WO2022036842A1 - 用于干衣机的风道壳和干衣机 - Google Patents

用于干衣机的风道壳和干衣机 Download PDF

Info

Publication number
WO2022036842A1
WO2022036842A1 PCT/CN2020/122936 CN2020122936W WO2022036842A1 WO 2022036842 A1 WO2022036842 A1 WO 2022036842A1 CN 2020122936 W CN2020122936 W CN 2020122936W WO 2022036842 A1 WO2022036842 A1 WO 2022036842A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
air duct
liquid guiding
chamber
guiding groove
Prior art date
Application number
PCT/CN2020/122936
Other languages
English (en)
French (fr)
Inventor
谢邦明
Original Assignee
无锡小天鹅电器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡小天鹅电器有限公司 filed Critical 无锡小天鹅电器有限公司
Publication of WO2022036842A1 publication Critical patent/WO2022036842A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F58/00Domestic laundry dryers
    • D06F58/20General details of domestic laundry dryers 

Definitions

  • the present application relates to the technical field of laundry treatment equipment, and in particular, to an air duct shell and a clothes dryer for a clothes dryer.
  • the present application aims to solve at least one of the technical problems existing in the prior art. Therefore, the present application proposes an air duct shell for a clothes dryer, which can prevent the condensed water from flowing back to the second chamber and ensure the heat exchange efficiency of the condenser.
  • the present application also proposes a clothes dryer having the above-mentioned air duct housing for the clothes dryer.
  • the air duct housing for a clothes dryer according to an embodiment of the present application, has a drain passage, a first chamber for installing an evaporator, and a second chamber for installing a condenser, the The second chamber is located on the downwind side of the first chamber along the airflow direction, and the bottom wall of the first chamber is provided with a first liquid guide groove and a second liquid guide groove arranged along the airflow direction.
  • the second liquid guide groove is located on the downwind side of the first liquid guide groove, wherein the end of the first liquid guide groove close to the liquid discharge channel is communicated with the liquid discharge channel through a liquid passage, and the second liquid guide groove One end of the liquid guide groove close to the liquid discharge channel is closed, and the middle part of the second liquid guide groove is communicated with the liquid discharge channel through the first liquid guide groove.
  • the air duct shell for the clothes dryer according to the embodiment of the present application, by setting the first liquid guiding groove and the second liquid guiding groove, when the condensed water returns, it is difficult for the condensed water to enter the second liquid guiding groove and the second cavity. It can effectively prevent the condenser in the second chamber from being soaked in water and reduce the heat exchange efficiency, improve the performance of the whole machine, and make the drying time shorter and the energy consumption lower.
  • the two adjacent second communication ports in the airflow direction are staggered in the length direction of the second liquid guiding groove.
  • first liquid guiding groove there is one first liquid guiding groove; or, there are multiple first liquid guiding grooves, and the plurality of first liquid guiding grooves are arranged along the air flow direction, and are opposite to each other.
  • the two adjacently arranged first liquid-conducting grooves communicate with each other through at least one third communication port.
  • the adjacent third communication ports in the airflow direction are staggered along the length direction of the first liquid guiding groove.
  • the bottom wall of the air duct shell is provided with a blocking rib, and the blocking rib separates the first chamber and the second chamber.
  • both ends of the blocking rib are respectively connected with two side walls of the air duct shell that are opposite to each other.
  • the top of the blocking rib is lower than the heat exchange tubes of the evaporator and/or the condenser close to the bottom wall of the air duct shell.
  • the first liquid guiding groove and the second liquid guiding groove respectively extend perpendicular to the airflow direction, and the first liquid guiding groove and the second liquid guiding groove are far away from each other.
  • One end of the drainage channel extends to the side wall of the air duct shell.
  • the liquid discharge channel extends along the airflow direction, and the first liquid guide groove communicates with the liquid inlet end of the liquid discharge channel through the liquid passage port.
  • a clothes dryer according to an embodiment of the present application includes an air duct housing for a clothes dryer according to an embodiment of the present application.
  • Fig. 1 is a partial structural schematic diagram of an air duct shell according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the assembly structure of an air duct shell, an evaporator and a condenser according to an embodiment of the present application;
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2 .
  • Main body 10 drain groove 11; drain channel 12; liquid guide groove 13; first liquid guide groove 131; second liquid guide groove 132;
  • the blocking rib 30 The blocking rib 30 ; the first blocking rib 31 ; the second blocking rib 32 .
  • the air duct housing 100 for a clothes dryer has a first chamber 110 and a second chamber 120 , wherein the first chamber 110 is used for installing an evaporator 200, the second chamber 120 is used for installing the condenser 300.
  • the air duct housing 100 includes: a main body 10 and a partition 20 .
  • the inner surface of the bottom wall of the main body 10 has a liquid drain groove 11 and a liquid guide groove 13.
  • the partition plate 20 covers the notch of the liquid drain groove 11 to define the liquid drain channel 12 with the main body 10.
  • the partition plate 20 To achieve water vapor separation, the upper part of the partition plate 20 is the internal circulating air, and the lower part of the partition plate 20 flows and stores the condensed water.
  • the liquid guide groove 13 communicates with the first chamber 110 and the liquid discharge channel 12 .
  • the hot and humid air generated by the operation of the clothes dryer can enter the first chamber 110 and the second chamber 120 of the air duct shell 100 ; After the exchange, the water in the hot and humid air is condensed into condensed water, so that the hot and humid air becomes dry air; after the dry air exchanges heat with the condenser 300 in the second chamber 120, the dry air becomes hot air; The air duct outlet of the air duct shell 100 is discharged, and then enters the clothes holding cavity of the clothes dryer to dry the clothes.
  • the condensed water generated by the operation of the evaporator 200 in the first chamber 110 can enter the liquid guide groove 13 under the action of gravity, and then can flow to the liquid discharge channel 12 under the guide effect of the liquid guide groove 13 to pass through the liquid discharge channel. 12 discharge.
  • the base assembly of the clothes dryer includes a base and a two-device installation cavity, wherein the base is provided with a drainage channel, and the two-device installation cavity is provided with a hollow structure communicated with the drainage channel.
  • the condensation generated by the operation of the evaporator The water flows through the hollow structure to the drainage channels.
  • the notch of the drain groove 11 on the bottom wall of the main body 10 is covered and sealed by the partition plate 20 to define the drain channel 12, so that the drain channel 12 is integrally formed in the air duct shell 100.
  • the partition plate 20 covers the partition plate 20 to define the drain channel 12, so that the drain channel 12 is integrally formed in the air duct shell 100.
  • the partition plate 20 is an integral molded part, which not only makes the structure of the air duct shell 100 simpler and easier to process and assemble, but also reduces the matching gap between the body 10 and the partition plate 20 , so as to prevent the condensed water in the drainage channel 12 from flowing back into the first chamber 110 and the second chamber 120 through the gap between the main body 10 and the partition plate 20 , ensuring the effectiveness of drainage and preventing the evaporator 200 from condensing
  • the evaporator 300 is soaked by the condensed water, which is beneficial to improve the heat exchange efficiency of the evaporator 200 and the condenser 300 .
  • the liquid drain groove 11 is provided on the inner surface of the bottom wall of the main body 10, and the partition plate 20 cooperates with the main body 10 to define the liquid drain channel 12, so that the liquid drain channel 12 is defined.
  • 12 is integrally formed in the air duct shell 100, which effectively avoids leakage of condensed water and gas leakage, which is beneficial to improve the drying efficiency of the dryer, and the air duct shell 100 has a simple structure, is easy to process, and prevents the backflow of condensed water.
  • the body 10 may be a foamed member such as foamed plastic, foamed rubber, or the like. Therefore, it is beneficial to improve the thermal insulation effect of the air duct shell 100 and at the same time, it is beneficial to reduce the weight of the air duct shell 100 .
  • the body 10 may include an upper casing and a lower casing, wherein the inner surface of the bottom wall of the lower casing has a liquid drainage groove 11 and a liquid guiding groove 13 , and the partition 20 and the lower casing define a drainage groove 11 and a liquid guiding groove 13 .
