WO2022036831A1 - Procédé d'optimisation de stratégie de chauffage de batterie basé sur une batterie et la capacité de charge d'une pile de charge - Google Patents

Procédé d'optimisation de stratégie de chauffage de batterie basé sur une batterie et la capacité de charge d'une pile de charge Download PDF

Info

Publication number
WO2022036831A1
WO2022036831A1 PCT/CN2020/121187 CN2020121187W WO2022036831A1 WO 2022036831 A1 WO2022036831 A1 WO 2022036831A1 CN 2020121187 W CN2020121187 W CN 2020121187W WO 2022036831 A1 WO2022036831 A1 WO 2022036831A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
current
power battery
charging pile
Prior art date
Application number
PCT/CN2020/121187
Other languages
English (en)
Chinese (zh)
Inventor
严国刚
张巍
李春
熊金峰
张建利
薛凯哲
朱恒
方兰兰
邱远红
Original Assignee
金龙联合汽车工业(苏州)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金龙联合汽车工业(苏州)有限公司 filed Critical 金龙联合汽车工业(苏州)有限公司
Publication of WO2022036831A1 publication Critical patent/WO2022036831A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/378Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] specially adapted for the type of battery or accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04604Power, energy, capacity or load
    • H01M8/04619Power, energy, capacity or load of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention belongs to the field of electric vehicle power battery management, and in particular relates to a battery heating strategy optimization method based on the charging capability of a battery and a charging pile.
  • the battery Since the current required by the battery at different temperatures is different, when the battery temperature is lower, the battery can receive a lower current and the charging speed is correspondingly reduced. In order to achieve a better charging environment, the battery needs to heat itself to increase the demand capacity. For most heating strategies, an optimal temperature for the battery is generally set, ignoring the energy consumption of this process and the maximum capacity that the charging pile can provide. When the output current of the charging pile can completely follow the requested current of the battery, the battery is suitable for rapid heating to the maximum adaptive value to achieve the maximum charging speed. However, if the output capacity of the charging pile is very weak and cannot meet the demand value of the battery, the energy of heating the battery to a higher temperature at this time is wasted. Alternatively, if the battery does not pursue charging speed, it is also not necessary to heat the temperature to the maximum adaptive value. Hence the invention.
  • the purpose of the present invention is to provide a battery heating strategy optimization method based on the charging capacity of the battery and the charging pile, comparing the demanded current of the battery and the output current of the charging pile, and the lower value of the two corresponds to the DC current of the battery.
  • the temperature in the charging rate table is set as the target temperature for battery heating, which can reduce the energy consumption of the entire vehicle and optimize the configuration.
  • a battery heating strategy optimization method based on the charging capability of a battery and a charging pile comprising the following steps:
  • S03 Compare the output current I2 of the charging pile and the maximum allowable charging current I1 of the power battery. If I2 is greater than or equal to I1, query the DC charging rate table and use the minimum temperature corresponding to the maximum allowable charging current of the power battery as the battery heating target temperature;
  • step S01 it also includes:
  • step S01 is performed.
  • the battery management system when it is judged to be charging at night, the battery management system detects the minimum temperature T of the battery in the power battery system, and if T is less than the second threshold, it is judged to be charging at night in a cold area, and the following steps are performed:
  • S12 Obtain the SOC value, and check the DC charging rate table according to min ⁇ I1, I2 ⁇ to obtain the battery heating target temperature.
  • the method for calculating the charging demand duration h in the step S11 includes:
  • the invention also discloses a battery heating strategy optimization system based on the charging capability of the battery and the charging pile, comprising:
  • the output current acquisition module of the charging pile when the charging gun of the charging pile is connected to the power battery system, the output current I2 of the charging pile is obtained;
  • the maximum allowable charging current calculation module of the battery can obtain the temperature and SOC value of the power battery in real time, and query the DC charging rate table to obtain the maximum allowable charging current value I1 of the power battery;
  • the first processing operation module compares the output current I2 of the charging pile and the maximum allowable charging current I1 of the power battery. If I2 is greater than or equal to I1, query the DC charging rate table and use the minimum temperature corresponding to the maximum allowable charging current of the power battery as the battery heating. Target temperature; if I2 is less than I1, query the DC charging rate table and use the lowest temperature corresponding to I2 as the battery heating target temperature.
  • a first judging module is further included to obtain the vehicle network time, and if the charging time is greater than the first threshold, it is judged to be charging at night, otherwise, the first processing and computing module is executed.
  • a second processing and computing module is also included.
  • the battery management system detects the minimum temperature T of the battery in the power battery system. Perform the following steps:
  • S12 Obtain the SOC value, and check the DC charging rate table according to min ⁇ I1, I2 ⁇ to obtain the battery heating target temperature.
  • the method for calculating the charging demand duration h in the step S11 includes:
  • the method of the present invention is based on the output capacity of the charging pile and the charging capacity of the battery, compares the demanded current of the battery with the output current of the charging pile, and takes the lower value of the two corresponding to the temperature in the battery DC charging rate table, and sets the temperature as the heating value of the battery.
