WO2022034247A1 - Haftklebmasse - Google Patents

Haftklebmasse Download PDF

Info

Publication number
WO2022034247A1
WO2022034247A1 PCT/EP2021/072746 EP2021072746W WO2022034247A1 WO 2022034247 A1 WO2022034247 A1 WO 2022034247A1 EP 2021072746 W EP2021072746 W EP 2021072746W WO 2022034247 A1 WO2022034247 A1 WO 2022034247A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensitive adhesive
weight
acrylate
adhesive
Prior art date
Application number
PCT/EP2021/072746
Other languages
English (en)
French (fr)
Inventor
Jos Tasche
André RELLMANN-SPRINK
Original Assignee
Tesa Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa Se filed Critical Tesa Se
Priority to EP21765858.2A priority Critical patent/EP4196509A1/de
Priority to CN202180055768.7A priority patent/CN116075571A/zh
Priority to KR1020237008324A priority patent/KR20230048632A/ko
Priority to US18/021,301 priority patent/US20230295473A1/en
Priority to JP2023510328A priority patent/JP2023538015A/ja
Publication of WO2022034247A1 publication Critical patent/WO2022034247A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • C08L93/04Rosin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C

Definitions

  • the invention relates to the technical field of pressure-sensitive adhesives, such as are often used for the temporary or permanent joining of parts to be joined. More specifically, the invention proposes a pressure-sensitive adhesive based on a specially composed polyacrylate copolymer, which has good bond strengths and shear strengths, in particular on polar adhesive substrates, and at the same time makes it possible for a significant proportion of the components to be based on renewable raw materials.
  • bio-based raw materials there is a particular demand for raw materials that come partly or even entirely from biological sources (so-called bio-based raw materials). This is part of the currently generally observed trend towards sustainable products and addresses in particular the finite oil reserves and the resulting need to use them sparingly; Corresponding products are increasingly being actively requested by the customers of the adhesive mass manufacturers. In addition to the aspect of scarcity of resources, the "ecological footprint" resulting from the extraction and manufacture of the components is also taken into account. The main issue here is the amount of CO2 that occurs during the corresponding processes. This is generally lower for products from renewable sources, and some of the substances produced even have a negative CO2 balance.
  • aqueous pressure-sensitive adhesive composition which is essentially based on an acrylate polymer dispersed in water is described, for example, in EP 2 062 955 A1.
  • Typical of acrylate-based pressure-sensitive adhesives based on vegetable raw materials are adhesive compositions based on a copolymer, which is the reaction product of
  • EP 3 013 767 A1 discloses the use of a polymer resulting from the polymerisation of 2-octyl acrylate of renewable origin and optionally at least one other monomer as a binder for the preparation of a coating composition, the polymer having a glass transition temperature of from -30°C to 30 °C.
  • EP 2 626 397 A1 relates to a PSA comprising a polymer component based on acrylate, where at least 50% by weight of the monomers used to produce the polymer component can be traced back entirely to renewable raw materials.
  • the object of the invention was to provide a pressure-sensitive adhesive which has good bond strengths, in particular on polar substrates, and good shear strength, and can be produced to a high proportion from bio-based raw materials.
  • a first and general subject matter of the invention is a pressure-sensitive adhesive which has at least one copolymer which is based on a monomer composition which a) 45-75% by weight of at least one monomer selected from the group consisting of i- amyl acrylate, n-heptyl acrylate, and 2-octyl acrylate, b) 24-50% by weight of at least one alkyl (meth)acrylate whose alcohol component has 1 to 4 carbon atoms, and c) 0.5 to 10% by weight acrylic acid can be recycled; and at least one tackifying resin.
  • a monomer composition which a) 45-75% by weight of at least one monomer selected from the group consisting of i- amyl acrylate, n-heptyl acrylate, and 2-octyl acrylate, b) 24-50% by weight of at least one alkyl (meth)acrylate whose alcohol component has 1 to 4 carbon atoms, and c) 0.5 to 10% by weight
  • a PSA of this type has the good adhesive properties required for its task, with both the polymer component and the resin content being able to be formulated largely on the basis of renewable raw materials.
  • the monomers a) are now readily available as bio-based substances.
  • a composition according to the invention even if only the alcohol components of the monomers a) are actually produced from bio-based raw materials, also has a lower ecological footprint (carbon footprint) than comparable pressure-sensitive adhesives produced entirely on a petroleum basis, which as monomers correspond to a ) often use 2-ethylhexyl acrylate. This can essentially be attributed to the extraction and production of the relevant monomers a).
  • a pressure-sensitive adhesive or a pressure-sensitive adhesive is understood, as is customary in general usage, to mean a substance which is permanently tacky and adhesive at least at room temperature.
  • a characteristic of a pressure-sensitive adhesive is that it can be applied to a substrate by pressure and remains stuck there, with the pressure to be applied and the duration of action of this pressure not being defined in more detail.
  • the temperature and humidity, exposure to a short-term, minimum pressure, not exceeding a light touch for a short moment, in order to achieve the adhesion effect in other cases a longer period of exposure to higher pressure may be necessary.
  • Pressure-sensitive adhesives have special, characteristic viscoelastic properties that lead to permanent tack and adhesiveness. They are characterized by the fact that when they are mechanically deformed, both viscous flow processes and the build-up of elastic restoring forces occur. In terms of their respective proportion, both processes are in a specific relationship to one another, depending both on the exact composition, the structure and the degree of crosslinking of the PSA and on the speed and duration of the deformation and on the temperature.
  • the proportionate viscous flow is necessary to achieve adhesion. Only the viscous portions, often caused by macromolecules with relatively high mobility, enable good wetting and good flow onto the substrate to be bonded. A high proportion of viscous flow leads to high pressure-sensitive tack (also known as tack or surface tack) and therefore often to high adhesion.
  • high pressure-sensitive tack also known as tack or surface tack
  • Highly crosslinked systems, crystalline or glass-like solidified polymers are generally not, or at least only slightly, tacky due to the lack of free-flowing components.
  • the proportional elastic restoring forces are necessary to achieve cohesion. They are caused, for example, by very long-chained and heavily entangled macromolecules as well as by physically or chemically crosslinked macromolecules and enable the forces acting on an adhesive bond to be transmitted. They mean that an adhesive bond can withstand a permanent load acting on it, for example in the form of a permanent shearing load, to a sufficient extent over a longer period of time.
  • the storage modulus (G') and loss modulus (G") which can be determined using dynamic mechanical analysis (DMA), are used for a more precise description and quantification of the extent of the elastic and viscous parts and the ratio of the parts to one another.
  • G' is a measure of the elastic part
  • G" a measure of the viscous part of a substance. Both quantities depend on the deformation frequency and the temperature.
  • the sizes can be determined using a rheometer.
  • the material to be examined is placed, for example, in a plate-plate arrangement in a sinusoidally oscillating exposed to variable shear stress.
  • the deformation is measured as a function of time and the time offset of this deformation in relation to the introduction of the shear stress. This time offset is referred to as the phase angle ⁇ .
  • a mass is considered to be a pressure-sensitive adhesive and is defined as such in the context of the invention in particular if, at 23° C. in the deformation frequency range from 10° to 10 1 rad/sec, both G' and G" are at least partly in the range of 10 3 up to 10 7 Pa. "Partly” means that at least a portion of the G' curve lies within the window defined by the strain frequency range from 10° to 10 1 rad/sec inclusive (abscissa) and the range of G' values from 10 3 inclusive up to and including 10 7 Pa (ordinate) and if at least part of the G” curve also lies within the corresponding window.
  • the PSA of the invention comprises at least one copolymer which can be traced back to a monomer composition which a) 45-75% by weight of at least one monomer selected from the group consisting of i-amyl acrylate, n-heptyl acrylate and 2-octyl acrylate, b) 24-50% by weight of at least one alkyl (meth)acrylate whose alcohol component has 1 to 4 carbon atoms, and c) 0.5 to 10% by weight of acrylic acid.
  • a monomer composition which a) 45-75% by weight of at least one monomer selected from the group consisting of i-amyl acrylate, n-heptyl acrylate and 2-octyl acrylate, b) 24-50% by weight of at least one alkyl (meth)acrylate whose alcohol component has 1 to 4 carbon atoms, and c) 0.5 to 10% by weight of acrylic acid.
  • the monomers listed under a) can all be produced from renewable raw materials.
  • a process for producing bio-based acrylic acid which can be used as monomer c) and as an acid component for monomers a) and b), starts with glycerol, which occurs in large quantities, for example, in the transesterification of vegetable oils with methanol to produce biodiesel and therefore available.
  • the process includes dehydrating the glycerol to acrolein; the acrolein is then oxidized to acrylic acid in a one- or two-stage process.
  • Such a method is described, for example, in US 2007/0129570 A1.
  • WO 2006/092272 A2 discloses a similar process in which glycerol is first converted to a dehydration product containing acrolein and then a gas-phase oxidation of this dehydration product is carried out, with a product containing acrylic acid being produced.
  • Acrylic acid is obtained by contacting the oxidation product with a quenching agent and processing the quenched phase. This process enables the production of acrylic acid from renewable raw materials without the use of reactive compounds.
  • the glycerol is preferably obtained from the saponification of animal or vegetable fats.
  • Bio-based acrylic acid can also be obtained by a method in which lactic acid (2-hydroxypropionic acid) or 3-hydroxypropionic acid is produced from biological material as a fluid - in particular in the aqueous phase - the hydroxypropionic acid is dehydrated to obtain a fluid containing acrylic acid and the acrylic acid containing fluid is purified.
  • the required hydroxypropionic acid can be produced by fermentation. Fermentative reactions are often highly selective, with high yields and almost free of by-products due to the high selectivity of the microorganisms used. Secondary reactions are also avoided because the fermentation processes are carried out at low temperatures of 30 - 60 °C. Large-scale chemical processes in petrochemistry, on the other hand, are often carried out at much higher temperatures of mostly > 200 °C to optimize the yields. However, high reaction temperatures always lead to side reactions and the formation of cracking products.
  • butanol can be obtained by fermenting plant biomass, which is usually processed beforehand.
  • sucrose, starch or cellulose for example, and genetically modified microorganisms are sometimes used (so-called “white biotechnology”).
  • A.B.E. process A.B.E. for acetone, butanol, ethanol
  • Clostridium acetobutylicum is used for fermentation to produce 1-butanol.
  • 2-Octanol can be obtained and isolated as a by-product in the oxidation of ricinic acid to sebacic acid.
  • n-Heptanol can be obtained from heptanal, which is obtained during the thermal decomposition of ricinic acid (pyrolytic decomposition to heptanal and undecenoic acid).
  • the monomers a) lower the glass transition temperature of the copolymer compared to the other monomers present. This is advantageous because it promotes the attachment of the PSA to the adhesive substrate. In addition, the compound can absorb more resin, which also has a positive effect on the adhesive performance.
  • the monomer composition of the copolymer of the pressure-sensitive adhesive of the invention comprises monomers a) according to the invention at a total of 45 to 75% by weight.
  • the monomer composition of the copolymer of the pressure-sensitive adhesive of the invention preferably comprises monomers a) to a total of 50 to 72% by weight, in particular to a total of 60 to 70% by weight.
  • the monomer composition can comprise one (single) or more than one monomer a).
  • the monomer composition of the copolymer of the PSA of the invention preferably comprises at least 2-octyl acrylate as monomer a). This is particularly advantageous because this monomer further reduces the glass transition temperature of the copolymer. In addition, it does not introduce any side-chain crystallinity and thus makes a particularly strong contribution to the development of pressure-sensitive adhesive properties. Especially comprises the monomer composition as monomer a) 2-octyl acrylate. This means that only 2-octyl acrylate is included as monomer a).
  • the monomer composition of the copolymer of the PSA of the invention also comprises 24-50% by weight of at least one alkyl (meth)acrylate whose alcohol component has 1 to 4 carbon atoms (monomers b)).
  • the monomer composition of the copolymer of the pressure-sensitive adhesive of the invention comprises monomers b), that is to say a total of 24 to 50% by weight.
  • the monomer composition of the copolymer of the pressure-sensitive adhesive of the invention preferably comprises monomers b) to a total of 25 to 40% by weight, in particular to a total of 27 to 35% by weight.
  • the monomer composition can in principle comprise one (single) or more than one monomer b).
  • the monomer composition of the copolymer according to the invention particularly preferably comprises i-butyl acrylate as monomer b).
  • i-Butyl acrylate is bio-based and has a smaller ecological footprint in terms of raw material extraction and production, especially compared to the commonly used, petroleum-based n-butyl acrylate.
  • the monomer composition of the copolymer according to the invention particularly preferably comprises i-butyl acrylate and methyl acrylate as monomers b).
  • the monomers b) bring about an increase in the glass transition temperature of the copolymer, particularly in comparison with the monomers a). This is advantageous because it allows the properties of the pressure-sensitive adhesive to be tailored to the particular requirements by shifting the proportions by weight of the monomers a) and b). In addition, it is assumed that they introduce entanglements into the copolymer. This is advantageous because it gives the PSA greater toughness and cohesion.
  • the monomer composition of the copolymer of the pressure-sensitive adhesive of the invention preferably comprises from 1 to 7% by weight, in particular from 2 to 4% by weight, of acrylic acid.
  • the monomer composition of the copolymer of the PSA according to the invention preferably consists of a) 45-75% by weight of at least one monomer selected from the group consisting of i-amyl acrylate, n-heptyl acrylate and 2-octyl acrylate, b) 24-50% by weight at least one alkyl (meth)acrylate whose alcohol component has 1 to 4 carbon atoms, and c) 0.5 to 10% by weight of acrylic acid or of the monomers described above as being preferred in the proportions specified there.
  • the copolymers are preferably prepared by conventional free-radical polymerizations or controlled free-radical polymerizations.
  • the copolymers can be prepared by copolymerizing the monomers using customary polymerization initiators and, if appropriate, regulators, polymerization being carried out at the customary temperatures in bulk, in emulsion, for example in water or liquid hydrocarbons, or in solution.
  • the copolymers are preferably prepared by copolymerizing the monomers in solvents, particularly preferably in solvents with a boiling point range from 50 to 150° C., in particular from 60 to 120° C., using from 0.01 to 5% by weight, in particular from 0. 1 to 2% by weight, based in each case on the total weight of the monomers, of polymerization initiators.
  • radical sources are peroxides, hydroperoxides and azo compounds, for example dibenzoyl peroxide, cumene hydroperoxide, cyclohexanone peroxide, di-t-butyl peroxide, cyclohexylsulfonyl acetyl peroxide,
  • Preferred radical initiators are 2,2'-azobis(2-methylbutyronitrile) (Vazo® 67TM from DuPont) or 2,2'-azobis(2-methylpropionitrile) (2,2'-azobisisobutyronitrile; AIBN; Vazo® 64TM from the DuPont company).
  • Preferred solvents for the production of the copolymers are alcohols such as methanol, ethanol, n- and iso-propanol, n- and iso-butanol, in particular isopropanol and/or isobutanol; Hydrocarbons such as toluene and in particular benzines boiling in the range from 60 to 120° C.; ketones, especially acetone, methyl ethyl ketone, methyl isobutyl ketone; Esters such as ethyl acetate and mixtures of the abovementioned solvents.
  • Particularly preferred solvents are mixtures containing isopropanol in amounts of 2 to 15 % by weight, in particular from 3 to 10% by weight, based in each case on the solvent mixture used.
  • the copolymer of the pressure-sensitive adhesive of the invention preferably has a weight-average molecular weight M w of from 750,000 to 2,000,000 g/mol.
  • the polydispersity (M w /M n ) of the copolymer is preferably 50 to 170.
  • the copolymer of the PSA of the invention preferably has a K value of from 50 to 100, more preferably from 60 to 90, in particular from 65 to 85.
  • the Fikentscher K value is a measure of the molecular weight and viscosity of polymers.
  • the principle of the method is based on the determination of the relative solution viscosity by capillary viscometry.
  • the test substance is dissolved in toluene by shaking for thirty minutes so that a 1% solution is obtained.
  • the outflow time is measured at 25° C. in a Vogel-Ossag viscometer and the relative viscosity of the sample solution is determined from this in relation to the viscosity of the pure solvent.
  • the pressure-sensitive adhesive of the invention can in principle comprise one (single) or more than one copolymer of the type described above; it preferably comprises exactly one such copolymer.
  • the pressure-sensitive adhesive of the invention preferably comprises copolymers as described above at a total of 40 to 80% by weight, more preferably at a total of 45-75% by weight, in particular at a total of 50 to 70% by weight, very particularly preferably at a total of 55 to 65% % by weight, based in each case on the total weight of the pressure-sensitive adhesive.
