WO2022036987A1 - 一种抗菌熔喷聚酰胺复合材料及其制备方法和应用 - Google Patents

一种抗菌熔喷聚酰胺复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022036987A1
WO2022036987A1 PCT/CN2020/140808 CN2020140808W WO2022036987A1 WO 2022036987 A1 WO2022036987 A1 WO 2022036987A1 CN 2020140808 W CN2020140808 W CN 2020140808W WO 2022036987 A1 WO2022036987 A1 WO 2022036987A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon chain
polyamide resin
composite material
blown
polyamide
Prior art date
Application number
PCT/CN2020/140808
Other languages
English (en)
French (fr)
Inventor
戴剑
叶南飚
黄险波
丁超
郑一泉
金雪峰
王丰
胡泽宇
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022036987A1 publication Critical patent/WO2022036987A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/12Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/549Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way

Definitions

  • the invention relates to the technical field of polymer materials, in particular to an antibacterial melt-blown polyamide composite material and a preparation method and application thereof.
  • the main structure of the protective mask for preventive purposes includes three parts: the surface moisture-resistant layer (S layer), the middle filter adsorption layer (M layer) and the inner skin layer (S layer).
  • the M layer contains one or more layers with Electrostatic meltblown nonwovens play a core protective role and are known as the "heart" of medical and N95 masks.
  • melt-blown composite materials mainly focuses on two aspects: on the one hand, upgrade and modify the electret.
  • Meltblown cloth will be charged only after electret treatment, so that it will have an efficient adsorption effect on the same charged 0.3 micron virus particles.
  • the prior art is mainly realized by adding electret masterbatch.
  • Some high-functional electret masterbatches can effectively release negative ions and store charges to improve the comprehensive filtration efficiency and thermal decay resistance of meltblown non-woven fabrics.
  • a large number of patents disclose related technologies about polypropylene melt-blown composite materials.
  • Non-polar resins have weak binding to electrets, which will lead to uneven distribution of electrets in polypropylene fibers, which is also not conducive to static retention, resulting in large fluctuations in filtration performance.
  • Due to the low strength of the fibers formed by the degraded polypropylene resin it is easy to be torn during the process of winding, cutting, and sewing into masks, which not only leads to waste of meltblown cloth, but also delays the production cycle.
  • polyamide resin which can also be widely used in melt-blown processing, has unparalleled advantages of polypropylene.
  • Polyamide resin has a large number of hydrogen bond structures between molecular chains, so its melt-blown nonwoven fabric is much stronger than polyamide resin.
  • the existence of hydrogen bonds can also endow polyamide meltblown materials with excellent corrosion resistance and high temperature resistance. These excellent properties are of great significance for later applications.
  • melt-blown polyamide materials also have some stubborn diseases.
  • polar amide groups is conducive to the dispersion of electrets, its strong water absorption will make the charge easily dissipated after electrets, which is not conducive to the maintenance of filtration efficiency.
  • the processing temperatures used in the manufacture of polyamide meltblown fabrics are relatively high.
  • meltblown materials for the downstream application market of meltblown materials, the functionalization of meltblown materials is also an important research field.
  • antibacterial properties are an important functional modification direction. Due to the complex environment that the mask comes into contact with, bacteria can easily grow on its surface or even directly enter the human body, causing harm to human health. Through antibacterial modification, the mask can be endowed with long-lasting antibacterial properties without affecting other properties, thereby protecting the user's human health in an all-round way.
  • short carbon chain polyamide is used as the meltblown cloth material, the dispersion of the supported silver ion antibacterial agent in it is not good, which easily leads to a decrease in the air permeability of the mask.
  • the purpose of the present invention is to overcome the above technical defects and provide an antibacterial meltblown polyamide composite material, and the prepared meltblown cloth has the advantages of good antibacterial performance and good filtering performance.
  • Another object of the present invention is to provide a preparation method and application of the above-mentioned antibacterial melt-blown polyamide composite material.
  • An antibacterial melt-blown polyamide composite material by weight, comprises the following components:
  • the weight-average molecular weight of the long carbon chain polyamide resin is 3000-13000 g/mol
  • the weight average molecular weight of the short carbon chain polyamide resin is 5000-15000 g/mol.
  • the supported silver ion antibacterial agent is selected from at least one of glass carrier supported silver ion antibacterial agent, apatite supported silver ion antibacterial agent, zeolite supported silver ion antibacterial agent, and zirconium phosphate supported silver ion antibacterial agent. species, wherein the weight percentage of silver ions in the supported silver ion antibacterial agent is 1wt% to 5wt%.
  • the weight average molecular weight range of the long carbon chain polyamide resin is 6000-9000 g/mol;