  • FIG. 1 is a flowchart of a method for optimizing a battery heating strategy based on the charging capability of a battery and a charging pile according to the present invention
  • FIG. 2 is a flow chart of an optimization method including charging at night in cold regions according to the present invention.
  • a battery heating strategy optimization system based on the charging capabilities of batteries and charging piles including:
  • the output current acquisition module of the charging pile when the charging gun of the charging pile is connected with the power battery system, the output current I2 of the charging pile is obtained; when the charging gun is connected with the power battery system, information exchange will be carried out, and the information of both parties can be obtained.
  • the maximum allowable charging current calculation module of the battery can obtain the temperature and SOC value of the power battery in real time, and query the DC charging rate table to obtain the maximum allowable charging current value I1 of the power battery; the temperature and SOC value of the power battery can be obtained through the battery management system BMS.
  • the first processing operation module compares the output current I2 of the charging pile and the maximum allowable charging current I1 of the power battery. If I2 is greater than or equal to I1, query the DC charging rate table and use the minimum temperature corresponding to the maximum allowable charging current of the power battery as the battery heating. Target temperature; if I2 is less than I1, query the DC charging rate table and use the lowest temperature corresponding to I2 as the battery heating target temperature.
  • the target temperature After the target temperature is obtained, it can be heated by the power battery system, and the power battery system can be the system disclosed in CN 110635183 A, which is not repeated in the present invention.
  • the first judging module obtains the network time of the vehicle, and if the charging time is greater than the first threshold, it is judged that it is charging at night, otherwise, the first processing and computing module is executed. For example, the time information of the GPRS module, the wireless communication module, etc. can be obtained to obtain the network time.
  • the second processing and computing module when it is judged to be charging at night, the battery management system detects the minimum temperature T of the battery in the power battery system, and if T is less than the second threshold, it is judged to be charging in the cold area at night, and the following steps are performed:
  • S12 Obtain the SOC value, and check the DC charging rate table according to min ⁇ I1, I2 ⁇ to obtain the battery heating target temperature.
  • a battery heating strategy optimization method based on the charging capacity of batteries and charging piles includes the following steps:
  • S03 Compare the output current I2 of the charging pile and the maximum allowable charging current I1 of the power battery. If I2 is greater than or equal to I1, query the DC charging rate table and use the minimum temperature corresponding to the maximum allowable charging current of the power battery as the battery heating target temperature;
  • the vehicle network time is obtained, and if the charging time is greater than the first threshold, it is determined to be charged at night, otherwise step S01 is performed; the first threshold may be 20:00 and so on.
  • the battery management system detects the minimum temperature T of the battery in the power battery system. If T is less than the second threshold, it is determined to be charged in a cold area at night, and the following steps are performed:
  • S12 Obtain the SOC value, and check the DC charging rate table according to min ⁇ I1, I2 ⁇ to obtain the battery heating target temperature.
  • the second threshold may be 0° and so on.
  • Step 1 When the battery is charging, first obtain the charging capacity of the charging pile, and the output current capacity I2 is less than or equal to 0.5C;
  • Step 2 When the battery temperature is -2°C and the SOC is 50, check the DC charging rate table, and get the allowable current value I1 that the battery can accept is 0C. At this time, the battery cannot be charged because the temperature does not meet the charging conditions and needs to be set. battery heating target temperature;
  • Step 3 Since the output capacity of the charging pile is only 0.5C, you only need to check the DC charging rate table and set the battery heating target temperature to the lowest temperature corresponding to the 0.5C capacity. In this case, you only need to set the battery heating temperature to 12 °C. Because even if the battery temperature is heated to higher than 12°C at this time, the charging pile has reached the maximum output power, and raising the target temperature at this time is only a waste of energy consumption.
  • Step 4 The whole charging process is a dynamic change process. If the output power of the charging pile also changes, follow I1 and I2, whichever is smaller, and then refer to the SOC to adjust the target temperature.
  • Step 1 When charging the battery, first obtain the charging capacity of the charging pile, and the output current capacity I2 is greater than 1C, indicating that the charging pile can fully meet the needs of the battery;
  • Step 2 Since the charging pile can meet the requirements of the battery, it is only necessary to set the target temperature of the battery to the required temperature at the maximum working capacity.
  • Step 1 When charging the battery, first obtain the charging capacity of the charging pile, and the output current capacity I2 is 0.2C;
  • Step 3 Since the required charging current value of the battery is 0.14C lower than the output capacity of the charging pile 0.2C, it is only necessary to check the table according to the standard of taking the smaller value of the two, that is, 0.14C. At this time, the target heating temperature of the battery needs to be set as 6 °C, the charging process is affected by the heat of the battery, the battery temperature will increase slightly, and the charging speed will increase slightly. The charging process at night also has a thermal insulation effect and reduces heating energy consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