  • Liquid channel 12 In order to facilitate the illustration of the internal structures such as the drainage channel 12 and the liquid guiding groove 13 of the air duct housing 100 , only the lower casing is shown in FIGS. 1-3 , and the upper casing is not shown.
  • the applicant has researched and found that when the dryer runs for a long time, although there is a filter to filter the dander or clothes generated during the drying process of the clothes, the small clothes or dander cannot avoid entering the air duct. After entering the air duct, small clothes or dander will accumulate on the front end of the evaporator 200 for a long time. The accumulation of dander or clothes falling on the liquid guiding groove 13 or the partition plate 20 will block the liquid guiding groove 13 , so that the condensed water cannot flow into the liquid drainage channel 12 smoothly.
  • the bottom wall of the first chamber 110 is provided with a plurality of liquid guiding grooves 13 , and the plurality of liquid guiding grooves 13 are arranged along the airflow direction, wherein , at least one liquid guiding groove 13 is communicated with the drainage channel 12 through the liquid passage port 14 , and at least two adjacent liquid guiding grooves 13 are communicated through the communication port 15 .
  • the condensed water in the liquid guiding groove 13 can flow into the adjacent liquid guiding grooves 13 through the communication port 15 so as to smoothly pass through the adjacent liquid guiding grooves 13 Entering the liquid drain channel 12 reduces or avoids the reduction of the heat exchange capacity of the heat exchanger due to the blockage of the liquid guide groove 13, which is beneficial to ensure the performance of the whole machine, shorten the drying time of clothes, and reduce power consumption.
  • the air duct shell 100 for a clothes dryer According to the air duct shell 100 for a clothes dryer according to the embodiment of the present application, at least two adjacently arranged liquid guiding grooves 13 are communicated through the communication port 15, and after the whole machine is used for a long time, the accumulation of dander or debris can block the guiding After the liquid tank 13, the condensed water can flow into the adjacent liquid guiding tank 13 through the communication port 15, so as to be smoothly discharged into the liquid drainage channel 12 through the adjacent liquid guiding tank 13, effectively reducing or avoiding the increase of the condensed water level and causing the replacement of the liquid.
  • the heat exchange capacity of the heater is reduced, which is beneficial to improve the performance of the whole machine, reduce the drying time of clothes, and reduce power consumption.
  • two adjacent liquid guiding grooves 13 may be communicated through the communication port 15, so as to reduce the heat exchange caused by the blockage of the liquid guiding grooves 13.
  • the risk of reducing the heat exchange capacity of the heat exchanger; or as shown in FIG. 1 and FIG. 2, any two liquid guiding grooves 13 arranged adjacent to each other can be communicated through the communication port 15, so that when any liquid guiding groove 13 is blocked, the condensed water will be blocked.
  • the liquid can flow to the adjacent liquid-conducting grooves 13 through the communication port 15 for drainage, which greatly reduces the risk that the liquid-conducting grooves 13 are blocked and the heat exchange capacity of the heat exchanger is reduced.
  • any two liquid-conducting grooves 13 arranged adjacent to each other are communicated through at least one communication port 15 .
  • the communication effect of the two adjacent liquid guiding grooves 13 is good, and the condensed water can pass through the two guiding grooves from multiple positions.
  • the flow between the liquid tanks 13 effectively avoids the risk that the liquid guiding tank 13 is blocked and the heat exchange capacity of the heat exchanger is reduced.
  • the bottom wall of the first chamber 110 is provided with at least one leakage hole 21 , and the leakage hole 21 communicates with the first chamber 110 and the drainage channel 12 .
  • the condensed water can also flow directly from the first chamber 110 to the liquid drain channel 12 through the liquid leakage hole 21 to be discharged through the liquid drain channel 12 . Therefore, after the liquid guide groove 13 is blocked, when the condensed water cannot flow to the liquid discharge channel 12 through the liquid guide groove 13, it can be discharged through the liquid leakage hole 21, so as to avoid the water level of the condensed water rising and causing the heat exchanger to fail.
  • the reduced heat exchange capacity is beneficial to improve the performance of the whole machine and reduce the drying time of clothes.
  • the air duct shell 100 may be provided with the communication port 15 and the liquid leakage hole 21 at the same time, or only one of the communication port 15 and the liquid leakage hole 21 may be provided, which can reduce the There is a risk that the liquid conduit 13 is blocked leading to a reduction in the heat exchange capacity of the heat exchanger.
  • the two work together to avoid the reduction of the heat exchange capacity of the heat exchanger.
  • FIG. 1 and FIG. 2 there are multiple liquid leakage holes 21 , and the multiple liquid leakage holes 21 are arranged along the airflow direction, so that the multiple liquid leakage holes 21 can have a wider range in the airflow direction.
  • the discharge of condensed water is realized, and the efficiency of condensed water discharge is higher.
  • the number of liquid leakage holes 21 in FIGS. 1-3 is only for the purpose of illustration, and in other embodiments, the number of liquid leakage holes 21 may also be two, four or more, In other words, there are two or more liquid leakage holes 21 .
  • the leakage hole 21 is provided directly above the drainage channel 12 , and as shown in FIG. 2 , the leakage hole 21 is located between the liquid guide groove 13 and the first chamber 110 . between the side walls.
  • the leakage hole 21 is not easy to be blocked by dander or clothes, and after the liquid guiding groove 13 is blocked, the condensed water overflows from the liquid guiding groove 13 and can flow into the liquid leakage hole 21 more smoothly, and smoothly leak from the liquid leakage hole 21 to the liquid leakage hole 21.
  • the drainage channel 12 has higher drainage efficiency.
  • the partition plate 20 may be provided with a liquid leakage hole 21.
  • the liquid leakage hole 21 is directly connected to the liquid drainage channel 12. Connected, the liquid drainage is smoother, and on the other hand, the liquid leakage hole 21 is easier to process, which is beneficial to reduce the difficulty of the processing technology.
  • a part of the partition plate 20 forms the bottom wall of the first chamber 110
  • another part of the partition plate 20 forms the bottom wall of the second chamber 120
  • the separator 20 is provided with at least one leakage hole 21 which communicates with the drainage channel 12 .
  • the leakage hole 21 is formed on the bottom wall of the first chamber 110, that is, the leakage hole 21 is formed on a part of the partition plate 20, so that the condensation in the first chamber 110
  • the water can smoothly flow into the drainage channel 12 through the leakage hole 21, and the condensed water in the drainage channel 12 flows from the first chamber 110 to the direction of the second chamber 120, which is beneficial to avoid the inside of the drainage channel 12. of condensed water return.
  • the applicant's research has found that during the operation of the clothes dryer, the first chamber 110 and the second chamber 120 are under negative pressure, and the drainage channel 12 is communicated with the outside, so that the drainage channel 12 is at atmospheric pressure.
  • the condensed water flows along the drainage channel 12 (as shown by the arrows from front to back in the drainage channel 12 in FIG. 3 ) to the collector. sink or drain.
  • the condensed water will be sucked into the first chamber along the direction of the backflow water (as shown by the arrow from the back to the front in the drain channel 12 in FIG. 3 ).
  • the condensed water at the liquid passage 14 boils due to the large local pressure difference, and even enters the second chamber 120 .
  • the inhaled condensed water will affect the heat exchange efficiency of the heat exchanger, thereby affecting the performance of the whole machine, making the drying time longer and the energy consumption increase.
  • the plurality of liquid guiding grooves 13 include at least one first liquid guiding groove 131 and at least one second liquid guiding groove 132 .
  • the second liquid guiding groove 132 is located on the side of the first liquid guide groove 131 close to the second chamber 120 , that is, on the downwind side of the first liquid guide groove 131 .
  • the second chamber 120 is located on the downwind side of the first chamber 110 along the airflow direction
  • the plurality of liquid guide grooves 13 include the first liquid guide grooves 131 and the second liquid guide grooves 132 arranged along the airflow direction.
  • all the second liquid guiding grooves 132 are located near the second chambers of all the first liquid guiding grooves 131 . 120 side.
  • the air flow in the air duct housing 100 flows from the front to the back, the second chamber 120 is located at the rear side of the first chamber 110 , and the two second liquid guide grooves 132 are all located in three the rear side of the first liquid guide groove 131 .