  • the number of carbon atoms in the repeating unit is greater than or equal to 10; specifically, the long carbon chain polyamide resin is selected from the long carbon chain polyamide resin, and the long carbon chain polyamide resin is selected from PA1010, PA1012 , at least one of PA1212, PA11, and PA12.
  • the long carbon chain polyamide resin is selected from at least one of PA1010 and PA1012.
  • the electret is selected from at least one of modified rosin, stearate, ethylene bis-stearic acid amide and tourmaline.
  • magnesium stearate can be selected as the stearate.
  • the number of carbon atoms of the repeating unit is less than or equal to 6;
  • the short carbon chain polyamide resin is selected from at least one of PA6, PA66, PA56, and PA46. kind;
  • the preparation method of the above-mentioned antibacterial melt-blown polyamide composite material comprises the following steps: adding a short carbon chain polyamide resin, a long carbon chain polyamide resin, an electret and a loaded silver ion antibacterial agent according to the addition amount of each component.
  • a short carbon chain polyamide resin in parts by weight, when the weight average molecular weight of the short carbon chain polyamide resin is 15000-25000g/mol, 0.01-2 parts of chain scission agent are added, and the weight average molecular weight of the short carbon chain polyamide resin is 5000 When the temperature is -15000g/mol, no chain scission agent is needed.
  • the weight-average molecular weight of the short carbon chain polyamide resin before degradation is 15000-25000 g/mol.
  • the degradation process by controlling the degradation process (residence time in the screw, screw temperature), the short carbon chain polymer in the meltblown polyamide composite after degradation is controlled.
  • the chain scission agent is at least one of decadioic acid, dodecanediacid, tetradecanediacid and naphthalene diacid.
  • antibacterial meltblown polyamide composite material is used to prepare antibacterial meltblown polyamide cloth.
  • melt-blown polyamide composite material is used to prepare melt-blown cloth, preparation and electretization method: the melt-blown polyamide composite material is melted by an extruder, and the melting temperature is 200-250 ° C, and then the melt-blown polyamide composite material is mixed The material melt is fed into the spinneret through a metering pump, the metering frequency is 20-50Hz, the temperature of the spinneret is 230-280°C, the diameter of the spinneret hole is 0.2-0.4 mm, and the aspect ratio is 10-20.
  • the hot air blows the melt-blown polyamide composite melt extruded from the spinneret into ultra-fine fibers, which are cooled and bonded on the roller shutter to form a fiber web with a three-dimensional structure.
  • the temperature of the hot air is 230-280 ° C
  • the hot air frequency is 20-40 Hz
  • the fiber web is electreted by the string-drum type linear electrode device to prepare the melt-blown cloth filter material, and the electrode voltage is 10-40 kV.
  • the strong polar amide bond in polyamide has good compatibility with electret, which improves the dispersion effect of electret;
  • the addition of antibacterial agent can improve melt-blown polyamide (3)
  • the introduction of long carbon chain polyamide resin reduces water absorption, and more importantly, the presence of long carbon chain polyamide resin can improve the distribution of the supported silver ion antibacterial agent, on the premise of ensuring the antibacterial effect It can reduce the filtering resistance of the mask and improve the wearing comfort.
  • the preparation method of the present invention can prepare the antibacterial melt-blown polyamide composite material by one-step method, the operation is simple, and only the short carbon chain polyamide is degraded, but the long carbon chain polyamide is not degraded, so that there is no need to purchase high-priced melt-blown polyamide.
  • Spray-grade polyamide resins also do not require prior degradation of short carbon chain polyamide resins.
  • controlling the degree of degradation by controlling the temperature and residence time has the same effect as degrading the short carbon chain polyamide resin alone.
  • polyamide resins are based on the literature Advances in the research on Nylon(polyamide)66 polymerization technology (recorded in Chemical Industry and Engineering Progree, 2014, 33(01): 21-24.) and Polyamide from lactams by reactive rotational molding via anionic ring-opening polymerization: Optimization of processing parameters (recorded in eXPRESS Polymer Letters Vol.7, No.1(2013) 76–87), by adjusting the parameters such as temperature, time, stirring rate and catalyst component content during the polymerization process to control the weight average molecular weight.
  • PA6-A The weight average molecular weight is about 18200g/mol
  • PA6-B The weight average molecular weight is about 22600g/mol
  • PA6-C The weight average molecular weight is about 5500g/mol
  • PA6-D The weight average molecular weight is about 14800g/mol
  • PA66 The weight average molecular weight is about 23700g/mol
  • PA1010-A The weight average molecular weight is about 7200g/mol;
  • PA1010-B The weight average molecular weight is about 6300g/mol
  • PA1010-C The weight average molecular weight is about 3500g/mol
  • PA1010-D The weight average molecular weight is about 12600g/mol
  • PA1010-E The weight average molecular weight is about 16100g/mol
  • PA1010-F The weight average molecular weight is about 2400g/mol
  • PA1012 The weight average molecular weight is about 7800g/mol
  • PA12 The weight average molecular weight is about 8200g/mol
  • PA11 The weight average molecular weight is about 7200g/mol
