WO2022036427A1 - Preparado de nanopartículas de nióbio, uso e processo para sua obtenção - Google Patents

Preparado de nanopartículas de nióbio, uso e processo para sua obtenção Download PDF

Info

Publication number
WO2022036427A1
WO2022036427A1 PCT/BR2021/050346 BR2021050346W WO2022036427A1 WO 2022036427 A1 WO2022036427 A1 WO 2022036427A1 BR 2021050346 W BR2021050346 W BR 2021050346W WO 2022036427 A1 WO2022036427 A1 WO 2022036427A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
niobium
mill
nanoparticle preparation
nanoparticles
Prior art date
Application number
PCT/BR2021/050346
Other languages
English (en)
French (fr)
Inventor
Cesar Augusto CARDOSO TEIXEIRA DE ALBUQUERQUE FERREIRA
Joel Boaretto
Robinson Carlos DUDLEY CRUZ
Original Assignee
Fras-Le S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fras-Le S.A. filed Critical Fras-Le S.A.
Priority to CN202180069037.8A priority Critical patent/CN116568405A/zh
Priority to US18/042,172 priority patent/US20230357042A1/en
Priority to BR112023003019A priority patent/BR112023003019A2/pt
Priority to IL300770A priority patent/IL300770A/en
Priority to CA3189991A priority patent/CA3189991A1/en
Priority to KR1020237009328A priority patent/KR20230052947A/ko
Priority to JP2023512423A priority patent/JP2023538924A/ja
Priority to EP21857063.8A priority patent/EP4197973A1/en
Publication of WO2022036427A1 publication Critical patent/WO2022036427A1/pt