  • the first liquid guiding groove 131 is communicated with the drainage channel 12 through the liquid passage 14
  • the second liquid guiding groove 132 is communicated with the drainage channel 12 through the first liquid guiding groove 131 . That is to say, the condensed water in the first liquid guiding groove 131 can be directly discharged into the liquid discharge channel 12 through the liquid passage 14, and the condensed water in the second liquid guiding groove 132 needs to flow to the first liquid guiding groove 131 first.
  • the re-channel is discharged into the drainage channel 12 through the liquid port 14 .
  • the condensed water returns due to the pressure difference between the inside and outside, under the limitation of the pressure difference, the returned condensed water will only return to the first liquid guiding groove 131 , and will not directly or indirectly return to the distance from the second chamber 120 .
  • the second liquid-conducting groove 132 is closer, thereby preventing the condensed water from entering the second chamber 120, ensuring the heat exchange efficiency of the condenser 300 in the second chamber 120, and solving the problem of the long drying time of the whole machine. , the problem of high energy consumption.
  • one end of the first liquid guide groove 131 close to the discharge channel 12 is communicated with the liquid discharge channel 12 through the liquid passage 14 , and the end of the second liquid guide groove 132 close to the discharge channel 12
  • One end of the liquid channel 12 is closed, and the middle portion of the second liquid guide groove 132 communicates with the liquid discharge channel 12 through the first liquid guide groove 131 .
  • the distance between the connection between the second liquid guide groove 132 and the first liquid guide groove 131 and the liquid passage port 14 is larger, so that even if the condensed water flows back into the first liquid guide groove 131 through the liquid passage port 14, it is not easy to enter the second liquid guide groove 131.
  • the liquid guiding groove 132 is formed to prevent the condensed water in the second liquid guiding groove 132 from overflowing due to excess, thereby preventing the condensed water from flowing into the second chamber 120 .
  • the middle of the second liquid guiding groove 132 is communicated with the liquid discharging channel 12 through the first liquid guiding groove 131” here means that the second liquid guiding groove 132 is not close to one end of the liquid guiding groove 12 or far away from the liquid discharging channel 12 through it.
  • the two ends of one end of the liquid drain channel 12 communicate with the first liquid guide groove 131 , but the region of the second liquid guide groove 132 excluding the two ends communicates with the liquid drain channel 12 through the first liquid guide groove 131 .
  • the two ends of the second liquid guide groove 132 are distributed perpendicular to the airflow direction, and the second liquid guide groove 132 has two side groove walls that are opposite to each other and spaced apart along the airflow direction.
  • the side wall of the second liquid guide groove 132 is provided with a communication port that communicates with the first liquid guide groove 131 .
  • the middle portion thus, the middle portion of the second liquid guiding groove 132 is communicated with the drainage channel 12 through the first liquid guiding groove 131 .
  • one end (eg, the right end shown in FIG. 2 ) of the first liquid guiding groove 131 extends to the side wall of the first chamber 110
  • the other end of the first liquid guiding groove 131 extends to the side wall of the first chamber 110
  • One end (such as the left end shown in FIG. 2 ) is communicated with the drainage channel 12 through the liquid passage 14
  • one end (such as the right end shown in FIG. 2 ) of the second liquid guiding groove 132 extends to the side of the first chamber 110
  • the second liquid guiding groove 132 is closed, and the middle part of the second liquid guiding groove 132 communicates with the first liquid guiding groove 131 through the communication port 15 .
  • One end of the first liquid guiding groove 131 and one end of the second liquid guiding groove 132 extend to the side wall of the first chamber 110 , so that the liquid guiding groove 13 can collect condensed water from a larger area, so that the first chamber 110
  • the condensed water in the inside flows to the drainage channel 12 in time, so as to prevent the water level of the condensed water in the first chamber 110 from rising and reducing the heat exchange efficiency of the heat exchanger.
  • the air duct shell 100 for a clothes dryer according to the embodiment of the present application, by setting the first liquid guiding groove 131 and the second liquid guiding groove 132, when the condensed water returns, it is difficult for the condensed water to enter the second liquid guiding groove 132. and the second chamber 120, effectively preventing the condenser 300 in the second chamber 120 from being soaked in water and reducing the heat exchange efficiency, improving the performance of the whole machine, making the drying time shorter and the energy consumption lower.
  • the liquid leakage hole 21 may be located just above the part of the liquid drainage channel 12 close to the first liquid guiding groove 131 .
  • the leakage hole 21 is located on the side of the part of the plurality of liquid guiding grooves 13 that is far away from the second chamber 120 and close to the drainage channel 12 , so that even if the condensed water flows back through the leakage hole 21 or It boils at the leak hole 21, and the condensed water in the backflow is not easy to enter the second liquid guide groove 132 and the second chamber 120, which further avoids the reduction of the heat exchange efficiency of the heat exchanger in the second chamber 120, and improves the performance of the whole machine. .
  • the ports 151 communicate with each other, so that the condensed water in the second liquid guiding grooves 132 can enter the adjacent first liquid guiding grooves 131 through the first communication ports 151 and be discharged into the drainage channel 12 through the first liquid guiding grooves 131 .
  • the plurality of second liquid guide grooves 132 are arranged along the airflow direction, and the first liquid guide groove 131 is one or more indivual.
  • the adjacently arranged first liquid guiding grooves 131 and the second liquid guiding grooves 132 are communicated through at least one first communication port 151
  • the two adjacent second liquid guiding grooves 132 are communicated through at least one second communication port 152 . .
  • the condensed water in the second liquid guiding groove 132 close to the second chamber 120 enters the second liquid guiding groove 132 adjacent to it and close to the first liquid guiding groove 131 through the second communication port 152, and the second liquid guiding groove 132 is adjacent to the second liquid guiding groove 132.
  • the condensed water in the second liquid guiding grooves 132 further enters the adjacent first liquid guiding grooves 131 through the first communication port 151 , and is discharged into the liquid drainage channel 12 through the first liquid guiding grooves 131 .
  • the two adjacent second communication ports 152 in the airflow direction are staggered in the length direction of the second liquid guide groove 132 . After the returned condensed water enters one of the second liquid guide grooves 132 , it is not easy to flow to the other second liquid guide grooves 132 through the second communication port 152 , thereby reducing the return of the condensed water from entering the second liquid guide groove 132 and the second cavity. Room 120 risk.
  • the three second liquid guiding grooves 132 can be arranged in the front-rear direction and extend in the left-right direction, connecting the front second liquid guiding groove 132 and the middle second liquid guiding groove 132
  • the second communication port 152, the second communication port 152 connecting the middle second liquid guiding groove 132 and the rear second liquid guiding groove 132, the two are staggered in the length direction (ie the left and right direction) of the second liquid guiding groove 132. , that is, the projections of the two along the airflow direction do not overlap at least partially.
  • the distances between the first communication port 151 and the second communication port 152 near the liquid discharge channel 12 and the liquid discharge channel 12 are gradually increased in the airflow direction, so that the The first communication port 151 and the second communication port 152 of the liquid drain channel 12 are distributed in a stepped manner, and keep a certain distance from the liquid drain channel 12.
  • the first liquid guide groove The condensed water in 131 is not easy to enter the adjacent second liquid guide groove 132 through the first communication port 151, and even if it enters the second liquid guide groove 132 through the first communication port 151, it is not easy to further enter through the second communication port 152.
  • the second liquid guiding groove 132 closer to the second chamber 120 effectively reduces the risk of condensed water entering the second chamber 120 and ensures the heat exchange efficiency of the condenser 300 in the second chamber 120 .
  • the two second liquid guiding grooves 132 are communicated through a second communication port 152 , and one second liquid guiding groove 132 is adjacent to an adjacent one.
  • the first liquid guide groove 131 is communicated through a first communication port 151 , and the distance between the first communication port 151 and the drain channel 12 is smaller than the distance between the second communication port 152 and the drain channel 12 .