  • the pressure-sensitive adhesive of the invention particularly preferably comprises (precisely) a copolymer as described above at 40 to 80% by weight, more preferably at 45-75% by weight, in particular at 50 to 70% by weight, very particularly preferably at 55 to 65% by weight, based in each case on the total weight of the PSA.
  • the copolymer or copolymers of the pressure-sensitive adhesive of the invention are preferably chemically crosslinked, in particular thermally crosslinked.
  • “Thermally crosslinked” refers to crosslinking by means of substances that form under the influence of thermal energy Enable (initiate) and/or promote crosslinking reaction.
  • Preferred thermal crosslinkers are covalently reacting crosslinkers, in particular epoxides, isocyanates and/or aziridines, and coordinative crosslinkers, particularly preferably metal chelates, in particular aluminum, titanium, zirconium and/or iron chelates.
  • Combinations of different crosslinkers e.g. B. a combination of one or more epoxides with one or more metal chelates can be used.
  • the copolymer is particularly preferably crosslinked with an epoxide, in particular with a quadruple functionalized epoxide with tertiary amine functions.
  • An example of such a thermal crosslinker is tetraglycidyl-metaxylenediamine (N,N,N',N'-tetrakis(oxiranylmethyl)-1,3-benzenedimethanamine).
  • Such crosslinkers are preferably used in an amount of from 0.03 to 0.1 part by weight, particularly preferably from 0.04 to 0.07 part by weight, based in each case on 100 parts by weight of the copolymer (solvent-free). .
  • the pressure-sensitive adhesive of the invention also comprises at least one bond-boosting resin.
  • bond strength-boosting resins can advantageously also improve the wetting properties of the PSA in relation to the substrate to be bonded, its release behavior and/or its adhesion.
  • the at least one bond-boosting resin of the pressure-sensitive adhesive of the invention can in principle be any adhesive resin that is compatible with the pressure-sensitive adhesive and in particular with the copolymer or copolymers of the pressure-sensitive adhesive.
  • the tackifying resin is selected from the group consisting of aliphatic, aromatic, and alkyl aromatic hydrocarbon resins; hydrocarbon resins based on pure monomers; hydrogenated hydrocarbon resins; functional hydrocarbon resins and optionally derivatized natural resins; preferably the tackifying resin is selected from the group consisting of pinene, indene and rosins, their disproportionated, hydrogenated, polymerized, esterified derivatives and salts; aliphatic and aromatic hydrocarbon resins; Terpene resins and terpene phenolic resins as well as Cs, Cg and other hydrocarbon resins.
  • the PSA of the invention can in principle comprise one (single) or more bond strength-boosting resins.
  • the at least one adhesion-promoting resin is particularly preferably selected from rosin resins and polyterpene-based resins. These resins can be used advantageously because they can be produced or obtained to a large extent, in particular entirely, from renewable raw materials.
  • the tackifying resin is selected from rosins and polyterpene phenolic resins. These tackifying resins can be prepared from renewable raw materials and have proven to be particularly suitable for improving the technical adhesive properties of the pressure-sensitive adhesive of the invention to a particular degree.
  • the tackifying resin is a fully hydrogenated rosin. This is particularly advantageous because these resins have a comparatively low softening point and thus make an advantageous contribution to developing pressure-sensitive adhesive properties. In addition, they have particularly good aging stability.
  • the pressure-sensitive adhesive of the invention preferably comprises a total of 15 to 60% by weight, more preferably a total of 25 to 55% by weight, in particular a total of 30 to 50% by weight, very particularly preferably a total of 35 to 45% by weight of adhesion-boosting resins. -%, based in each case on the total weight of the PSA.
  • the pressure-sensitive adhesive of the invention can also comprise further components, for example softeners (plasticizers); Fillers, in particular fibres, carbon black, zinc oxide, titanium dioxide, spinels, dyes, pigments, chalk, solid or hollow glass spheres, microspheres made from other materials, e.g. polymeric hollow microspheres, silicic acid and/or silicates; nucleating agents; blowing agents; compounding agents; Stabilizers and/or anti-aging agents, e.g. primary and/or secondary antioxidants and/or light stabilizers.
  • softeners plasticizers
  • Fillers in particular fibres, carbon black, zinc oxide, titanium dioxide, spinels, dyes, pigments, chalk, solid or hollow glass spheres, microspheres made from other materials, e.g. polymeric hollow microspheres, silicic acid and/or silicates
  • nucleating agents e.g. polymeric hollow microspheres, silicic acid and/or silicates
  • blowing agents e.g. polymeric hollow microsphere
  • At least 50% by weight, preferably at least 60% by weight, in particular at least 65% by weight, of the PSA of the invention is biobased.
  • Another advantage of the PSA of the invention is that the proportion bio-based components can be detected using the established radiocarbon method ( 14 C method).
  • the PSA of the invention is preferably prepared from solution, i.e. the components are dispersed or dissolved in a suitable solvent and mixed; the solvent is removed after the end of the mixing process using conventional methods.
  • the pressure-sensitive adhesive of the invention can be used as such, e.g. in the form of a laminate or an unsupported layer of the pressure-sensitive adhesive of the invention, which is also referred to as “adhesive transfer tape”.
  • a transfer adhesive tape is preferably only applied to a material that serves temporarily to protect the adhesive surface, to make it easier to handle and to make it easier to apply the pressure-sensitive adhesive.
  • Materials of this type are also referred to as release liners or simply as “liners” and are generally easily removable again, in particular by means of suitable surface coatings.
  • the second side of the adhesive transfer tape can also be provided with a liner.
  • the release liners are, in particular, carrier materials which have been (coated or treated) antiadhesively on one side or, preferably, on both sides.
  • Various papers for example, can be used as carrier material for release liners, optionally also in combination with a stabilizing extrusion coating.
  • Other suitable liner carrier materials are foils, in particular polyolefin foils, for example based on ethylene, propylene, butylene and/or hexylene.
  • Preferred carrier materials are papers, e.g. glassine papers. Last but not least, papers are preferred because the concept of the origin of the components from renewable raw materials can also be extended to auxiliary materials of the adhesive tape.
  • Silicone systems are often used as an anti-adhesive release coating.
  • the liners commonly used include, for example, siliconized papers and siliconized foils.
  • the liner or liners are then removed, so that the two adhesive sides each come into direct contact with the substrate surfaces to be bonded to one another.
  • the liner is therefore not a productive component and is therefore not counted as part of the adhesive tape, but rather merely represents an aid for handling the same.
  • the pressure-sensitive adhesive of the invention is preferably used in the construction or for the production of multilayer adhesive tapes.
  • Corresponding multilayer adhesive tapes usually comprise at least one backing layer and can have an outer layer of a pressure-sensitive adhesive of the invention on one or both sides.
  • either one of the outer layers or else both outer layers can be pressure-sensitive adhesives of the invention.
  • the pressure-sensitive adhesive layers can differ in terms of their chemical composition and/or their chemical and/or physical properties and/or their geometry (eg the layer thickness), but they are particularly preferred with regard to their chemical composition and/or their chemical and/or physical properties identical.
  • one or else both outer PSA layers can be covered with liners.
  • the adhesive tapes can have additional layers, e.g. additional carrier layers, functional layers or the like.
  • Bio-based materials are preferably selected as carrier materials for the multi-layer adhesive tape, for example those selected from the list consisting of papers; bio-based fabrics or fleeces, for example made of cotton or viscose; Cellophane; cellulose acetate; bio-based polyethylene films (PE) and polypropylene films (PP); films of thermoplastic starch; bio-based polyester films, e.g. films made from polylactide (PLA; polylactic acid), polyethylene terephthalate (PET), polyethylene tetrahydrofuranoate (PEF) or polyhydroxyalkanoate (PHA).
  • the carrier material is particularly preferably a PET film. PET films are preferred, for example, because they can be used as recycled material and thus take the idea of sustainability into account in this way.
  • a further subject of the invention is thus an adhesive tape which comprises a backing material and at least one of its two outer sides, preferably both outer sides, a pressure-sensitive adhesive of the invention.
  • the carrier material is preferably a PET film.
  • the PET film preferably has a thickness of 1 to 5 ⁇ m; the layer or layers of the pressure-sensitive adhesive of the invention preferably each have a layer thickness of from 20 to 30 ⁇ m.
  • the preferred overall thickness of the adhesive tape of the invention is therefore 41 to 65 ⁇ m.
  • the composition and/or the substrate is treated with corona or plasma before coating.
  • chemical anchoring e.g. B. via a primer takes place.
  • a further subject matter of the invention is the use of a pressure-sensitive adhesive of the invention or of an adhesive tape of the invention for producing bonds in electronic, optical and/or precision engineering devices.
  • Electronic, optical and precision mechanical devices within the meaning of this application are, in particular, such devices as are included in class 9 of the International Classification of Goods and Services for the registration of trade marks (Nice Classification); 10th Edition (NCL(10-2013)); insofar as electronic, optical or precision mechanical devices are involved, as well as clocks and timepieces in accordance with class 14 (NCL(10-2013)), such as in particular scientific, nautical, surveying, photographic, film, optical, weighing, measuring -, signalling, checking (supervision), life-saving and teaching apparatus and instruments;
  • image recording, processing, transmission and reproducing apparatus such as televisions and the like; acoustic recording, processing, transmission and reproduction devices such as radios and the like;
  • computers calculating and data processing equipment, mathematical equipment and instruments, computer accessories
  • office equipment such as printers, facsimile machines, copiers, typewriters
  • data storage devices long-distance communication and multifunctional devices with long-distance communication function such as telephones and answering machines
  • chemical and physical measuring devices, control devices and instruments such as battery chargers, multimeters, lamps,
  • solar cell modules such as electrochemical dye solar cells, organic solar cells, thin film cells;
  • Examples of portable electronic devices are:
  • cameras digital cameras; photography accessories such as exposure meters, flash units, shutters, photo housings, lenses; film cameras, video cameras; Small computers (mobile computers, handheld computers, pocket calculators), laptops, notebooks, netbooks, ultrabooks, tablet computers, handhelds, electronic diaries and organizers (so-called “electronic organizers” or “personal digital assistants", PDAs, palmtops), modems;
  • Computer accessories and control units for electronic devices such as mice, drawing pads, graphics tablets, microphones, speakers, game consoles, gamepads, remote controls, remote controls, touch pads ("touchpads");
  • Monitors displays, screens, touch-sensitive screens (touch screens, “touch screen devices”), projectors;
  • Radios including small and pocket radios
  • Walkmen Disemen, music players for e.g. CD, DVD, Blueray, cassettes, USB, MP3; Headphones; cordless telephones, mobile telephones, smart phones, walkie-talkies, hands-free devices, pagers (beepers); mobile defibrillators, blood sugar measuring devices, blood pressure measuring devices, pedometers, heart rate monitors;
  • GPS devices navigation devices, portable satellite communications interface devices;
  • USB sticks external hard drives, memory cards
  • Wristwatches digital watches, pocket watches, chain watches and stopwatches.
  • Method 1 Determination of the Glass Transition Temperature Tg of the Pressure-Sensitive Adhesives
  • the static glass transition temperature of the PSAs was determined by means of differential scanning calorimetry (DDK) or—synonymously—dynamic scanning calorimetry (DSC). To do this, about 5 mg of an untreated sample of the PSA were weighed into a small aluminum crucible (volume 25 ⁇ l) and sealed with a perforated lid. A DSC 204 F1 from Netzsch was used for the measurement. It was worked under nitrogen for the purpose of inerting. The sample was first cooled to -150 °C, then heated up to +150 °C at a heating rate of 10 K/min and cooled again to -150 °C. The subsequent second heating curve was run again at 10 K/min and the change in heat capacity was recorded. Glass transitions are recognized as steps in the thermogram (heat flow-temperature diagram, see FIG. 1).
  • the glass transition temperature T g is obtained as follows (see Figure 1):
  • the respective linear area of the measurement curve before and after the step is extended in the direction of rising (area before the step) or falling (area after the step) temperatures (extension lines ⁇ and @).
  • extension lines ⁇ and @ In the area of the step, a regression line ⁇ is laid parallel to the ordinate in such a way that it intersects the two extension lines in such a way that two areas ® and @ (between the extension line, the regression line and the measurement curve) of the same content are created.
  • the point of intersection of the regression line positioned in this way with the measurement curve gives the glass transition temperature.
  • the details of the number-average molar mass M n and the weight-average molar mass M w in this document relate to the determination by gel permeation chromatography (GPC), which is known per se. The determination is carried out on a 100 ⁇ l sample that has been filtered until clear (sample concentration 4 g/l). Tetrahydrofuran with 0.1% by volume of trifluoroacetic acid is used as the eluent. The measurement takes place at 25 °C.
  • a combination of columns of the type PSS-SDV, 5 ⁇ m, 10 3 ⁇ and 10 5 ⁇ and 10 6 ⁇ , each with 8.0 mm * 300 mm, is used for the separation (columns from Polymer Standards Service; detection using a Shodex RI71 differential refractometer ). The flow rate is 1.0 ml per minute.
  • the calibration is carried out using the commercially available ReadyCal kit poly(styrene) high from PSS Polymer Standard Service GmbH, Mainz. This is based on the Mark-Houwink parameters K and alpha universally converted to polymethyl methacrylate (PMMA), so that the data is given in PMMA mass equivalents.
  • the balls were cleaned with cellulose and acetone and conditioned openly in the test atmosphere for 30 minutes.
  • the adhesive was conditioned in the test climate for 1 day.
  • the shear strength was determined in a test climate of 23 +/-1 °C temperature and 50% +/-5% rel. humidity.
  • test samples were cut to a width of 13 ⁇ 0.2 mm and stored in a climatic environment for at least 16 hours.
  • 50 x 25 mm ASTM steel plates with a thickness of 2 mm and a 20 mm marking line were used, which were intensively cleaned several times with acetone before bonding and then left to dry for 10 minutes.
  • the bond area was 13 x 20 ⁇ 0.2 mm.
  • the test strip was applied to the middle of the substrate by rubbing it with a wiper in the longitudinal direction, avoiding air pockets, so that the upper edge of the test sample lay exactly on the 20 mm marking line.
  • the back of the test sample was masked with aluminum foil.
  • the free protruding end was taped off with paper.
  • the adhesive strip was then rolled back and forth twice with a 2 kg roller. After rolling, a strap loop (weight 5-7 g) was attached to the protruding end of the adhesive tape.
  • An adapter plate was then attached to the front of the shear test panel with a screw and nut. To ensure that the adapter plate was firmly seated on the plate, the screw was tightened firmly by hand.
  • the plate prepared in this way was attached to a counter clock via the adapter plate by means of a hook; A 1 kg weight was then hung smoothly into the belt loop.
  • the pull-up time between rolling and loading was 12 minutes.
  • the time in minutes before the bond failed was measured; the measurement results are the average of three measurements.
  • a shearing life of at least 3,000 minutes is considered a good result.
  • the adhesive strength was determined in a test atmosphere of 23 °C +/- 1 °C temperature and 50% +/- 5% rel. humidity.
  • the samples were cut to 20mm width and glued to a steel plate (ASTM).
  • the steel plate was cleaned and conditioned before the measurement. For this purpose, the plate was first wiped with solvent and then left in the air for 5 minutes so that the solvent could evaporate.
  • the side of the adhesive tape facing away from the test substrate was then covered with 25 ⁇ m thick, etched PET film, which prevented the sample from stretching during the measurement.
  • the test sample was then rolled onto the substrate. For this purpose, the tape was rolled back and forth five times with a 4 kg roller at a winding speed of 10 m/min. 1 min after rolling, the plate was pushed into a special holder.
  • the bond strength was measured using a Zwick tensile testing machine; the samples were peeled off at an angle of 180° at a speed of 300 mm/min. The measurement results are given in N/cm and
  • a 3 L vessel conventional for free-radical polymerizations was filled with the amounts of acrylic acid (AA) and 2-octyl acrylate (2-OA) and optionally i-butyl acrylate (iBA) and/or methyl acrylate (MA) and 724 g of petrol given in the examples /acetone (70:30). After bubbling nitrogen gas through it for 45 minutes with stirring, the reactor was heated to 58°C and 0.5 g of Vazo® 67 was added. The jacket temperature was then set to 75° C. and the reaction was carried out constantly at this outside temperature. After a reaction time of 1 hour, another 0.5 g of Vazo® 67 was added.
  • the polyacrylate was then mixed with the adhesive resin and the crosslinker.
  • the composition obtained in this way was coated from solution onto a siliconized release film (50 ⁇ m polyester) using a doctor blade and then dried (coating speed 2.5 m/min, drying tunnel 15 m, temperatures zone 1: 40° C., zone 2: 70° C , zone 3: 95° C., zone 4: 105° C.)
  • the applied mass after drying was 50 g/m 2 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