  • Glass carrier-supported silver ion antibacterial agent-A commercially available, with a silver ion content of 5wt%.
  • Glass carrier supported silver ion antibacterial agent-B commercially available, silver ion content 3wt%;
  • Chain scission agent dodecanedioic acid, commercially available
  • the preparation method of embodiment 1-12 and comparative example melt-blown polyamide composite material according to the proportion, after mixing the short carbon chain polyamide resin, long carbon chain polyamide resin, chain scission agent, antibacterial agent and electret evenly , extruding and granulating through a twin-screw extruder to obtain a melt-blown polyamide composite material; wherein, the temperature range of the screw barrel is 200-250°C, and the residence time of the material in the screw is 30-60s.
  • Example 13/14 Preparation method of melt-blown polyamide composite material: according to the proportion, mix PA6-C or PA6-D with long carbon chain polyamide resin, antibacterial agent and electret evenly, then extrude through twin-screw Machine extrusion and granulation to obtain a melt-blown polyamide composite material; wherein, the temperature range of the screw barrel is 210-230°C.
  • Example and Comparative Example Preparation and electretization method of meltblown cloth: melt the meltblown polyamide composite material through an extruder, the melting temperature is 240 ° C, and then feed the meltblown polyamide composite material melt through a metering pump Spinneret, the metering frequency is 32Hz, the spinneret temperature is 245°C, the diameter of the spinneret hole is 0.3 mm, and the aspect ratio is 15, and then high-speed hot air is used to melt the melt-blown polyamide composite extruded from the spinneret.
  • the body is blown into ultra-fine fibers, which are cooled and bonded on the roller shutter to form a fiber web with a three-dimensional structure.
  • the hot air temperature is 255 ° C and the hot air frequency is 33 Hz.
  • the fiber web passes through the string-roller type linear electrode An electret was installed to prepare a melt-blown cloth filter material, and the electrode voltage was 30kV.
  • the particle filtration efficiency (PFE) and resistance test of meltblown cloth refer to the standard YY0469-2011.
  • the specific test conditions are flow rate 85L/min, single layer.
  • the antibacterial performance test was carried out according to the ATCC 100 method using Escherichia coli (E.coli; ATCC 8099) and Staphylococcus aureus (ATCC 6538). Specific steps are as follows:
  • Table 1 The distribution ratio (parts by weight) of each component of the melt-blown polyamide composite material of Examples 1-6 and the test results of various properties
  • Example 1 Example 2 Example 3 Example 4 Example 5
  • Example 6 PA6-A 92 92 95 90 PA6-B 92
  • PA66 92 PA1010-A 8 8 8 8 5 10 chain scissor 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
  • Glass carrier supported silver ion antibacterial agent-A 0.5 0.5 0.5 0.5 0.5
  • Glass carrier supported silver ion antibacterial agent-B 0.7 electret 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
  • Weight-average molecular weight of short carbon chain polyamides after degradation 7518 8456 9350 7260 8135 7840 Gram weight, g/m 2 25.8 25.6 25.6 25.7 25.4 25.6 PFE,% 98.5 98.2 98.1 98.1 98.1 97.5 resistance, Pa 86 87 88 90 85 89 PFE after aging, % 96.2 95.6 95.3 96.1 96.0 96.6
  • the weight average molecular weight of the long carbon chain polyamide is preferably 6000-9000 g/mol.
  • the weight average molecular weight of long carbon chain polyamide is lower than 6000g/mol (Example 8)
  • the initial PFE can also reach 95.3%, the PFE decreases more after aging, (2)
  • the dispersibility of the supported silver ion antibacterial agent decreases, thereby reducing the antibacterial effect.
  • the weight-average molecular weight of the long carbon chain polyamide is greater than 9000 g/mol (Example 9)
  • the dispersion during melt blowing is not uniform enough, which leads to (1) insufficient dispersion of the supported silver ion antibacterial agent, which reduces the antibacterial effect, (2) Meltblown cloth has more large holes, the filtration resistance decreases, and the filtration performance also decreases.
  • the long carbon chain polyamides are preferably PA1010 and PA1012.
  • Example 13 Example 14 PA6-C 92 PA6-D 92 PA1010-A 8 8 electret 0.2 0.2 Glass carrier supported silver ion antibacterial agent-A 0.5 0.5 Gram weight, g/m 2 25.5 25.7 PFE,% 98.1 98.2 resistance, Pa 89 85 PFE after aging, % 96.0 96.3 Antibacterial effect excellent excellent
  • the weight average molecular weight of the long carbon chain polyamide is too low to disperse the loaded silver ion antibacterial agent and reduce the water absorption of the meltblown cloth, resulting in poor anti-aging performance and antibacterial performance.
  • the weight average molecular weight of the long carbon chain polyamide is too high and the fiber is too thick, which will cause too much antibacterial agent to be distributed in the thick fiber, and also lead to the reduction of the antibacterial effect, and the initial PFE and anti-aging properties are reduced.
  • Comparative Example 4 It can be seen from Comparative Example 4 that too much long carbon chain polyamide is used, resulting in excessively large gaps between the fibers of the meltblown cloth and low filterability.
  • Comparative Example 5 It can be seen from Comparative Example 5 that the use of too little long carbon chain polyamide cannot achieve the effect of reducing water absorption and improving the dispersion of the supported silver ion antibacterial agent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)

