCTCN2021071268-appb-000034
对于MTPV控制阶段,不考虑电流瞬态变化,联立电压极限椭圆方程及电磁转矩方程, 可得d、q轴电流指令值如下:
Figure PCTCN2021071268-appb-000035
其中:E为变量;
将I d2与I q2分别与d、q轴电流采样值I dr、I qr做差,并由PID调节器即可计算出MTPV控制阶段A、B的值,计算公式为:
Figure PCTCN2021071268-appb-000036
步骤(9),电压解耦控制模块接收瞬态电流规划模块发送来的d、q轴电流指令值
Figure PCTCN2021071268-appb-000037
计算d、q轴电压指令
Figure PCTCN2021071268-appb-000038
步骤(10),坐标变换模块将d、q轴电压指令
Figure PCTCN2021071268-appb-000039
转换为U a和U b,并由SVPWM模块输出六脉IGBT控制信号;与此同时,角速度计算模块、位置检测模块实时检测转子位置及电角速度采样值,以用于上述步骤的计算,完成电机控制。
如图3所示,当前超高速永磁同步电机中使用的电流轨迹是从基于稳态的电压、电流模型中得到的,其轨迹为OA→AB 1→B 1C 1,其中OA段为MTPA(最大转矩电流比)控制阶段,AB 1段为普通弱磁控制阶段,B 1C 1段为MTPV(最大转矩电压比)控制阶段,由于该轨迹的得出未考虑瞬态电流的影响,因此无法取得更高的转矩输出能力。在考虑瞬态电流的影响后,电压极限椭圆将向右上方移动(移动后的电压极限椭圆以虚线表示),此时AB 1段变为更短的AB 2,B 1C 1段也将向右上移动成为B 2C 2,此时的B 2C 2段的转矩将比B 1C 1段更大,进而可在MTPV控制阶段获得更高的转矩输出范围。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (7)

  1. 一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法,其特征在于,所述瞬态电流规划方法基于的瞬态电流规划系统,包括瞬态电流规划模块,所述瞬态电流规划模块包括MTPA控制子系统、普通弱磁控制子系统、MTPV控制子系统以及模式切换条件判断子系统;所述MTPA控制子系统计算MTPA控制下的d、q轴电流指令值,所述普通弱磁控制子系统计算普通弱磁控制阶段的d、q轴电流指令值,所述MTPV控制子系统计算MTPV控制阶段的d、q轴电流指令值,所述模式切换条件判断子系统判断控制模式为MTPA控制或普通弱磁控制或MTPV控制,将相应控制模式下的d、q轴电流指令值发送给电压解耦控制模块,电压解耦控制模块计算控制电机的d、q轴电压指令值;
    所述瞬态电流规划方法包括步骤:
    步骤(1),模式切换条件判断子系统判断是否切换为普通弱磁控制或MTPV控制,若是,则进入步骤(2),否则进入步骤(5);
    所述是否切换通过判断d、q轴电压值是否达到限幅值作为切换点,判断公式为:
    Figure PCTCN2021071268-appb-100001
    若判断公式成立,则切换为MTPA控制,否则转入步骤(2);
    步骤(2),模式切换条件判断子系统判断转速采样值ω r是否大于MTPV控制开始点转速ω Vs,若否,则进入步骤(3),若是,则进入步骤(4);
    步骤(3),普通弱磁控制子系统接收MTPA控制阶段的d、q轴电流指令值
    Figure PCTCN2021071268-appb-100002
    Figure PCTCN2021071268-appb-100003
    转速采样值,计算普通弱磁控制阶段的d、q轴电流指令值
    所述普通弱磁控制阶段的d轴电流指令值为:
    Figure PCTCN2021071268-appb-100004
    式中,a 1、a 2、b 1、b 2、A、B均为变量,且a 1=ω rL d,a 2=ω rλ PM+L qB,B=dI q/dt,b 1=ω rL q,b 2=L dA,A=dI d/dt;I max为定子电流最大值,λ PM为永磁体磁链,L d为d轴电感,L q为q轴电感,I q为q轴电流指令初始值,I d为d轴电流指令初始值;