Es sollte eine Haftklebmasse zur Verfügung gestellt werden, die gute Klebkräfte insbesondere auf polaren Haftuntergründen sowie gute Scherfestigkeit aufweist und sich zu einem hohen Anteil aus biobasierten Rohstoffen herstellen lässt. Dies gelingt mit einer Haftklebmasse, die mindestens ein Copolymer, das auf eine Monomerenzusammensetzung, die d) 45 - 75 Gew.-% mindestens eines Monomers ausgewählt aus der Gruppe bestehend aus i-Amylacrylat, n-Heptylacrylat, und 2-Octylacrylat, e) 24 - 50 Gew.-% mindestens eines Alkyl(meth)acrylats, dessen Alkoholkomponente 1 bis 4 C-Atome aufweist, und f) 0,5 bis 10 Gew.-% Acrylsäure umfasst, zurückgeführt werden kann; und mindestens ein klebkraftverstärkendes Harz umfasst. Gegenstand der Erfindung sind ferner ein Klebeband, das ein Trägermaterial und zumindest an einer seiner beiden Außenseiten eine erfindungsgemäße Haftklebmasse umfasst sowie die Verwendung einer erfindungsgemäßen Haftklebmasse oder eines erfindungsgemäßen Klebebandes zur Herstellung von Verklebungen in elektronischen, optischen und/oder feinmechanischen Geräten.