Abstract

本发明公开了一种抗菌熔喷聚酰胺复合材料,主要是由短碳链聚酰胺树脂、长碳链聚酰胺树脂、驻极剂、负载型银离子抗菌剂构成。其中,通过采用两种聚酰胺树脂的复配,使得短碳链为主要成分的熔喷聚酰胺布中混有长碳链聚酰胺树脂,提升了负载型银离子抗菌剂的分散性从而缓解了负载型银离子抗菌剂的加入会导致熔喷聚酰胺布透气性变差的缺陷,而且能够降低材料的吸水性,保证熔喷制品长期储存和实用过程中的电荷稳定性。本发明还提供了上述抗菌熔喷聚酰胺复合材料的制备方法,通过采用十二碳二元酸种类的断链剂,能够在可控降解的过程中仅降解短碳链聚酰胺树脂而几乎不降解长碳链聚酰胺树脂,降低了原料成本。

Description

一种抗菌熔喷聚酰胺复合材料及其制备方法和应用 技术领域
本发明涉及高分子材料技术领域,特别是涉及一种抗菌熔喷聚酰胺复合材料及其制备方法和应用。
背景技术
进入2020年以来,新冠肺炎疫情在全球肆虐,“一罩难求”的局面在海外多个国家陆续上演。作为预防用途的防护口罩主体结构包括三部分:表层抗湿层(S层)、中间过滤吸附层(M层)及内层贴肤层(S层),M层包含一层或多层带有静电的熔喷非织造布,起到核心防护作用,被称为医用和N95口罩的“心脏”。
现阶段,对于熔喷复合材料的改进主要集中在两个方面:一方面,对于驻极剂进行升级改性。熔喷布只有经过驻极处理才会带有电荷,这样才会对同样带电荷的0.3微米的病毒颗粒物有高效的吸附效果。在静电存储和电荷保持过程中,现有技术主要是通过添加驻极母粒实现。一些高功能的驻极母粒有效释放负离子和储存电荷达到提高熔喷无纺布的综合滤效和抗热衰减的性能。另一方面,对于熔喷布本体材料而言,大量专利公开了关于聚丙烯熔喷复合材料的相关技术,总体而言,聚丙烯材料来源广泛、成本低廉、加工性能优异,但是由于聚丙烯为非极性树脂,与驻极剂的结合性弱,会导致驻极剂在聚丙烯纤维丝中的分布不均匀,也不利于静电保持,导致过滤性能波动较大。同时,由于降解后的聚丙烯树脂形成的纤维强度较小,很容易在收卷、剪裁、缝合成口罩的过程中被撕裂,不仅导致熔喷布的浪费,也会延误生产周期。
相比而言,同样可以广泛应用于熔喷加工的聚酰胺树脂就具有聚丙烯无可比拟的优势,聚酰胺树脂分子链间具有大量氢键结构,因此其熔喷非织造布强力远大于聚丙烯熔喷非织造布,同时,氢键的存在还能赋予聚酰胺熔喷材料优异的耐腐蚀和耐高温性能,这些优异的性能对于后期的应用具有重要意义。当然,熔喷聚酰胺材料也存在一些顽疾,极性酰胺基团的存在虽然有利于驻极剂的分散,但是其强吸水性会使得驻极后电荷容易耗散,不利于过滤效率的保持,此外,聚酰胺熔喷布制造所用的加工温度也相对较高。
此外,针对熔喷材料的下游应用市场,熔喷材料的功能化也是一个重要研究领域。特别地,在口罩应用方面,抗菌性是一个重要的功能化改性方向。由于口罩接触的环境较为繁杂,细菌极易在其表面附生甚至直接进入人体,对人体健康造成危害。而通过抗菌改性,能够在不影响其他性能的基础上赋予口罩长效的抗菌性,从而全方位保护使用者的人体健康。但是, 当通过实验发现,当采用短碳链聚酰胺作为熔喷布材料时,负载型银离子抗菌剂在其中的分散不佳,容易导致口罩的透气性降低。
发明内容
本发明的目的在于,克服以上技术缺陷,提供一种抗菌熔喷聚酰胺复合材料,制备成的熔喷布具有抗菌性能好、过滤性能好的优点。
本发明的另一目的在于,提供上述抗菌熔喷聚酰胺复合材料的制备方法以及应用。
本发明是通过以下技术方案实现的:
一种抗菌熔喷聚酰胺复合材料,按重量份计,包括以下组分:
Figure PCTCN2020140808-appb-000001
所述的长碳链聚酰胺树脂重均分子量为3000-13000g/mol;
所述短碳链聚酰胺树脂重均分子量为5000-15000g/mol。
所述的负载型银离子抗菌剂选自玻璃载体负载型银离子抗菌剂、磷灰石负载型银离子抗菌剂、沸石负载型银离子抗菌剂、磷酸锆负载型银离子抗菌剂中的至少一种,其中银离子占负载型银离子抗菌剂的重量百分比为1wt%~5wt%。
优选的,所述的长碳链聚酰胺树脂的重均分子量范围是6000-9000g/mol;
所述的长碳链聚酰胺树脂中,重复单元的碳原子数大于等于10个;具体的,所述的长碳链聚酰胺树脂选自所述的长碳链聚酰胺树脂选自PA1010、PA1012、PA1212、PA11、PA12中的至少一种。
优选的,所述的长碳链聚酰胺树脂选自PA1010、PA1012中的至少一种。
所述的驻极剂选自改性松香、硬脂酸盐、乙撑双硬脂酸酰胺、电气石中的至少一种。
硬脂酸盐具体可选硬脂酸镁。
所述的短碳链聚酰胺树脂的分子链中,重复单元的碳原子数小于等于6个;具体的,所述的短碳链聚酰胺树脂选自PA6、PA66、PA56、PA46中的至少一种;
上述的抗菌熔喷聚酰胺复合材料的制备方法,包括以下步骤:按照各组分加入量,将短碳链聚酰胺树脂、长碳链聚酰胺树脂、驻极剂、负载型银离子抗菌剂加入混料机中,按重量份计,短碳链聚酰胺树脂的重均分子量为15000-25000g/mol时再加入0.01-2份的断链剂,短碳链聚酰胺树脂的重均分子量为5000-15000g/mol时不需要断链剂,混合均匀后,通过双 螺杆挤出机挤出造粒,得到抗菌熔喷聚酰胺复合材料;其中,螺筒的温度范围是200-250℃,材料在螺杆中的停留时间范围是30~60s。