  • there are three second liquid guiding grooves 132 and the second liquid guiding grooves 132 on the rear side and the second liquid guiding grooves 132 in the middle pass through a second communication port 152 (referred to as the second communication port 152 on the rear side).
  • the first liquid guide groove 131 is communicated through a first communication port 151, wherein the distances between the first communication port 151, the second communication port 152 on the front side and the second communication port 152 on the rear side and the drainage channel 12 are increased in sequence. . According to the above description, it will be understood by those skilled in the art that there are more second liquid guiding grooves 132 and more first communication ports 151 and second communication ports 152 .
  • first liquid guiding groove 131 there may be one first liquid guiding groove 131 , or as shown in FIG. 2 , there may be multiple first liquid guiding grooves 131 , and the plurality of first liquid guiding grooves 131 are arranged along the airflow direction, The two adjacently arranged first liquid guiding grooves 131 communicate with each other through at least one third communication port 153 . Therefore, when one of the first liquid guide grooves 131 is blocked by dander or clothes, the condensed water in the first liquid guide groove 131 can enter the adjacent first liquid guide groove 131 through the third communication port 153 , and further It is discharged to the drainage channel 12 to prevent the heat exchange efficiency of the heat exchanger from being reduced due to the blockage of the first liquid guiding groove 131 .
  • the adjacent third communication ports 153 in the airflow direction are staggered along the length direction of the first liquid guiding groove 131 .
  • the staggered third communication ports 153 can make the plurality of first liquid guiding grooves 131 communicate in a wider range, and the condensate water flow path is more complicated, which reduces the blocking of the adjacent third communication ports 153 in the airflow direction at the same time. the risk of draining the condensate more smoothly.
  • the three first liquid guiding grooves 131 can be arranged in the front-rear direction and extend in the left-right direction, connecting the front first liquid guiding groove 131 and the middle first liquid guiding groove 131
  • the third communication port 153 and the third communication port 153 connecting the middle first liquid guiding groove 131 and the rear first liquid guiding groove 131 are staggered in the length direction (ie the left and right direction) of the first liquid guiding groove 131 , that is, the projections of the two along the airflow direction do not overlap at least partially.
  • each liquid guide groove 13 extends perpendicular to the airflow direction, that is, the length direction of the liquid guide groove 13 is perpendicular to the airflow direction.
  • One end in the length direction of at least one liquid guiding groove 13 is communicated with the liquid drainage channel 12 through the liquid passing port 14 , so that the condensed water in the liquid guiding groove 13 can be discharged into the liquid discharging channel 12 through the liquid passing port 14 .
  • One side in the width direction of the two adjacent liquid guiding grooves 13 is communicated through the communication port 15, so that when one of the liquid guiding grooves 13 is blocked by dander or clothes, the condensed water can enter the adjacent guiding groove through the communication port 15.
  • the liquid tanks 13 are arranged side by side into the liquid discharge channel 12 to reduce or avoid the influence on the heat exchange efficiency of the heat exchanger.
  • the plurality of liquid guiding grooves 13 includes a first liquid guiding groove 131 and a second liquid guiding groove 132
  • the first liquid guiding groove 131 and the second liquid guiding groove 132 are respectively perpendicular to The airflow direction extends, and the ends of the first liquid guiding groove 131 and the second liquid guiding groove 132 away from the liquid discharge channel 12 extend to the side wall of the air duct shell 100, so that the first liquid guiding groove 131 and the second liquid guiding groove 131 and the second liquid guiding groove
  • the 132 can more fully collect the condensed water in the first chamber 110, and smoothly guide the collected condensed water to the liquid drain channel 12, thereby improving the efficiency of draining the condensed water.
  • the liquid discharge channel 12 extends along the airflow direction, and at least one liquid guide groove 13 passes through the liquid passage 14 and the liquid inlet end of the liquid discharge channel 12 (for example, as shown in FIG. 3 )
  • the first liquid guide groove 131 communicates with the liquid inlet end of the liquid discharge channel 12 through the liquid passage 14 . After the condensed water enters the liquid discharge channel 12 through the liquid passage 14, it flows along the airflow direction to be discharged to the water collecting tank or the outside.
  • the bottom wall of the air duct shell 100 is provided with a blocking rib 30 , and the blocking rib 30 separates the first chamber 110 and the second chamber 120 .
  • the blocking ribs 30 with a certain height can prevent the condensed water returning to the first chamber 110 from rolling through, and the condensed water is completely blocked in the first chamber 110 to ensure the heat exchange efficiency of the condenser 300 in the second chamber 120 , to solve the problems of long drying time and high energy consumption of the whole machine.
  • both ends of the blocking rib 30 are respectively connected to two side walls of the air duct shell 100 that are opposite to each other.
  • both ends of the blocking rib 30 are The left and right side walls shown are connected.
  • the top of the barrier ribs 30 is lower than the heat exchange tubes of the evaporator 200 and/or the condenser 300 close to the bottom wall of the air duct shell 100.
  • the barrier ribs 30 can effectively block condensation.
  • the effect of water entering the second chamber 120 reduces the resistance of the barrier ribs 30 to the airflow, so that the airflow in the first chamber 110 can smoothly cross the barrier ribs 30 as shown by the arrows in FIG. 3 and enter the second chamber.
  • the chamber 120 and the blocking ribs 30 basically have no effect on the heat exchange efficiency between the heat exchange tubes of the evaporator 200 and/or the condenser 300 and the air, which ensures the heat exchange efficiency.
  • the air duct housing 100 includes the main body 10 and the partition plate 20, as shown in FIG. 1 and FIG. 2, the inner surface of the bottom wall of the main body 10 has a first blocking rib 31, and the upper surface of the partition plate 20 has a second blocking rib
  • the rib 32, the first blocking rib 31 and the second blocking rib 32 are connected to form the blocking rib 30, the blocking rib 30 separates the first chamber 110 and the second chamber 120, and the blocking rib 30 is easier to process.
  • the first blocking rib 31 can be integrally formed with the bottom wall of the main body 10
  • the second blocking rib 32 can be integrally formed with the partition plate 20 , which not only improves the bottom wall of the blocking rib 30 and the air duct shell 100 The reliability and tightness of the wall connection are improved, and the installation of the blocking ribs 30 can be realized at the same time as the partition plate 20 is installed, which reduces the assembly process.
  • the second barrier ribs 32 include one or more, and the plurality of second barrier ribs 32 are arranged at intervals along the width direction thereof, that is, a plurality of second barrier ribs 32 are arranged at intervals along the arrangement direction of the first chamber 110 and the second chamber 120 .
  • a certain gap is formed between two adjacent second blocking ribs 32 , so that a plurality of second blocking ribs 32 form a multi-layer blocking barrier. If the water level of the condensed water in the first chamber 110 is higher than the height of the second barrier ribs 32 , the condensed water will flow to the two second barriers after passing the first second barrier ribs 32 near the first chamber 110 . The gap between the ribs 32 is blocked by the second second blocking rib 32. When the height of the blocking rib 30 is constant, a better effect of blocking condensation water can be achieved.
  • the clothes dryer according to the embodiment of the present application includes the air duct housing 100 for the clothes dryer according to the embodiment of the present application. Since the air duct housing 100 for a clothes dryer according to the embodiment of the present application has the above-mentioned beneficial technical effects, according to the clothes dryer according to the embodiment of the present application, the drainage groove 11 is provided on the inner surface of the bottom wall of the main body 10 , the one-piece partition 20 cooperates with the body 10 to define the drainage channel 12, so that the drainage channel 12 is integrally formed in the air duct shell 100, which effectively avoids leakage of condensed water and gas leakage, which is beneficial to improve the drying efficiency of the dryer. Drying efficiency is high, and the structure of the air duct shell 100 is simple, easy to process, and prevents the backflow of condensed water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Detail Structures Of Washing Machines And Dryers (AREA)