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C7/00Crushing or disintegrating by disc mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention is in the field of materials engineering and nanotechnology. More specifically, the invention describes a preparation of niobium nanoparticles, their use, and a process for obtaining them by comminution, that is, a top down process.
  • the invention is an achievement hitherto considered unattainable, as for decades there was an attempt, without success, to obtain high purity niobium pentoxide nanoparticles in large quantities.
  • the nanoparticle preparation of the invention solves these and other problems and has a peculiar composition, purity, particle size profile and specific surface area, being useful in a variety of applications.
  • the invention also discloses a process for obtaining nanoparticles of mineral species containing Niobium, by means of controlled comminution and without chemical reactions or contamination with reagents typical of the synthesis of nanoparticles.
  • the present invention in sharp contrast to the state of the art, provides the large-scale production of niobium pentoxide nanoparticles with high purity, determined granulometric profile and very high specific surface area, making its use in practice possible in various industrial applications.
  • Niobium particle preparations may eventually contain small fractions of nanoparticles, but the predominance of much larger particles, in the micrometer/micron range, prevents the characterization of such preparations as real nanoparticle preparations. Furthermore, it is known that the behavior of materials at the nanoscale changes substantially and therefore, the availability on a large scale and with high purity of a preparation that contains predominantly or entirely nanometer-sized niobium particles with high purity is highly desirable, without contamination typical of synthesis processes. The present invention solves these and other technical problems.
  • the literature comprises examples of methods of synthesis of nanoparticles containing Niobium, in processes called bottom up.
  • bottom up or synthesis methods such processes involve chemical reactions, reagents and products, so that the product obtained normally contains a lot of contamination with residues of inputs or reaction by-products.
  • the nanoparticles obtained by bottom up processes are limited to certain chemical species that are reaction products.
  • these processes are not technically and/or economically viable on large scales, which are some of the reasons why, on an industrial scale, no stable, pure, and predominantly granular distribution of Niobium nanoparticles is still available on an industrial scale. entirely in the nanometer range.
  • the present invention solves these and other technical problems.
  • the methods of grinding/comminution/spraying of transition metals usually aim to increase the specific surface area and enable various industrial uses.
  • the known methods are limited to obtaining particles with granulometry in the micrometer range, not being known to the present inventors until the filing date of this patent application milling methods that provide for obtaining preparations integrally containing nanoparticles.
  • Niobium has a higher dielectric constant than some other transition metals, which makes it a very useful material in electronic components, such as capacitors for example.
  • obtaining metallic niobium powders by grinding requires the use of liquid dispersion media, and the contact of the Niobium powder with the dispersion medium and/or the heating generated by the grinding causes the adsorption of oxygen present in the adsorption medium to the Niobium hydride, and the formation of a Niobium oxide, which impairs the LC value (inductor/capacitor or inductance/capacitance) causes a large dispersion of LC value, impairing the reliability of the material for use in capacitors and/or other electronic components.
  • Patent application JP-A-10-242004 discloses a technique of partial nitriding of a Niobium powder to increase the LC value. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • US patent 4,084,965 discloses obtaining a Niobium powder (also referred to as Columbium powder) having a particle size of 5.1 microns. Said powder is obtained by hydrogenating and milling a Niobium ingot, the milling being assisted by the addition of a small amount of a phosphorus-containing material (between 5 to 600ppm of elemental phosphorus), preferably in the form of a liquid to facilitate mixing. does not reveal a prepared from niobium pentoxide nanoparticles as the present invention.
  • a Niobium powder also referred to as Columbium powder having a particle size of 5.1 microns. Said powder is obtained by hydrogenating and milling a Niobium ingot, the milling being assisted by the addition of a small amount of a phosphorus-containing material (between 5 to 600ppm of elemental phosphorus), preferably in the form of a liquid to facilitate mixing. does not reveal a prepared from niobium pentoxide nanoparticles as the present invention
  • Patent application US 2004/0168548 discloses a process for obtaining a Niobium powder with a granulometry range from 10 to 500 microns.
  • the process involves grinding and aims to obtain a niobium powder for use in capacitors.
  • niobium hydrides or niobium hydride alloys in the presence of a dispersion medium, are ground at a temperature of -200 to 30°C.
  • the dispersion medium used is selected from water, an organic solvent, or a liquefied gas. Dehydrogenation of niobium hydride powder or niobium hydride alloy powder is done at a temperature of 100 to 1000°C after milling.
  • the characteristics of the Niobium powder obtained are: specific surface area from 0.5 to 40 m 2 /g; density from 0.5 to 4 g/ml; peak pore size from 0.01 to 7 microns; oxygen content less than or equal to 3% by weight.
  • it is undesirable that the average particle size of the granulated powder is less than 10 microns, as the powder reduces the efficiency of the process and impairs the flowability of the material.
  • a niobium pentoxide nanoparticle preparation like the present invention is not disclosed.
  • Said process comprises the steps of: obtaining fine powder; surface oxidation in a controlled manner; reduction of this oxide layer with alkali metals or alkaline earth metals in a molten salt bath, or within a molten salt mixture; dissolving and leaching the formed cake; filtering, washing and drying the product obtained. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • the Brazilian patent PI 0105773-1 granted to CBMM, reveals a process for the production of Nb-Zr alloy powder, containing 0.1% to 10% of Zirconium. Said process comprises the hydriding, milling and dehydrating of Niobium-Zirconium (Nb-Zr) alloys for the production of powder with controlled levels of impurities. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • the Brazilian patent application PI 0303252-9 filed by IPT/SP, reveals a process for producing Niobium Monoxide (NbO) powder of high purity, high specific surface, controlled oxygen and nitrogen contents, appropriate morphology and porosity suitable for use in the manufacture of capacitors.
  • NbO Niobium Monoxide
  • Said process is characterized by two steps of reduction of niobium pentoxide (Nb20s), being the first step of reduction of niobium pentoxide (Nb20s) to niobium dioxide (NbC ) of 0.3 to 0.6 mm in diameter, conducted by a reducing gas and, the second step, comprising obtaining Niobium monoxide (NbO) through a collector material under suitable conditions of temperature and time for the formation of NbO.
  • NbO particles are large in size when compared to the nano scale. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Said process is characterized by two steps of reduction of niobium pentoxide (Nb20s), being the first step of reduction of niobium pentoxide (Nb20s) to niobium dioxide (NbC ) conducted by a reducing gas, and the second step comprises obtaining of Niobium monoxide (NbO) through the total or partial transfer of oxygen, referring to the transformation of NbÜ2 into NbO, to a fine powder of metallic Niobium (Nb) with morphology and physical characteristics similar to that of NbO2. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • the Brazilian patent PI 0106058-9 filed by CBMM and transferred to IPT/SP, reveals a process for the production of Niobium powder of high purity, high specific surface and controlled oxygen contents.
  • the patent also protects the niobium powder thus obtained. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • the nanoparticles disclosed in that document are of a metal chalcogenide containing Sulfur, Selenium, Tellurium or Oxygen and a polymer selected from several species of polymers, including acrylates, acids, halides or esters, and are intended for use as a lubricant. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Patent application BR 102017017416-6 filed by UFRN, reveals a route of synthesis of Iron niobate via high energy milling.
  • the aforementioned document reveals the synthesis of Iron Niobate (FeNbCU) from mechanical grinding (wet) of Niobium pentoxide (Nb20s), metallic Iron (a-Fe) in percentage amounts by mass between 55% and 65%, 20% and 30%, and 10% and 20%, respectively, distilled water (H2O), with rotation between 100 and 500 rpm and subsequent heat treatment between 1000 and 1500 °C, for 1 to 5h.
  • the product obtained contains two phases: 97.82% of Iron niobate and 2.18% of hematite (a-Fe2Ü3). It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Patents P I01 10333-4 and PI0206094-9 granted to Showa Denko KK of Japan and both extinct, disclose a Niobium powder and a sintered body containing said powder.
  • the focus of these documents is the production of capacitors, the inventors having discovered that the control of the concentration of Nitrogen is one of the keys to obtaining a good performing capacitor.
  • the Niobium powders used are micrometric (up to 1000 pm) and obtained from ingots and jet mill or jet mill, and have a surface area of 0.5 to 40 m 2 /g. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Patent application PI 01 14919-9 discloses a capacitor powder containing Niobium.
  • Said powder is hydrogenated and at least partially nitrided niobium. Examples include feeding Niobium metal particles 0.1 to 5 mm in diameter into a reaction tower into which a gas for halogenation is fed.
  • the niobium halide powder obtained can be reduced with hydrogen gas forming an agglomerate with a specific surface area of 4 to 30 m 2 /g, being used to sinter a useful body for the preparation of a capacitor. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • US patent US 6,375,704 B1 to Cabot Corp. discloses a niobium powder preparation and a process for preparing niobium powder flakes for use in capacitors. Said process comprises grinding Niobium chips to form flakes and then subjecting the obtained flake to a deoxidation step, preferably with magnesium. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Patent application PI0401 1 14-7 filed by CBMM and filed, reveals a Niobium powder (pentoxide or monoxide) with a controlled amount of Vanadium, obtained by co-precipitation.
  • the specific surface area of niobium pentoxide or niobium monoxide in said document is between 0.4 m 2 /g and 30.0 m 2 /g. It discloses a spongy form containing niobium oxide and does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Patent application PI0508759-7 filed by Mitsui Mining Ltd, and filed, discloses a niobium oxide for use in capacitors, and a process for obtaining it.
  • a niobium oxide of low oxidation obtained from a Niobium oxide with a high oxidation number, the product obtained (NbO) having an average particle size d50 of 2 microns and a specific surface area (BET value) of 2.0 m 2 /g up to 50.0 m 2 /g.
  • the production method comprises the dry reduction of niobium pentoxide to produce niobium monoxide in two steps, gradually.
  • a carbon-containing reducing agent is used in at least one of the two steps, and the ambient temperature and pressure is maintained within a predetermined range in each of the steps. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Patent application PI 071 1243-2 filed by Mitsui Mining Ltd. and filed, discloses a porous structure Niobium monoxide for use in capacitors. In said document, it is disclosed that niobium monoxide has a specific surface area (BET value) of 10.7 m 2 /g.
  • US patent application US 2009/0256014A1 discloses a Niobium hydride milling process with a milling aid of density 2 to 3.6 g /cm 3 and a fracture hardness value of 1.5 MPa.m 1/2 or more, such as silicon nitride balls. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Chinese patent CN 100381234C from Cabot Corp and familiar from Brazilian patent application PI0009107 (denied), discloses a process for producing a Niobium powder through milling. The process involves grinding the metal powder at elevated temperatures and in the presence of at least one liquid solvent. Also disclosed is a process for forming a flocculated metal by wet milling a metal powder into a flocculated metal where at least one liquid fluoride treated fluid is present during the wet milling process. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • Chinese patent application CN 101798227A discloses a process for solid-state synthesis of a powder nanometer of a niobate/titanate. Said process comprises grinding Niobium pentoxide, Sodium carbonate, Potassium carbonate, Titanium dioxide and Bismuth trioxide in a ball mill, to refine the particles and then calcine them in a defined stoichiometric proportion.
  • the solid state reaction results in the formation of a powder of Sodium-Potassium Niobate, Sodium Bismuth Titanate, or other mixtures in which the particles are 80 nanometers or less. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • US patent application US2007185242A1 filed by Huang Yuhong and abandoned, discloses a low temperature curing ink comprising nanometer metal hydroxide.
  • the focus of that document is the composition for coating an electrode or a capacitor.
  • the composition comprises submicron particles obtained by a mechanochemical process, using nanoparticles of Ruthenium hydroxide.
  • metal hydroxide nanoparticles are manufactured by reacting a metal chloride with Sodium hydroxide in water. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • US patent application US2020391294 filed by the University of Missouri, discloses a process for preparing a powdered metal-ceramic material composite.
  • a mill is used in which a metallic powder is comminuted together with ceramic nanoparticles to generate a metal-ceramic composite.
  • the mill balls and their interior are ceramic. It does not disclose a niobium pentoxide nanoparticle preparation like the present invention.
  • the present invention solves several problems of the state of the art related to niobium preparations with predominantly or entirely nanometric.
  • Niobium pentoxide particles with d50 to d99 in the granulometric range of nanometers.
  • the niobium pentoxide nanoparticle preparation has an average particle size (d50) between 178 and 239 nm.
  • the niobium pentoxide nanoparticle preparation has granulometric distribution: d10: between 9 and 27 nm; d50: between 16 and 67 nm; and d90: between 33 and 94 nm.
  • the niobium pentoxide nanoparticle preparation has granulometric distribution: d10: between 14 and 110 nm; d50: between 29 and 243 nm; and d90: between 89 and 747 nm.
  • the niobium pentoxide nanoparticle preparation has an average specific surface area of 40 to 70 m 2 /g.
  • the nanoparticle preparation of the invention is useful in several applications, including: the modulation or improvement of the mechanical properties of steels, metallic, non-metallic alloys, ceramics and/or polymers; doping materials to modulate electromagnetic properties for use in electronic components, battery cells, energy storage systems, solar panels, sensors and piezoelectric actuators; the modulation of optical properties of glass or other transparent or translucent materials; use as a component of catalysts; in the preparation of stable liquid/colloidal compositions.
  • the nanoparticle preparation of the invention provided the preparation of stable liquid compositions, in which the nanoparticles remain in suspension for a long time, providing a high shelf life.
  • Niobium nanoparticles of the invention in the preparation of stable liquid/colloidal compositions.
  • the process of the invention comprises the steps of:
  • Niobium particles fed to a comminution equipment selected from: high energy mill and steammill;
  • the stabilization of the colloidal suspension to be placed in the grinding chamber of the high energy mill referred to above is selected from: adjusting the pH of the polar liquid medium to the range between 2 to 13, and optionally adding surfactants ; or the addition of surfactants in an apolar liquid medium.
  • the process of obtaining niobium nanoparticles includes grinding in a high energy mill operating with spheres of special materials, such as zirconia, yttria stabilized zirconia, niobium pentoxide stabilized zirconia, or combinations thereof, by means of the adjustment of specific parameters.
  • the process of obtaining niobium nanoparticles includes milling in a jet mill with superheated steam, superheated steam or steammill, by adjusting specific parameters.
  • Figure 1 shows the particle size distribution of an embodiment of Niobium nanoparticles (Nb20s) preparation of the invention, showing the granulometric profile measured by the laser scattering method, using an Analysette 22 NanoTecplus brand FRITSCH. Shown are: the particle size distribution or equivalent diameter on the volumetric basis of the particles in nanometers (horizontal axis), the relative fraction of the nanoparticles (left vertical axis) and cumulative fraction (right vertical axis).
  • Figure 2 shows a photo of a sedimentation test as a function of the pH of the suspension formed by Nb2Ü5 particles in an aqueous solution adjusted with HCl or NaOH to change the pH of the medium.
  • the different equilibrium pHs are shown in the numbered tubes: 2, 4, 9 and 12.
  • Figure 3 shows a photo of a stabilization test tube in function of time (shelf life) used in the turbidimetry analysis in a TURBISCAN type equipment, showing a tube containing a suspension at pH 9 of Niobium nanoparticles after 6h of evaluation.