    所述普通弱磁控制阶段的q轴电流指令值为:
    Figure PCTCN2021071268-appb-100005
    步骤(4),MTPV控制子系统接收转速采样值ω r以及d、q轴电流采样值i d和i q,计算MTPV控制阶段的d、q轴电流指令值
    所述MTPV控制阶段的d轴电流指令值计算公式为:
    Figure PCTCN2021071268-appb-100006
    所述MTPV控制阶段的q轴电流指令值计算公式为:
    Figure PCTCN2021071268-appb-100007
    式中,ρ、C均为变量,ρ=L d/L q,C=ρω rPM/L q+(ρ-1)I d *][L dI d *PM+BL qr];
    步骤(5),电压解耦控制模块接收瞬态电流规划模块发送的d、q轴电流指令值,计算d、q轴电压指令,实现超高速永磁同步电机的控制。
  2. 根据权利要求1所述的超高速永磁同步电机瞬态电流规划系统的规划方法,其特征在于,所述MTPA控制阶段的d、q轴电流指令值获取过程为:判断I q是否大于q轴电流最大值I qmax1,若是,则d、q轴电流指令值计算公式为:
    Figure PCTCN2021071268-appb-100008
    若否,则d、q轴电流指令值计算公式为:
    Figure PCTCN2021071268-appb-100009
    为符号函数。
  3. 根据权利要求2所述的超高速永磁同步电机瞬态电流规划系统的规划方法,其特征在于,所述电流最大值I qmax1的计算公式为:
    Figure PCTCN2021071268-appb-100010
    其中I d max1为MTPA控制下d轴电流最大值。
  4. 根据权利要求1所述的超高速永磁同步电机瞬态电流规划系统的规划方法,其特征在于,所述q轴电流指令初始值由
    Figure PCTCN2021071268-appb-100011
    Figure PCTCN2021071268-appb-100012
    得到,其中T e为电磁转矩,ω ref为目标转速,Δt为采样间隔,J为轴系转动惯量,n p为极对数。
  5. 根据权利要求1所述的超高速永磁同步电机瞬态电流规划系统的规划方法,其特征在于,所述MTPV控制开始点转速由MTPV控制阶段的d、q电流指令值与电流极限圆方程联立求得,具体为:
    Figure PCTCN2021071268-appb-100013
  6. 根据权利要求1所述的超高速永磁同步电机瞬态电流规划系统的规划方法,其特征在于,所述普通弱磁控制阶段A、B的值为:
    Figure PCTCN2021071268-appb-100014
    其中I dr、I qr分别为d、q轴电流采样值;I d1、I q1分别为普通弱磁控制阶段d、q轴电流指令值,具体为:
    Figure PCTCN2021071268-appb-100015
  7. 根据权利要求1所述的超高速永磁同步电机瞬态电流规划系统的规划方法,其特征在于,所述MTPV控制阶段A、B的值为:
    Figure PCTCN2021071268-appb-100016
    其中I d2、I q2分别为MTPV控制阶段d、q轴电流指令值,具体为:
    Figure PCTCN2021071268-appb-100017
    式中E为变量。
PCT/CN2021/071268 2020-08-21 2021-01-12 一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法 WO2022037003A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/425,340 US11671041B2 (en) 2020-08-21 2021-01-12 Transient current planning method for ultra-high-speed permanent magnet synchronous motor for improving speed regulation response capabilities