L'invention concerne un procédé d'optimisation de stratégie de chauffage de batterie basé sur une batterie et la capacité de charge d'une pile de charge, comprenant les étapes suivantes : l'obtention d'un courant de sortie I2 d'une pile de charge lorsqu'un pistolet de charge de la pile de charge est connecté à un système de batterie d'alimentation ; l'obtention de la température et de la valeur d'état de charge (SOC) d'une batterie d'alimentation en temps réel, et l'interrogation d'une table de taux de charge en courant continu pour obtenir le courant de charge admissible maximal I1 de la batterie d'alimentation ; et la comparaison de I2 et I1, et si I2 est supérieur ou égal à I1, l'interrogation de la table de taux de charge en courant continu et l'utilisation de la température la plus basse correspondant au courant de charge maximal admissible de la batterie d'alimentation en tant que température de chauffage de batterie cible, ou si I2 est inférieur à I1, l'interrogation de la table de taux de charge en courant continu et l'utilisation de la température la plus basse correspondant à I2 en tant que température de chauffage de batterie cible, de telle sorte qu'une charge continue avec un faible courant peut être obtenue, et étant donné que la batterie génère de la chaleur pendant un processus de charge, les effets de réduction de la consommation d'énergie et de maintien au chaud peuvent être obtenus, ce qui permet d'optimiser la stratégie de chauffage de batterie pour atteindre l'objectif de réduction de la consommation d'énergie et d'économie de ressources. La présente solution est particulièrement appropriée pour des scénarios de charge de nuit dans des zones froides.
PCT/CN2020/121187 2020-08-18 2020-10-15 Procédé d'optimisation de stratégie de chauffage de batterie basé sur une batterie et la capacité de charge d'une pile de charge WO2022036831A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010828940.5 2020-08-18
CN202010828940.5A CN112083338B (zh) 2020-08-18 2020-08-18 一种燃料电池功率衰减实时监测预警方法及系统

Publications (1)

Publication Number Publication Date
WO2022036831A1 true WO2022036831A1 (fr) 2022-02-24

Family

ID=73729742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121187 WO2022036831A1 (fr) 2020-08-18 2020-10-15 Procédé d'optimisation de stratégie de chauffage de batterie basé sur une batterie et la capacité de charge d'une pile de charge

Country Status (2)