  • Figure 4 shows the particle size distribution of comminuted Niobium pentoxide as a function of grinding time in a high energy mill (sampling frequency).
  • the x-axis shows the equivalent diameter of the particles in nm and the y-axis shows the frequency in %.
  • Figure 5 shows the distribution of particle sizes as a function of the cumulative volume of the comminuted Niobium pentoxide sample. On the x axis the equivalent diameter in nm is shown and on the x axis the cumulative volume in %.
  • Figure 6 shows the cumulative distribution profile of Nb2Ü5 particles in alcohol as a dispersant at the inlet of a jetmill. On the x-axis the equivalent diameter in microns is shown, on the y-axis on the left the volume % and on the y-axis on the right the cumulative volume %.
  • Figure 7 shows the cumulative particle distribution profile of Nb2Ü5 particles in alcohol as a dispersant at the outlet of a jetmill. On the x-axis the equivalent diameter in microns is shown, on the y-axis on the left the volume % and on the y-axis on the right the cumulative volume %.
  • the x-axis shows the equivalent diameter of the particles in micrometers and the y-axis shows the cumulative volume in %.
  • Figure 10 shows the curve corresponding to the granulometric distribution profile of the preparation of niobium pentoxide nanoparticles (curve C) entirely in the nanometer range, with particles between 74 and 747 nm. On the x-axis the equivalent diameter of the particles in micrometers is shown and on the y-axis frequency is shown in %.
  • Figure 1 1 shows the curve corresponding to the granulometric distribution profile of the niobium pentoxide nanoparticle preparation (curve
  • Figure 12 shows the curve corresponding to the granulometric distribution profile of the preparation of niobium pentoxide nanoparticles (curve
  • Figure 13 shows the curves corresponding to the granulometric distribution profiles of three different pre-comminuted Niobium pentoxide preparations (curves C, D and E) in a single graph. On the x-axis the equivalent diameter of the particles in micrometers is shown and on the y-axis frequency is shown in %.
  • Figure 14 shows the curves corresponding to the granulometric distribution profiles of three different pre-comminuted niobium pentoxide preparations (curves C, D and E) in a single graph. On the x-axis the equivalent diameter of the particles in micrometers is shown and on the y-axis frequency is shown in %.
  • the present invention solves several problems of the state of the art and provides a preparation of Niobium nanoparticles that concomitantly contemplates the following technical characteristics: particles predominantly or entirely in the granulometric range of nanometers; high purity; an industrial-scale process that enables large-scale supply and use economic. Said preparation can also be called niobium nanoparticle preparation.
  • Niobium particles encompasses various chemical entities containing Niobium, including Niobium metallic, oxides, hydrates, hydrides, carbides, or nitrides of Niobium, iron Niobium or Niobium bonded to other metals or transition metals. , or combinations thereof. It also includes niobium pentoxide.
  • nanoparticles comprising content equal to or greater than 95% by weight of Niobium particles, in which 50% to 99% of the particles (d50 to d99) are in the granulometric range of 5 to 1000 nanometers (nm).
  • nanoparticles comprising content equal to or greater than 95% by weight of Niobium particles, in which 90% to 99% of the particles (d90 to d99) are in the granulometric range of 5 to 1000 nanometers (nm).
  • Nanoparticle preparation as defined above comprising content equal to or greater than 99% by weight of Niobium particles.
  • Nanoparticle preparation as defined above having particle size distribution d10: between 14 and 110 nm; d50: between 29 and 243 nm; and d90: between 89 and 747 nm.
  • Nanoparticle preparation as defined above having particle size distribution d10 from 70 to 100 nm; d50 from 170 to 240 nm; d90 from 400 to 580 nm.
  • Nanoparticle preparation as defined above having particle size distribution d50 from 10 to 178 nm; d80 from 10 to 300 nm; d90 from 10 to 400 nm.
  • Nanoparticle preparation as defined above having particle size distribution d10: between 9 and 27 nm; d50: between 16 and 67 nm; d90: between 33 and 94 nm.
  • Nanoparticle preparation as defined above having specific surface area between 0.5 and 150 m 2 /g.
  • Nanoparticle preparation as defined above having an average specific surface area of 40 to 70 m 2 /g.
  • nanoparticle preparation for the preparation of: stable colloidal compositions; steels, metallic, non-metallic alloys, ceramics and/or polymers; electronic components, battery cells, energy storage systems, piezoelectric sensors and actuators, solar panels; glass, glass ceramic or other transparent and translucent materials; catalysts.
  • Niobium particles fed to a comminution equipment selected from: high energy mill and steammill;
  • Process as described above further comprising a step of pre-comminution of Niobium particles before the step of feeding the comminution equipment, said pre-comminution being conducted until reaching an average particle size between 1 and 40 micrometers.
  • the high energy mill is of the medium stirred type and said spheres are selected from: Zirconia, Silicon carbide, alumina, said spheres being optionally stabilized with yttria or niobium pentoxide, or combinations of the same.
  • niobium pentoxide nanoparticles (Nb20s) with purity equal to or greater than 99% is provided.
  • the niobium nanoparticle preparation from The present invention has particle sizes between 5 to 1000 nanometers.
  • the inventive nanoparticle preparation comprises particles with defined particle size fractions, such as, for example, a preparation with particles integrally between 100 and 1000 nm, a preparation with particles integrally between 5 and 100 nanometers, and preparations with particles at intermediate values. and with defined value granulometric fractions.
  • the distribution of granulometric fractions is defined by d10, d50, d90 and occasionally d99, notations that reflect the accumulated % volume of particles corresponding to each notation, d10 referring to 10% of the volume of the particles, d50 to 50% of the volume and so on.
  • the invention provides a preparation of Niobium particles in the granulometric range below 100 nanometers.
  • the niobium pentoxide nanoparticle preparation has granulometric distribution: d10: between 9 and 27 nm; d50: between 16 and 67 nm; and d90: between 33 and 94 nm.
  • the niobium pentoxide nanoparticle preparation has granulometric distribution: d10: between 14 and 110 nm; d50: between 29 and 243 nm; and d90: between 89 and 747 nm.
  • the invention provides a preparation of Niobium particles with a specific surface area between 50 and 148 m 2 /g.
  • the niobium pentoxide nanoparticle preparation has an average specific surface area of 62.07 m 2 /g.
  • a preparation of niobium pentoxide nanoparticles with an average particle size (d50) of 16 nm is provided.
  • the niobium pentoxide nanoparticle preparation has an average particle size (d50) of 29 nm.
  • the niobium pentoxide nanoparticle preparation has an average particle size (d50) of 67 nm.
  • the preparation of Niobium pentoxide nanoparticles have an average particle size (d50) of 178 nm.
  • the nanoparticle preparation of the invention is useful in several applications, including: the preparation of stable colloidal suspensions; the modulation or improvement of the mechanical properties of steels, metallic and non-metallic alloys, ceramics and/or polymers; the doping of materials to modulate electromagnetic properties for use in electronic components, battery cells, energy storage systems, solar panels, sensors and piezoelectric actuators; the modulation of optical properties of glass or other transparent materials; use as a component of catalysts.
  • the use of the nanoparticle preparation of the invention provided to obtain stable liquid compositions or colloidal suspensions, in which the nanoparticles remain in suspension for a long time, providing high shelf life.
  • niobium nanoparticles differs from other congeners for being a top down process, without chemical reactions and without mechanochemistry.
  • pure or high-purity Niobium particles are used for comminution makes it possible to obtain high-purity nanoparticle preparations, since the process does not add impurities or lead to the formation of reaction products, as is the case with processes bottom up, synthesis or state-of-the-art mechanochemicals.
  • the process of the invention comprises the steps of:
  • Niobium particles fed to a comminution equipment selected from: high energy mill; and steam mill;
  • suspension and spheres of grinding with a diameter selected between 5 ⁇ m and 1.3 mm; adjust the mill rotation speed between 500 and 4500 rpm; and grinding the particles at a temperature below 60°C;
  • the process involves wet grinding in a high-energy mill and makes it possible on an industrial scale, for the first time, to obtain niobium pentoxide particles predominantly or entirely in the nanometer granulometric range.
  • the stabilization of the colloidal suspension to be placed in the grinding chamber of the high energy mill is a very important step, being selected among: the adjustment of the pH of the polar liquid medium for the range 2 to 13, and optionally adding surfactants; or the addition of surfactants in an apolar liquid medium.
  • a mill known from the prior art is used, such as a high-energy mill with yttria-stabilized zirconia beads (ZrÜ2 + Y2O3), by adjusting specific parameters, including rotation time, pH and temperature.
  • the grinding medium includes zirconia balls, ZTA (alumina or yttrium reinforced zirconia) and alumina.
  • zirconia beads stabilized with 5% m/m yttria are used.
  • the process involves milling jet with superheated steam (steammil ⁇ ), to which particles smaller than 40 microns are fed, the rotation of the aeroclassifier being adjusted between 1,000 and 25,000 rpm, the pressure of the compressed steam between 10 and 100 bar, and the temperature between 230 and 360 °C
  • Example 1 Niobium pentoxide (Nb 2 O 5 ) wet milling process in a high energy mill
  • the preparation of niobium pentoxide nanoparticles was obtained by milling with adjustment of parameters that include, rotation speed, pH, temperature.
  • the data in table 1 show that in the condition of grinding time of 30 minutes, pH 6.63, with the size measurement technique by laser scattering according to Mie model and on a volumetric basis, and temperature of 34.7 °C, nanoparticles with d10 of 0.077 were obtained; d50 of 0.178; and d90 of 0.402 (77 nm, 178 nm and 402 nm respectively).
  • the particle size distribution was measured by the laser scattering method, using the Analysette 22 NanoTecplus brand FRITSCH.
  • the Niobium nanoparticle preparation of the invention has a granulometric distribution entirely in the range of nanoparticles.
  • Figure 1 shows the particle size distribution or equivalent diameter of the particles in nanometers (horizontal axis), the relative fraction of the nanoparticles (left vertical axis) and cumulative fraction (right vertical axis).
  • the figure shows that the Niobium nanoparticles of this embodiment of the invention have an equivalent diameter between 10 and 1000 nanometers (nm), with 90% between 10 and 400 nm, 80% between 10 and 300 nm, 50% between 10 and 178 nm,
  • Example 3 Stable colloidal suspension - Test of stability of Niobium particles as a function of pH and in aqueous solution
  • Example 4 Liquid compositions containing Niobium nanoparticles - stability/shelf life tests
  • Example 5 Niobium pentoxide (Nb20s) wet milling process in a high energy mill
  • a Labstar LS01 (Netzsch) ball mill agitator equipment was fed with micrometric particles of niobium pentoxide. Said process involves high energy wet milling.
  • the particle suspension was 17.7% m, consisting of approximately 3500 g of milli-Q water + 10 M NaOH and 750 g of the solid sample which was prepared and stabilized in the mill's mixing tank at pH 9, titrated with 10 M NaOH.
  • the grinding balls used were yttria-stabilized zirconia, 400 ⁇ m in diameter.
  • the filling of the grinding chamber was 80% vol and the temperature of the suspension was below 40 °C.
  • the mill rotation speed was set to 3000 rpm and grinding was conducted for 8 hours. To stabilize the suspension at pH 9, additions of 10 M NaOH were carried out during milling, sampling was taken from time to time and particle sizes were measured.
  • Figure 4 shows the particle size distribution of comminuted Niobium pentoxide as a function of grinding time in a high energy mill (sampling frequency).
  • the x-axis shows the equivalent diameter of the particles in nm and the y-axis shows the frequency in %.
  • Figure 5 shows the distribution of particle sizes as a function of the cumulative volume of the comminuted Niobium pentoxide sample. On the x axis the equivalent diameter in nm is shown and on the x axis the cumulative volume in %.
  • a jet mill or jetmill was used to pre-comminute the Niobium pentoxide particles, in order to improve the performance of the subsequent comminution process to an integral particle size distribution (d99) in the nanometer range.
  • Figure 6 shows the cumulative distribution profile of Nb2Ü5 particles in alcohol as a dispersant in a jetmill (product 1 in table 3 above). On the x-axis the equivalent diameter in microns is shown, on the y-axis on the left the volume % and on the y-axis on the right the cumulative volume %.
  • the residual weight is 1.14%
  • the specific surface area is 1.536 m 2 /g
  • the concentration is 0.0020%.
  • Figure 7 shows the cumulative distribution profile of Nb2Ü5 particles in alcohol as a dispersant in a jetmill (product 3 in table 3 above). On the x-axis the equivalent diameter in microns is shown, on the y-axis on the left the volume % and on the y-axis on the right the cumulative volume %.
  • the residual weight is 0.68%
  • the specific surface area is 1.063 m 2 /g
  • the concentration is 0.0081%.
  • the speed of the air classifier was adjusted to 20,000 rpm and the pressure of the compressed steam at 50 bar.
  • the temperature of the superheated fluid was 280 °C.
  • Example 8 Niobium pentoxide nanoparticles (Nb 2 O 5 ) preparations with high purity and defined granulometric distribution
  • niobium pentoxide nanoparticle preparations were obtained, with purity greater than 99%.
  • Commercial niobium pentoxide with the granulometric distribution described in table 4, was pre-ground in a high energy mill containing yttria-stabilized zirconia spheres with a diameter of 400 ⁇ m, in a liquid medium and the pH adjusted to 6.6. The mill rotation speed was 3500 rpm and the grinding of the particles was carried out at a temperature below 40 °C.
  • Table 4 shows the particle size distribution (DTP) of input (commercial product) and output Niobium pentoxide from a pre-comminution step.
  • the x-axis shows the equivalent diameter of the particles in micrometers and the y-axis shows the cumulative volume in %.
  • the average specific surface area S (m 2 /g) of the particles after the pre-comminution step was 0.32 m 2 /g.
  • the pre-comminuted particles were then fed to a high-energy mill, applying conditions similar to those described in example 5, but with 200 pm Zr spheres and milled for different times, until obtaining each nanoparticle preparation. Three different nanoparticle preparations were obtained, each with a defined granulometric distribution as described in table 5.
  • Table 5 Particle size distribution of three different preparations (C, D and E) of niobium pentoxide nanoparticles.
  • Figure 10 shows the curve corresponding to the granulometric distribution profile of the niobium pentoxide nanoparticle preparation (curve
  • Figure 1 1 shows the curve corresponding to the granulometric distribution profile of the preparation of niobium pentoxide nanoparticles (curve
  • D integrally (d99.99) in the nanometer range, with particles between 20 and 206 nm.
  • the equivalent diameter of the particles in micrometers is shown and on the y-axis frequency is shown in %.
  • Figure 12 shows the curve corresponding to the granulometric distribution profile of the preparation of niobium pentoxide nanoparticles (curve
  • E integrally (d99.99) in the nanometer range, with particles between 8 and 89 nm.
  • the x-axis shows the equivalent diameter of the particles in micrometers. and on the y-axis frequency is shown in %.
  • Figure 13 shows the curves corresponding to the granulometric distribution profiles of the three different pre-comminuted Niobium pentoxide preparations of figures 10-12 (curves C, D and E) in a single graph. On the x-axis the equivalent diameter of the particles in micrometers is shown and on the y-axis frequency is shown in %.
  • Figure 14 shows the curves corresponding to the granulometric distribution profiles of three different pre-comminuted niobium pentoxide preparations (C, D and E curves) in a single graph. On the x-axis the equivalent diameter of the particles in micrometers is shown and on the y-axis frequency is shown in %.
  • the nanoparticle preparations of this embodiment of the invention have a very high specific surface area, which enables their use in a very wide variety of applications.
  • Table 6 shows the mean specific surface area data of niobium pentoxide nanoparticle preparations.
  • Table 6 Mean specific surface area S of three different preparations of niobium pentoxide nanoparticles (C, D and E).
  • Example 9 Nanoparticle preparations resulting from the combination of fully nanometric niobium pentoxide (Nb 2 O 5 ) preparations
  • a 1:1 mixture of preparation C and preparation E of example 8 was obtained by simple homogenization.
  • the resulting granulometric distribution profiles provide rheology adjustment of the preparations obtained, since the combinations of larger particles (preparations B or C) with smaller nanoparticles (preparation D or E) provide different degrees of packing, of void fractions , fluidity and different behavior in subsequent applications such as sintering, dispersion in viscous liquids and other applications.