Abstract

一种用于干衣机的风道壳(100)和干衣机,风道壳(100)具有排液通道(12)、用于安装蒸发器(200)的第一腔室(110)和用于安装冷凝器(300)的第二腔室(120),第二腔室(120)沿气流方向位于第一腔室(110)的下风侧,第一腔室(110)的底壁设有沿气流方向排布的第一导液槽(131)和第二导液槽(132),第二导液槽(132)位于第一导液槽(131)的下风侧,其中,第一导液槽(131)的靠近排液通道(12)的一端通过过液口(14)与排液通道(12)连通,第二导液槽(132)的靠近排液通道(12)的一端封闭且第二导液槽(132)的中部通过第一导液槽(131)与排液通道(12)连通。

Description

用于干衣机的风道壳和干衣机
相关申请的交叉引用
本申请要求无锡小天鹅电器有限公司于2020年08月21日提交的、中国专利申请号为“202010852442.4”的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及衣物处理设备技术领域,尤其是涉及一种用于干衣机的风道壳和干衣机。
背景技术
干衣机在运行过程中,排液通道和换热器安装腔存在压力差,冷凝水会顺着回流水方向吸入换热器安装腔,吸入的冷凝水会影响换热器的换热效率,进而影响整机性能,使烘干时间变长,能耗增加。
发明内容
本申请旨在至少解决现有技术中存在的技术问题之一。为此,本申请提出一种用于干衣机的风道壳,能够避免冷凝水回流至第二腔室,保证了冷凝器的热交换效率。
本申请还提出了一种具有上述用于干衣机的风道壳的干衣机。
根据本申请实施例的用于干衣机的风道壳,所述风道壳具有排液通道、用于安装蒸发器的第一腔室和用于安装冷凝器的第二腔室,所述第二腔室沿气流方向位于所述第一腔室的下风侧,所述第一腔室的底壁设有沿气流方向排布的第一导液槽和第二导液槽,所述第二导液槽位于所述第一导液槽的下风侧,其中,所述第一导液槽的靠近所述排液通道的一端通过过液口与所述排液通道连通,所述第二导液槽的靠近所述排液通道的一端封闭且所述第二导液槽的中部通过所述第一导液槽与所述排液通道连通。
根据本申请实施例的用于干衣机的风道壳,通过设置第一导液槽和第二导液槽,使发生冷凝水回流时,冷凝水不易进入第二导液槽和第二腔室,有效避免第二腔室内的冷凝器浸水而降低换热效率,提高了整机的性能,使烘干时间更短、能耗更低。
在本申请的一些实施例中,所述第二导液槽为一个,所述第二导液槽与相邻的所述第一导液槽通过至少一个第一连通口连通。
在本申请的一些实施例中,所述第二导液槽为多个,多个所述第二导液槽沿所述气流方向排布,其中,相邻设置的所述第一导液槽和所述第二导液槽通过至少一个第一连通口连通,相邻设置的两个所述第二导液槽通过至少一个第二连通口连通。
在本申请的一些实施例中,在所述气流方向上相邻的两个所述第二连通口在所述第二导液槽的长度方向错开设置。
在本申请的一些实施例中,靠近所述排液通道的所述第一连通口和所述第二连通口分别与所述排液通道的距离在所述气流方向上逐渐增大。
在本申请的一些实施例中,所述第一导液槽为一个;或者,所述第一导液槽为多个,多个所述第一导液槽沿所述气流方向排布,相邻设置的两个所述第一导液槽通过至少一个第三连通口连通。
在本申请的一些实施例中,在所述气流方向上相邻的所述第三连通口沿所述第一导液槽的长度方向错开设置。
在本申请的一些实施例中,所述风道壳的底壁设有阻挡筋,所述阻挡筋将所述第一腔室和所述第二腔室隔开。
在本申请的一些实施例中,所述阻挡筋的两端分别与所述风道壳的彼此相对的两个侧壁相连。
在本申请的一些实施例中,所述阻挡筋的顶部低于所述蒸发器和/或所述冷凝器的靠近所述风道壳的底壁的换热管。
在本申请的一些实施例中,所述第一导液槽和所述第二导液槽分别垂直于所述气流方向延伸,所述第一导液槽和所述第二导液槽的远离所述排液通道的一端延伸至所述风道壳的侧壁。
在本申请的一些实施例中,所述排液通道沿所述气流方向延伸,所述第一导液槽通过所述过液口与所述排液通道的进液端连通。
根据本申请实施例的干衣机包括根据本申请实施例的用于干衣机的风道壳。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请实施例的风道壳的部分结构示意图;
图2是根据本申请实施例的风道壳、蒸发器和冷凝器的装配结构示意图;
图3是图2沿A-A线所示方向的剖视图。
附图标记:
风道壳100;第一腔室110;第二腔室120;蒸发器200;冷凝器300;
本体10;排液凹槽11;排液通道12;导液槽13;第一导液槽131;第二导液槽132;过液口14;连通口15;第一连通口151;第二连通口152;第三连通口153;
隔板20;漏液孔21;
阻挡筋30;第一阻挡筋31;第二阻挡筋32。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面参考附图描述根据本申请实施例的用于干衣机的风道壳100。
如图1-图3所示,根据本申请实施例的用于干衣机的风道壳100具有第一腔室110和第二腔室120,其中,第一腔室110用于安装蒸发器200,第二腔室120用于安装冷凝器300。风道壳100包括:本体10和隔板20。
具体而言,本体10的底壁内表面具有排液凹槽11以及导液槽13,隔板20盖封排液凹槽11的槽口以与本体10限定出排液通道12,隔板20实现水汽分离,隔板20上方是内循环风,隔板20下方流经和储存冷凝水。导液槽13与第一腔室110以及排液通道12连通。
如图1-图3所示,干衣机工作产生的湿热空气能够进入风道壳100的第一腔室110和第二腔室120;在与第一腔室110内的蒸发器200进行热交换后,湿热空气中的水冷凝成冷凝水,使湿热空气变为干燥空气;干燥空气与第二腔室120内的冷凝器300进行热交换后,干燥空气变为热空气;热空气能够从风道壳100的风道出口排出,进而进入干衣机的盛衣腔内对衣物进行烘干。其中,第一腔室110内蒸发器200工作产生的冷凝水能够在重力作用下进入导液槽13,进而能够在导液槽13的导流作用下流至排液通道12,以通过排液通道12排出。
在相关技术中,干衣机的底座组件包括基座和两器安装腔体,其中基座设有排水道,两器安装腔体设有与排水道连通的镂空结构,蒸发器工作产生的冷凝水通过镂空结构流至排水 道。上述结构中,两器安装腔体与基座之间存在密封失效的风险,导致冷凝水泄漏或者安装腔内的气流泄漏的风险,不仅影响排水效果,而且不利于安装腔体内气体的热交换效率,不利于两器安装腔体和风道的保温,从而影响干衣机的烘干效率。
而在本申请的实施例中,通过隔板20盖封本体10的底壁上排液凹槽11的槽口,以限定出排液通道12,使排液通道12一体形成于风道壳100内,不存在两器安装腔体和基座之间密封失效的问题,从而有效避免排液通道12内的冷凝水泄漏而影响干衣机的其他部件的使用安全,也避免第一腔室110和第二腔室120内的气体泄漏而影响干衣机的烘干效率。
此外,在本申请的一些实施例中,隔板20为一体成型件,不仅使风道壳100的结构更简单,更易于加工和装配,而且可以减少本体10与隔板20之间的配合缝隙,从而避免排液通道12内的冷凝水通过本体10与隔板20之间的缝隙回流至第一腔室110和第二腔室120内,保证了排水的有效性,避免蒸发器200和冷凝器300被冷凝水浸泡,有利于提高蒸发器200和冷凝器300的换热效率。
根据本申请实施例的用于干衣机的风道壳100,通过本体10的底壁内表面设置排液凹槽11,隔板20与本体10配合限定出排液通道12,使排液通道12一体形成于风道壳100内,有效避免冷凝水泄漏,也避免气体泄漏,有利于提高干衣机的烘干效率,且风道壳100的结构简单,易于加工且防止冷凝水回流。
在一些实施例中,本体10可以为泡沫塑料、泡沫橡胶等发泡件。由此,有利于提高风道壳100的保温效果,同时有利于降低风道壳100的重量。
在一些实施例中,本体10可以包括上壳体和下壳体,其中,下壳体的底壁内表面具有排液凹槽11和导液槽13,隔板20与下壳体限定出排液通道12。为了便于示出风道壳100的排液通道12、导液槽13等内部结构,图1-图3中仅示出了下壳体而未示出上壳体。
申请人研究发现,干衣机长时间运行,虽然有过滤网过滤衣物烘干过程中产生的毛屑或衣物,但小的衣物或毛屑还是无法避免进入风道。进入风道后,小的衣物或毛屑会在蒸发器200的前端面长时间聚集,若不清理会形成大的毛屑或衣物,然后落入导液槽13或隔板20上。落在导液槽13或隔板20上的毛屑或衣物堆积会堵塞导液槽13,导致冷凝水无法顺利流入排液通道12内。并且,导液槽13被堵塞后,冷凝水的水位会升高,浸泡换热器(包括蒸发器200和冷凝器300)导致换热能力降低,影响整机性能,衣物烘干时间加长,耗电增加。
因此,在本申请的一些实施例中,如图1和图2所示,第一腔室110的底壁设有多个导液槽13,多个导液槽13沿气流方向排布,其中,至少一个导液槽13与排液通道12通过过液口14连通,至少两个相邻设置的导液槽13通过连通口15连通。