也可以先将短碳链聚酰胺树脂与断链剂通过可控降解制备成熔喷级短碳链聚酰胺树脂,再与长碳链聚酰胺树脂、驻极剂、负载型银离子抗菌剂等原材料共混,得到抗菌熔喷聚酰胺复合材料。
降解前的短碳链聚酰胺树脂的重均分子量为15000-25000g/mol,通过控制降解工艺(在螺杆内的停留时间、螺杆温度)来控制降解后熔喷聚酰胺复合材料中短碳链聚酰胺树脂的重均分子量范围。
所述的断链剂为十碳二元酸、十二碳二元酸、十四碳二元酸、萘二酸的至少一种。
上述的抗菌熔喷聚酰胺复合材料的应用,用于制备抗菌熔喷聚酰胺布。
将上述熔喷聚酰胺复合材料用于制备熔喷布,制备和驻极化方法:将熔喷聚酰胺复合材料通过挤出机熔融,熔融温度为200~250℃,然后将熔喷聚酰胺复合材料熔体通过计量泵喂入喷丝板,计量频率为20~50Hz,喷丝板温度为230~280℃,喷丝孔直径为0.2~0.4毫米,长径比为10~20,接着采用高速热空气将喷丝板挤出的熔喷聚酰胺复合材料熔体吹成超细的纤维,使其在卷帘上冷却粘结形成具有三维立体结构的纤网,热空气温度为230~280℃,热风频率为20~40Hz,最后纤网通过弦丝-滚筒式线状电极装置驻极,制备熔喷布过滤材料,电极电压为10~40kV。
本发明具有如下有益效果
(1)相比于聚丙烯,聚酰胺中强极性的酰胺键与驻极剂具有良好的相容性,提升驻极剂的分散效果;(2)抗菌剂的加入能够提升熔喷聚酰胺布的抗菌效果;(3)引入长碳链聚酰胺树脂,降低了吸水性,更重要的,长碳链聚酰胺树脂的存在能改善负载型银离子抗菌剂的分布,在保证抗菌效果的前提下,降低口罩的过滤阻力,提升佩戴舒适度。
进一步的,本发明的制备方法可以一步法制备得到抗菌熔喷聚酰胺复合材料,操作简洁,并且仅降解短碳链聚酰胺而不会降解长碳链聚酰胺,从而无需购买价格较高的熔喷级聚酰胺树脂,也不需要事先将短碳链聚酰胺树脂降解。并且,通过控制温度与停留时间来控制降解程度,与单独降解短碳链聚酰胺树脂效果相同。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护 范围。
实施例与对比例所用原材料如下:
以下聚酰胺树脂的是根据文献Advances in the research on Nylon(polyamide)66 polymerization technology(记载于Chemical Industry and Engineering Progree,2014,33(01):21-24.)和Polyamide from lactams by reactive rotational molding via anionic ring-opening polymerization:Optimization of processing parameters(记载于eXPRESS Polymer Letters Vol.7,No.1(2013)76–87),通过调整聚合过程中的温度、时间、搅拌速率以及催化剂组分含量等参数来控制重均分子量。
PA6-A:重均分子量约为18200g/mol;
PA6-B:重均分子量约为22600g/mol;
PA6-C:重均分子量约为5500g/mol;
PA6-D:重均分子量约为14800g/mol;
PA66:重均分子量约为23700g/mol;
PA1010-A:重均分子量约7200g/mol;
PA1010-B:重均分子量约6300g/mol;
PA1010-C:重均分子量约3500g/mol;
PA1010-D:重均分子量约12600g/mol;
PA1010-E:重均分子量约16100g/mol;
PA1010-F:重均分子量约2400g/mol;
PA1012:重均分子量约7800g/mol;
PA12:重均分子量约8200g/mol;
PA11:重均分子量约7200g/mol;
玻璃载体负载型银离子抗菌剂-A:市售,银离子含量5wt%。
玻璃载体负载型银离子抗菌剂-B:市售,银离子含量3wt%;
断链剂:十二碳二元酸,市售;
驻极剂:硬脂酸镁,市售。
实施例1-12和对比例熔喷聚酰胺复合材料的制备方法:按照配比,将短碳链聚酰胺树脂、长碳链聚酰胺树脂、断链剂、抗菌剂、驻极剂混合均匀后,通过双螺杆挤出机挤出造粒,得到熔喷聚酰胺复合材料;其中,螺筒的温度范围是200~250℃,材料在螺杆中的停留时间范围是30~60s。
实施例13/14熔喷聚酰胺复合材料的制备方法:按照配比,将PA6-C或PA6-D与长碳链聚酰胺树脂、抗菌剂、驻极剂混合均匀后,通过双螺杆挤出机挤出造粒,得到熔喷聚酰胺复合材料;其中,螺筒的温度范围是210~230℃。
熔喷聚酰胺复合材料的各项性能测试方法:
实施例和对比例熔喷布的制备和驻极化方法:将熔喷聚酰胺复合材料通过挤出机熔融,熔融温度为240℃,然后将熔喷聚酰胺复合材料熔体通过计量泵喂入喷丝板,计量频率为32Hz,喷丝板温度为245℃,喷丝孔直径为0.3毫米,长径比为15,接着采用高速热空气将喷丝板挤出的熔喷聚酰胺复合材料熔体吹成超细的纤维,使其在卷帘上冷却粘结形成具有三维立体结构的纤网,热空气温度为255℃,热风频率为33Hz,最后纤网通过弦丝-滚筒式线状电极装置驻极,制备熔喷布过滤材料,电极电压为30kV。
熔喷布各项性能测试方法:
(1)熔喷布克重测试标准FZ/T 60003。
(2)熔喷布颗粒过滤效率(PFE)和阻力测试参照标准YY0469-2011,具体测试条件为流量85L/min,单层。
(3)熔喷布长期性能通过老化性能测试来评估,具体参照标准GB/T 32610-2016。
(4)抗菌性能测试按照ATCC 100方法,采用大肠杆菌(E.coli;ATCC 8099)和葡萄球菌(Staphyococcus aureus;ATCC 6538)进行。具体步骤如下:
a)将试样剪成5.0cm×5.0cm大小的尺寸,消毒灭菌(一式三份)。b)在试样上滴加0.5毫升菌液,使活菌数维持在10 5个左右。
c)将试样放入无菌平皿内,于36±1℃恒温培养箱内培养24小时后,计数活菌百分数(%)。
表1:实施例1-6熔喷聚酰胺复合材料各组分配比(重量份)及各项性能测试结果
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6
PA6-A 92     92 95 90
PA6-B   92        
PA66     92      
PA1010-A 8 8 8 8 5 10
断链剂 0.5 0.5 0.5 0.5 0.5 0.5
玻璃载体负载型银离子抗菌剂-A 0.5 0.5 0.5   0.5 0.5
玻璃载体负载型银离子抗菌剂-B       0.7    
驻极剂 0.2 0.2 0.2 0.2 0.2 0.2
降解后短碳链聚酰胺的重均分子量 7518 8456 9350 7260 8135 7840
克重,g/m 2 25.8 25.6 25.6 25.7 25.4 25.6
PFE,% 98.5 98.2 98.1 98.1 98.1 97.5
阻力,Pa 86 87 88 90 85 89
老化后的PFE,% 96.2 95.6 95.3 96.1 96.0 96.6
抗菌效果
表2:实施例7-12熔喷聚酰胺复合材料各组分配比(重量份)及各项性能测试结果
Figure PCTCN2020140808-appb-000002
由实施例1/7/8/9可知,优选长碳链聚酰胺重均分子量为6000-9000g/mol。当长碳链聚酰胺重均分子量低于6000g/mol时(实施例8),会导致(1)过滤阻力上升,虽然初始PFE也能达到95.3%,但是老化后PFE下降较多,(2)负载型银离子抗菌剂的分散性下降,从而降低了抗菌效果。当长碳链聚酰胺重均分子量大于9000g/mol时(实施例9),熔喷时分散不够均匀,导致(1)导致负载型银离子抗菌剂分散不够均匀,降低了抗菌效果,(2)熔喷布大孔洞较多,过滤阻力下降,过滤性能也随之下降。
由实施例1/10/11/12可知,长碳链聚酰胺优选PA1010与PA1012。
表3:实施例13/14熔喷聚酰胺复合材料各组分配比(重量份)及各项性能测试结果
  实施例13 实施例14
PA6-C 92  
PA6-D   92
PA1010-A 8 8
驻极剂 0.2 0.2
玻璃载体负载型银离子抗菌剂-A 0.5 0.5
克重,g/m 2 25.5 25.7
PFE,% 98.1 98.2
阻力,Pa 89 85
老化后的PFE,% 96.0 96.3
抗菌效果
表4:对比例熔喷聚酰胺复合材料各组分配比(重量份)及各项性能测试结果
  对比例1 对比例2 对比例3 对比例4 对比例5
PA6-A 92 92 92 80 98
PA1010-A       20 2
PA1010-E 8        
PA1010-F   8      
PA66     8    
断链剂 0.5 0.5 0.5 0.5 0.5
驻极剂 0.2 0.2 0.2 0.2 0.2
玻璃载体负载型银离子抗菌剂-A 0.5 0.5 0.5 0.5 0.5
降解后短碳链聚酰胺的重均分子量 7575 7480 10550 7860 7690
克重,g/m 2 25.6 25.5 25.7 25.8 25.6
PFE,% 85.6 94.8 93.2 81.4 95.9
阻力,Pa 80 92 87 96 89
老化后的PFE,% 78.7 75.5 74.8 73.4 80.0
抗菌效果
由对比例1/2可知,长碳链聚酰胺的重均分子量过低,起不到分散负载型银离子抗菌剂、降低熔喷布吸水性的作用,导致抗老化性能、抗菌性能较差。长碳链聚酰胺的重均分子量过高,纤维丝过粗,会导致过多的抗菌剂被分布在纤维粗丝中,也导致抗菌效果降低,初始PFE与抗老化性能都降低。
由对比例4可知,采用过多的长碳链聚酰胺,导致熔喷布纤维间空隙过大,过滤性低。
由对比例5可知,采用过少的长碳链聚酰胺,起不到降低吸水性以及提升负载型银离子抗菌剂分散的作用。