Abstract

A presente invenção descreve um preparado de nanopartículas de Nióbio, seu uso, e um processo para a sua obtenção por cominuição, ou seja, um processo top down. O preparado de nanopartículas da invenção resolve estes e outros problemas e tem composição, pureza, perfil granulométrico e área superficial específica peculiares, sendo útil em uma variedade de aplicações. A invenção também revela um processo para a obtenção de nanopartículas de espécies minerais contendo Nióbio, mediante cominuição controlada e sem reações químicas ou contaminações com reagentes típicos da síntese de nanopartículas. A presente invenção, em amplo contraste ao estado da técnica, proporciona a obtenção em larga escala de nanopartículas de pentóxido de Nióbio com elevada pureza, perfil granulométrico determinado e muito elevada área superficial específica, viabilizando na prática seu uso em diversas aplicações industriais.

Description

Relatório Descritivo de Patente de Invenção
PREPARADO DE NANOPARTÍCULAS DE NIÓBIO, USO E PROCESSO PARA SUA OBTENÇÃO
Campo da Invenção
[0001] A presente invenção se situa no campo da engenharia de materiais e nanotecnologia. Mais especificamente, a invenção descreve um preparado de nanopartículas de Nióbio, seu uso, e um processo para a sua obtenção por cominuição, ou seja, um processo top down. A invenção é uma conquista até então considerada inatingível, pois por décadas se buscou, sem sucesso, obter nanopartículas de pentóxido de Nióbio de elevada pureza e em grande quantidade. O preparado de nanopartículas da invenção resolve estes e outros problemas e tem composição, pureza, perfil granulométrico e área superficial específica peculiares, sendo útil em uma variedade de aplicações. A invenção também revela um processo para a obtenção de nanopartículas de espécies minerais contendo Nióbio, mediante cominuição controlada e sem reações químicas ou contaminações com reagentes típicos da síntese de nanopartículas. A presente invenção, em amplo contraste ao estado da técnica, proporciona a obtenção em larga escala de nanopartículas de pentóxido de Nióbio com elevada pureza, perfil granulométrico determinado e muito elevada área superficial específica, viabilizando na prática seu uso em diversas aplicações industriais.
Antecedentes da Invenção
[0002] Partículas de diversos materiais, e em especial as partículas de materiais cerâmicos, incluindo óxidos cerâmicos, são de grande utilidade em uma variedade de aplicações. Neste segmento, a chamada Metalurgia de Pós tem sido objeto de estudo por muitos grupos de pesquisa e empresas envolvidas no desenvolvimento de materiais especiais, sendo o limite de tamanho ou o perfil de distribuição granulométrica um fator importante nas propriedades de tais materiais. [0003] De especial relevância no contexto da presente invenção, ressalta-se a diferença entre: (i) preparados contendo uma fração de nanopartículas dentre as demais partículas; (ii) preparados contendo partículas predominantemente ou integralmente na faixa granulométrica de nanômetros; e (iii) preparados de nanopartículas predominantemente ou integralmente na faixa granulométrica de nanômetros com perfil de distribuição granulométrica definido. A presente invenção proporciona estes dois últimos.
[0004] Neste contexto, literatura recente de um dos presentes inventores (Powder Technology 383 (2021 ) 348-355 - Powder grinding and nano-particle sizing: sound, light and enlightment)) mostra como é importante o conhecimento sobre as técnicas de medição do tamanho de partículas para uma correta afirmação sobre tal grandeza, particularmente na dimensão nano. Na dimensão nano, os processos convencionais de medição (EAS, electro acoustic spectroscopy e DLS dynamic light scattering) são susceptíveis a erros quando baseados no volume das partículas, as técnicas baseadas no número de partículas e também fundamentadas em sua área superficial específica são as mais adequadas nesta dimensão.
[0005] Preparados de partículas de Nióbio até podem eventualmente conter pequenas frações de nanopartículas, mas a predominância de partículas de tamanho muito maior, na faixa dos micrômetros/micra, impede a caracterização de tais preparados como reais preparados de nanopartículas. Além disso, é sabido que o comportamento dos materiais na escala nano muda substancialmente e portanto, é altamente desejável a disponibilidade em larga escala e com elevada pureza de um preparado que contenha partículas de Nióbio predominantemente ou integralmente na faixa dos nanômetros e com elevada pureza, sem contaminações típicas dos processos de síntese. A presente invenção resolve estes e outros problemas técnicos.
[0006] Óxidos cerâmicos, em particular o pentóxido de Nióbio tem sido considerado em variadas aplicações devido às propriedades peculiares do Nióbio, um elemento que é produzido em grande parte no Brasil. A despeito de o Brasil ser um dos líderes mundiais na produção de Nióbio e de haver intensa atividade de pesquisa neste importante material, por décadas foi tentado obter preparados de nanopartículas de Nióbio predominantemente ou integralmente na faixa de nanopartículas, em larga escala e com elevada pureza, sem sucesso. A presente invenção resolve estes e outros problemas técnicos.
[0007] A literatura compreende exemplos de métodos de síntese de nanopartículas contendo Nióbio, em processos chamados bottom up. Entretanto, sendo métodos bottom up ou de síntese, tais processos envolvem reações químicas, reagentes e produtos, de forma que o produto obtido normalmente contém muita contaminação com resíduos de insumos ou subprodutos de reação.
[0008] Ademais, as nanopartículas obtidas por processos bottom up são limitadas a certas espécies químicas que são produtos de reação. Além disso, esses processos não são viáveis técnica- e/ou economicamente em grandes escalas, sendo estas algumas das razões segundo as quais ainda não é disponível em escala industrial nenhum preparado de nanopartículas de Nióbio que seja estável, puro e com distribuição granulométrica predominantemente ou integralmente na faixa dos nanômetros. A presente invenção resolve estes e outros problemas técnicos.
[0009] Os métodos de moagem/cominuição/pulverização de metais de transição usualmente visam aumentar a área superficial específica e viabilizar usos industriais variados. No caso do Nióbio ou materiais contendo Nióbio, em especial no caso do pentóxido de Nióbio, os métodos conhecidos são limitados à obtenção de partículas com granulometria na faixa dos micrômetros, não sendo de conhecimento dos presentes inventores até a data do depósito deste pedido de patente métodos de moagem que proporcionem a obtenção de preparados integralmente contendo nanopartículas.
[0010] O Nióbio tem mais elevada constante dielétrica que alguns outros metais de transição, o que o torna um material muito útil em componentes eletrônicos, como capacitores por exemplo. Entretanto, a obtenção de pós de Nióbio metálico por moagem requer o uso de meios líquidos de dispersão, e o contato do pó de Nióbio com o meio de dispersão e/ou o aquecimento gerado pela moagem provocam a adsorção de oxigênio presente no meio de adsorção ao hidreto de Nióbio, e a formação de um óxido de Nióbio, que prejudica o valor LC (indutor/capacitor ou indutância/capacitância) provoca uma grande dispersão de valor LC, prejudicando a confiabilidade do material para uso em capacitores e/ou outros componentes eletrônicos. Ademais, até a presente invenção obter partículas predominantemente ou integralmente nanométricas de Nióbio e pentóxido de Nióbio por moagem (processo top down) era um desafio considerado tecnicamente impossível, tendo sido objeto de tentativas frustradas por décadas. A presente invenção resolve estes e outros problemas técnicos.
[0011] Na busca pelo estado da técnica em literaturas científica e patentária, foram encontrados os seguintes documentos que se relacionam ao tema:
[0012] A patente PI 0601929-3, concedida ao Instituto Militar de Engenharia e extinta, revela a obtenção de misturas homogêneas de óxidos de Nióbio em alumina, em escala nanométrica, utilizando a técnica sol-gel. O referido processo obtém óxidos mistos de Nb2Ü5 em AI2O3, em meio aquoso, pela técnica de sol- gel, utilizando acetilacetona para controlar as velocidades de hidrólise e condensação desse metal de transição, de modo a se obter partículas nanométricas desses óxidos mistos mediante a reação. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção. [0013] O pedido de patente JP-A-10-242004 revela uma técnica de nitretação parcial de um pó de Nióbio, para aumentar 0 valor LC. Não revela um preparado de nanopartículas de pentóxido Nióbio como a presente invenção.
[0014] A patente US 4,084,965 revela a obtenção de um pó de Nióbio (também referido como pó de Columbium) com 5,1 micra de tamanho de partículas. Referido pó é obtido pela hidrogenação e moagem de um lingote de Nióbio, a moagem sendo assistida pela adição de uma pequena quantidade de um material contendo fósforo (entre 5 a 600ppm de fósforo elementar), preferencialmente na forma de um líquido para facilitar a mistura. Não revela um preparado de nanopartículas de pentóxido Nióbio como a presente invenção.
[0015] O pedido de patente US 2004/0168548 revela um processo para a obtenção de um pó de Nióbio com faixa de granulometria de 10 a 500 micra. O processo envolve moagem e visa obter um pó de Nióbio para uso em capacitores. No referido processo, hidretos de Nióbio ou ligas de hidreto de Nióbio, na presença de um meio de dispersão, são moídos em temperatura de -200 a 30 °C. O meio de dispersão usado é selecionado dentre água, um solvente orgânico, ou um gás liquefeito. A desidrogenação do pó de hidreto de Nióbio ou do pó de liga de hidreto de Nióbio é feita a uma temperatura de 100 a 1000 °C após a moagem. As características do pó de Nióbio obtido são: área superficial específica de 0,5 a 40 m2/g; densidade de 0,5 a 4 g/mL; pico de tamanho de poro de 0,01 a 7 micra; teor de oxigênio menor ou igual a 3% em peso. No referido processo, é indesejável que o tamanho médio de partícula do pó granulado seja inferior a 10 micra, pois o pó reduz a eficiência do processo e prejudica a fluidez do material. Não é revelado um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0016] O pedido de patente brasileiro PI 0401882-6, depositado pela CBMM e arquivado, revela um processo de produção de pó de Nióbio e Tântalo metálicos de alta pureza química, elevada área superficial, morfologia e porosidade adequadas, e baixa densidade aparente. Referido processo compreende as etapas de: obtenção de pó fino; oxidação superficial de forma controlada; redução desta camada de óxido com metais alcalinos ou alcalino terrosos num banho de sais fundidos, ou no interior de uma mistura de sais fundidos; dissolução e lixiviação do bolo formado; filtragem, lavagem e secagem do produto obtido. Não revela um preparado de nanopartículas pentóxido de Nióbio como a presente invenção.
[0017] A patente brasileira PI 0105773-1 , concedida à CBMM, revela um processo para a produção de pó da liga Nb-Zr, contendo 0,1 % a 10% de Zircônio. Referido processo compreende a hidretação, moagem e desidretação de ligas de Nióbio-Zircônio (Nb-Zr) para produção de pó com teores controlados de impurezas. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0018] O pedido de patente brasileiro PI 0303252-9, depositado pelo IPT/SP, revela um processo de produção de pó de monóxido de Nióbio (NbO) de elevada pureza, elevada superfície específica, teores de oxigênio e nitrogênio controlados, morfologia apropriada e porosidade adequada para ser usado na fabricação de capacitores. Referido processo é caracterizado por duas etapas de redução do pentóxido de Nióbio (Nb20s), sendo a primeira etapa de redução do pentóxido de Nióbio (Nb20s) para dióxido de Nióbio (NbC ) de 0,3 a 0,6 mm de diâmetro, conduzida por um gás redutor e, a segunda etapa, compreendendo a obtenção de monóxido de Nióbio (NbO) através de um material coletor sob condições adequadas de temperatura e tempo para a formação de NbO. As partículas de NbO têm elevado tamanho quando comparadas com a escala nano. Não revela um preparado de nanopartículas de pentóxido Nióbio como a presente invenção.
[0019] O pedido de patente brasileiro PI 040261 1 -0, depositado pelo IPT/SP e indeferido, revela um processo de produção de pó de monóxido de Nióbio (NbO) de elevada pureza, elevada superfície específica, teores de oxigênio e nitrogênio controlados, morfologia apropriada e porosidade adequada para ser usado na fabricação de capacitores. Referido processo é caracterizado por duas etapas de redução do pentóxido de Nióbio (Nb20s), sendo a primeira etapa de redução do pentóxido de Nióbio (Nb20s) para dióxido de Nióbio (NbC ) conduzida por um gás redutor, e a segunda etapa compreende a obtenção de monóxido de Nióbio (NbO) através da transferência total ou parcial do oxigênio, referente à transformação do NbÜ2 em NbO, para um pó fino de Nióbio metálico (Nb) de morfologia e características físicas similares ao do NbO2. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção. [0020] A patente brasileira PI 0106058-9, depositada pela CBMM e transferida ao IPT/SP, revela um processo para produção de pó de Nióbio de elevada pureza, elevada superfície específica e teores de oxigênio controlados. Referido processo compreende uma única etapa de redução de niobatos de metais alcalinos ou alcalino terrosos (MexNbOy, onde Me é o metal alcalino ou alcalino terroso, x=0,5 a 3 e y=2 a 4) com um metal de mesma natureza seguido de uma etapa de lixiviação ácida/lavagem para remoção dos óxidos de metais alcalinos ou alcalino terrosos (ou excesso de metal alcalino ou alcalino terroso empregado na redução) presentes no produto final. A patente protege também o pó de Nióbio assim obtido. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0021] O pedido de patente brasileiro BR 1 12020014972-1 (=WO2019145298), depositado por Evonik Operations GMBH, revela composições de nanopartículas inorgânicas poliméricas e processos de preparação das mesmas. As nanopartículas reveladas no referido documento são de um calcogeneto de metal contendo Enxofre, Selênio, Telúrio ou Oxigênio e um polímero selecionado dentre variadas espécies de polímeros, incluindo acrilatos, ácidos, haletos ou ésteres, e visam o uso como lubrificante. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0022] O pedido de patente BR 102017017416-6, depositado pela UFRN, revela uma rota de síntese de niobato de Ferro via moagem de alta energia. No referido documento é revelada a síntese do niobato de Ferro (FeNbCU) a partir da moagem mecânica (via úmida) do pentóxido de Nióbio (Nb20s), Ferro metálico (a-Fe) em quantidades percentuais de massa entre 55% e 65%, 20% e 30%, e 10% e 20%, respectivamente, água destilada (H2O), com rotação entre 100 e 500 rpm e subsequente tratamento térmico ente 1000 a 1500 °C, por 1 a 5h. O produto obtido contém duas fases: 97,82% de niobato de Ferro e 2,18% de hematita (a-Fe2Ü3). Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0023] As patentes P I01 10333-4 e PI0206094-9, concedidas à Showa Denko KK do Japão e ambas extintas, revelam um pó de Nióbio e um corpo sinterizado contendo 0 referido pó. O foco dos referidos documentos é a produção de capacitores, os inventores tendo descoberto que 0 controle da concentração de nitrogênio é uma das chaves para a obtenção de um capacitor de bom desempenho. Nos referidos documentos, os pós de Nióbio usados são micrométricos (até 1000 pm) e obtidos a partir de lingotes e moinho de jato ou jet mill, e têm área superficial de 0,5 a 40 m2/g. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0024] O pedido de patente PI 01 14919-9, depositado por Showa Denko e arquivado, revela um pó para capacitor contendo Nióbio. Referido pó é de Nióbio hidrogenado e ao menos parcialmente nitretado. Exemplos incluem a alimentação de partículas de Nióbio metálico com dimensões de 0,1 a 5 mm de diâmetro a uma torre de reação na qual um gás para halogenação é alimentado. O pó de haleto de Nióbio obtido pode ser reduzido com gás hidrogênio formando um aglomerado com área superficial específica de 4 a 30 m2/g, sendo usado para sinterizar um corpo útil para a preparação de um capacitor. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção. [0025] A patente norte-americana US 6,375,704 B1 , de Cabot Corp., revela um preparado em pó de Nióbio e um processo para preparar flocos de pó de Nióbio para uso em capacitores. Referido processo compreende moer chips de Nióbio para formar flocos e em seguida submeter o floco obtido a uma etapa de desoxidação, preferencialmente com magnésio. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0026] O pedido de patente PI0401 1 14-7, depositado pela CBMM e arquivado, revela um pó de Nióbio (pentóxido ou monóxido) com quantidade controla de Vanádio, obtido por co-precipitação. A área superficial específica do pentóxido de Nióbio ou do monóxido de Nióbio no referido documento fica entre 0,4 m2/g e 30,0 m2/g. Revela uma forma esponjosa contendo óxido de Nióbio e não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0027] O pedido de patente PI0508759-7, depositado por Mitsui Mining Ltd, e arquivado, revela um óxido de Nióbio para uso em capacitores, e um processo para sua obtenção. No referido documento, é revelado um óxido de Nióbio de oxidação baixa obtido a partir de um óxido de Nióbio com alto número de oxidação, tendo o produto obtido (NbO) tamanho médio de partícula d50 de 2 micra e uma área de superfície específica (valor BET) de 2,0 m2/g até 50,0 m2/g. O método de produção compreende a redução a seco do pentóxido de Nióbio para produzir monóxido de Nióbio em duas etapas, gradualmente. A redução gradual, é preferida que um agente de redução contendo carbono seja usado pelo menos em uma das duas etapas, e a temperatura e a pressão ambiente é mantida em uma faixa predeterminada em cada uma das etapas. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção. [0028] O pedido de patente PI 071 1243-2, depositado por Mitsui Mining Ltd. e arquivado, revela um monóxido de Nióbio de estrutura porosa para uso em capacitores. No referido documento, é revelado que o monóxido de Nióbio tem uma área de superfície específica (valor BET) de 10,7 m2/g. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção [0029] O pedido de patente norte-americano US 2009/0256014A1 revela um processo de moagem de hidreto de Nióbio com um auxiliar de moagem de densidade 2 a 3,6 g/cm3 e um valor de dureza de fratura de 1 ,5 MPa.m1/2 ou mais, como por exemplo bolas de nitreto de silício. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0030] A patente chinesa CN 100381234C, da Cabot Corp e familiar do pedido de patente brasileiro PI0009107 (indeferido), revela um processo para produzir um pó de Nióbio através de moagem. O processo envolve moer o pó metálico a temperaturas elevadas e na presença de pelo menos um solvente líquido. Também é revelado um processo para formar um metal floculado através da moagem em úmido de um pó metálico em um metal floculado onde pelo menos um fluido tratado com flúor líquido está presente durante o processo de moagem em úmido. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0031] O pedido de patente chinês CN 101798227A, da Universidade de Guilin Tech Gut, revela um processo para síntese em estado sólido de um pó nanométrico de um niobato/titanato. Referido processo compreende a moagem de pentóxido de Nióbio, carbonato de Sódio, carbonato de Potássio, dióxido de Titânio e trióxido de Bismuto em um moinho de bolas, para refinar as partículas e em seguida calciná-las em uma proporção estequiométrica definida. A reação em estado sólido proporciona a formação de um pó de niobato de Sódio- Potássio, titanato de Sódio e Bismuto, ou outras misturas em que as partículas têm 80 nanômetros ou menos. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0032] O pedido de patente norte-americano US2007185242A1 , depositado por Huang Yuhong e abandonado, revela uma tinta de cura em baixa temperatura compreendendo metal hidróxido nanométrico. O foco do referido documento é a composição para revestimento de um eletrodo ou um capacitor. A composição compreende partículas submicrométricas obtidas por processo mecanoquímico, usando nanopartículas de hidróxido de Rutênio. No referido documento, as nanopartículas de metal hidróxido são fabricadas pela reação de um cloreto metálico com hidróxido de Sódio em água. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0033] O pedido de patente norte-americano US2020391294, depositado pela Universidade do Missouri, revela um processo para a preparação de um compósito de material metal-cerâmico em pó. No referido processo, é empregado um moinho no qual um pó metálico é cominuído junto com nanopartículas cerâmicas para gerar um compósito metal-cerâmico. As bolas do moinho e seu interior são de cerâmica. Não revela um preparado de nanopartículas de pentóxido de Nióbio como a presente invenção.