Description

Haftklebmasse
Die Erfindung betrifft das technische Gebiet der Haftklebmassen, wie sie vielfach zum temporären oder dauerhaften Verbinden von Fügeteilen eingesetzt werden. Spezifischer schlägt die Erfindung eine Haftklebmasse auf Basis eines speziell zusammengesetzten Polyacrylat-Copolymers vor, die gute Klebkräfte und Scherfestigkeiten insbesondere auf polaren Klebuntergründen aufweist und gleichzeitig ermöglicht, dass ein signifikanter Anteil der Komponenten auf nachwachsenden Rohstoffen basiert.
Die Ansprüche an die Qualität von Haftklebmassen sind in den letzten Jahren dramatisch angestiegen. Ein Beispiel dafür ist die Verwendung von Haftklebmassen in Elektronikprodukten wie z.B. Smartphones und Tabletcomputern. Die Klebmassen sollen hier ausgeprägte klebtechnische Eigenschaften, z.B. eine hohe Schockresistenz, aufweisen, müssen aber auch für die oft hochsensiblen elektronischen Bauteile verträglich sein. Zunehmend geraten auch ökologische und soziale Kriterien ins Blickfeld, was z.B. die Herkunft der Rohstoffe anbetrifft.
Besonders nachgefragt sind in diesem Zusammenhang Rohstoffe, die zum T eil oder sogar zur Gänze aus biologischen Quellen stammen (so genannte biobasierte Rohstoffe). Dies ist Bestandteil des derzeit allgemein zu beobachtenden Trends hin zu nachhaltigen Produkten und adressiert insbesondere die endlichen Erdölreserven und das daraus resultierende Erfordernis eines sparsamen Umgangs damit; entsprechende Produkte werden von den Kunden der Klebmassehersteller zunehmend aktiv eingefordert. Neben dem Aspekt der Ressourcenknappheit findet dabei auch der bei der Gewinnung und Herstellung der Komponenten anfallende „ökologische Fußabdruck“ Beachtung. Dabei geht es im Wesentlichen um die Menge an CO2, die bei den entsprechenden Prozessen anfällt. Diese ist in der Regel für Produkte aus nachwachsenden Quellen geringer, zum Teil weisen die hergestellten Substanzen sogar eine negative CO2-Bilanz auf. Es besteht also ein insbesondere ökologisch motiviertes Interesse an Haftklebmassen, die eine gute klebtechnische Performance mit möglichst weitgehender Herkunft der Rohstoffe aus nachwachsenden Quellen verbinden. Poly(meth)acrylate haben sich unter den genannten Aspekten immer wieder als gut nutzbare Ausgangsstoffe erwiesen. Dementsprechend wird anhaltend an geeigneten Formulierungen für Poly(meth)acrylat-basierte Haftklebmassen gearbeitet.
Eine wässrige Haftklebzusammensetzung, die im Wesentlichen auf einem in Wasser dispergierten Acrylatpolymer basiert, ist z.B. in EP 2 062 955 A1 beschrieben.
Typisch für Acrylat-basierte Haftklebmassen auf pflanzlicher Rohstoffbasis sind Klebezusammensetzungen auf Basis eines Copolymers, welches das Reaktionsprodukt von
90 bis 99,5 Gew.-% 2-Octyl(meth)acrylat,
0,5 bis 10 Gew.-% (Meth)acrylsäure und weniger als 10 Gew.-% weiteren Monomeren umfasst, wie sie in WO 2008/046000 A1 beschrieben sind.
EP 3 013 767 A1 offenbart die Verwendung eines Polymers, das sich aus der Polymerisation von 2-Octylacrylat erneuerbaren Ursprungs und gegebenenfalls mindestens eines anderen Monomers ergibt, als Bindemittel für die Herstellung einer Beschichtungszusammensetzung, wobei das Polymer eine Glasübergangstemperatur von -30 °C bis 30 °C aufweist.
EP 2 626 397 A1 hat eine Haftklebmasse umfassend eine Polymerkomponente auf Acrylatbasis zum Gegenstand, wobei mindestens 50 Gew.-% der zur Herstellung der Polymerkomponente eingesetzten Monomere vollständig auf nachwachsende Rohstoffe zurückzuführen sind.
Problematisch ist jedoch immer noch, dass biobasierte Rohstoffe zur Herstellung Polyacrylat- basierter Haftklebmassen nur sehr eingeschränkt verfügbar sind. Daher ist es nach wie vor eine Herausforderung, auf Basis des vergleichsweise schmalen Spektrums verfügbarer biobasierter Ausgangsstoffe leistungsstarke Haftklebmassen zu formulieren. Aufgabe der Erfindung war es, eine Haftklebmasse zur Verfügung zu stellen, die gute Klebkräfte insbesondere auf polaren Haftuntergründen sowie gute Scherfestigkeit aufweist und sich zu einem hohen Anteil aus biobasierten Rohstoffen herstellen lässt.
Ein erster und allgemeiner Gegenstand der Erfindung, mit dem die Aufgabe gelöst wird, ist eine Haftklebmasse, die mindestens ein Copolymer, das auf eine Monomerenzusammensetzung, die a) 45 - 75 Gew.-% mindestens eines Monomers ausgewählt aus der Gruppe bestehend aus i-Amylacrylat, n-Heptylacrylat, und 2-Octylacrylat, b) 24 - 50 Gew.-% mindestens eines Alkyl(meth)acrylats, dessen Alkoholkomponente 1 bis 4 C-Atome aufweist, und c) 0,5 bis 10 Gew.-% Acrylsäure umfasst, zurückgeführt werden kann; und mindestens ein klebkraftverstärkendes Harz umfasst.
Eine derartige Haftklebmasse weist die aufgabengemäßen guten Klebeigenschaften auf, wobei sich sowohl die Polymerkomponente als auch der Harzanteil weitgehend auf Basis nachwachsender Rohstoffe formulieren lassen. Insbesondere die Monomere a) sind inzwischen gut als biobasierte Substanzen verfügbar. Wie festgestellt wurde, weist eine erfindungsgemäße Masse, schon sofern nur die Alkoholkomponenten der Monomere a) tatsächlich aus biobasierten Rohstoffen hergestellt werden, auch einen geringeren ökologischen Fußabdruck (Carbon Footprint) auf als vergleichbare, zur Gänze auf Erdölbasis hergestellte Haftklebmassen, die als Monomere entsprechend a) häufig 2-Ethylhexylacrylat verwenden. Dies lässt sich wesentlich auf die Gewinnung und Herstellung der betreffenden Monomere a) zurückführen.
Unter einer Haftklebmasse bzw. einem Haftklebstoff wird erfindungsgemäß, wie im allgemeinen Sprachgebrauch üblich, ein Stoff verstanden, der zumindest bei Raumtemperatur dauerhaft klebrig sowie klebfähig ist. Charakteristisch für einen Haftklebstoff ist, dass er durch Druck auf ein Substrat aufgebracht werden kann und dort haften bleibt, wobei der aufzuwendende Druck und die Einwirkdauer dieses Drucks nicht näher definiert werden. Im allgemeinen, grundsätzlich jedoch abhängig von der genauen Art des Haftklebstoffs sowie des Substrats, der Temperatur und der Luftfeuchtigkeit, reicht die Einwirkung eines kurzfristigen, minimalen Drucks, der über eine leichte Berührung für einen kurzen Moment nicht hinausgeht, um den Haftungseffekt zu erzielen, in anderen Fällen kann auch eine längerfristige Einwirkdauer eines höheren Drucks notwendig sein.
Haftklebmassen haben besondere, charakteristische viskoelastische Eigenschaften, die zu der dauerhaften Klebrigkeit und Klebfähigkeit führen. Kennzeichnend für sie ist, dass, wenn sie mechanisch deformiert werden, es sowohl zu viskosen Fließprozessen als auch zum Aufbau elastischer Rückstellkräfte kommt. Beide Prozesse stehen hinsichtlich ihres jeweiligen Anteils in einem bestimmten Verhältnis zueinander, abhängig sowohl von der genauen Zusammensetzung, der Struktur und dem Vernetzungsgrad der Haftklebemasse als auch von der Geschwindigkeit und Dauer der Deformation sowie von der Temperatur.
Der anteilige viskose Fluss ist zur Erzielung von Adhäsion notwendig. Nur die viskosen Anteile, häufig hervorgerufen durch Makromoleküle mit relativ großer Beweglichkeit, ermöglichen eine gute Benetzung und ein gutes Auffließen auf das zu verklebende Substrat. Ein hoher Anteil an viskosem Fluss führt zu einer hohen Haftklebrigkeit (auch als T ack oder Oberflächenklebrigkeit bezeichnet) und damit oft auch zu einer hohen Adhäsion. Stark vernetzte Systeme, kristalline oder glasartig erstarrte Polymere sind mangels fließfähiger Anteile in der Regel nicht oder zumindest nur wenig haftklebrig.
Die anteiligen elastischen Rückstellkräfte sind zur Erzielung von Kohäsion notwendig. Sie werden zum Beispiel durch sehr langkettige und stark verknäuelte sowie durch physikalisch oder chemisch vernetzte Makromoleküle hervorgerufen und ermöglichen die Übertragung der auf eine Klebverbindung angreifenden Kräfte. Sie führen dazu, dass eine Klebverbindung einer auf sie einwirkenden Dauerbelastung, zum Beispiel in Form einer dauerhaften Scherbelastung, in ausreichendem Maße über einen längeren Zeitraum standhalten kann.
Zur genaueren Beschreibung und Quantifizierung des Maßes an elastischem und viskosem Anteil sowie des Verhältnisses der Anteile zueinander werden die mittels Dynamisch Mechanischer Analyse (DMA) ermittelbaren Größen Speichermodul (G‘) und Verlustmodul (G“) herangezogen. G‘ ist ein Maß für den elastischen Anteil, G“ ein Maß für den viskosen Anteil eines Stoffes. Beide Größen sind abhängig von der Deformationsfrequenz und der Temperatur.
Die Größen können mit Hilfe eines Rheometers ermittelt werden. Das zu untersuchende Material wird dabei zum Beispiel in einer Platte-Platte-Anordnung einer sinusförmig oszil- lierenden Scherbeanspruchung ausgesetzt. Bei schubspannungsgesteuerten Geräten werden die Deformation als Funktion der zeit und der zeitliche Versatz dieser Deformation gegenüber dem Einbringen der Schubspannung gemessen. Dieser zeitliche Versatz wird als Phasenwinkel ö bezeichnet.
Der Speichermodul G‘ ist wie folgt definiert: G' = (T/y) »cos(ö) (T = Schubspannung, Y = Deformation, ö = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor). Die Definition des Verlustmoduls G" lautet: G" = (T/Y) • sin(ö) (T = Schubspannung, y = Deformation, ö = Phasenwinkel = Phasenverschiebung zwischen Schubspannungs- und Deformationsvektor).
Eine Masse gilt insbesondere dann als Haftklebmasse und wird im Sinne der Erfindung insbesondere dann als solche definiert, wenn bei 23 °C im Deformationsfrequenzbereich von 10° bis 101 rad/sec sowohl G‘ als auch G“ zumindest zum Teil im Bereich von 103 bis 107 Pa liegen. „Zum Teil“ heißt, dass zumindest ein Abschnitt der G‘-Kurve innerhalb des Fensters liegt, das durch den Deformationsfrequenzbereich von einschließlich 10° bis einschließlich 101 rad/sec (Abszisse) sowie den Bereich der G‘-Werte von einschließlich 103 bis einschließlich 107 Pa (Ordinate) aufgespannt wird, und wenn zumindest ein Abschnitt der G“-Kurve ebenfalls innerhalb des entsprechenden Fensters liegt.
Die erfindungsgemäße Haftklebmasse umfasst mindestens ein Copolymer, das auf eine Monomerenzusammensetzung zurückgeführt werden kann, die a) 45 - 75 Gew.-% mindestens eines Monomers ausgewählt aus der Gruppe bestehend aus i-Amylacrylat, n-Heptylacrylat, und 2-Octylacrylat, b) 24 - 50 Gew.-% mindestens eines Alkyl(meth)acrylats, dessen Alkoholkomponente 1 bis 4 C-Atome aufweist, und c) 0,5 bis 10 Gew.-% Acrylsäure umfasst.
Insbesondere die unter a) aufgeführten Monomere können sämtlich aus nachwachsenden Rohstoffen hergestellt werden. Ein Verfahren zur Herstellung von biobasierter Acrylsäure, die als Monomer c) und als Säurekomponente für die Monomere a) und b) eingesetzt werden kann, geht von Glycerin aus, das beispielsweise in großen Mengen bei der Umesterung von Pflanzenölen mit Methanol zur Herstellung von Biodiesel anfällt und daher zur Verfügung steht. Das Verfahren umfasst eine Dehydratisierung des Glycerins zu Acrolein; anschließend erfolgt - in einem ein- oder zweistufigen Prozess - eine Oxidation des Acroleins zur Acrylsäure. Ein derartiges Verfahren ist beispielsweise in US 2007/0129570 A1 beschrieben.