Claims (9)

  1. 一种抗菌熔喷聚酰胺复合材料,其特征在于,按重量份计,包括以下组分:
    Figure PCTCN2020140808-appb-100001
    所述的长碳链聚酰胺树脂重均分子量为3000-13000g/mol;
    所述短碳链聚酰胺树脂重均分子量为5000-15000g/mol。
  2. 根据权利要求1所述的抗菌熔喷聚酰胺复合材料,其特征在于,所述的负载型银离子抗菌剂选自玻璃载体负载型银离子抗菌剂、磷灰石负载型银离子抗菌剂、沸石负载型银离子抗菌剂、磷酸锆负载型银离子抗菌剂中的至少一种,其中银离子占负载型银离子抗菌剂的重量百分比为1wt%-5wt%。
  3. 根据权利要求1所述的抗菌熔喷聚酰胺复合材料,其特征在于,所述的长碳链聚酰胺树脂的重均分子量范围是6000-9000g/mol。
  4. 根据权利要求1所述的抗菌熔喷聚酰胺复合材料,其特征在于,所述的长碳链聚酰胺树脂的分子链中,重复单元的碳原子数大于等于10个;所述的长碳链聚酰胺树脂选自PA1010、PA1012、PA1212、PA11、PA12中的至少一种;优选的,所述的长碳链聚酰胺树脂选自PA1010、PA1012中的至少一种。
  5. 根据权利要求1所述的抗菌熔喷聚酰胺复合材料,其特征在于,所述的驻极剂选自改性松香、硬脂酸盐、乙撑双硬脂酸酰胺、电气石中的至少一种。
  6. 根据权利要求1所述的抗菌熔喷聚酰胺复合材料,其特征在于,所述的短碳链聚酰胺树脂的分子链中,重复单元的碳原子数小于等于6个;所述的短碳链聚酰胺树脂选自PA6、PA66、PA56、PA46中的至少一种。
  7. 权利要求1-6任一项所述的抗菌熔喷聚酰胺复合材料的制备方法,其特征在于,包括以下步骤:按照各组分加入量,将短碳链聚酰胺树脂、长碳链聚酰胺树脂、驻极剂、负载型银离子抗菌剂加入混料机中,按重量份计,短碳链聚酰胺树脂的重均分子量为15000-25000g/mol时再加入0.01-2份的断链剂,当短碳链聚酰胺树脂的重均分子量为5000-15000g/mol时不需要断链剂,混合均匀后,通过双螺杆挤出机挤出造粒,得到抗菌熔喷聚酰胺复合材料;其中,螺筒的温度范围是200-250℃,材料在螺杆中的停留时间范围是30~60s。
  8. 根据权利要求7所述的抗菌熔喷聚酰胺复合材料的制备方法,其特征在于,所述的断链剂为十碳二元酸、十二碳二元酸、十四碳二元酸、萘二酸的至少一种。
  9. 权利要求1-6任一项所述的抗菌熔喷聚酰胺复合材料的应用,其特征在于,用于制备抗菌熔喷聚酰胺布。
PCT/CN2020/140808 2020-08-17 2020-12-29 一种抗菌熔喷聚酰胺复合材料及其制备方法和应用 WO2022036987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010826604.7 2020-08-17
CN202010826604.7A CN112281250B (zh) 2020-08-17 2020-08-17 一种抗菌熔喷聚酰胺复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022036987A1 true WO2022036987A1 (zh) 2022-02-24