[0034] Do que se depreende da literatura pesquisada, não foram encontrados documentos antecipando ou sugerindo os ensinamentos da presente invenção.
Sumário da Invenção
[0035] A presente invenção resolve vários problemas do estado da técnica relacionados a preparados de Nióbio com granulometria predominantemente ou integralmente nanométrica.
[0036] É um dos objetos da invenção proporcionar um preparado de nanopartículas de Nióbio com elevada pureza.
[0037] É um dos objetos da invenção proporcionar um preparado de partículas de Nióbio de composição quimicamente definida.
[0038] É um dos objetos da invenção proporcionar um preparado de partículas pentóxido de Nióbio com d50 a d99 na faixa granulométrica de nanômetros.
[0039] É um dos objetos da invenção proporcionar um preparado de partículas pentóxido de Nióbio com d90 a d99 na faixa granulométrica de nanômetros.
[0040] Em algumas concretizações, o preparado de nanopartículas de pentóxido de Nióbio tem tamanho médio de partícula (d50) entre 178 e 239 nm.
[0041] É um dos objetos da invenção proporcionar um preparado de partículas de Nióbio na faixa granulométrica de abaixo de 100 nanômetros.
[0042] Em algumas concretizações, o preparado de nanopartículas de pentóxido de Nióbio tem distribuição granulométrica: d10: entre 9 e 27 nm; d50: entre 16 e 67 nm; e d90: entre 33 e 94 nm.
[0043] Em outras concretizações, o preparado de nanopartículas de pentóxido de Nióbio tem distribuição granulométrica: d10: entre 14 e 1 10 nm; d50: entre 29 e 243 nm; e d90: entre 89 e 747 nm.
[0044] É um dos objetos da invenção proporcionar um preparado de partículas de Nióbio com área superficial específica entre 0,5 e 150 m2/g.
[0045] Em uma concretização, o preparado de nanopartículas de pentóxido de Nióbio tem área superficial específica média de 40 a 70 m2/g.
[0046] O preparado de nanopartículas da invenção é útil em diversas aplicações, incluindo: a modulação ou melhoria das propriedades mecânicas de aços, ligas metálicas, não metálicas, cerâmicas e/ou polímeros; a dopagem de materiais para modular as propriedades eletromagnéticas para uso em componentes eletrônicos, células de bateria, sistemas de armazenamento de energia, painéis solares, sensores a atuadores piezoelétricos; a modulação de propriedades óticas de vidros ou outros materiais transparentes ou translúcidos; o uso como componente de catalisadores; na preparação de composições líquidas/coloidais estáveis.
[0047] Em uma concretização, o preparado de nanopartículas da invenção proporcionou a preparação de composições líquidas estáveis, nas quais as nanopartículas permanecem em suspensão por elevado tempo, proporcionando tempo de prateleira elevado.
[0048] É, portanto, um dos objetos da invenção o uso das nanopartículas de Nióbio da invenção na preparação de composições líquidas/coloidais estáveis.
[0049] É um outro objeto da invenção proporcionar um processo de preparação de um preparado de nanopartículas de Nióbio por abordagem top down, ou seja, por cominuição sem síntese química ou mecanoquímica. Referido processo tem larga escala e é adequado para viabilização econômica e disponibilização efetiva de preparados.
[0050] O processo da invenção compreende as etapas de:
- alimentar partículas de Nióbio a um equipamento cominuidor selecionado dentre: moinho de alta energia e steammill;
- ajustar as condições de cominuição selecionadas dentre:
- em um moinho de alta energia:
- suspender em um líquido partículas a serem cominuídas, em concentração entre 1 e 90% m/m, e estabilizar a suspensão até obtenção de suspensão coloidal estável; e
- colocar na câmara de moagem a referida suspensão e esferas de moagem com diâmetro selecionado entre 5 n e 1 ,3 mm; ajustar a velocidade de rotação do moinho entre 500 e 4500 rpm; e moer as partículas em temperatura abaixo de 60 °C; ou
- em um moinho de jato em com fluido superaquecido ou Steammill, alimentar partículas menores que 40 micrômetros; ajustar a rotação do aeroclassificador entre e 1 .000 e 25.000 rpm; ajustar a pressão do vapor comprimido entre 10 e 100 bar e temperatura entre 230 e 360 °C.
- cominuir as partículas até obter o perfil granulométrico desejado. [0051] Em uma concretização, a estabilização da suspensão coloidal a ser colocada na câmara de moagem do moinho de alta energia referido acima é selecionada dentre: o ajuste do pH do meio líquido polar para a faixa entre 2 a 13, e opcionalmente adicionar surfactantes; ou a adição de surfactantes em meio líquido apoiar.
[0052] Em uma concretização, o processo de obtenção das nanopartículas de Nióbio inclui moagem em moinho de alta energia operando com esferas de materiais especiais, como Zircônia, Zircônia estabilizada com ítria, Zircônia estabilizada com pentóxido de Nióbio, ou combinações dos mesmos, mediante o ajuste de parâmetros específicos.
[0053] Em uma outra concretização, o processo de obtenção de nanopartículas de Nióbio inclui moagem em moinho a jato com vapor superaquecido, superheated steam ou steammill, mediante o ajuste de parâmetros específicos.
[0054] Estes e outros objetos da invenção serão imediatamente valorizados pelos versados na arte e serão descritos detalhadamente a seguir.
Breve Descrição das Figuras
[0055] São apresentadas as seguintes figuras:
[0056] A figura 1 mostra a distribuição do tamanho de partículas de uma concretização de preparado de nanopartículas de Nióbio (Nb20s) da invenção, mostrando o perfil granulométrico medido pelo método de espalhamento de laser, usando um Analysette 22 NanoTecplus marca FRITSCH. São mostrados: a distribuição granulométrica ou diâmetro equivalente na base volumétrica das partículas em nanômetros (eixo horizontal), a fração relativa das nanopartículas (eixo vertical à esquerda) e fração cumulativa (eixo vertical à direita).
[0057] A figura 2 mostra a foto de um teste de sedimentação em função do pH da suspensão formada por partículas de Nb2Ü5 em solução aquosa ajustada com HCI ou NaOH para alterar o pH do meio. São mostrados nos tubos numerados os diferentes pHs de equilíbrio: 2, 4, 9 e 12.
[0058] A figura 3 mostra a foto de um tubo de teste de estabilização em função do tempo (shelf life) utilizados na análise de turbidimetria num equipamento do tipo TURBISCAN, sendo mostrado um tubo contendo uma suspensão em pH 9 de nanopartículas de Nióbio após 6h de avaliação.
[0059] A figura 4 mostra a distribuição dos tamanhos de partículas de pentóxido de Nióbio cominuído em função do tempo de moagem em moinho de alta energia (frequência de amostragem). No eixo x é mostrado o diâmetro equivalente das partículas em nm e no eixo y é mostrada a frequência em %.
[0060] A figura 5 mostra a distribuição dos tamanhos de partícula em função do volume cumulativo da amostra de pentóxido de Nióbio cominuído. No eixo x é mostrado o diâmetro equivalente em nm e no eixo x a volume cumulativo em %. [0061] A figura 6 mostra o perfil de distribuição cumulativa de partículas de Nb2Ü5 em álcool como dispersante na entrada de um jetmill. No eixo x é mostrado o diâmetro equivalente em micra, no eixo y à esquerda o volume % e no eixo y à direita o volume % cumulativo.
[0062] A figura 7 mostra o perfil de distribuição cumulativa de partículas de partículas de Nb2Ü5 em álcool como dispersante na saída de um jetmill. No eixo x é mostrado o diâmetro equivalente em micra, no eixo y à esquerda o volume % e no eixo y à direita o volume % cumulativo.
[0063] A figura 8 mostra as curvas correspondentes ao perfil de distribuição granulométrica do produto comercial contendo pentóxido de Nióbio (curva A = entrada) e do preparado de pentóxido de Nióbio pré-cominuído (curva B). No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrado o volume cumulativo, em %.
[0064] A figura 9 mostra as curvas correspondentes ao perfil de distribuição granulométrica do produto comercial contendo pentóxido de Nióbio (curva A = entrada) e do preparado de pentóxido de Nióbio pré-cominuído (curva B). No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0065] A figura 10 mostra a curva correspondente ao perfil de distribuição granulométrica do preparado de nanopartículas de pentóxido de Nióbio (curva C) integralmente da faixa dos nanômetros, com partículas entre 74 e 747 nm. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0066] A figura 1 1 mostra a curva correspondente ao perfil de distribuição granulométrica do preparado de nanopartículas de pentóxido de Nióbio (curva
D) integralmente da faixa dos nanômetros, com partículas entre 20 e 206 nm. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0067] A figura 12 mostra a curva correspondente ao perfil de distribuição granulométrica do preparado de nanopartículas de pentóxido de Nióbio (curva
E) integralmente da faixa dos nanômetros, com partículas entre 8 e 89 nm. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0068] A figura 13 mostra as curvas correspondentes aos perfiis de distribuição granulométrica de três diferentes preparados de pentóxido de Nióbio pré- cominuído (curvas C, D e E) em um só gráfico. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0069] A figura 14 mostra as curvas correspondentes aos perfiis de distribuição granulométrica de três diferentes preparados de pentóxido de Nióbio pré- cominuído (curvas C, D e E) em um só gráfico. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
Descrição Detalhada da Invenção
[0070] A presente invenção resolve vários problemas do estado da técnica e proporciona um preparado de nanopartículas de Nióbio que concomitantemente contempla as seguintes características técnicas: partículas predominantemente ou integralmente na faixa granulométrica de nanômetros; elevada pureza; um processo em escala industrial que viabiliza fornecimento e uso em escala econômica. Referido preparado também pode ser denominado preparado de nanopartículas de Nióbio.
[0071] Na presente invenção, a expressão “partículas de Nióbio” abrange variadas entidades químicas contendo Nióbio, incluindo Nióbio metálico, óxidos, hidratos, hidretos, carbetos, ou nitretos de Nióbio, ferro Nióbio ou Nióbio ligado a outros metais ou metais de transição, ou combinações dos mesmos. Inclui também o pentóxido de Nióbio.
[0072] A invenção é também definida pelas seguintes cláusulas.
[0073] Preparado de nanopartículas compreendendo teor igual ou superior a 95% em peso de partículas de Nióbio, em que 50% a 99% das partículas (d50 a d99) estão na faixa granulométrica de 5 a 1000 nanômetros (nm).
[0074] Preparado de nanopartículas compreendendo teor igual ou superior a 95% em peso de partículas de Nióbio, em que 90% a 99% das partículas (d90 a d99) estão na faixa granulométrica de 5 a 1000 nanômetros (nm).
[0075] Preparado de nanopartículas conforme definido acima compreendendo teor igual ou superior a 99% em peso de partículas de Nióbio.
[0076] Preparado de nanopartículas conforme definido acima em que as nanopartículas são de pentóxido de Nióbio.
[0077] Preparado de nanopartículas conforme definido acima possuindo distribuição granulométrica d10: entre 14 e 110 nm; d50: entre 29 e 243 nm; e d90: entre 89 e 747 nm.
[0078] Preparado de nanopartículas conforme definido acima possuindo distribuição granulométrica d10 de 70 a 100 nm; d50 de 170 a 240 nm; d90 de 400 a 580 nm.
[0079] Preparado de nanopartículas conforme definido acima possuindo distribuição granulométrica d50 de 10 a 178 nm; d80 de 10 a 300 nm; d90 de 10 a 400 nm.
[0080] Preparado de nanopartículas conforme definido acima em 90% a 99% das partículas (d90 a d99) estão na faixa granulométrica de 100 e 1000 nm.
[0081] Preparado de nanopartículas conforme definido acima em que 90% a 99% das partículas (d90 a d99) estão na faixa granulométrica de 5 e 100 nm.
[0082] Preparado de nanopartículas conforme definido acima possuindo distribuição granulométrica d10: entre 9 e 27 nm; d50: entre 16 e 67 nm; d90: entre 33 e 94 nm.
[0083] Preparado de nanopartículas conforme definido acima possuindo área superficial específica entre 0,5 e 150 m2/g.
[0084] Preparado de nanopartículas conforme definido acima possuindo área superficial específica média de 40 a 70 m2/g.
[0085] Uso do preparado de nanopartículas descrito acima para ajuste das propriedades reológicas de outros preparados de partículas ou nanopartículas, ajuste de graus de empacotamento, fluidez, de frações de vazios ou de outras propriedades do preparado final.
[0086] Uso do preparado de nanopartículas descrito acima para a preparação de: composições coloidais estáveis; aços, ligas metálicas, não metálicas, cerâmicas e/ou polímeros; componentes eletrônicos, células de bateria, sistemas de armazenamento de energia, sensores e atuadores piezoelétricos, painéis solares; vidros, vitrocerâmicos ou outros materiais transparentes e translúcidos; catalisadores.
[0087] Processo para a obtenção de nanopartículas de Nióbio compreendendo as etapas de:
- alimentar partículas de Nióbio a um equipamento cominuidor selecionado dentre: moinho de alta energia e steammill;
- ajustar as condições de cominuição selecionadas dentre:
- em um moinho de alta energia:
- suspender em um líquido partículas a serem cominuídas, em concentração entre 1 e 90% m/m, e estabilizar a suspensão até obtenção de suspensão coloidal estável; e
- colocar na câmara de moagem a referida suspensão e esferas de moagem com diâmetro selecionado entre 5 |im e 1 ,3 mm; ajustar a velocidade de rotação do moinho entre 500 e 4500 rpm; e moer as partículas em temperatura abaixo de 60 °C; ou
- em um moinho de jato em com fluido superaquecido ou Steammill, alimentar partículas menores que 40 micrômetros; ajustar a rotação do aeroclassificador entre e 1 .000 e 25.000 rpm; ajustar a pressão do vapor comprimido entre 10 e 100 bar e temperatura entre 230 e 360 °C;
- cominuir as partículas até obter o perfil granulométrico desejado.
[0088] Processo conforme descrito acima no qual a estabilização da suspensão coloidal a ser colocada na câmara de moagem do moinho de alta energia é selecionada dentre: o ajuste do pH do meio líquido polar para a faixa entre 2 a 13, e opcionalmente adicionar surfactantes; ou a adição de surfactantes em meio líquido apoiar.
[0089] Processo conforme descrito acima adicionalmente compreendendo uma etapa de pré-cominuição das partículas de Nióbio antes da etapa de alimentação ao equipamento cominuidor, referida pré-cominuição sendo conduzida até atingir tamanho médio de partículas entre 1 e 40 micrômetros.
[0090] Processo em que a referida pré-cominuição é feita em moinho de bolas, moinho de discos ou moinho de alta energia.
[0091] Processo em que a referida pré-cominuição é feita em moinho de jato ou jetmill.
[0092] Processo conforme descrito acima em que o moinho de alta energia é do tipo meio agitado e as referidas esferas são selecionadas dentre: Zircônia, carbeto de Silício, alumina, as referidas esferas sendo opcionalmente estabilizadas com ítria ou pentóxido de Nióbio, ou combinações dos mesmos.
[0093] Processo conforme descrito acima em que o pH de operação no moinho é de 6 a 10.
[0094] Processo conforme descrito acima em que a temperatura de operação no moinho é de 30 a 40 °C.
[0095] Em uma concretização, é provido um preparado de nanopartículas de pentóxido de Nióbio (Nb20s) com pureza igual ou superior a 99%.
[0096] Em uma concretização, o preparado de nanopartículas de Nióbio da presente invenção tem tamanho das partículas entre 5 a 1000 nanômetros. Em algumas concretizações, o preparado de nanopartículas de invenção compreende partículas com frações granulométricas definidas como, por exemplo, um preparado com partículas integralmente entre 100 e 1000 nm, um preparado com partículas integralmente entre 5 e 100 nanômetros, e preparados com partículas em valores intermediários e com frações granulométricas de valor definido.
[0097] Em algumas concretizações da presente invenção, assim como já é prática do segmento, a distribuição das frações granulométricas é definida por d10, d50, d90 e ocasionalmente d99, notações estas que refletem o volume % acumulado de partículas correspondente a cada notação, d10 se referindo a 10% do volume das partículas, d50 a 50% do volume e assim por diante.
[0098] Em algumas concretizações, a invenção proporciona um preparado de partículas de Nióbio na faixa granulométrica abaixo de 100 nanômetros.
[0099] Em algumas concretizações, o preparado de nanopartículas de pentóxido de Nióbio tem distribuição granulométrica: d10: entre 9 e 27 nm; d50: entre 16 e 67 nm; e d90: entre 33 e 94 nm.
[0100] Em outras concretizações, o preparado de nanopartículas de pentóxido de Nióbio tem distribuição granulométrica: d10: entre 14 e 1 10 nm; d50: entre 29 e 243 nm; e d90: entre 89 e 747 nm.
[0101] Em algumas concretizações, a invenção proporciona um preparado de partículas de Nióbio com área superficial específica entre 50 e 148 m2/g.
[0102] Em uma concretização, o preparado de nanopartículas de pentóxido de Nióbio tem área superficial específica média de 62,07 m2/g.
[0103] Em uma concretização, é provido um preparado de nanopartículas de pentóxido de Nióbio com tamanho médio de partículas (d50) de 16 nm. Em outra concretização, o preparado de nanopartículas de pentóxido de Nióbio tem tamanho médio de partículas (d50) de 29 nm. Em outra concretização, o preparado de nanopartículas de pentóxido de Nióbio tem tamanho médio de partículas (d50) de 67 nm. Em outra concretização, o preparado de nanopartículas de pentóxido de Nióbio tem tamanho médio de partículas (d50) de 178 nm.
[0104] O preparado de nanopartículas da invenção é útil em diversas aplicações, incluindo: a preparação de suspensões coloidais estáveis; a modulação ou melhoria das propriedades mecânicas de aços, ligas metálicas, não metálicas, cerâmicas e/ou polímeros; a dopagem de materiais para modular as propriedades eletromagnéticas para uso em componentes eletrônicos, células de bateria, sistemas de armazenamento de energia, painéis solares, sensores e atuados piezoelétricos; a modulação de propriedades óticas de vidros ou outros materiais transparentes; o uso como componente de catalisadores.