WO 2006/092272 A2 offenbart ein ähnliches Verfahren, bei dem zunächst Glycerin zu einem Acrolein aufweisenden Dehydratisierungsprodukt umgewandelt wird und dann eine Gasphasenoxidation dieses Dehydratisierungsproduktes vorgenommen wird, wobei ein acrylsäurehaltiges Produkt erzeugt wird. Durch Kontakt des Oxidationsproduktes mit einem Quenchmittel und Aufbereitung der Quenchphase erhält man Acrylsäure. Dieses Verfahren ermöglicht die Herstellung von Acrylsäure aus nachwachsenden Rohstoffen ohne den Einsatz reaktiver Verbindungen. Das Glycerin erhält man bevorzugt aus der Verseifung von tierischen oder pflanzlichen Fetten.
Biobasierte Acrylsäure lässt sich auch durch ein Verfahren erhalten, bei dem Milchsäure (2- Hydroxypropionsäure) oder 3-Hydroxypropionsäure aus biologischem Material als Fluid - insbesondere in wässriger Phase - erzeugt wird, die Hydroxypropionsäure unter Erhalt eines Acrylsäure beinhaltenden Fluids dehydratisiert wird und das die Acrylsäure beinhaltende Fluid aufgereinigt wird. Die benötigte Hydroxypropionsäure kann durch Fermentation hergestellt werden. Fermentative Umsetzungen verlaufen häufig hochselektiv, mit hohen Ausbeuten und nahezu nebenproduktfrei aufgrund der hohen Selektivität der eingesetzten Mikroorganismen. Nebenreaktionen werden außerdem auch dadurch vermieden, dass die Fermentationsprozesse bei geringen Temperaturen von 30 - 60 °C durchgeführt werden. Großtechnische chemische Prozesse der Petrochemie werden dagegen oftmals zur Optimierung der Ausbeuten bei sehr viel höheren Temperaturen von meist > 200 °C durchgeführt. Hohe Reaktionstemperaturen führen aber immer zu Nebenreaktionen und zur Bildung von Crackprodukten.
Das gerade beschriebene Verfahren ist beispielweise in DE 102006 039203 A1 beschrieben, wobei die Aufreinigung des Acvrylsäure beinhaltenden Fluids durch eine Suspensionskristallisation oder eine Schichtkristallisation durchgeführt wird. Auch zur Herstellung der Alkohole aus nachwachsenden Rohstoffen stehen unterschiedliche Verfahren zur Verfügung.
So ist Butanol durch Fermentation von pflanzlicher, meist zuvor aufbereiteter Biomasse erhältlich. Man geht dabei beispielweise von Saccharose, Stärke oder Cellulose aus, zum Teil werden gentechnisch modifizierte Mikroorganismen eingesetzt (so genannte „Weiße Biotechnologie“). Im so genannten A.B.E. -Prozess (A.B.E. für Aceton, Butanol, Ethanol) setzt man zur Fermentation für die Produktion von 1-Butanol das Bakterium Clostridium acetobutylicum ein.
2-Octanol lässt sich als Nebenprodukt bei der Oxidation von Rizinussäure zu Sebacinsäure gewinnen und isolieren. n-Heptanol lässt sich aus Heptanal gewinnen, das bei der thermischen Spaltung von Rizinussäure (pyrolytische Zersetzung zu Heptanal und Undecensäure) anfällt.
Die Monomere a) setzen die Glasübergangstemperatur des Copolymers im Vergleich zu den weiteren enthaltenen Monomeren herab. Dies ist vorteilhaft, weil es das Aufziehen der Haftklebmasse auf den Klebuntergrund begünstigt. Zudem kann die Masse dadurch mehr Harz aufnehmen, was sich ebenfalls positiv auf die Klebleistung auswirkt.
Die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse umfasst Monomere a) erfindungsgemäß zu insgesamt 45 bis 75 Gew.-%. Bevorzugt umfasst die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse Monomere a) zu insgesamt 50 bis 72 Gew.-%, insbesondere zu insgesamt 60 bis 70 Gew.-%. Die Monomerenzusammensetzung kann grundsätzlich ein (einziges) oder mehrere Monomere a) umfassen.
Bevorzugt umfasst die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse als Monomer a) mindestens 2-Octylacrylat. Dies ist besonders vorteilhaft, weil dieses Monomer die Glasübergangstemperatur des Copolymers nochmals stärker herabsetzt. Zudem bringt es keine Seitenkettenkristallinität ein und trägt somit besonders stark zur Ausprägung haftkleberiger Eigenschaften bei. Insbesondere umfasst die Monomerenzusammensetzung als Monomer a) 2-Octylacrylat. Dies bedeutet, dass ausschließlich 2-Octylacrylat als Monomer a) umfasst ist.
Die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse umfasst erfindungsgemäß ferner 24 - 50 Gew.-% mindestens eines Alkyl(meth)acrylats, dessen Alkoholkomponente 1 bis 4 C-Atome aufweist (Monomere b)). Die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse umfasst Monomere b) also zu insgesamt 24 bis 50 Gew.-%. Bevorzugt umfasst die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse Monomere b) zu insgesamt 25 bis 40 Gew.-%, insbesondere zu insgesamt 27 bis 35 Gew.-%. Die Monomerenzusammensetzung kann grundsätzlich ein (einziges) oder mehrere Monomere b) umfassen.
Bevorzugt ist das mindestens eine Alkyl(meth)acrylat, dessen Alkoholkomponente 1 bis 4 C- Atome aufweist, ausgewählt aus der Gruppe bestehend aus Methylacrylat, Ethylacrylat, n- Butylmethacrylat und i-Butylacrylat. Besonders bevorzugt umfasst die Monomerenzusammensetzung des erfindungsgemäßen Copolymers als Monomer b) i- Butylacrylat. i-Butylacrylat ist biobasiert verfügbar und weist insbesondere gegenüber dem häufig verwendeten, auf Erdöl basierendem n-Butylacrylat einen geringeren ökologischen Fußabdruck hinsichtlich Rohstoffgewinnung und Herstellung auf.
Besonders bevorzugt umfasst die Monomerenzusammensetzung des erfindungsgemäßen Copolymers als Monomere b) i-Butylacrylat und Methylacrylat.
Die Monomere b) bewirken - insbesondere im Vergleich zu den Monomeren a) - eine Erhöhung der Glasübergangstemperatur des Copolymers. Dies ist vorteilhaft, weil sich so über eine Verschiebung der Gewichtsanteile der Monomere a) und b) die Eigenschaften der Haftklebmasse auf die jeweiligen Anforderungen abstimmen lassen. Darüber hinaus wird vermutet, dass sie Verschlaufungen in das Copolymer einbringen. Dies ist vorteilhaft, weil der Haftklebmasse dadurch größere Zähigkeit und Kohäsion verliehen werden.
Die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse umfasst Acrylsäure bevorzugt zu 1 bis 7 Gew.-%, insbesondere zu 2 bis 4 Gew.-%. Bevorzugt besteht die Monomerenzusammensetzung des Copolymers der erfindungsgemäßen Haftklebmasse aus a) 45 - 75 Gew.-% mindestens einem Monomer ausgewählt aus der Gruppe bestehend aus i-Amylacrylat, n-Heptylacrylat, und 2-Octylacrylat, b) 24 - 50 Gew.-% mindestens einem Alkyl(meth)acrylat, dessen Alkoholkomponente 1 bis 4 C-Atome aufweist, und c) 0,5 bis 10 Gew.-% Acrylsäure bzw. aus den vorstehend als bevorzugt beschriebenen Monomeren in den dort angegebenen Anteilen.
Die Herstellung der Copolymere geschieht bevorzugt durch konventionelle radikalische Polymerisationen oder kontrollierte radikalische Polymerisationen. Die Copolymere können durch Copolymerisation der Monomere unter Verwendung üblicher Polymerisationsinitiatoren sowie gegebenenfalls von Reglern hergestellt werden, wobei bei den üblichen Temperaturen in Substanz, in Emulsion, zum Beispiel in Wasser oder flüssigen Kohlenwasserstoffen, oder in Lösung polymerisiert wird.
Bevorzugt werden die Copolymere durch Copolymerisation der Monomere in Lösungsmitteln, besonders bevorzugt in Lösungsmitteln mit einem Siedebereich von 50 bis 150 °C, insbesondere von 60 bis 120 °C, unter Verwendung von 0,01 bis 5 Gew.-%, insbesondere von 0,1 bis 2 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Monomeren, an Polymerisationsinitiatoren hergestellt.
Prinzipiell eignen sich alle üblichen Initiatoren. Beispiele für Radikalquellen sind Peroxide, Hydroperoxide und Azoverbindungen, zum Beispiel Dibenzoylperoxid, Cumolhydroperoxid, Cyclohexanonperoxid, Di-t-butylperoxid, Cyclohexylsulfonylacetylperoxid,
Diisopropylpercarbonat, t-Butylperoktoat und Benzpinacol. Bevorzugte radikalische Initiatoren sind 2,2'-Azobis(2-methylbutyronitril) (Vazo® 67™ der Firma DuPont) oder 2,2’-Azobis(2- methylpropionitril) (2,2’-Azobisisobutyronitril; AIBN; Vazo® 64™ der Firma DuPont).
Bevorzugte Lösungsmittel für die Herstellung der Copolymere sind Alkohole wie Methanol, Ethanol, n- und iso-Propanol, n- und iso-Butanol, insbesondere Isopropanol und/oder Isobutanol; Kohlenwasserstoffe wie Toluol und insbesondere Benzine eines Siedebereichs von 60 bis 120 °C; Ketone, insbesondere Aceton, Methylethylketon, Methylisobutylketon; Ester wie Essigsäureethylester sowie Gemische der vorstehend genannten Lösungsmittel. Besonders bevorzugte Lösungsmittel sind Gemische, die Isopropanol in Mengen von 2 bis 15 Gew.-%, insbesondere von 3 bis 10 Gew.-%, jeweils bezogen auf das eingesetzte Lösungsmittelgemisch, enthalten.
Das Copolymer der erfindungsgemäßen Haftklebmasse weist bevorzugt ein gewichtsmittleres Molekulargewicht Mw von 750.000 bis 2.000.000 g/mol auf. Die Polydispersität (Mw/Mn) des Copolymers beträgt bevorzugt 50 bis 170.
Bevorzugt weist das Copolymer der erfindungsgemäßen Haftklebmasse einen K-Wert von 50 bis 100, stärker bevorzugt von 60 bis 90, insbesondere von 65 bis 85 auf. Der K-Wert nach Fikentscher ist ein Maß für das Molekulargewicht und die Viskosität von Polymeren.
Das Prinzip der Methode beruht auf der kapillarviskosimetrischen Bestimmung der relativen Lösungsviskosität. Hierzu wird die Testsubstanz in Toluol durch dreißigminütiges Schütteln aufgelöst, so dass man eine 1 %-ige Lösung erhält. In einem Vogel-Ossag-Viskosimeter wird bei 25 °C die Auslaufzeit gemessen und daraus in Bezug auf die Viskosität des reinen Lösungsmittels die relative Viskosität der Probenlösung bestimmt. Aus Tabellen kann nach Fikentscher [P. E. Hinkamp, Polymer, 1967, 8, 381] der K-Wert abgelesen werden (K = 1000 k).
Die erfindungsgemäße Haftklebmasse kann grundsätzlich ein (einziges) oder mehrere Copolymere der vorstehend beschriebenen Art umfassen, bevorzugt umfasst sie genau ein derartiges Copolymer.
Bevorzugt umfasst die erfindungsgemäße Haftklebmasse Copolymere wie vorstehend beschrieben zu insgesamt 40 bis 80 Gew.-%, stärker bevorzugt zu insgesamt 45 -75 Gew.-%, insbesondere zu insgesamt 50 bis 70 Gew.-%, ganz besonders bevorzugt zu insgesamt 55 bis 65 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Haftklebmasse. Besonders bevorzugt umfasst die erfindungsgemäße Haftklebmasse (genau) ein Copolymer wie vorstehend beschrieben zu 40 bis 80 Gew.-%, stärker bevorzugt zu 45 -75 Gew.-%, insbesondere zu 50 bis 70 Gew.-%, ganz besonders bevorzugt zu 55 bis 65 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Haftklebmasse.
Das Copolymer oder die Copolymere der erfindungsgemäßen Haftklebmasse sind bevorzugt chemisch vernetzt, insbesondere thermisch vernetzt. „Thermisch vernetzt“ bezeichnet dabei eine Vernetzung mittels Substanzen, die unter dem Einfluss thermischer Energie eine Vernetzungsreaktion ermöglichen (initiieren) und/oder fördern. Bevorzugte thermische Vernetzer sind kovalent reagierende Vernetzer, insbesondere Epoxide, Isocyanate und/oder Aziridine, und koordinative Vernetzer, besonders bevorzugt Metallchelate, insbesondere Aluminium-, Titan-, Zirconium- und/oder Eisenchelate. Es können auch Kombinationen verschiedener Vernetzer, z. B. eine Kombination von einem oder mehreren Epoxiden mit einem oder mehreren Metallchelaten, eingesetzt werden.
Besonders bevorzugt ist das Copolymer mit einem Epoxid vernetzt, insbesondere mit einem vierfach funktionalisiertem Epoxid mit tertiären Aminfunktionen. Ein Beispiel für einen derartigen thermischen Vernetzer ist Tetraglycidyl-meta-xylendiamin (N,N,N',N'- Tetrakis(oxiranylmethyl)-1 ,3-benzendimethanamin). Derartige Vernetzer werden bevorzugt in einer Menge von 0,03 bis 0,1 Gew.-Teilen, besonders bevorzugt von 0,04 bis 0,07 Gew.- Teilen, jeweils bezogen auf 100 Gew.-Teile des Copolymers (lösemittelfrei), eingesetzt.