Country Link
CN (1) CN112083338B (fr)
WO (1) WO2022036831A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407728A (zh) * 2022-02-28 2022-04-29 重庆长安新能源汽车科技有限公司 一种车辆动力电池充电控制方法、系统、汽车及计算机可读存储介质
CN115051442A (zh) * 2022-06-30 2022-09-13 广州巨湾技研有限公司 根据温度控制电池快充充电电流的方法及系统
CN115339354A (zh) * 2022-05-11 2022-11-15 中国第一汽车股份有限公司 一种动力电池加热保温控制方法、装置、终端及存储介质
CN115561538A (zh) * 2022-08-03 2023-01-03 南京淼瀛科技有限公司 一种新能源大功率直流充电桩的检测方法
CN116587891A (zh) * 2023-03-03 2023-08-15 宇通客车股份有限公司 一种纯电动车续航能力提升方法及装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114024003A (zh) * 2021-10-28 2022-02-08 福达(深圳)新能源技术有限公司 燃料电池发动机允许功率偏离自动修正及故障处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355021A (zh) * 2011-09-26 2012-02-15 惠州市亿能电子有限公司 一种电动汽车电池充放电电流控制方法
CN105471002A (zh) * 2014-08-21 2016-04-06 深圳富泰宏精密工业有限公司 快速充电系统及方法
CN109263631A (zh) * 2018-11-19 2019-01-25 吉林大学 一种混合动力汽车动力源动力限制方法
US20190178951A1 (en) * 2017-01-24 2019-06-13 Lg Chem, Ltd. Apparatus and method for managing battery
CN111532177A (zh) * 2020-06-01 2020-08-14 中国第一汽车股份有限公司 充电加热控制方法、装置、汽车和存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495061C (zh) * 2007-06-05 2009-06-03 清华大学 一种快速评价车用燃料电池使用寿命的方法
CN101144850B (zh) * 2007-10-29 2010-09-08 清华大学 燃料电池电压衰减快速测量方法及装置
CN101231328B (zh) * 2008-03-03 2010-06-02 清华大学 一种评价城市客车用燃料电池耐久性的方法
US9325193B2 (en) * 2011-08-15 2016-04-26 Shawn P. Kelly Apparatus and method for accurate energy device state-of-charge (SoC) monitoring and control using real-time state-of-health (SoH) data
CN110224161A (zh) * 2019-06-06 2019-09-10 珠海格力电器股份有限公司 燃料电池系统
CN110400948A (zh) * 2019-09-17 2019-11-01 潍柴动力股份有限公司 一种燃料电池电堆活化方法及装置
CN111007402B (zh) * 2019-12-03 2020-10-30 清华大学 燃料电池堆的耐久性测试方法
CN111258365B (zh) * 2020-03-04 2021-11-16 北京亿华通科技股份有限公司 一种燃料电池系统的功率控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355021A (zh) * 2011-09-26 2012-02-15 惠州市亿能电子有限公司 一种电动汽车电池充放电电流控制方法
CN105471002A (zh) * 2014-08-21 2016-04-06 深圳富泰宏精密工业有限公司 快速充电系统及方法
US20190178951A1 (en) * 2017-01-24 2019-06-13 Lg Chem, Ltd. Apparatus and method for managing battery
CN109263631A (zh) * 2018-11-19 2019-01-25 吉林大学 一种混合动力汽车动力源动力限制方法
CN111532177A (zh) * 2020-06-01 2020-08-14 中国第一汽车股份有限公司 充电加热控制方法、装置、汽车和存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114407728A (zh) * 2022-02-28 2022-04-29 重庆长安新能源汽车科技有限公司 一种车辆动力电池充电控制方法、系统、汽车及计算机可读存储介质
CN114407728B (zh) * 2022-02-28 2023-05-02 重庆长安新能源汽车科技有限公司 一种车辆动力电池充电控制方法、系统、汽车及计算机可读存储介质
CN115339354A (zh) * 2022-05-11 2022-11-15 中国第一汽车股份有限公司 一种动力电池加热保温控制方法、装置、终端及存储介质
CN115051442A (zh) * 2022-06-30 2022-09-13 广州巨湾技研有限公司 根据温度控制电池快充充电电流的方法及系统
CN115051442B (zh) * 2022-06-30 2024-01-30 广州巨湾技研有限公司 根据温度控制电池快充充电电流的方法及系统
CN115561538A (zh) * 2022-08-03 2023-01-03 南京淼瀛科技有限公司 一种新能源大功率直流充电桩的检测方法
CN115561538B (zh) * 2022-08-03 2024-01-12 南京淼瀛科技有限公司 一种新能源大功率直流充电桩的检测方法
CN116587891A (zh) * 2023-03-03 2023-08-15 宇通客车股份有限公司 一种纯电动车续航能力提升方法及装置

Also Published As

Publication number Publication date
CN112083338A (zh) 2020-12-15
CN112083338B (zh) 2023-05-05

Similar Documents

Publication Publication Date Title
WO2022036831A1 (fr) Procédé d'optimisation de stratégie de chauffage de batterie basé sur une batterie et la capacité de charge d'une pile de charge
WO2021023019A1 (fr) Procédé de gestion thermique pour ensemble de batteries
CN112060964A (zh) 基于电池与充电桩充电能力的电池加热策略优化方法
CN206364153U (zh) 一种基于半导体热电效应的电池组热管理装置
CN103407346A (zh) 一种纯电动汽车整车热管理系统
CN204315687U (zh) 锂离子动力电池包恒温热管理系统
CN109552110B (zh) 基于规则与非线性预测控制的电动汽车复合能量管理方法
CN113895310B (zh) 一种动力电池智能温度控制方法、系统、车辆及存储介质
CN112158075A (zh) 能量回收方法、装置、车辆及存储介质
CN103413985A (zh) 基于环境温度的电动车用铅酸蓄电池的快速充电方法
WO2022041411A1 (fr) Procédé et système de commande de gestion d'énergie de pile à combustible
US20210384565A1 (en) Energy storage device temperature control method and apparatus
CN111969280A (zh) 温度控制方法、装置和电子设备
CN106374163A (zh) 一种电池热管理系统
US11152656B1 (en) Method and apparatus for controlling temperature of battery pack, battery management system and storage medium
CN105826619A (zh) 锂离子动力电池包恒温热管理系统
CN115453398A (zh) 一种新型电池包热管理方法及热管理装置
CN113859049B (zh) 电池热管理方法、装置、电子设备及计算机可读存储介质
CN208608323U (zh) 一种基于移动客户端的电动汽车动力电池预热系统
CN110137627A (zh) 电池低温自动预热装置及系统
CN112736954B (zh) 一种提高agc调节性能的储能控制方法
CN206180051U (zh) 一种电池热管理系统
JP7357700B2 (ja) 充電方法及び電力変換装置
CN112721744B (zh) 基于环境温度自适应的燃料电池车能量控制方法及系统
CN112310512B (zh) 一种智能调节电池温度的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20950035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20950035

Country of ref document: EP

Kind code of ref document: A1