[0105] Em uma concretização, o uso do preparado de nanopartículas da invenção proporcionou a obtenção de composições líquidas ou suspensões coloidais estáveis, nas quais as nanopartículas permanecem em suspensão por elevado tempo, proporcionando tempo de prateleira elevado.
[0106] O processo de obtenção das nanopartículas de Nióbio distingue-se dos demais congêneres por constituir-se de um processo top down, sem reações químicas e sem mecanoquímica. O fato de serem utilizadas partículas de Nióbio puras ou de elevada pureza para a cominuição proporciona a obtenção de preparados de nanopartículas com elevada pureza, uma vez que o processo não acrescenta impurezas ou leva à formação de produtos de reação, como é o caso dos processos bottom up, de síntese ou mecanoquímicos do estado da arte.
[0107] O processo da invenção compreende as etapas de:
- alimentar partículas de Nióbio a um equipamento cominuidor selecionado dentre: moinho de alta energia; e steammill;
- ajustar as condições de cominuição selecionadas dentre:
- em um moinho de alta energia:
- suspender em um líquido partículas a serem cominuídas, em concentração entre 1 e 90% m/m, e estabilizar a suspensão até obtenção de suspensão coloidal estável; e
- colocar na câmara de moagem a referida suspensão e esferas de moagem com diâmetro selecionado entre 5 |im e 1 ,3 mm; ajustar a velocidade de rotação do moinho entre 500 e 4500 rpm; e moer as partículas em temperatura abaixo de 60 °C;
- em um moinho de jato em temperatura superaquecida ou Steammill, alimentar partículas menores que 40 micrômetros; ajustar a rotação do aeroclassificador entre e 1.000 e 25.000 rpm; ajustar a pressão do vapor comprimido entre 10 e 100 bar e temperatura entre 230 e 360 °C; e
- cominuir as partículas até obter o perfil granulométrico desejado.
[0108] A redução do tamanho médio das partículas antes do processo conforme demonstrado acima é particularmente útil para a melhoria do desempenho do subsequente processo de cominuição em moinho de alta energia, como demonstrado nos exemplos 1 -4 e 7 ou em processo de cominuição em steammill, descrito no exemplo 6 a seguir.
[0109] Em uma concretização, o processo envolve moagem a úmido em moinho de alta energia e viabiliza em escala industrial, pela primeira vez, a obtenção de partículas de pentóxido de Nióbio predominantemente ou inteiramente na faixa granulométrica dos nanômetros. Nas concretizações em que a cominuição é feita em moinhos de alta energia a úmido a estabilização da suspensão coloidal a ser colocada na câmara de moagem do moinho de alta energia é uma etapa muito importante, sendo selecionada dentre: o ajuste do pH do meio líquido polar para a faixa entre 2 a 13, e opcionalmente adicionar surfactantes; ou a adição de surfactantes em meio líquido apoiar.
[0110] Em uma concretização é utilizado um moinho conhecido do estado da técnica como, por exemplo, um moinho de alta energia com esferas de Zircônia estabilizada com ítria (ZrÜ2 + Y2O3), mediante 0 ajuste de parâmetros específicos, incluindo tempo de rotação, pH e temperatura. Em uma concretização, 0 meio de moagem inclui bolas de Zircônia, ZTA (Zircônia reforçada com alumina ou ítrio) e alumina. Preferencialmente, são usadas esferas de Zircônia estabilizada com 5 % m/m de ítria.
[0111] Em uma outra concretização, 0 processo envolve cominuição por moinho a jato com vapor superaquecido (steammilí), ao qual são alimentadas partículas menores que 40 microns, sendo ajustada a rotação do aeroclassificador entre e 1.000 e 25.000 rpm, a pressão do vapor comprimido entre 10 e 100 bar, e a temperatura entre 230 e 360 °C.
[0112] Exemplos
[0113] Os exemplos aqui mostrados têm o intuito somente de exemplificar algumas das várias maneiras de se realizar a invenção, contudo sem limitar, o escopo da mesma.
[0114] Exemplo 1 - Processo de moagem a úmido de pentóxido de Nióbio (Nb2O5) em moinho de alta energia
[0115] Nesta concretização, o preparado de nanopartículas de pentóxido de Nióbio foi obtido por moagem com ajuste de parâmetros que incluem, velocidade de rotação, pH, temperatura.
[0116] O pentóxido de Nióbio (Nb20s) de fonte comercial, com elevada pureza e com distribuição granulométrica d90=68,425, d50=20,867 e d10=0,345 (pm) foi alimentado a um moinho de alta energia do tipo meio agitado. Referido moinho opera com bolas/esferas de moagem de 5 pm até 1 ,3 mm de diâmetro, de Zircônia estabilizada com ítria. Nesta concretização, o tamanho das referidas bolas foi de 400pm. As condições de moagem do referido material, para a obtenção do pó de nanopartículas de Nióbio (Nb20s), incluíram: velocidades de rotação entre 1000 e 4500 rpm, temperaturas abaixo dos 40 °C mantidas com auxílio de sistema de refrigeração forçada externa ao referido moinho. Após 30 a 120 minutos de operação nestas condições, um preparado em pó contendo nanopartículas de Nióbio foi obtido.
[0117] Diferentes condições de moagem foram testadas para a avaliação da eficiência. A tabela 1 mostra os resultados dos testes em diferentes parâmetros e tempos de moagem:
[0118] T abela 1 - Eficiência de moagem e distribuição granulométrica (d10, d50 e d90) em micrômetros (pm)
Figure imgf000024_0001
Figure imgf000025_0001
[0119] Os dados da tabela 1 mostram que na condição de tempo de moagem de 30 minutos, pH 6,63, com a técnica de medição de tamanhos por espalhamento laser segundo modelo de Mie e em base volumétrica, e temperatura de 34,7 °C, foram obtidas nanopartículas com d10 de 0,077; d50 de 0,178; e d90 de 0,402 (respectivamente 77 nm, 178 nm e 402 nm).
[0120] Exemplo 2 - Medição do tamanho de partículas
[0121] A distribuição do tamanho de partículas foi medida pelo método de espalhamento de laser, usando o Analysette 22 NanoTecplus marca FRITSCH. Conforme mostra a figura 1 , o preparado de nanopartículas de Nióbio da invenção tem distribuição granulométrica integralmente na faixa de nanopartículas. A figura 1 mostra a distribuição granulométrica ou diâmetro equivalente das partículas em nanômetros (eixo horizontal), a fração relativa das nanopartículas (eixo vertical à esquerda) e fração cumulativa (eixo vertical à direita). A figura mostra que as nanopartículas de Nióbio desta concretização da invenção têm diâmetro equivalente entre 10 e 1000 nanômetros (nm), sendo 90% entre 10 e 400 nm, 80% entre 10 e 300 nm, 50% entre 10 e 178 nm,
[0122] Exemplo 3 - Suspensão coloidal estável - Teste da estabilidade das partículas de Nióbio em função do pH e em solução aquosa
[0123] O preparado de nanopartículas obtido de acordo com o exemplo 1 foi usado para obter uma suspensão coloidal estável e testes de estabilização em função do pH foram realizados. A figura 2 mostra os resultados obtidos nos tubos numerados para os diferentes pHs testados: 2, 4, 9, 12. Conforme ilustra a figura 2, os resultados mostram que a estabilidade das nanopartículas de Nióbio é muito dependente do pH do meio, e que no pH 4 as partículas atingiram sua maior instabilidade. É observado também que neste pH 4 praticamente 100% das partículas sedimentaram, uma vez que o líquido sobrenadante no tubo de ensaios está completamente isento de partículas sólidas com tamanhos que pudessem sofrer a interferência da luz visível do ambiente. O líquido sobrenadante apresenta a translucidez típica da solução aquosa utilizada. Também se observa o acúmulo de partículas de Nióbio no fundo dos tubos com pH 4, indicando a altura do sedimento formado pelas partículas. Já no pH 9 as partículas naquela condição são menos suscetíveis à sedimentação e apresentaram maior estabilidade.
[0124] Exemplo 4 - Composições líquidas contendo nanopartículas de Nióbio - testes de estabilidade/tempo de prateleira
[0125] O preparado de nanopartículas de acordo com os exemplos 1 e 2 foi submetido ao teste de estabilidade em função do tempo (shelf life). A Figura 3 mostra o resultado do referido teste, indicando que após 6h de ensaio de turbidimetria num equipamento de marca TURBISCAN, as partículas no pH 9 permaneceram estáveis e não formaram sedimentos. Esse comportamento é típico de partículas nanométricas estáveis.
[0126] Exemplo 5 - Processo de moagem a úmido de pentóxido de Nióbio (Nb20s) em moinho de alta energia
[0127] Um equipamento moinho agitador de esferas Labstar LS01 (Netzsch) foi alimentado com partículas micrométricas de pentóxido de Nióbio. Referido processo envolve moagem úmida de alta energia. A suspensão de partículas foi de 17,7% m, consistindo de aproximadamente 3500 g de água milli-Q + NaOH 10 M e 750 g da amostra sólida a qual foi preparada e estabilizada no tanque de mistura do moinho em pH 9, titulada com NaOH 10 M. As esferas de moagem usadas foram de zircônia estabilizada com ítria, de 400 pm de diâmetro. O preenchimento da câmara de moagem foi de 80% vol e a temperatura da suspensão inferior a 40 °C. A velocidade de rotação do moinho foi ajustada 3000 rpm e a moagem foi conduzida por 8 horas. Para estabilizar a suspensão em pH 9, foram realizadas adições de NaOH 10 M durante a moagem, sendo feitas amostragens de tempos em tempos e medidos os tamanhos de partículas.
[0128] A medição das partículas foi feita em equipamento Fritsch, modelo Analysette 22, tendo como acessório uma unidade para medidas do tamanho de partículas por via úmida. As medições da distribuição de tamanhos de partículas foram feitas por espalhamento de luz estática. O meio de análise foi água destilada. Uma alíquota da suspensão com 17,7% m, durante processo de moagem, foi analisada em dez repetições pelo equipamento. Os resultados da tabela 2 apresentam as medições (média de 10 medidas) e a DTP (distribuição de tamanho de partícula) obtida em cada tempo de moagem nas condições indicadas acima.
[0129] Tabela 2 Resultados de d10, d50 e d90 em nanômetros.
Figure imgf000027_0001
[0130] As curvas de distribuição dos tamanhos das partículas em função da frequência e do volume cumulativo são apresentadas nas Figuras 4 e 5.
[0131] A figura 4 mostra a distribuição dos tamanhos de partículas de pentóxido de Nióbio cominuído em função do tempo de moagem em moinho de alta energia (frequência de amostragem). No eixo x é mostrado o diâmetro equivalente das partículas em nm e no eixo y é mostrada a frequência em %.
[0132] A figura 5 mostra a distribuição dos tamanhos de partícula em função do volume cumulativo da amostra de pentóxido de Nióbio cominuído. No eixo x é mostrado o diâmetro equivalente em nm e no eixo x a volume cumulativo em %.
[0133] Exemplo 6 - Cominuição de pentóxido de Nióbio por Jetmill
[0134] No presente exemplo, um moinho a jato ou jetmill foi usado para pré- cominuir as partículas de pentóxido de Nióbio, de forma a melhorar o desempenho do subsequente processo de cominuição até distribuição granulométrica integralmente (d99) na faixa de nanômetros.
[0135] Uma amostra de pentóxido de Nióbio, com perfil de distribuição granulométrica de entrada d90% 69,4 pm; d50% 40,6 pm e d10% 13,4 pm, umidade relativa 0,85% (Sartorius - 20 min em 105 °C) e densidade aparente 1 ,62 g/cm3 foi submetida a diversos condições de cominuição em um jetmill, conforme sumarizado na Tabela 3.
[0136] Tabela 3 - Condições de cominuição em jetmill
Figure imgf000028_0001
Figure imgf000029_0001
[0137] A figura 6 mostra o perfil de distribuição cumulativa de partículas de Nb2Ü5 em álcool como dispersante em um jetmill (produto 1 na tabela 3 acima). No eixo x é mostrado o diâmetro equivalente em micra, no eixo y à esquerda o volume % e no eixo y à direita o volume % cumulativo. Para esta amostra o peso residual é de 1 ,14%, a área superficial específica 1 ,536 m2/g, e concentração 0,0020%. O perfil de distribuição das partículas é de dD90=31 ,1 pm; D50=1 1 ,4 pm; d10=1 ,41 pm.
[0138] A figura 7 mostra o perfil de distribuição cumulativa de partículas de Nb2Ü5 em álcool como dispersante em um jetmill (produto 3 na tabela 3 acima). No eixo x é mostrado o diâmetro equivalente em micra, no eixo y à esquerda o volume % e no eixo y à direita o volume % cumulativo. Para esta amostra o peso residual é de 0,68%, a área superficial específica 1 ,063 m2/g, e concentração 0,0081 %. O perfil de distribuição das partículas é de dD90=22,3 pm; D50=8,88 pm; d10=2,77 pm.
[0139] A redução do tamanho médio das partículas conforme demonstrado acima é particularmente útil para a melhoria do desempenho do subsequente processo de cominuição em moinho de alta energia, como demonstrado nos exemplos 1 -4 ou do processo de cominuição descrito no exemplo 7 a seguir.
[0140] Exemplo 7 - Cominuição de pentóxido de Nióbio por Steammill
[0141] Nesta concretização, partículas de Nb20s com o perfil de distribuição de acordo com a figura 7 (exemplo 6), dD90=22,3 pm; D50=8,88 pm; d10=2,77 pm foram alimentadas a um steammill.
[0142] Em seguida, foi ajustada a rotação do aeroclassificador para 20.000 rpm e a pressão do vapor comprimido em 50 bar. A temperatura do fluido superaquecido foi de 280 °C.
[0143] Após operação nestas condições, foi obtido um perfil de distribuição granulométrica semelhante ao obtido nos exemplos 1 -2, figura 1 .
[0144] Exemplo 8 - Preparados de nanopartículas de pentóxido de Nióbio (Nb2O5) elevada pureza e distribuição granulométrica definida
[0145] No presente exemplo, diversas concretizações de preparados de nanopartículas de pentóxido de Nióbio foram obtidas, com pureza superior a 99%. Pentóxido de Nióbio comercial, com a distribuição granulométrica descrita na tabela 4 foi pré-cominuído de em moinho de alta energia contendo esferas de zircônia estabilizadas com ítria com diâmetro de 400 pm, em meio líquido e o pH ajustado para 6,6. A velocidade de rotação do moinho foi de 3500 rpm e a moagem das partículas foi conduzida em temperatura abaixo de 40 °C. A tabela 4 mostra a distribuição dos tamanhos de partícula (DTP) de pentóxido de Nióbio de entrada (produto comercial) e de saída de uma etapa de pré-cominuição.
[0146] Tabela 4 - DTP de entrada (produto comercial) e de saída após pré- cominuição.
Figure imgf000030_0001
Figure imgf000031_0001
[0147] A figura 8 mostra as curvas correspondentes ao perfil de distribuição granulométrica do produto comercial contendo pentóxido de Nióbio (curva A = entrada) e do preparado de pentóxido de Nióbio pré-cominuído (curva B). No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrado o volume cumulativo, em %.
[0148] A figura 9 mostra as curvas correspondentes ao perfil de distribuição granulométrica do produto comercial contendo pentóxido de Nióbio (curva A = entrada) e do preparado de pentóxido de Nióbio pré-cominuído (curva B). No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %. Os dados mostram que a etapa de pré- cominuição proporciona a obtenção de um preparado contendo micropartículas de pentóxido de Nióbio com partículas entre 1 e 40 micrômetros.
[0149] A área de superfície específica média S (m2/g) das partículas após a etapa de pré-cominuição foi de 0,32 m2/g.
[0150] Em uma concretização, as partículas pré-cominuídas foram então alimentadas a um moinho de alta energia, sendo aplicadas condições semelhantes às descritas no exemplo 5, porém com esferas de Zr de 200 pm e moídas por tempos diferentes, até a obtenção de cada preparado de nanopartículas. Foram obtidos três diferentes preparados de nanopartículas, cada um com uma distribuição granulométrica definida conforme descrito na tabela 5.
[0151] Tabela 5 - Distribuição de tamanhos de partículas de três diferentes preparados (C, D e E) de nanopartículas de pentóxido de Nióbio.
Figure imgf000031_0002
Figure imgf000032_0001
[0152] A figura 10 mostra a curva correspondente ao perfil de distribuição granulométrica do preparado de nanopartículas de pentóxido de Nióbio (curva
C) integralmente (d99,99) na faixa dos nanômetros, com partículas entre 74 e 747 nm. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0153] A figura 1 1 mostra a curva correspondente ao perfil de distribuição granulométrica do preparado de nanopartículas de pentóxido de Nióbio (curva
D) integralmente (d99,99) na faixa dos nanômetros, com partículas entre 20 e 206 nm. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0154] A figura 12 mostra a curva correspondente ao perfil de distribuição granulométrica do preparado de nanopartículas de pentóxido de Nióbio (curva
E) integralmente (d99,99) na faixa dos nanômetros, com partículas entre 8 e 89 nm. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0155] A figura 13 mostra as curvas correspondentes aos perfis de distribuição granulométrica dos três diferentes preparados de pentóxido de Nióbio pré- cominuído das figuras 10-12 (curvas C, D e E) em um só gráfico. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0156] A figura 14 mostra as curvas correspondentes aos perfis de distribuição granulométrica de três diferentes preparados de pentóxido de Nióbio pré- cominuído (curvas C, D e E) em um só gráfico. No eixo x é mostrado o diâmetro equivalente das partículas em micrômetros e no eixo y é mostrada frequência em %.
[0157] Os preparados de nanopartículas desta concretização da invenção apresentam muito elevada área superficial específica, o que viabiliza o uso em uma variedade muito grande de aplicações. A tabela 6 mostra os dados de área superficial específica média dos preparados de nanopartículas de pentóxido de Nióbio.
[0158] Tabela 6 - Área superficial específica média S de três diferentes preparados de nanopartículas de pentóxido de Nióbio (C, D e E).
Figure imgf000033_0001
[0159] De se notar que em algumas frações do preparado E foram obtidas nanopartículas de pentóxido de Nióbio maiores que 90 m2/g e uma das frações resultou em 148,2 m2/g, valores muito acima daqueles jamais atingidos no estado da técnica.
[0160] Os versados na arte saberão que mediante o uso de classificadores, como aeroclassificadores ou ultracentrifugação, as diferentes frações granulométricas de cada preparado podem ser separadas, viabilizando com isso a obtenção de curvas de perfil de distribuição granulométrica ainda mais estreitas em relação às exemplificadas acima.
[0161] Exemplo 9 - Preparados de nanopartículas resultantes da combinação de preparados integralmente nanométricos de pentóxido de Nióbio (Nb2O5)
[0162] No presente exemplo, diferentes preparados de nanopartículas foram obtidos mediante a combinação dos dois preparados de nanopartículas (preparados C e E) exemplificados no exemplo 8 acima.
[0163] Em uma concretização, uma mistura 1 :1 do preparado C e do preparado E do exemplo 8 foi obtida por simples homogeneização.
[0164] Em uma outra concretização, uma mistura 1 :10 do preparado C e do preparado E do exemplo 8 foi obtida por simples homogeneização.
[0165] Em uma outra concretização, uma mistura 1 :1 do preparado D e do preparado B (pré-cominuído) do exemplo 8 foi obtida por simples homogeneização.
[0166] Os resultantes perfis de distribuição granulométrica proporcionam ajuste de reologia dos preparados obtidos, uma vez que as combinações de partículas maiores (preparados B ou C) com nanopartículas menores (preparado D ou E) proporcionam diferentes graus de empacotamento, de frações de vazios, fluidez e diferentes comportamentos em aplicações subsequentes, como sinterização, dispersão em líquidos viscosos e outras aplicações.
[0167] Os versados na arte valorizarão os conhecimentos aqui apresentados e poderão reproduzir a invenção nas modalidades apresentadas e em outras variantes e alternativas, abrangidas pelo escopo das reivindicações a seguir.