Die erfindungsgemäße Haftklebmasse umfasst darüber hinaus mindestens ein klebkraftverstärkendes Harz. Darunter wird entsprechend dem allgemeinem Fachmannverständnis ein Oligomeres oder polymeres Harz verstanden, das die Autohäsion (den Tack, die Eigenklebrigkeit) der Haftklebmasse im Vergleich zu der kein klebkraftverstärkendes Harz enthaltenden, ansonsten aber identischen Haftklebmasse erhöht. Klebkraftverstärkende Harze können darüber hinaus vorteilhaft auch die Benetzungseigenschaften der Haftklebmasse gegenüber dem zu verklebenden Substrat, ihr Aufließverhalten und/oder ihre Adhäsion verbessern.
Das mindestens eine klebkraftverstärkende Harz der erfindungsgemäßen Haftklebmasse kann grundsätzlich jedes mit der Haftklebmasse und insbesondere mit dem Copolymer bzw. den Copolymeren der Haftklebmasse kompatible Klebharz sein. In einer Ausführungsform ist das klebkraftverstärkende Harz ausgewählt aus der Gruppe bestehend aus aliphatischen, aromatischen und alkylaromatischen Kohlenwasserstoffharzen; Kohlenwasserstoffharzen auf Basis reiner Monomere; hydrierten Kohlenwasserstoffharzen; funktionellen Kohlenwasserstoffharzen und ggf. derivatisierten Naturharzen; bevorzugt ist das Klebharz ausgewählt aus der Gruppe bestehend aus Pinen-, Inden- und Kolophoniumharzen, deren disproportionierten, hydrierten, polymerisierten, veresterten Derivaten und Salzen; aliphatischen und aromatischen Kohlenwasserstoffharzen; Terpenharzen und Terpenphenolharzen sowie Cs-, Cg- und anderen Kohlenwasserstoffharzen. Die erfindungsgemäße Haftklebmasse kann grundsätzlich ein (einziges) oder mehrere klebkraftverstärkende Harze umfassen.
Besonders bevorzugt ist das mindestens eine klebkraftverstärkende Harz ausgewählt aus Kolophoniumharzen und Polyterpen-basierten Harzen. Diese Harze sind vorteilhaft einsetzbar, weil sie zu großen Teilen, insbesondere zur Gänze, aus nachwachsenden Rohstoffen hergestellt bzw. gewonnen werden können.
Insbesondere ist das klebkraftverstärkende Harz ausgewählt aus Kolophoniumharzen und Polyterpenphenolharzen. Diese Klebharze sind aus nachwachsenden Rohstoffen herstellbar und haben sich als besonders geeignet erwiesen, die klebtechnischen Eigenschaften der erfindungsgemäßen Haftklebmasse in besonderem Maße zu verbessern.
Ganz besonders bevorzugt ist das klebkraftverstärkende Harz ein vollhydriertes Kolophoniumharz. Dies ist besonders vorteilhaft, weil diese Harze eine vergleichsweise geringe Erweichungstemperatur aufweisen und somit vorteilhaft zur Ausprägung haftklebriger Eigenschaften beitragen. Überdies weisen sie eine besonders gute Alterungsstabilität auf.
Bevorzugt umfasst die erfindungsgemäße Haftklebmasse klebkraftverstärkende Harze zu insgesamt 15 bis 60 Gew.-%, stärker bevorzugt zu insgesamt 25 bis 55 Gew.-%, insbesondere zu insgesamt 30 bis 50 Gew.-%, ganz besonders bevorzugt zu insgesamt 35 bis 45 Gew.-%, jeweils bezogen auf das Gesamtgewicht der Haftklebmasse.
Die erfindungsgemäße Haftklebmasse kann darüber hinaus weitere Komponenten umfassen, z.B. Weichmacher (Plastifizierungsmittel); Füllstoffe, insbesondere Fasern, Ruß, Zinkoxid, Titandioxid, Spinelle, Farbstoffe, Pigmente, Kreide, Voll- oder Hohlglaskugeln, Mikrokugeln aus anderen Materialien, z.B. polymere Mikrohohlkugeln, Kieselsäure und/oder Silikate; Keimbildner; Blähmittel; Compoundierungsmittel; Stabilisatoren und/oder Alterungsschutzmittel, z.B. primäre und/oder sekundäre Antioxidantien und/oder Lichtschutzmittel.
In einer Ausführungsform sind mindestens 50 Gew.-%, bevorzugt mindestens 60 Gew.-%, insbesondere mindestens 65 Gew.-% der erfindungsgemäßen Haftklebmasse biobasiert. Ein weiterer Vorteil der erfindungsgemäßen Haftklebmasse besteht darin, dass der Anteil biobasierter Komponenten mit der etablierten Radiokarbonmethode (14C-Methode) nachgewiesen werden kann.
Die Herstellung der erfindungsgemäßen Haftklebmasse erfolgt bevorzugt aus Lösung, d.h. die Komponenten werden in einem geeigneten Lösemittel dispergiert bzw. gelöst und vermischt; das Lösemittel wird nach Abschluss des Mischvorgangs mittels üblicher Methoden entfernt.
Die erfindungsgemäße Haftklebmasse kann als solche verwendet werden, z.B. in Form eines Schichtkörpers bzw. einer trägerfreien Schicht der erfindungsgemäßen Haftklebmasse, die auch als „Transferklebeband“ bezeichnet wird. Ein solches Transferklebeband ist bevorzugt lediglich auf ein Material aufgebracht, das vorübergehend zum Schutz der Klebeoberfläche, zur leichteren Handhabbarkeit und zur leichteren Applizierbarkeit der Haftklebmasse dient. Derartige Materialien werden auch als Releaseliner oder einfach als „Liner“ bezeichnet und sind in der Regel leicht wieder entfernbar, insbesondere durch geeignete Oberflächenbeschichtungen. Auch die zweite Seite des Transferklebebandes kann mit einem Liner versehen sein.
Die Releaseliner sind insbesondere ein- oder bevorzugt beidseitig antiadhäsiv ausgerüstete (beschichtete oder behandelte) Trägermaterialien. Als Trägermaterial für Releaseliner kommen zum Beispiel diverse Papiere, optional auch in Kombination mit einer stabilisierenden Extrusionsbeschichung, in Frage. Weitere geeignete Liner-Trägermaterialien sind Folien, insbesondere Polyolefin-Folien, zum Beispiel auf Basis von Ethylen, Propylen, Butylen und/oder Hexylen. Bevorzugte Trägermaterialien sind Papiere, z.B. Glassine-Papiere. Papiere sind nicht zuletzt auch deshalb bevorzugt, weil sich das Konzept der Herkunft der Bestandteile aus nachwachsenden Rohstoffen so auch auf Hilfsmaterialien des Klebebandes ausdehnen lässt.
Als antiadhäsive Trennbeschichtung werden häufig Silikonsysteme eingesetzt. Zu den üblicherweise eingesetzten Linern gehören zum Beispiel silikonisierte Papiere und silikonisierte Folien.
Für die Verwendung des Transferklebebandes zur Verklebung auf einer Substratoberfläche wird der Liner bzw. werden die Liner dann entfernt, so dass die beiden klebenden Seiten jeweils direkten Kontakt zu den miteinander zu verklebenden Substratoberflächen erhalten. Der Liner stellt somit kein produktives Bauteil dar und wird entsprechend auch nicht zum Klebeband gerechnet, sondern stellt vielmehr lediglich ein Hilfsmittel zur Handhabung desselben dar.
Bevorzugt wird die erfindungsgemäße Haftklebmasse im Aufbau bzw. zur Herstellung mehrschichtiger Klebebänder verwendet. Entsprechende mehrschichtige Klebebänder umfassen üblicherweise zumindest eine Trägerschicht und können ein- oder beidseitig eine außenliegende Schicht einer erfindungsgemäßen Haftklebmasse aufweisen. Bei beidseitig klebend ausgerüsteten Klebebändern können entweder eine der außenliegenden Schichten oder auch beide außenliegenden Schichten erfindungsgemäße Haftklebmassen sein. Im letzteren Fall können die Haftklebmasseschichten hinsichtlich ihrer chemischen Zusammensetzung und/oder ihrer chemischen und/oder physikalischen Eigenschaften und/oder ihrer Geometrie (z.B. der Schichtdicke) unterschiedlich sein, besonders bevorzugt sind sie aber bezüglich ihrer chemischen Zusammensetzung und/oder ihrer chemischen und/oder physikalischen Eigenschaften identisch. Auch bei mehrschichtigen Klebebändern können eine oder auch beide außenliegenden Haftklebmasseschichten mit Linern abgedeckt sein.
Die Klebebänder können weitere Schichten aufweisen, z.B. weitere Trägerschichten, Funktionsschichten oder dergleichen.
Als Trägermaterialien des mehrschichtigen Klebebands werden bevorzugt biobasierte Materialien ausgewählt, zum Beispiel solche, die ausgewählt sind aus der Liste bestehend aus Papieren; biobasierten Geweben oder Vliesen, zum Beispiel aus Baumwolle oder Viskose; Cellophan; Celluloseacetat; biobasierten Polyethylenfolien (PE) und Polypropylenfolien (PP); Folien aus thermoplastischer Stärke; biobasierten Polyesterfolien, z.B. Folien aus Polylactid (PLA; Polymilchsäure), Polyethylenterephthalat (PET), Polyethylentetrahydrofuranoat (PEF) oder Polyhydroxyalkanoat (PHA). Besonders bevorzugt ist das Trägermaterial eine PET-Folie. PET-Folien sind beispielsweise deshalb bevorzugt, weil sie als recyceltes Material eingesetzt werden können und somit dem Nachhaltigkeitsgedanken auf diese Weise Rechnung tragen.
Ein weiterer Gegenstand der Erfindung ist somit ein Klebeband, das ein Trägermaterial und zumindest an einer seiner beiden Außenseiten, bevorzugt an beiden Außenseiten, eine erfindungsgemäße Haftklebmasse umfasst. Bevorzugt ist das Trägermaterial eine PET-Folie. Die PET-Folie weist bevorzugt eine Dicke von 1 bis 5 pm auf; die Schicht bzw. die Schichten der erfindungsgemäße Haftklebmasseweisen bevorzugt jeweils eine Schichtdicke von 20 bis 30 pm auf. Als bevorzugte Gesamtdicke des erfindungsgemäßen Klebebands ergeben sich somit 41 bis 65 pm.
Für die Verankerung der Haftklebmasse auf dem Träger oder auf einem anderen Substrat kann es von Vorteil sein, wenn die Masse und/oder das Substrat vor der Beschichtung mit Corona oder Plasma behandelt wird. Weiterhin kann es für die Verankerung der Haftklebmasseschicht auf weiteren Schichten, insbesondere auf einer Trägerschicht, von Vorteil sein, wenn eine chemische Verankerung, z. B. über einen Primer, erfolgt.
Ein weiterer Gegenstand der Erfindung ist die Verwendung einer erfindungsgemäßen Haftklebmasse bzw. eines erfindungsgemäßen Klebebands zur Herstellung von Verklebungen in elektronischen, optischen und/oder feinmechanischen Geräten.
Elektronische, optische und feinmechanische Geräte im Sinne dieser Anmeldung sind insbesondere solche Geräte, wie sie in Klasse 9 der Internationalen Klassifikation von Waren und Dienstleistungen für die Eintragung von Marken (Klassifikation von Nizza); 10. Ausgabe (NCL(10-2013)), einzuordnen sind; sofern es sich dabei um elektronische, optische oder feinmechanische Geräte handelt, weiterhin Uhren und Zeitmessgeräte gemäß Klasse 14 (NCL(10-2013)), wie insbesondere wissenschaftliche, Schifffahrts-, Vermessungs-, fotografische, Film-, optische, Wäge-, Mess-, Signal-, Kontroll-, Rettungs- und Unterrichtsapparate und -instrumente;
Apparate und Instrumente zum Leiten, Schalten, Umwandeln, Speichern, Regeln und Kontrollieren von Elektrizität;
Bildaufzeichnungs-, -verarbeitungs-, -übertragungs- und -Wiedergabegeräte, wie beispielweise Fernseher und dergleichen; akustische Aufzeichnungs-, Verarbeitungs-, Übertragungs- und Wedergabegeräte, wie beispielsweise Rundfunkgeräte und dergleichen;
Computer, Rechengeräte und Datenverarbeitungsgeräte, mathematische Geräte und Instrumente, Computerzubehör; Bürogeräte wie beispielsweise Drucker, Faxgeräte, Kopiergeräte, Schreibmaschinen; und Datenspeichergeräte; Fernkommunikations- und Multifunktionsgeräte mit Fernkommunikationsfunktion wie beispielweise Telefone und Anrufbeantworter; chemische und physikalische Messgeräte, Steuergeräte und Instrumente wie beispielweise Akkumulatorladegeräte, Multimeter, Lampen, Tachometer; nautische Geräte und Instrumente; optische Geräte und Instrumente; medizinische Geräte und Instrumente und solche für Sportler;
Uhren und Chronometer;
Solarzellenmodule wie etwa elektrochemische Farbstoff-Solarzellen, organische Solarzellen, Dünnschichtzellen; und