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010850957.0 2020-08-21
CN202010850957.0A CN112152536B (zh) 2020-08-21 2020-08-21 一种超高速永磁同步电机瞬态电流规划方法

Publications (1)

Publication Number Publication Date
WO2022037003A1 true WO2022037003A1 (zh) 2022-02-24

Family

ID=73888104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071268 WO2022037003A1 (zh) 2020-08-21 2021-01-12 一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法

Country Status (3)

Country Link
US (1) US11671041B2 (zh)
CN (1) CN112152536B (zh)
WO (1) WO2022037003A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647159A (zh) * 2023-06-06 2023-08-25 灵动微电子(苏州)有限公司 一种永磁同步电机的快速降速方法及装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112152536B (zh) 2020-08-21 2021-12-21 江苏大学 一种超高速永磁同步电机瞬态电流规划方法
CN116054665B (zh) * 2022-09-30 2023-07-07 陕西航空电气有限责任公司 一种航空永磁发电整流系统功率解耦控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212002A (ja) * 2012-03-30 2013-10-10 Toshiba Corp モータ制御装置
CN104539208A (zh) * 2014-12-08 2015-04-22 广东美的制冷设备有限公司 电机在全速范围内的无功电流控制方法及其控制系统
CN109274306A (zh) * 2017-07-18 2019-01-25 上海大郡动力控制技术有限公司 用于提升电动汽车ipm电机控制器最大输出功率的方法
CN112152536A (zh) * 2020-08-21 2020-12-29 江苏大学 一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010268579A (ja) * 2009-05-13 2010-11-25 E I M Control Systems Co Ltd 永久磁石同期電動機システム及びその界磁制御方法
US8796974B2 (en) * 2012-08-06 2014-08-05 Texas Instruments Incorporated PMSM initial position detection system and method
US9369073B1 (en) * 2015-03-20 2016-06-14 Linestream Technologies Load-adaptive smooth startup method for sensorless field-oriented control of permanent magnet synchronous motors
CN107359834B (zh) * 2017-02-23 2020-06-19 北京交通大学 一种高速列车异步牵引电机方波单环弱磁控制方法
CN107425769B (zh) 2017-08-10 2020-11-13 广东工业大学 一种永磁同步电机调速系统的自抗扰控制方法及系统
CN109873590A (zh) * 2019-04-09 2019-06-11 湘潭大学 一种电动汽车用内嵌式永磁同步电机的弱磁扩速方法
CN110289795B (zh) 2019-05-29 2020-10-23 南京金崎新能源动力研究院有限公司 一种电动汽车用永磁同步电机控制系统及控制方法
CN110311611B (zh) * 2019-06-27 2020-12-08 国电南瑞科技股份有限公司 一种永磁同步电机弱磁控制方法和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013212002A (ja) * 2012-03-30 2013-10-10 Toshiba Corp モータ制御装置
CN104539208A (zh) * 2014-12-08 2015-04-22 广东美的制冷设备有限公司 电机在全速范围内的无功电流控制方法及其控制系统
CN109274306A (zh) * 2017-07-18 2019-01-25 上海大郡动力控制技术有限公司 用于提升电动汽车ipm电机控制器最大输出功率的方法
CN112152536A (zh) * 2020-08-21 2020-12-29 江苏大学 一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHU LIDONG, XIN WANG, HUANGQIU ZHU: "An IPMSM Deep Flux Weakening Algorithm With Calculable Parameters to Avoid Out-of-control", PROCEEDINGS OF THE CSEE, vol. 40, 20 May 2020 (2020-05-20), pages 3328 - 3336, XP055901381, DOI: 10.13334/j.0258-8013.pcsee.190945 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116647159A (zh) * 2023-06-06 2023-08-25 灵动微电子(苏州)有限公司 一种永磁同步电机的快速降速方法及装置
CN116647159B (zh) * 2023-06-06 2024-05-24 灵动微电子(苏州)有限公司 一种永磁同步电机的快速降速方法及装置

Also Published As

Publication number Publication date
CN112152536A (zh) 2020-12-29
US11671041B2 (en) 2023-06-06
US20220337182A1 (en) 2022-10-20
CN112152536B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
WO2022037003A1 (zh) 一种提高调速响应能力的超高速永磁同步电机瞬态电流规划方法
CN111347938A (zh) 一种车辆及其动力电池加热装置与方法
CN107017810A (zh) 永磁同步电机无权值模型预测转矩控制系统及方法
CN111786607A (zh) 一种可靠平顺基于无位置传感器永磁同步电动机起动方法
CN105071731A (zh) 一种永磁同步电机高效加速控制方法
CN108551285A (zh) 基于双滑膜结构的永磁同步电机直接转矩控制系统及方法
CN108377117A (zh) 基于预测控制的永磁同步电机复合电流控制系统及方法
CN112886893B (zh) 基于关断角优化的开关磁阻电机转矩控制方法及系统
CN113193809A (zh) 一种改进二阶线性自抗扰的永磁同步电机控制方法
CN113659904A (zh) 一种基于非奇异快速终端滑模观测器的spmsm无传感器矢量控制方法
CN109995293A (zh) 永磁同步电机无速度传感器控制下i/f启动与闭环控制的切换方法
CN112152535A (zh) 电动汽车电池故障时抑制电机控制器母线电压上升的方法
Yang et al. Application of new sliding mode control in vector control of PMSM
CN206640528U (zh) 永磁同步电机无权值模型预测转矩控制系统
CN112003524A (zh) 一种减少永磁同步电机无速度传感器滑模控制抖振的方法
CN114598222A (zh) 一种电机启动控制方法及系统
TWI426698B (zh) Intelligent control model for adaptive control of sensors without sensor control method
CN110266227A (zh) 一种基于模糊滑膜变结构的永磁同步电机控制系统
CN115603628B (zh) 一种永磁同步电机单电流调节的无传感器动态性提升方法
CN112234894A (zh) 可变磁通记忆电机无差拍直接转矩-磁链控制系统及方法
CN109831138B (zh) 永磁同步电机最大效率转矩比控制方法及控制器
CN116743017A (zh) 一种大惯量负载永磁电机无位置传感器控制的可靠启动系统
Hu et al. Vector Control of Permanent Magnet Synchronous Motor Based on New MRAS
CN109194216A (zh) 一种开关磁阻电机直接转矩模糊pi控制系统及方法
CN114977904A (zh) 基于负载估计和动态调速的pmsm无传感启动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857109

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21857109

Country of ref document: EP

Kind code of ref document: A1