若其中一个导液槽13被堆积的毛屑或衣物堵塞,该导液槽13内的冷凝水可以通过连通 口15流入相邻的导液槽13内,以通过相邻的导液槽13顺畅进入排液通道12,降低或者避免因导液槽13被堵塞导致换热器热交换能力降低,有利于保证整机的性能,缩短衣物的烘干时间,降低耗电量。
根据本申请实施例的用于干衣机的风道壳100,通过至少两个相邻设置的导液槽13通过连通口15连通,在整机长时间使用后毛屑或杂物堆积堵塞导液槽13后,冷凝水可以通过连通口15流入相邻的导液槽13,以通过相邻的导液槽13顺利排入排液通道12内,有效降低或者避免冷凝水水位升高导致换热器的换热能力降低,有利于提高整机性能,降低衣物烘干时间,降低耗电量。
需要说明的是,在本申请的实施例中,多个导液槽13中,可以其中两个相邻设置的导液槽13通过连通口15连通,以降低导液槽13被堵塞导致换热器热交换能力降低的风险;或者可以如图1和图2所示任意相邻设置的两个导液槽13通过连通口15连通,以使任意一个导液槽13被堵塞时,冷凝水都能够通过连通口15流向相邻的导液槽13以进行排液,大幅度降低导液槽13被堵塞导致换热器热交换能力降低的风险。
此外,继续参照图1和图2所示,任意相邻设置的两个导液槽13通过至少一个连通口15连通。其中,任意相邻设置的两个导液槽13通过多个连通口15连通的实施例中,使相邻两个导液槽13的连通效果好,冷凝水能够从多个位置在两个导液槽13之间流动,有效避免导液槽13被堵塞导致换热器热交换能力降低的风险。
根据本申请的一些实施例,如图1-图3所示,第一腔室110的底壁设有至少一个漏液孔21,漏液孔21连通第一腔室110和排液通道12。冷凝水还可以通过漏液孔21直接由第一腔室110流至排液通道12,以通过排液通道12排出。由此,在导液槽13被堵塞后,冷凝水无法通过导液槽13流至排液通道12时,可以通过漏液孔21排出,以避免冷凝水的水位升高而导致换热器的换热能力降低,有利于提高整机的性能,降低衣物烘干时间。
需要说明的是,在本申请的实施例中,风道壳100可以同时设置连通口15和漏液孔21,也可以仅设置连通口15和漏液孔21中的一种,这都可以降低导液槽13被堵塞导致换热器热交换能力降低的风险。而同时设置连通口15和漏液孔21的实施例中,二者协同作用,避免换热器热交换能力降低的效果更佳。
在一些实施例中,如图1和图2所示,漏液孔21为多个,多个漏液孔21沿气流方向排布,使多个漏液孔21能够从气流方向上更大范围实现冷凝水的排出,冷凝水排出效率更高。需要说明的是,图1-图3中漏液孔21为三个仅用于示例说明的目的,在另一些实施例中,漏液孔21还可以为两个、四个或者更多个,换言之,漏液孔21为两个或两个以上。
根据本申请的一些实施例,如图3所示,漏液孔21设于排液通道12的正上方,如图2所示,漏液孔21位于导液槽13和第一腔室110的侧壁之间。漏液孔21不易被毛屑或衣物 堵塞,且在导液槽13被堵塞之后,冷凝水由导液槽13溢出能够更顺畅地流入漏液孔21,并顺畅地由漏液孔21漏至排液通道12,排液效率更高。
在风道壳100包括本体10和隔板20的实施例中,如图1-图3所示,隔板20可以设有漏液孔21,一方面使漏液孔21直接与排液通道12连通,排液更顺畅,另一方面漏液孔21加工更容易,有利于降低加工工艺难度。
在本申请的一些实施例中,如图1-图3所示,隔板20的一部分形成第一腔室110的底壁,且隔板20的另一部分形成第二腔室120的底壁,隔板20设有至少一个与排液通道12连通的漏液孔21。以使排液通道12的延伸长度更长,有利于避免排液通道12内的冷凝水回流。
此外,继续参照图1-图3所示,漏液孔21形成在第一腔室110的底壁,即漏液孔21形成在隔板20的一部分上,使第一腔室110内的冷凝水能够顺利地通过漏液孔21流至排液通道12内,且排液通道12内的冷凝水由第一腔室110向第二腔室120的方向流动,有利于避免排液通道12内的冷凝水回流。
申请人研究发现,干衣机在运行过程中,第一腔室110和第二腔室120内为负压,而排液通道12与外界连通,使排液通道12内为大气压。运行过程中湿热空气经过蒸发器200将湿热空气中的水汽冷凝成冷凝水后,冷凝水沿排液通道12(如图3中排液通道12内由前向后的箭头所示)流到集水槽中或者排出。而实际过程中因排液通道12和第一腔室110存在内外压力差,冷凝水会顺着回流水方向(如图3中排液通道12内由后向前的箭头所示)吸入第一腔室110,过液口14处冷凝水因局部压差大而沸腾,甚至进入第二腔室120。吸入的冷凝水会影响换热器的换热效率,进而影响整机性能,使烘干时间变长,能耗增加。
因此,在本申请的一些实施例中,如图1和图2所示,多个导液槽13包括至少一个第一导液槽131和至少一个第二导液槽132,第二导液槽132位于第一导液槽131的靠近第二腔室120的一侧,即位于第一导液槽131的下风侧。换言之,第二腔室120沿气流方向位于第一腔室110的下风侧,多个导液槽13包括沿气流方向排布的第一导液槽131和第二导液槽132。再换言之,第二导液槽132为一个或者多个,且第一导液槽131为一个或者多个时,全部第二导液槽132位于全部第一导液槽131的靠近第二腔室120的一侧。例如在图1和图2所示的示例中,风道壳100内气流从前向后流动,第二腔室120位于第一腔室110的后侧,两个第二导液槽132全部位于三个第一导液槽131的后侧。
其中,第一导液槽131通过过液口14与排液通道12连通,且第二导液槽132通过第一导液槽131与排液通道12连通。也就是说,第一导液槽131内的冷凝水可以直接通过过液口14排至排液通道12内,第二导液槽132内的冷凝水需要先流至第一导液槽131,再通道过液口14排至排液通道12内。同样,若由于内外压力差发生冷凝水回流,在压力差的限制 下,回流的冷凝水也只是回流至第一导液槽131内,而不会直接或者间接回流至与第二腔室120距离较近的第二导液槽132内,由此可以避免回流的冷凝水进入第二腔室120,保证了第二腔室120内冷凝器300的热交换效率,解决了整机烘干时间长、能耗高的问题。
例如,在如图1和图2所示的示例中,第一导液槽131的靠近排液通道12的一端通过过液口14与排液通道12连通,第二导液槽132的靠近排液通道12的一端封闭,且第二导液槽132的中部通过第一导液槽131与排液通道12连通。使第二导液槽132与第一导液槽131的连通处与过液口14的间距更大,即使冷凝水通过过液口14回流至第一导液槽131内,也不易进入第二导液槽132,从而避免第二导液槽132内的冷凝水过多而溢出,进而避免冷凝水流至第二腔室120内。
需要说明的是,这里“第二导液槽132的中部通过第一导液槽131与排液通道12连通”是指,第二导液槽132并非通过其靠近排液通道12的一端或者远离排液通道12的一端这两个端部与第一导液槽131连通,而是第二导液槽132的除去两个端部的区域通过第一导液槽131与排液通道12连通。例如,在一些具体实施例中,第二导液槽132的两个端部垂直于气流方向分布,且第二导液槽132具有沿气流方向彼此相对且间隔开的两个侧槽壁,第二导液槽132的侧槽壁设有与第一导液槽131连通的连通口,该连通口位于第二导液槽132的两个端部之间,即位于第二导液槽132的中部,由此,第二导液槽132的中部通过第一导液槽131与排液通道12连通。
在一些实施例中,参照图2所示,第一导液槽131的一端(例如图2中所示的右端)延伸至第一腔室110的侧壁,且第一导液槽131的另一端(例如图2中所示的左端)通过过液口14与排液通道12连通,第二导液槽132的一端(例如图2中所示的右端)延伸至第一腔室110的侧壁,且第二导液槽132的另一端(例如图2中所示的左端)封闭,第二导液槽132的中部通过连通口15与第一导液槽131连通。第一导液槽131的一端和第二导液槽132的一端延伸至第一腔室110的侧壁,使导液槽13能够从更大范围内收集冷凝水,从而使第一腔室110内的冷凝水及时流至排液通道12,避免第一腔室110内冷凝水的水位升高而降低换热器的换热效率。
根据本申请实施例的用于干衣机的风道壳100,通过设置第一导液槽131和第二导液槽132,使发生冷凝水回流时,冷凝水不易进入第二导液槽132和第二腔室120,有效避免第二腔室120内的冷凝器300浸水而降低换热效率,提高了整机的性能,使烘干时间更短、能耗更低。
在包括漏液孔21的实施例中,如图1和图2所示,漏液孔21可以位于排液通道12的靠近第一导液槽131的部分的正上方。换言之,漏液孔21位于多个导液槽13中远离第二腔室120的部分导液槽13的靠近排液通道12的一侧,由此,即使冷凝水通过漏液孔21发生 回流或在漏液孔21处沸腾,回流的冷凝水也不易进入第二导液槽132和第二腔室120,进一步避免第二腔室120内的换热器热交换效率降低,提高了整机性能。
下面结合附图描述第一导液槽131和第二导液槽132的结构。