Feuerlöschgeräte.
Im Mittelpunkt technischer Entwicklungen im Elektronikbereich stehen inzwischen vielfach Geräte, die immer kleiner und leichter gestaltet werden, damit sie von ihrem Besitzer jederzeit mitgeführt werden können. Dies geschieht üblicherweise durch Realisierung geringer Gewichte und/oder geeigneter Größe derartiger Geräte. Solche Geräte werden auch als Mobilgeräte oder portable Geräte bezeichnet. In diesem Kontext werden auch feinmechanische und optische Geräte zunehmend mit elektronischen Komponenten versehen, was die Möglichkeiten der Minimierung erhöht. Aufgrund des Mitführens der Mobilgeräte sind diese vermehrt mechanischen Belastungen ausgesetzt, etwa durch Anstoßen an Kanten, durch Fallenlassen, durch Kontakt mit anderen harten Objekten in der Tasche, aber auch schon durch die permanente Bewegung durch das Mitführen an sich. Mobilgeräte sind aber auch stärkeren Belastungen aufgrund von Feuchtigkeitseinwirkung, Temperatureinflüssen und dergleichen ausgesetzt als „immobile“ Geräte, die üblicherweise in Innenräumen installiert sind und nicht oder kaum bewegt werden. Die erfindungsgemäße Haftklebmasse hat sich als besonders bevorzugt herausgestellt, solche Störeinflüsse zu überstehen und sie abzuschwächen oder zu kompensieren. Bevorzugt werden die erfindungsgemäße Haftklebmasse oder das erfindungsgemäße Klebeband daher zur Herstellung von Verklebungen in portablen elektronischen Geräten verwendet.
Portable elektronische Geräte sind z.B.:
Fotoapparate, Digitalkameras; Fotografie-Zubehörgeräte wie Belichtungsmesser, Blitzlichtgeräte, Blenden, Fotogehäuse, Objektive; Filmkameras, Videokameras; Kleincomputer (Mobilcomputer, Taschencomputer, Taschenrechner), Laptops, Notebooks, Netbooks, Ultrabooks, Tablet-Computer, Handhelds, elektronische Terminkalender und Organisatoren (sogenannte „Electronic Organizer“ oder „Personal Digital Assistants“, PDA, Palmtops), Modems;
Computer-Zubehörgeräte und Bedieneinheiten für elektronische Geräte, wie Mäuse, Zeichenpads, Grafiktabletts, Mikrophone, Lautsprecher, Spielkonsolen, Gamepads, Fernsteuerungen, Fernbedienungen, Tastfelder („Touchpads“);
Monitore, Displays, Bildschirme, berührungsempfindliche Bildschirme (Sensorbildschirme, „Touchscreen-Geräte“), Beamer;
Lesegeräte für elektronische Bücher („E-Books“);
Kleinfernsehgeräte, Taschenfernseher, Filmabspielgeräte, Videoabspielgeräte;
Radios (auch Klein- und Taschenrundfunkgeräte), Walkmen, Disemen, Musikabspielgeräte für z.B. CD, DVD, Blueray, Kassetten, USB, MP3; Kopfhörer; schnurlose Telefone, Mobiltelefone, Smartphones, Funksprechgeräte, Freisprechgeräte, Personenrufgeräte (Pager, Pieper); mobile Defibrilatoren, Blutzuckermessgeräte, Blutdruckmessgeräte, Schrittzähler, Pulsmesser;
Taschenlampen, Laserpointer; mobile Detektoren, optische Vergrößerungsgeräte, Fernsichtgeräte, Nachtsichtgeräte;
GPS-Geräte, Navigationsgeräte, tragbare Schnittstellengeräte der Satellitenkommunikation;
Datenspeichergeräte (USB-Sticks, externe Festplatten, Speicherkarten); und
Armbanduhren, Digitaluhren, Taschenuhren, Kettenuhren sowie Stoppuhren.
Beispiele
Mess- und Testmethoden:
Methode 1 - Bestimmung der Glasübergangstemperatur Tg der Haftklebmassen Die statische Glasübergangstemperatur der Haftklebmassen wurde mittels Dynamischer Differenzkalorimetrie (DDK) bzw. - synonym - Dynamischer Scanning Kalorimetrie (DSC) bestimmt. Dazu wurden ca. 5 mg einer unbehandelten Probe der Haftklebmasse in ein Aluminiumtiegelchen (Volumen 25 pl) eingewogen und mit einem gelochten Deckel verschlossen. Zur Messung wurde ein DSC 204 F1 der Firma Netzsch verwendet. Es wurde zwecks Inertisierung unter Stickstoff gearbeitet. Die Probe wurde zunächst auf -150 °C abgekühlt, dann mit einer Heizrate von 10 K/min bis +150 °C aufgeheizt und erneut auf -150 °C abgekühlt. Die sich anschließende zweite Heizkurve wurde erneut bei 10 K/min gefahren und die Änderung der Wärmekapazität aufgenommen. Glasübergänge werden dabei als Stufen im Thermogramm (Wärmefluss-Temperatur-Diagramm, siehe Figur 1) erkannt.
Die Glasübergangstemperatur Tg wird folgendermaßen erhalten (siehe Figur 1):
Der jeweils linear verlaufende Bereich der Messkurve vor und nach der Stufe wird in Richtung steigender (Bereich vor der Stufe) bzw. fallender (Bereich nach der Stufe) Temperaturen verlängert (Verlängerungsgeraden © und @). Im Bereich der Stufe wird eine Ausgleichsgerade © parallel zur Ordinate so gelegt, dass sie die beiden Verlängerungslinien schneidet, und zwar so, dass zwei Flächen ® und @ (zwischen der jeweils einen Verlängerungslinie, der Ausgleichsgeraden und der Messkurve) gleichen Inhalts entstehen. Der Schnittpunkt der so positionierten Ausgleichsgeraden mit der Messkurve ergibt die Glasübergangstemperatur.
Methode 2 - Bestimmung des Molekulargewichts
Die Angaben der zahlenmittleren Molmasse Mn und der gewichtsmittleren Molmasse Mw in dieser Schrift beziehen sich auf die an sich bekannte Bestimmung per Gelpermeationschromatographie (GPC). Die Bestimmung erfolgt an 100 pl klarfiltrierter Probe (Probenkonzentration 4 g/l). Als Eluent wird Tetrahydrofuran mit 0,1 Vol.-% Trifluoressigsäure eingesetzt. Die Messung erfolgt bei 25 °C.
Als Vorsäule wird eine Säule Typ PSS-SDV, 5 pm, 103 Ä, 8,0 mm * 50 mm (Angaben hier und im Folgenden in der Reihenfolge: Typ, Partikelgröße, Porosität, Innendurchmesser * Länge; 1 Ä = 10-10 m) verwendet. Zur Auftrennung wird eine Kombination der Säulen des Typs PSS- SDV, 5 pm, 103 Ä sowie 105 Ä und 106 Ä mit jeweils 8,0 mm * 300 mm eingesetzt (Säulen der Firma Polymer Standards Service; Detektion mittels Differentialrefraktometer Shodex RI71). Die Durchflussmenge beträgt 1 ,0 ml pro Minute. Die Kalibrierung wird mittels des kommerziell verfügbaren ReadyCal-Kit Poly(styrene) high der Firma PSS Polymer Standard Service GmbH, Mainz, durchgeführt. Diese wird anhand der Mark-Houwink-Parameter K und alpha universell in Polymethylmethacrylat (PMMA) umgerechnet, so dass die Angabe der Daten in PMMA-Massenäquivalenten erfolgt.
Methode 3 - Bestimmung des Tack
Bei diesem Test rollte eine Stahlkugel mit einem Gewicht von 5,6 g von einer 65 mm hohen Rampe (Neigungswinkel 21 °) auf einen waagerechten Streifen der zu prüfenden Klebmasse. Die Strecke bis zum Stillstand der Kugel wurde gemessen (Prüfklima 23 °C, 50 % relative Feuchte). Als gutes Ergebnis wird eine Strecke von maximal 300 mm angesehen.
Die Kugeln wurden vor der Messung mit Zellstoff und Aceton gereinigt und 30 min offen im Prüfklima konditioniert.
Die Klebmasse wurde vor der Messung 1 Tag im Prüfklima konditioniert.
Methode 4 - Bestimmung der Scherstandzeit
Die Bestimmung der Scherfestigkeit erfolgte bei einem Prüfklima von 23 +/-1 °C Temperatur und 50 % +/- 5 % rel. Luftfeuchte.
Die Prüfmuster wurden auf eine Breite von 13 ± 0,2 mm zugeschnitten und für mindestens 16 h im Klima gelagert. Für die Prüfung wurden 50 x 25 mm ASTM-Stahl Platten mit 2 mm Dicke und einer 20 mm Markierungslinie verwendet, die vor der Verklebung mehrfach intensiv mit Aceton gereinigt und danach 10 min trocknen gelassen wurden. Die Verklebungsfläche betrug 13 x 20 ± 0,2 mm. Der Prüfstreifen wurde unter Vermeidung von Lufteinschlüssen durch Überstreichen mit einem Anwischer in Längsrichtung mittig auf den Haftgrund aufgebracht, so dass die obere Kante des Prüfmusters genau an der 20 mm Markierungslinie anlag.
Die Rückseite des Prüfmusters wurde mit Aluminiumfolie abgeklebt. Das freie überstehende Ende wurde mit Papier abgeklebt. Sodann wurde der Klebestreifen 2-mal mit einer 2 kg Rolle hin und her überrollt. Nach dem Anrollen wurde eine Gurtschlaufe (Gewicht 5 - 7 g) am überstehenden Ende des Klebebandes angebracht.
Danach wurde mit Schraube und Mutter ein Adapterplättchen auf der Vorderseite der Schertestplatte befestigt. Um sicherzustellen, dass das Adapterplättchen fest auf der Platte sitzt, wurde die Schraube kräftig von Hand angezogen.
Die so vorbereitete Platte wurde über das Adapterplättchen mittels eines Hakens an einer Zähleruhr befestigt; in die Gurtschlaufe wurde dann ein 1-kg-Gewicht ruckfrei eingehängt. Die Aufziehzeit zwischen Anrollen und Belastung betrug 12 min. Gemessen wurde die Zeit in Minuten bis zum Versagen der Verklebung, die Messergebnisse sind gemittelt aus drei Messungen. Als gutes Ergebnis wird eine Scherstandzeit von mindestens 3.000 min angesehen.
Methode 5 - Klebkraft Stahl
Die Bestimmung der Klebkraft erfolgte bei einem Prüfklima von 23 °C +/- 1 °C Temperatur und 50 % +/- 5 % rel. Luftfeuchte. Die Muster wurden auf 20 mm Breite zugeschnitten und auf eine Stahlplatte (ASTM) geklebt. Die Stahlplatte wurde vor der Messung gereinigt und konditioniert. Dazu wurde die Platte zunächst mit Lösemittel abgewischt und danach 5 Minuten an der Luft liegen gelassen, damit das Lösungsmittel abdampfen konnte. Die dem Prüfuntergrund abgewandte Seite des Klebebandes wurde dann mit 25 pm dicker, geätzter PET-Folie abgedeckt, wodurch verhindert wurde, dass sich das Muster bei der Messung dehnt. Danach erfolgte das Anrollen des Prüfmusters auf den Untergrund. Hierzu wurde das Tape mit einer 4 kg - Rolle fünfmal hin und her mit einer Aufrollgeschwindigkeit von 10 m/min überrollt. 1 min nach dem Anrollen wurde die Platte in eine spezielle Halterung geschoben. Die Klebkraftmessung erfolgte mit einer Zwick-Zugprüfmaschine; die Muster wurden in einem Winkel von 180 ° mit einer Geschwindigkeit von 300 mm/min abgezogen. Die Messergebnisse sind in N/cm angegeben und sind gemittelt aus fünf Einzelmessungen.
Tabelle 1 : Kommerziell erhältliche, eingesetzte Chemikalien
Figure imgf000023_0001
Herstellung der Polyacrylate und der Haftklebmassen:
Ein für radikalische Polymerisationen konventionelles 3 L-Gefäß wurde mit den bei den Beispielen angegebenen Mengen an Acrylsäure (AA) und 2-Octylacrylat (2-OA) sowie gegebenenfalls i-Butylacrylat (iBA) und/oder Methylacrylat (MA) sowie 724 g Benzin/Aceton (70:30) befüllt. Nach 45minütiger Durchleitung von Stickstoffgas unter Rühren wurde der Reaktor auf 58 °C hochgeheizt und 0,5 g Vazo® 67 hinzugegeben. Anschließend wurde die Manteltemperatur auf 75 °C eingestellt und die Reaktion konstant bei dieser Außentemperatur durchgeführt. Nach 1 h Reaktionszeit wurden wiederum 0,5 g Vazo® 67 hinzugegeben. Nach 3 h wurde mit 200 g Benzin/Aceton (70:30) und nach 6 h mit 100 g Benzin/Aceton (70:30) verdünnt. Zur Reduktion der Restinitiatoren wurden nach 5,5 und nach 7 h jeweils 1 ,5 g Perkadox® 16 hinzugegeben. Die Reaktion wurde nach 24 h Reaktionszeit abgebrochen und auf Raumtemperatur abgekühlt.
Anschließend wurde das Polyacrylat mit dem Klebharz und dem Vernetzer abgemischt. Die so erhaltene Zusammensetzung wurde mittels eines Rakels aus Lösung auf eine silikonisierte Trennfolie (50 pm Polyester) beschichtet und anschließend getrocknet (Beschichtungsgeschwindigkeit 2,5 m/min, Trockenkanal 15 m, Temperaturen Zone 1 : 40 °C, Zone 2: 70 °C, Zone 3: 95 °C, Zone 4: 105 °C) Der Masseauftrag nach Trocknung betrug 50 g/m2.
Tabelle 2: Zusammensetzung der Polymere und Haftklebmassen
Figure imgf000024_0001
Vgl. - Vergleichsversuch Tabelle 3: Ergebnisse
Figure imgf000025_0001
Vgl. - Vergleichsversuch n. e. - nicht ermittelt