Family

ID=74420732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140808 WO2022036987A1 (zh) 2020-08-17 2020-12-29 一种抗菌熔喷聚酰胺复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112281250B (zh)
WO (1) WO2022036987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118082324A (zh) * 2024-02-29 2024-05-28 广东康尔医疗科技有限公司 一种抗敏亲肤手术包用无纺布及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114737275B (zh) * 2022-03-30 2024-07-30 广东金发科技有限公司 一种熔喷纤维驻极材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123414A (ja) * 1986-11-12 1988-05-27 Toyobo Co Ltd エレクトレツト化繊維およびその製造方法
WO2006044018A1 (en) * 2004-10-13 2006-04-27 Hollingsworth & Vose Company Filter media with charge stabilizing and enhancing additives
CN108385202A (zh) * 2018-02-12 2018-08-10 广东新会美达锦纶股份有限公司 一种耐变色抗菌锦纶纤维
CN109537100A (zh) * 2017-09-22 2019-03-29 上海凯赛生物技术研发中心有限公司 一种聚酰胺共混纤维及其制备方法
CN106723333B (zh) * 2016-12-02 2020-01-21 武汉纺织大学 一种驻极超细纤维香烟滤嘴材料及其制备方法
CN111165956A (zh) * 2020-03-09 2020-05-19 嘉兴学院 一种有效阻隔病毒细菌的可洗涤口罩及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791083B (zh) * 2019-08-26 2022-06-14 华合新材料科技股份有限公司 一种高抗菌、高耐候的免喷涂聚酰胺复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63123414A (ja) * 1986-11-12 1988-05-27 Toyobo Co Ltd エレクトレツト化繊維およびその製造方法
WO2006044018A1 (en) * 2004-10-13 2006-04-27 Hollingsworth & Vose Company Filter media with charge stabilizing and enhancing additives
CN106723333B (zh) * 2016-12-02 2020-01-21 武汉纺织大学 一种驻极超细纤维香烟滤嘴材料及其制备方法
CN109537100A (zh) * 2017-09-22 2019-03-29 上海凯赛生物技术研发中心有限公司 一种聚酰胺共混纤维及其制备方法
CN108385202A (zh) * 2018-02-12 2018-08-10 广东新会美达锦纶股份有限公司 一种耐变色抗菌锦纶纤维
CN111165956A (zh) * 2020-03-09 2020-05-19 嘉兴学院 一种有效阻隔病毒细菌的可洗涤口罩及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118082324A (zh) * 2024-02-29 2024-05-28 广东康尔医疗科技有限公司 一种抗敏亲肤手术包用无纺布及其制备方法

Also Published As

Publication number Publication date
CN112281250B (zh) 2022-01-25
CN112281250A (zh) 2021-01-29

Similar Documents

Publication Publication Date Title
JP6901594B2 (ja) ポリアミドナノファイバー不織布
WO2022036987A1 (zh) 一种抗菌熔喷聚酰胺复合材料及其制备方法和应用
CN112921502A (zh) 一种抗菌抗病毒熔喷布及其制备方法
CN111410793B (zh) 一种熔喷聚丙烯组合物及其制备和应用
WO2018205330A1 (zh) 一种复合抗菌除臭功能母粒、纤维的制备方法
CN108499220B (zh) 石墨烯/聚丙烯非织造布过滤网制备方法及其应用
CN111875886A (zh) 聚丙烯驻极母粒及其制备方法、聚丙烯熔喷无纺布
CN112870848A (zh) 一种多功能熔喷滤芯及其制备工艺
CN111662505B (zh) 一种抑菌无纺材料及其制备方法
CN111732789A (zh) 一种抗菌母粒及其制备方法和应用
CN111621091B (zh) 一种耐紫外线灭菌兼具抗菌性能的聚丙烯纺粘布料及其制备方法和应用
CN111420466A (zh) 石墨烯聚丙烯驻极体空气过滤抗菌纤维及其制备方法
CN111485325A (zh) 一种耐高温的抗菌纳米纤维无纺布及其制备方法和用途
JP2022515089A (ja) 亜鉛分を有する抗微生物不織ポリアミド
CN115613155B (zh) 一种长丝或短纤及其制备方法
CN112480542A (zh) 一种高过滤性的聚丙烯熔喷无纺布驻极母粒材料的制备方法
CN108434625A (zh) 石墨烯抗菌防颗粒物呼吸器滤棉
CN111253654A (zh) 一种植物源pe母粒及其制备方法和应用
CN111467876A (zh) 一种抗菌的无纺布过滤材料、制备方法及制备系统
JP2005179607A (ja) 抗菌性複合粒子
CN113290963B (zh) 一种耐磨性好的纳米银抗菌面料及其制备方法
TWI576475B (zh) Antistatic thermoplastic polyurethane nonwoven fabric and its preparation method and use
CN112189914A (zh) 可重复使用的杀菌杀病毒防护口罩及其制备工艺
CN113463270B (zh) 基于复合抗菌驻极母粒的聚丙烯熔喷非织造布及制备方法
CN114086323B (zh) 一种杀毒抑菌口罩用无纺布及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20950187

Country of ref document: EP

Kind code of ref document: A1