在一些实施例中,第二导液槽132为一个,第一导液槽131为一个或者多个,第二导液槽132和与其相邻的第一导液槽131通过至少一个第一连通口151连通,以使第二导液槽132内的冷凝水能够通过第一连通口151进入相邻的第一导液槽131,并通过第一导液槽131排至排液通道12内。
在另一些实施例中,如图1和图2所示,第二导液槽132为多个,多个第二导液槽132沿气流方向排布,第一导液槽131为一个或者多个。其中,相邻设置的第一导液槽131和第二导液槽132通过至少一个第一连通口151连通,相邻设置的两个第二导液槽132通过至少一个第二连通口152连通。以使靠近第二腔室120的第二导液槽132内的冷凝水通过第二连通口152进入与之相邻且靠近第一导液槽131的第二导液槽132内,而该第二导液槽132内的冷凝水进一步通过第一连通口151进入相邻的第一导液槽131,并通过第一导液槽131排至排液通道12内。
根据本申请的一些实施例,在气流方向上相邻的两个第二连通口152在第二导液槽132的长度方向错开设置。在回流的冷凝水进入其中一个第二导液槽132后,不易通过第二连通口152流向其他的第二导液槽132,从而降低回流的冷凝水进入第二导液槽132和第二腔室120的风险。以第二导液槽132为三个为例,三个第二导液槽132可以沿前后方向排布且沿左右方向延伸,连通前侧第二导液槽132与中间第二导液槽132的第二连通口152、连通中间第二导液槽132与后侧第二导液槽132的第二连通口152,二者在第二导液槽132的长度方向(即左右方向)错开设置,即二者沿气流方向的投影至少部分不重叠。
根据本申请的一些实施例,如图2所示,靠近排液通道12的第一连通口151和第二连通口152分别与排液通道12的距离在气流方向上逐渐增大,以使靠近排液通道12的第一连通口151和第二连通口152呈阶梯式分布,与排液通道12保持一定距离,即使发生冷凝水回流或者过液口14处冷凝水沸腾,第一导液槽131内的冷凝水也不易通过第一连通口151进入相邻的第二导液槽132,即使通过第一连通口151进入了第二导液槽132,也不易通过第二连通口152进一步进入更靠近第二腔室120的第二导液槽132,有效降低了冷凝水进入第二腔室120的风险,保证了第二腔室120内冷凝器300的热交换效率。
例如,在如图2所示的示例中,第二导液槽132为两个,两个第二导液槽132通过一个第二连通口152连通,其中一个第二导液槽132与相邻的第一导液槽131通过一个第一连通口151连通,该第一连通口151与排液通道12的距离小于第二连通口152与排液通道12的距离。在另一些实施例中,第二导液槽132为三个,后侧第二导液槽132与中间第二导液槽 132通过一个第二连通口152(称为后侧第二连通口152)连通,中间第二导液槽132与前侧第二导液槽132通过一个第二连通口152(称为前侧第二连通口152)连通,前侧第二导液槽132与相邻的第一导液槽131通过一个第一连通口151连通,其中,第一连通口151、前侧第二连通口152和后侧第二连通口152分别与排液通道12的距离依次增大。根据以上描述,第二导液槽132为更多个,第一连通口151和第二连通口152为更多的实施例对本领域技术人员而言是可以理解的。
根据本申请的一些实施例,第一导液槽131可以为一个,或者如图2所示,第一导液槽131可以为多个,多个第一导液槽131沿气流方向排布,相邻设置的两个第一导液槽131通过至少一个第三连通口153连通。由此,在其中一个第一导液槽131被毛屑或者衣物堵塞时,该第一导液槽131内的冷凝水可以通过第三连通口153进入相邻的第一导液槽131,进而排至排液通道12,防止因第一导液槽131被堵塞导致换热器热交换效率降低。
在本申请的一些实施例中,如图1和图2所示,在气流方向上相邻的第三连通口153沿第一导液槽131的长度方向错开设置。错开设置的第三连通口153可以使多个第一导液槽131在更大范围内实现连通,冷凝水流动路径更复杂,降低了在气流方向上相邻的第三连通口153同时被堵塞的风险,排出冷凝水更顺畅。以第一导液槽131为三个为例,三个第一导液槽131可以沿前后方向排布且沿左右方向延伸,连通前侧第一导液槽131与中间第一导液槽131的第三连通口153、连通中间第一导液槽131与后侧第一导液槽131的第三连通口153,二者在第一导液槽131的长度方向(即左右方向)错开设置,即二者沿气流方向的投影至少部分不重叠。
根据本申请的一些实施例,如图1和图2所示,每个导液槽13垂直于气流方向延伸,即导液槽13的长度方向垂直于气流方向。至少一个导液槽13的长度方向的一端通过过液口14与排液通道12连通,以使导液槽13内的冷凝水能够通过过液口14排至排液通道12内。相邻设置的两个导液槽13的宽度方向的一侧通过连通口15连通,以在其中一个导液槽13被毛屑或衣物堵塞时,冷凝水能够通过连通口15进入相邻的导液槽13并排至排液通道12内,降低或者避免对换热器的换热效率的影响。
例如,在多个导液槽13包括第一导液槽131和第二导液槽132的实施例中,如图2所示,第一导液槽131和第二导液槽132分别垂直于气流方向延伸,且第一导液槽131和第二导液槽132的远离排液通道12的一端延伸至风道壳100的侧壁,以使第一导液槽131和第二导液槽132能够更充分收集第一腔室110内的冷凝水,并顺利将收集的冷凝水导流至排液通道12内,提高了排冷凝水的效率。
根据本申请的一些实施例,如图3所示,排液通道12沿气流方向延伸,至少一个导液槽13通过过液口14与排液通道12的进液端(例如图3中所示的前端)连通,例如第一导 液槽131通过过液口14与排液通道12的进液端连通。冷凝水通过过液口14进入排液通道12后,沿气流方向流动以排出至集水槽或者外界,排液通道12的延伸长度更长,有利于解决冷凝水回流的问题。
根据本申请的一些实施例,如图1-图3所示,风道壳100的底壁设有阻挡筋30,阻挡筋30将第一腔室110和第二腔室120隔开。具有一定高度的阻挡筋30可以阻止回流至第一腔室110的冷凝水翻腾通过,冷凝水被彻底阻挡在第一腔室110内,确保第二腔室120内的冷凝器300的热交换效率,解决整机烘干时间长、能耗高的问题。
在本申请的一些实施例中,如图2所示,阻挡筋30的两端分别与风道壳100的彼此相对的两个侧壁相连,例如阻挡筋30的两端分别与图2中所示的左侧壁和右侧壁相连。以使阻挡筋30能够从更大范围内对冷凝水进行阻挡,在导液槽13堵塞或者回流的冷凝水较多导致第一腔室110内垂直于气流方向冷凝水分布范围较大时,阻挡筋30仍能起到良好的阻挡效果,确保第二腔室120内的冷凝器300的热交换效率。
根据本申请的一些实施例,阻挡筋30的顶部低于蒸发器200和/或冷凝器300的靠近风道壳100的底壁的换热管,一方面阻挡筋30能够起到良好的阻挡冷凝水进入第二腔室120的效果,另一方面降低阻挡筋30对气流的阻力,使第一腔室110内的气流能够如图3中箭头所示顺利跨过阻挡筋30,进入第二腔室120,阻挡筋30对蒸发器200和/或冷凝器300的换热管与空气的换热效率基本无影响,保证了热交换效率。
在风道壳100包括本体10和隔板20的实施例中,如图1和图2所示,本体10的底壁内表面具有第一阻挡筋31,隔板20的上表面具有第二阻挡筋32,第一阻挡筋31和第二阻挡筋32相连以构成阻挡筋30,阻挡筋30将第一腔室110和第二腔室120分隔开,阻挡筋30加工更容易。例如,在一些实施例中,第一阻挡筋31可以与本体10的底壁一体加工成型,第二阻挡筋32可以与隔板20一体加工成型,不仅提高阻挡筋30与风道壳100的底壁连接的可靠性和密封性,而且在安装隔板20的同时即可实现阻挡筋30的安装,减少了装配工序。
在本申请的一些实施例中,如图1-图3所示,第二阻挡筋32包括一个或者多个,多个第二阻挡筋32沿其宽度方向间隔布置,即多个第二阻挡筋32沿第一腔室110和第二腔室120的排布方向间隔布置。相邻两个第二阻挡筋32之间形成有一定间隙,以使多个第二阻挡筋32形成多层阻挡屏障。若第一腔室110内的冷凝水的水位高于第二阻挡筋32的高度,冷凝水越过靠近第一腔室110的第一个第二阻挡筋32后,会流至两个第二阻挡筋32之间的间隙,并被第二个第二阻挡筋32阻挡,在阻挡筋30高度一定时能够实现更佳的阻挡冷凝水效果。
根据本申请实施例的干衣机包括根据本申请实施例的用于干衣机的风道壳100。由于根 据本申请实施例的用于干衣机的风道壳100具有上述有益的技术效果,因此,根据本申请实施例的干衣机,通过本体10的底壁内表面设置排液凹槽11,一体件隔板20与本体10配合限定出排液通道12,使排液通道12一体形成于风道壳100内,有效避免冷凝水泄漏,也避免气体泄漏,有利于提高干衣机的烘干效率,且风道壳100的结构简单,易于加工且防止冷凝水回流。
根据本申请实施例的干衣机和风道壳100的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。