Claims

24
Patentansprüche Haftklebmasse, umfassend mindestens ein Copolymer, das auf eine Monomerenzusammensetzung umfassend a) 45 - 75 Gew.-% mindestens eines Monomers ausgewählt aus der Gruppe bestehend aus i-Amylacrylat, n-Heptylacrylat, und 2-Octylacrylat, b) 24 - 50 Gew.-% mindestens eines Alkyl(meth)acrylats, dessen Alkoholkomponente 1 bis 4 C-Atome aufweist, und c) 0,5 bis 10 Gew.-% Acrylsäure zurückgeführt werden kann; mindestens ein klebkraftverstärkendes Harz. Haftklebmasse gemäß Anspruch 1 , dadurch gekennzeichnet, dass die Monomerenzusammensetzung Monomere a) zu insgesamt 60 bis 70 Gew.-% umfasst. Haftklebmasse gemäß einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Monomerenzusammensetzung als Monomer a) 2-Octylacrylat umfasst. Haftklebmasse gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Monomerenzusammensetzung Monomere b) zu insgesamt 27 bis 35 Gew.- % umfasst. Haftklebmasse gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Haftklebmasse ein Copolymer, das auf eine Monomerenzusammensetzung umfassend a) 45 - 75 Gew.-% mindestens eines Monomers ausgewählt aus der Gruppe bestehend aus i-Amylacrylat, n-Heptylacrylat, und 2-Octylacrylat, b) 24 - 50 Gew.-% mindestens eines Alkyl(meth)acrylats, dessen Alkoholkomponente 1 bis 4 C-Atome aufweist, und c) 0,5 bis 10 Gew.-% Acrylsäure zurückgeführt werden kann, zu 40 bis 80 Gew.-%, bezogen auf das Gesamtgewicht der Haftklebmasse, umfasst. Haftklebmasse gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das klebkraftverstärkende Harz ausgewählt ist aus Kolophoniumharzen und Polyterpen-basierten Harzen. Haftklebmasse gemäß einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Haftklebmasse klebkraftverstärkende Harze zu insgesamt 25 bis 50 Gew.-% umfasst, bezogen auf das Gesamtgewicht der Haftklebmasse. Klebeband, umfassend ein Trägermaterial und zumindest an einer seiner beiden Außenseiten eine Haftklebmasse gemäß einem der Ansprüche 1 bis 7. Verwendung einer Haftklebmasse gemäß einem der Ansprüche 1 bis 7 oder eines Klebebandes gemäß Anspruch 8 zur Herstellung von Verklebungen in elektronischen, optischen und/oder feinmechanischen Geräten.
PCT/EP2021/072746 2020-08-14 2021-08-16 Haftklebmasse WO2022034247A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21765858.2A EP4196509A1 (de) 2020-08-14 2021-08-16 Haftklebmasse
CN202180055768.7A CN116075571A (zh) 2020-08-14 2021-08-16 压敏胶粘剂物质
KR1020237008324A KR20230048632A (ko) 2020-08-14 2021-08-16 감압 접착제 조성물
US18/021,301 US20230295473A1 (en) 2020-08-14 2021-08-16 Pressure-sensitive adhesive composition
JP2023510328A JP2023538015A (ja) 2020-08-14 2021-08-16 感圧接着剤組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020210399 2020-08-14
DE102020210399.2 2020-08-14

Publications (1)

Publication Number Publication Date
WO2022034247A1 true WO2022034247A1 (de) 2022-02-17

Family

ID=77640658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/072746 WO2022034247A1 (de) 2020-08-14 2021-08-16 Haftklebmasse

Country Status (6)

Country Link
US (1) US20230295473A1 (de)
EP (1) EP4196509A1 (de)
JP (1) JP2023538015A (de)
KR (1) KR20230048632A (de)
CN (1) CN116075571A (de)
WO (1) WO2022034247A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155330A1 (de) * 2022-09-13 2023-03-29 Basf Se Haftklebstoffzusammensetzung enthaltend ein dispergiertes haftpolymer
EP4353791A1 (de) 2022-10-10 2024-04-17 Tesa Se Nachhaltiges klebeband und anwendung davon

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116731645A (zh) * 2023-07-05 2023-09-12 中山市皇冠胶粘制品有限公司 一种生物基丙烯酸酯高性能胶带及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367054A2 (de) * 1988-10-31 1990-05-09 BASF Aktiengesellschaft UV-vernetzbare Massen auf Basis von Isoamyl(meth)acrylatcopolymerisaten
WO2006092272A2 (de) 2005-02-28 2006-09-08 Stockhausen Gmbh Auf nachwachsenden rohstoffen basierende acrylsäure und wasserabsorbierende polymergebilde sowie verfahren zu deren herstellung
US20070129570A1 (en) 2004-01-30 2007-06-07 Nippon Shokubai Co., Ltd. Method for producing acrylic acid
DE102006039203A1 (de) 2006-08-22 2008-03-20 Stockhausen Gmbh Verfahren zur Herstellung von durch Kristallisation gereinigter Acrylsäure aus Hydroxypropionsäure sowie Vorrichtung dazu
WO2008046000A1 (en) 2006-10-13 2008-04-17 3M Innovative Properties Company 2-octyl (meth)acrylate adhesive composition
EP2062955A1 (de) 2007-11-22 2009-05-27 Nitto Denko Corporation Wässrige, druckempfindliche Klebstoffzusammensetzung und ihre Verwendung
WO2009129087A1 (en) * 2008-04-14 2009-10-22 3M Innovative Properties Company 2-octyl (meth)acrylate adhesive composition
EP2626397A1 (de) 2012-02-09 2013-08-14 tesa AG Haftklebebänder auf Basis biobasierter Monomere
EP3013767A1 (de) 2013-06-28 2016-05-04 Arkema France Verwendung eines 2-octyl-acrylatpolymers als bindemittel in einer beschichtungszusammensetzung

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013215296A1 (de) * 2013-08-02 2015-02-05 Tesa Se Haftklebemasse
ES2787204T3 (es) * 2014-07-02 2020-10-15 Basf Se Procedimiento para pegar sustratos sobre superficies frías y húmedas
DE102016205808A1 (de) * 2016-04-07 2017-10-12 Tesa Se Haftklebmasse
CN111154429B (zh) * 2019-12-23 2022-06-03 崴思新材料泰州有限公司 一种聚丙烯酸酯压敏胶黏剂

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0367054A2 (de) * 1988-10-31 1990-05-09 BASF Aktiengesellschaft UV-vernetzbare Massen auf Basis von Isoamyl(meth)acrylatcopolymerisaten
US20070129570A1 (en) 2004-01-30 2007-06-07 Nippon Shokubai Co., Ltd. Method for producing acrylic acid
WO2006092272A2 (de) 2005-02-28 2006-09-08 Stockhausen Gmbh Auf nachwachsenden rohstoffen basierende acrylsäure und wasserabsorbierende polymergebilde sowie verfahren zu deren herstellung
DE102006039203A1 (de) 2006-08-22 2008-03-20 Stockhausen Gmbh Verfahren zur Herstellung von durch Kristallisation gereinigter Acrylsäure aus Hydroxypropionsäure sowie Vorrichtung dazu
WO2008046000A1 (en) 2006-10-13 2008-04-17 3M Innovative Properties Company 2-octyl (meth)acrylate adhesive composition
EP2062955A1 (de) 2007-11-22 2009-05-27 Nitto Denko Corporation Wässrige, druckempfindliche Klebstoffzusammensetzung und ihre Verwendung
WO2009129087A1 (en) * 2008-04-14 2009-10-22 3M Innovative Properties Company 2-octyl (meth)acrylate adhesive composition
EP2626397A1 (de) 2012-02-09 2013-08-14 tesa AG Haftklebebänder auf Basis biobasierter Monomere
EP3013767A1 (de) 2013-06-28 2016-05-04 Arkema France Verwendung eines 2-octyl-acrylatpolymers als bindemittel in einer beschichtungszusammensetzung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. E. HINKAMP, POLYMER, vol. 8, 1967, pages 381

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4155330A1 (de) * 2022-09-13 2023-03-29 Basf Se Haftklebstoffzusammensetzung enthaltend ein dispergiertes haftpolymer
WO2024056484A1 (en) * 2022-09-13 2024-03-21 Basf Se Pressure-sensitive adhesive composition comprising a dispersed pressure-sensitive adhesive polymer formed by emulsion polymerization of 2-octyl acrylate, styrene, hydroxyalkyl acrylate, monomers having at least one acid group in specific amounts and optionally further monomers
EP4353791A1 (de) 2022-10-10 2024-04-17 Tesa Se Nachhaltiges klebeband und anwendung davon

Also Published As

Publication number Publication date
CN116075571A (zh) 2023-05-05
EP4196509A1 (de) 2023-06-21
KR20230048632A (ko) 2023-04-11
JP2023538015A (ja) 2023-09-06
US20230295473A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
EP4196509A1 (de) Haftklebmasse
JP5544954B2 (ja) 光学用粘着剤組成物
WO2019106194A1 (de) Chemikalienbeständiges polyacrylat und darauf basierende haftklebmasse
CN102471657A (zh) 粘合胶带、层叠体及图像显示装置
DE102012201913A1 (de) Haftklebebänder auf Basis biobasierter Monomere
US10711164B2 (en) Pressure-sensitive adhesive comprising a polymer component and a saccharide component and method for bonding a first substrate to a second substrate with same
KR20140070374A (ko) 점착제 조성물
JP6251687B2 (ja) 光学フィルム用粘着剤組成物及び表面保護フィルム
EP2638120B1 (de) Haftklebebänder zur verklebung von fenstern insbesondere in mobilgeräten
EP3708621B1 (de) Haftklebmasse
TW201623522A (zh) 黏著劑組成物及黏著帶
EP2563871B1 (de) Doppelseitig selbstklebende produkte mit hoher optischer qualität
CN104140775A (zh) 透明粘合片用组合物
EP3492543A1 (de) Druckempfindliche haftfolie
KR100952416B1 (ko) 아크릴 점착제 및 이를 이용한 전해 콘덴서용 폴리이미드점착 테이프
JP2020002225A (ja) 粘着剤シート
WO2019106195A1 (de) Chemikalienbeständiges polyacrylat und darauf basierende haftklebmasse
CN110885648B (zh) 用于制造压敏粘合剂的组合物
JP2009227925A (ja) 粘着テープ
DE102021206697A1 (de) Schockresistente Haftklebmasse
CN118146744A (zh) 粘合剂组合物、叠层体、粘合膜、光学膜用粘合剂层、图像显示装置及偏振板
CN114853939A (zh) 一种溶剂型丙烯酸酯压敏胶粘剂及其制备方法
WO2024017946A1 (de) Schockbeständige haftklebmasse
DE102019220303A1 (de) Haftklebmasse für Papierverklebungen
CN116445107A (zh) 粘合剂组成物及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21765858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023510328

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20237008324

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021765858

Country of ref document: EP

Effective date: 20230314