Claims

33 Reivindicações
1 . Preparado de nanopartículas caracterizado por compreender teor igual ou superior a 95% em peso de partículas de Nióbio, em que 50% a 99% das partículas (d50 a d99) estão na faixa granulométrica de 5 a 1000 nanômetros (nm).
2. Preparado de nanopartículas de acordo com a reivindicação 1 caracterizado por 90% a 99% das partículas (d90 a d99) estarem na faixa granulométrica de 5 a 1000 nanômetros (nm).
3. Preparado de nanopartículas de acordo com a reivindicação 1 ou 2 caracterizado em que o teor é igual ou superior a 99% em peso de partículas de Nióbio.
4. Preparado de nanopartículas de acordo com qualquer uma das reivindicações 1 a 3 caracterizado em que as nanopartículas são de pentóxido de Nióbio.
5. Preparado de nanopartículas de acordo com qualquer uma das reivindicações 1 a 4 caracterizado em que o perfil de distribuição granulométrica é: d10: entre 14 e 1 10 nm; d50: entre 29 e 243 nm; e d90: entre 89 e 747 nm.
6. Preparado de nanopartículas de acordo com qualquer uma das reivindicações 1 a 4 caracterizado em que o perfil de distribuição granulométrica é: d10 de 70 a 100 nm; d50 de 170 a 240 nm; d90 de 400 a 580 nm.
7. Preparado de nanopartículas de acordo com qualquer uma das reivindicações 1 a 4 caracterizado em que o perfil de distribuição granulométrica é: d50 de 10 a 178 nm; d80 de 10 a 300 nm; d90 de 10 a 400 nm.
8. Preparado de nanopartículas de acordo com qualquer uma das reivindicações 1 a 4 caracterizado em que 90% a 99% das partículas (d90 a d99) estão na faixa granulométrica entre 100 e 1000 nm.
9. Preparado de nanopartículas de acordo com qualquer uma das reivindicações 1 a 4 caracterizado em que 90% a 99% das partículas (d90 a d99) estão na faixa granulométrica entre 5 e 100 nm. 34
10. Preparado de nanopartículas de acordo com a reivindicação 9 caracterizado em que o perfil de distribuição granulométrica é: d10: entre 9 e 27 nm; d50: entre 16 e 67 nm; d90: entre 33 e 94 nm.
1 1 . Preparado de nanopartículas de acordo com qualquer uma das reivindicações 1 a 4 caracterizado em que a área superficial específica é de 0,5 a 150 m2/g.
12. Preparado de nanopartículas de acordo com a reivindicação 1 1 caracterizado em que a área superficial específica média é de 40 a 70 m2/g.
13. Uso do preparado de nanopartículas conforme definido em qualquer uma das reivindicações 1 a 12 caracterizado por ser para obter outros preparados de partículas ou nanopartículas com ajustadas propriedades reológicas, ajustados graus de empacotamento ou frações de vazios, ajustada fluidez do preparado final.
14. Uso do preparado de nanopartículas conforme definido em qualquer uma das reivindicações 1 a 12 caracterizado por ser para a preparação de: composições coloidais estáveis; aços, ligas metálicas, não metálicas, cerâmicas e/ou polímeros; materiais compósitos, componentes eletrônicos, células de bateria, sistemas de armazenamento de energia, sensores e atuadores piezoelétricos, painéis solares; vidros, vitrocerâmicos, materiais transparentes e translúcidos; catalisadores.
15. Processo para a obtenção de nanopartículas de Nióbio caracterizado por compreender as etapas de:
- alimentar partículas de Nióbio a um equipamento cominuidor selecionado dentre: moinho de alta energia, moinho de bolas e steammill;
- ajustar as condições de cominuição selecionadas dentre:
- em um moinho de alta energia: suspender em um líquido partículas a serem cominuídas, em concentração entre 1 % e 90% m/m, e estabilizar a suspensão até obtenção de suspensão coloidal estável; colocar na câmara de moagem a referida suspensão e esferas de moagem com diâmetro selecionado entre 5 |im e 1 ,3 mm; ajustar a velocidade de rotação do moinho entre 500 e 4500 rpm; e moer as partículas em temperatura abaixo de 60 °C; ou
- em um moinho de jato em com fluido superaquecido ou Steammill, alimentar partículas menores que 40 micrômetros; ajustar a rotação do aeroclassificador entre e 1.000 e 25.000 rpm; ajustar a pressão do vapor comprimido entre 10 e 100 bar e temperatura entre 230 e 360 °C; e
- cominuir as partículas até obter o perfil granulométrico desejado.
16. Processo de acordo com a reivindicação 15 caracterizado pela referida estabilização da suspensão coloidal ser feita mediante: ajustar o pH do meio líquido polar para a faixa entre 2 a 13, e opcionalmente adicionar surfactantes; ou adicionar surfactantes ao meio líquido apoiar.
17. Processo de acordo com a reivindicação 15 ou 16 caracterizado por adicionalmente compreender uma etapa de pré-cominuição das partículas de Nióbio antes da etapa de alimentação ao equipamento cominuidor, referida pré- cominuição sendo conduzida até atingir tamanho médio de partículas menor que 40 micrômetros.
18. Processo de acordo com a reivindicação 17 caracterizado pela referida pré- cominuição ser feita em moinho de bolas, moinho de discos ou moinho de alta energia ou em moinho de ato/jetmill.
19. Processo de acordo com a reivindicação 15 ou 16 caracterizado por compreender as etapas de:
- alimentar um moinho de alta energia com partículas de pentóxido de Nióbio (Nb2O5) micrométricas;
- alimentar o referido moinho com um líquido e ajustar o pH na faixa entre 5 a 10;
- alimentar o referido moinho com esferas com diâmetro selecionado entre 50 |im e 400 |im;
- ajustar a velocidade de rotação do moinho entre 2000 e 4000 rpm; e
- moer as partículas em temperatura abaixo de 60 °C até obter o perfil granulométrico desejado.
20. Processo de acordo com a reivindicação 15 caracterizado pelo moinho de alta energia ser do tipo meio agitado e as referidas esferas são selecionadas dentre: Zircônia, carbeto de Silício, alumina, as referidas esferas sendo opcionalmente estabilizadas com ítria ou Pentóxido de Nióbio, ou combinações dos mesmos.
21. Processo de acordo com a reivindicação 15 ou 17 caracterizado pelo moinho de jato em temperatura superaquecida ou Steammill ser ajustado com os seguintes parâmetros: rotação do aeroclassificador em 20.000 rpm; pressão do vapor comprimido em 50 bar; e temperatura do fluido superaquecido de 280 °C.
PCT/BR2021/050346 2020-08-17 2021-08-17 Preparado de nanopartículas de nióbio, uso e processo para sua obtenção WO2022036427A1 (pt)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202180069037.8A CN116568405A (zh) 2020-08-17 2021-08-17 铌纳米颗粒的制剂、用途及其获得方法
US18/042,172 US20230357042A1 (en) 2020-08-17 2021-08-17 Niobium nanoparticle preparation, use and process for obtaining thereof
BR112023003019A BR112023003019A2 (pt) 2020-08-17 2021-08-17 Preparado de nanopartículas de nióbio, uso e processo para sua obtenção
IL300770A IL300770A (en) 2020-08-17 2021-08-17 Niobium nanoparticle preparation, its uses and a method for its preparation
CA3189991A CA3189991A1 (en) 2020-08-17 2021-08-17 Niobium nanoparticle preparation, use and process for obtaining thereof
KR1020237009328A KR20230052947A (ko) 2020-08-17 2021-08-17 니오븀 나노입자 제조물, 이의 용도 및 이를 수득하는 방법
JP2023512423A JP2023538924A (ja) 2020-08-17 2021-08-17 ニオブナノ粒子調製物、同調製物の使用及び同調製物を得るための方法
EP21857063.8A EP4197973A1 (en) 2020-08-17 2021-08-17 Preparation of niobium nanoparticles, use and method for obtaining same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRBR1020200167740 2020-08-17
BR102020016774-0A BR102020016774A2 (pt) 2020-08-17 2020-08-17 Preparado de nanopartículas de nióbio, uso e processo para sua obtenção