Claims (13)

  1. 一种用于干衣机的风道壳,其中,所述风道壳具有排液通道、用于安装蒸发器的第一腔室和用于安装冷凝器的第二腔室,所述第二腔室沿气流方向位于所述第一腔室的下风侧,所述第一腔室的底壁设有沿气流方向排布的第一导液槽和第二导液槽,所述第二导液槽位于所述第一导液槽的下风侧,
    其中,所述第一导液槽的靠近所述排液通道的一端通过过液口与所述排液通道连通,所述第二导液槽的靠近所述排液通道的一端封闭且所述第二导液槽的中部通过所述第一导液槽与所述排液通道连通。
  2. 根据权利要求1所述的用于干衣机的风道壳,其中,所述第二导液槽为一个,所述第二导液槽与相邻的所述第一导液槽通过至少一个第一连通口连通。
  3. 根据权利要求1所述的用于干衣机的风道壳,其中,所述第二导液槽为多个,多个所述第二导液槽沿所述气流方向排布,
    其中,相邻设置的所述第一导液槽和所述第二导液槽通过至少一个第一连通口连通,相邻设置的两个所述第二导液槽通过至少一个第二连通口连通。
  4. 根据权利要求3所述的用于干衣机的风道壳,其中,在所述气流方向上相邻的两个所述第二连通口在所述第二导液槽的长度方向错开设置。
  5. 根据权利要求3或4所述的用于干衣机的风道壳,其中,靠近所述排液通道的所述第一连通口和所述第二连通口分别与所述排液通道的距离在所述气流方向上逐渐增大。
  6. 根据权利要求1-5中任一项所述的用于干衣机的风道壳,其中,
    所述第一导液槽为一个;或者,
    所述第一导液槽为多个,多个所述第一导液槽沿所述气流方向排布,相邻设置的两个所述第一导液槽通过至少一个第三连通口连通。
  7. 根据权利要求6所述的用于干衣机的风道壳,其中,在所述气流方向上相邻的所述第三连通口沿所述第一导液槽的长度方向错开设置。
  8. 根据权利要求1-7中任一项所述的用于干衣机的风道壳,其中,所述风道壳的底壁设有阻挡筋,所述阻挡筋将所述第一腔室和所述第二腔室隔开。
  9. 根据权利要求8所述的用于干衣机的风道壳,其中,所述阻挡筋的两端分别与所述风道壳的彼此相对的两个侧壁相连。
  10. 根据权利要求8或9所述的用于干衣机的风道壳,其中,所述阻挡筋的顶部低于所述蒸发器和/或所述冷凝器的靠近所述风道壳的底壁的换热管。
  11. 根据权利要求1-10中任一项所述的用于干衣机的风道壳,其中,所述第一导液槽 和所述第二导液槽分别垂直于所述气流方向延伸,所述第一导液槽和所述第二导液槽的远离所述排液通道的一端延伸至所述风道壳的侧壁。
  12. 根据权利要求1-11中任一项所述的用于干衣机的风道壳,其中,所述排液通道沿所述气流方向延伸,所述第一导液槽通过所述过液口与所述排液通道的进液端连通。
  13. 一种干衣机,其中,包括根据权利要求1-12中任一项所述的用于干衣机的风道壳。
PCT/CN2020/122936 2020-08-21 2020-10-22 用于干衣机的风道壳和干衣机 WO2022036842A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010852442.4 2020-08-21
CN202010852442.4A CN114075770B (zh) 2020-08-21 2020-08-21 用于干衣机的风道壳和干衣机

Publications (1)

Publication Number Publication Date
WO2022036842A1 true WO2022036842A1 (zh) 2022-02-24

Family

ID=80282563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122936 WO2022036842A1 (zh) 2020-08-21 2020-10-22 用于干衣机的风道壳和干衣机

Country Status (2)

Country Link
CN (1) CN114075770B (zh)
WO (1) WO2022036842A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050138831A1 (en) * 2003-12-26 2005-06-30 Lg Electronics Inc. Dryer, and drain structure of the same
CN102292496A (zh) * 2009-02-05 2011-12-21 Lg电子株式会社 热泵组件以及利用热泵组件的干燥装置
CN103370467A (zh) * 2010-11-29 2013-10-23 伊莱克斯家用产品股份有限公司 衣物干燥机
CN103370466A (zh) * 2010-11-29 2013-10-23 伊莱克斯家用产品股份有限公司 衣物干燥机
CN103443352A (zh) * 2010-11-29 2013-12-11 伊莱克斯家用产品股份有限公司 热泵式衣物干燥机
CN105714540A (zh) * 2014-12-05 2016-06-29 青岛海尔洗衣机有限公司 一种干衣机冷凝水收集、利用装置及收集、利用方式
CN209537878U (zh) * 2018-11-15 2019-10-25 宁波吉德电器有限公司 一种干衣机底座及干衣机
CN209537872U (zh) * 2018-11-15 2019-10-25 宁波吉德电器有限公司 干衣机的导水结构及干衣机
CN110857521A (zh) * 2018-08-24 2020-03-03 无锡小天鹅电器有限公司 用于干衣机的底座组件、冷凝干燥系统和干衣机
CN111364220A (zh) * 2020-04-21 2020-07-03 无锡小天鹅电器有限公司 用于干衣机的排液隔板及干衣机

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050138831A1 (en) * 2003-12-26 2005-06-30 Lg Electronics Inc. Dryer, and drain structure of the same
CN102292496A (zh) * 2009-02-05 2011-12-21 Lg电子株式会社 热泵组件以及利用热泵组件的干燥装置
CN103370467A (zh) * 2010-11-29 2013-10-23 伊莱克斯家用产品股份有限公司 衣物干燥机
CN103370466A (zh) * 2010-11-29 2013-10-23 伊莱克斯家用产品股份有限公司 衣物干燥机
CN103443352A (zh) * 2010-11-29 2013-12-11 伊莱克斯家用产品股份有限公司 热泵式衣物干燥机
CN105714540A (zh) * 2014-12-05 2016-06-29 青岛海尔洗衣机有限公司 一种干衣机冷凝水收集、利用装置及收集、利用方式
CN110857521A (zh) * 2018-08-24 2020-03-03 无锡小天鹅电器有限公司 用于干衣机的底座组件、冷凝干燥系统和干衣机
CN209537878U (zh) * 2018-11-15 2019-10-25 宁波吉德电器有限公司 一种干衣机底座及干衣机
CN209537872U (zh) * 2018-11-15 2019-10-25 宁波吉德电器有限公司 干衣机的导水结构及干衣机
CN111364220A (zh) * 2020-04-21 2020-07-03 无锡小天鹅电器有限公司 用于干衣机的排液隔板及干衣机

Also Published As

Publication number Publication date
CN114075770B (zh) 2022-12-20
CN114075770A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
US9488412B2 (en) Drying system and use of the drying system in laundry drying device
CN106337269B (zh) 烘干系统及衣物干燥装置
CN114703643B (zh) 一种冷凝组件及衣物处理设备
WO2023179564A1 (zh) 一种冷凝装置及衣物处理设备
WO2023179568A1 (zh) 一种冷凝器及衣物处理设备
CN110857521B (zh) 用于干衣机的底座组件、冷凝干燥系统和干衣机
WO2022036841A1 (zh) 用于干衣机的风道壳和干衣机
CN111088678A (zh) 一种冷凝风道及具有其的烘干机、洗衣机
CN215714117U (zh) 干衣机
CN107447471B (zh) 热泵系统的基座和用于干衣机或洗干一体机的热泵系统
CN214300905U (zh) 一种干衣机排湿装置的外壳结构、排湿装置、干衣机
WO2022036842A1 (zh) 用于干衣机的风道壳和干衣机
WO2022036840A1 (zh) 用于干衣机的风道壳和干衣机
CN214300902U (zh) 一种用于排湿装置的换热组件、排湿装置、干衣机
CN214300904U (zh) 一种用于排湿装置的换热组件、排湿装置、干衣机
CN114293355A (zh) 一种干衣机排湿装置的外壳结构、排湿装置、干衣机
JP7301835B2 (ja) 除湿乾燥ユニットおよび洗濯乾燥機
CN214300903U (zh) 一种用于排湿气装置的换热件、排湿气装置、干衣机
CN213896427U (zh) 一种用于排湿装置的换热组件、排湿装置、干衣机
CN216378826U (zh) 干衣机
CN220572166U (zh) 一种水汽分离装置、洗碗机内胆以及洗碗机
CN213142551U (zh) 一种冷凝风道及具有其的烘干机、洗衣机
CN114250610B (zh) 一种用于排湿装置的换热组件、干衣机
CN220572168U (zh) 一种气路循环机构以及洗碗机
CN219195443U (zh) 一种冷凝水集水组件及干衣机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950046

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950046

Country of ref document: EP

Kind code of ref document: A1