Publications (1)

Publication Number Publication Date
WO2022036427A1 true WO2022036427A1 (pt) 2022-02-24

Family

ID=80322300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2021/050346 WO2022036427A1 (pt) 2020-08-17 2021-08-17 Preparado de nanopartículas de nióbio, uso e processo para sua obtenção

Country Status (12)

Country Link
US (1) US20230357042A1 (pt)
EP (1) EP4197973A1 (pt)
JP (1) JP2023538924A (pt)
KR (1) KR20230052947A (pt)
CN (1) CN116568405A (pt)
AR (1) AR123274A1 (pt)
BR (2) BR102020016774A2 (pt)
CA (1) CA3189991A1 (pt)
CL (1) CL2023000498A1 (pt)
IL (1) IL300770A (pt)
UY (1) UY39386A (pt)
WO (1) WO2022036427A1 (pt)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023836A1 (pt) * 2021-08-27 2023-03-02 Instituto Hercílio Randon Preparado de nanopartículas de tântalo, processo de obtenção de nanopartículas de tântalo e uso do preparado de nanopartículas de tântalo
CN115784305A (zh) * 2022-10-22 2023-03-14 锦州钒业有限责任公司 一种纳米五氧化二铌的制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102022010926A2 (pt) * 2022-06-03 2023-12-19 Inst Hercilio Randon Ferro fundido melhorado e processo para sua obtenção
WO2024059922A1 (pt) * 2022-09-23 2024-03-28 Instituto Hercílio Randon Célula de bateria, aditivo para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, método para a modulação da velocidade de carga e/ou ciclabilidade de uma célula de bateria, uso de nanopartículas de nióbio, titânio ou combinações das mesmas e uso de célula de bateria

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084965A (en) 1977-01-05 1978-04-18 Fansteel Inc. Columbium powder and method of making the same
CA2018346A1 (en) * 1989-06-08 1990-12-08 Walter Bludssus Niobium oxide powder (nb o ) and a process for its preparation
JPH10242004A (ja) 1997-02-28 1998-09-11 Showa Denko Kk コンデンサ
WO2000056486A1 (en) * 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
BR0106058A (pt) 2001-12-12 2003-08-26 Cbmm Sa Processo de produção de pó de nióbio por redução de niobatos de metais alcalinos ou alcalino terrosos e pó de nióbio
BR0303252A (pt) 2003-08-05 2005-04-05 Multibras Eletrodomesticos Sa Sistema de controle da operação de um forno de cozinha
US20060260437A1 (en) * 2004-10-06 2006-11-23 Showa Denko K.K. Niobium powder, niobium granulated powder, niobium sintered body, capacitor and production method thereof
US7210641B2 (en) * 2001-02-28 2007-05-01 Cabot Corporation Methods of making a niobium metal oxide
US20070185242A1 (en) 2005-11-08 2007-08-09 Yuhong Huang Low temperature curing ink for printing oxide coating and process the same
US7329476B2 (en) 2005-03-31 2008-02-12 Xerox Corporation Toner compositions and process thereof
US20080135798A1 (en) * 2006-12-07 2008-06-12 Jae Ho Jeon Nano-Size Lead-Free Piezoceramic Powder and Method of Synthesizing the Same
CN101798227A (zh) 2010-03-24 2010-08-11 桂林理工大学 一种铌钛酸盐纳米粉体的固相合成方法
US20170209925A1 (en) * 2014-08-12 2017-07-27 Global Advanced Metals Usa, Inc. A Method Of Making A Capacitor Grade Powder And Capacitor Grade Powder From Said Process
WO2019145298A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
US20200391294A1 (en) 2019-06-13 2020-12-17 The Curators Of The University Of Missouri Metal-ceramic composite powders

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084965A (en) 1977-01-05 1978-04-18 Fansteel Inc. Columbium powder and method of making the same
CA2018346A1 (en) * 1989-06-08 1990-12-08 Walter Bludssus Niobium oxide powder (nb o ) and a process for its preparation
JPH10242004A (ja) 1997-02-28 1998-09-11 Showa Denko Kk コンデンサ
WO2000056486A1 (en) * 1999-03-19 2000-09-28 Cabot Corporation Making niobium and other metal powders by milling
CN100381234C (zh) 1999-03-19 2008-04-16 卡伯特公司 通过研磨制备铌和其它金属粉末
US6375704B1 (en) 1999-05-12 2002-04-23 Cabot Corporation High capacitance niobium powders and electrolytic capacitor anodes
US7210641B2 (en) * 2001-02-28 2007-05-01 Cabot Corporation Methods of making a niobium metal oxide
BR0106058A (pt) 2001-12-12 2003-08-26 Cbmm Sa Processo de produção de pó de nióbio por redução de niobatos de metais alcalinos ou alcalino terrosos e pó de nióbio
BR0303252A (pt) 2003-08-05 2005-04-05 Multibras Eletrodomesticos Sa Sistema de controle da operação de um forno de cozinha
US20060260437A1 (en) * 2004-10-06 2006-11-23 Showa Denko K.K. Niobium powder, niobium granulated powder, niobium sintered body, capacitor and production method thereof
US20090256014A1 (en) 2004-10-06 2009-10-15 Showa Denko K.K. Niobium powder, niobium granulated powder, niobium sintered body, capacitor and production method thererof
US7329476B2 (en) 2005-03-31 2008-02-12 Xerox Corporation Toner compositions and process thereof
US20070185242A1 (en) 2005-11-08 2007-08-09 Yuhong Huang Low temperature curing ink for printing oxide coating and process the same
US20080135798A1 (en) * 2006-12-07 2008-06-12 Jae Ho Jeon Nano-Size Lead-Free Piezoceramic Powder and Method of Synthesizing the Same
CN101798227A (zh) 2010-03-24 2010-08-11 桂林理工大学 一种铌钛酸盐纳米粉体的固相合成方法
US20170209925A1 (en) * 2014-08-12 2017-07-27 Global Advanced Metals Usa, Inc. A Method Of Making A Capacitor Grade Powder And Capacitor Grade Powder From Said Process
WO2019145298A1 (en) 2018-01-23 2019-08-01 Evonik Oil Additives Gmbh Polymeric-inorganic nanoparticle compositions, manufacturing process thereof and their use as lubricant additives
US20200391294A1 (en) 2019-06-13 2020-12-17 The Curators Of The University Of Missouri Metal-ceramic composite powders

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DE CASTRO NOGUEIRA ROSIANE: "Estudo o efeito do tempo e do meio de moagem de alta energia para a obtenção de pos nanometricos de hidretos de titânio e nióbio", MASTER'S THESIS, 1 January 2009 (2009-01-01), XP055908263, Retrieved from the Internet <URL:https://repositorio.unesp.br/bitstream/handle/11449/94419/nogueira_rc_me_guara.pdf?sequence=1&isAllowed=y> *
GUSEV A I: "High-energy ball milling of nonstoichiometric compounds", PHYSICS USPEKHI., AMERICAN INSTITUTE OF PHYSICS., US, vol. 63, no. 4, 1 April 2020 (2020-04-01), US , pages 342 - 364, XP055908388, ISSN: 1063-7869, DOI: 10.3367/UFNe.2019.06.038581 *
IKEYA TOMOHIKO, SENNA MAMORU: "Amorphization and phase transformation of niobium pentoxide by fine grinding", JOURNAL OF MATERIAL SCIENCE, KLUWER ACADEMIC PUBLISHERS, DORDRECHT, vol. 22, no. 7, 1 July 1987 (1987-07-01), Dordrecht , pages 2497 - 2502, XP055908391, ISSN: 0022-2461, DOI: 10.1007/BF01082136 *
KORUZA JURIJ, MALIČ BARBARA, NOSHCHENKO OLEKSANDR, KOSEC MARIJA: "Top-Down Processing of Nanopowder", JOURNAL OF NANOMATERIALS, HINDAWI PUBLISHING CORPORATION, US, vol. 2012, 1 January 2012 (2012-01-01), US , pages 1 - 7, XP055908386, ISSN: 1687-4110, DOI: 10.1155/2012/469143 *
MORRIS, M. A. ET AL.: "Ball-milling of elemental powders-compound formation and/or amorphization", JOURNAL OF MATERIALS SCIENCE, vol. 26, 1991, pages 4687 - 4696, XP000272725 *
POWDER TECHNOLOGY, vol. 383, 2021, pages 348 - 355
TSUZUKI TAKUYA, PAUL G. MCCORMICK: "Mechanochemical Synthesis of Niobium Pentoxide Nanoparticles", MATERIALS TRANSACTIONS, vol. 42, no. 8, 1 January 2001 (2001-01-01), pages 1623 - 1628, XP055908385 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023023836A1 (pt) * 2021-08-27 2023-03-02 Instituto Hercílio Randon Preparado de nanopartículas de tântalo, processo de obtenção de nanopartículas de tântalo e uso do preparado de nanopartículas de tântalo
CN115784305A (zh) * 2022-10-22 2023-03-14 锦州钒业有限责任公司 一种纳米五氧化二铌的制备方法
CN115784305B (zh) * 2022-10-22 2024-02-09 锦州钒业有限责任公司 一种纳米五氧化二铌的制备方法

Also Published As

Publication number Publication date
CL2023000498A1 (es) 2023-09-01
CN116568405A (zh) 2023-08-08
KR20230052947A (ko) 2023-04-20
BR102020016774A2 (pt) 2022-02-22
BR112023003019A2 (pt) 2023-04-11
JP2023538924A (ja) 2023-09-12
US20230357042A1 (en) 2023-11-09
UY39386A (es) 2022-03-31
AR123274A1 (es) 2022-11-16
EP4197973A1 (en) 2023-06-21
CA3189991A1 (en) 2022-02-24
IL300770A (en) 2023-04-01

Similar Documents

Publication Publication Date Title
WO2022036427A1 (pt) Preparado de nanopartículas de nióbio, uso e processo para sua obtenção
Patil et al. Synthesis techniques and applications of rare earth metal oxides semiconductors: A review
Teleki et al. Distinguishing between aggregates and agglomerates of flame-made TiO2 by high-pressure dispersion
Vasylkiv et al. Synthesis and colloidal processing of zirconia nanopowder
Manivasakan et al. Synthesis of monoclinic and cubic ZrO2 nanoparticles from zircon
Raghupathy et al. Spray granulation of nanometric zirconia particles
Wahlberg et al. Fabrication of nanostructured W–Y 2 O 3 materials by chemical methods
Xiao et al. Hydrothermal synthesis of nanoplates assembled hierarchical h-WO3 microspheres and phase evolution in preparing cubic Zr (Y) O2-doped tungsten powders
Kurlov et al. Effect of particle size on the oxidation of WC powders during heating
Millot et al. Hydrothermal synthesis of nanostructured inorganic powders by a continuous process under supercritical conditions
Menzler et al. Materials synthesis and characterization of 8YSZ nanomaterials for the fabrication of electrolyte membranes in solid oxide fuel cells
Qiu et al. Co-precipitation of nano Mg–Y/ZrO2 ternary oxide eutectic system: Effects of calcination temperature
Xiao et al. Research on preparation process for the in situ nanosized Zr (Y) O2 particles dispersion-strengthened tungsten alloy through synthesizing doped hexagonal (NH4) 0.33· WO3
Demoisson et al. Original supercritical water device for continuous production of nanopowders
Zaki et al. Acceleration of ammonium phosphate hydrolysis using TiO 2 microspheres as a catalyst for hydrogen production
Ananthasivan et al. De-agglomeration of thorium oxalate–a method for the synthesis of sinteractive thoria
Ulyanova et al. Investigation of the structure of nanocrystalline refractory oxides by X-ray diffraction, electron microscopy, and atomic force microscopy
Vital et al. Ultrafine comminution of dental glass in a stirred media mill
Zhuravkov et al. Properties of silver nanoparticles prepared by the electric spark dispersion method
Sun et al. Phase transformation of ultrafine rare earth oxide powders synthesized by radio frequency plasma spraying
BR102021017032A2 (pt) Preparado de nanopartículas de tântalo, uso e processo para sua obtenção
Yin et al. Synthesis and mechanism studies of novel drum-like Cd (OH) 2 superstructures
Kong et al. Mullite whiskers derived from an oxide mixture activated by a mechanochemical process
dos Santos Tonello et al. Ceramic processing of NbC nanometric powders obtained by high energy milling and by reactive milling
Zurmühl et al. ZrO2, CaCO3, and Fe4 [Fe (CN) 6] 3 Hollow Nanospheres via Gelatin‐stabilized Microemulsions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857063

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512423

Country of ref document: JP

Kind code of ref document: A

Ref document number: 3189991

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023003019

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237009328

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021857063

Country of ref document: EP

Effective date: 20230317

WWE Wipo information: entry into national phase

Ref document number: 202180069037.8

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 112023003019

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230216