WO2022033831A1 - Dielektrizitätswert-messgerät - Google Patents

Dielektrizitätswert-messgerät Download PDF

Info

Publication number
WO2022033831A1
WO2022033831A1 PCT/EP2021/070511 EP2021070511W WO2022033831A1 WO 2022033831 A1 WO2022033831 A1 WO 2022033831A1 EP 2021070511 W EP2021070511 W EP 2021070511W WO 2022033831 A1 WO2022033831 A1 WO 2022033831A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency signal
shf
electrode
measuring device
medium
Prior art date
Application number
PCT/EP2021/070511
Other languages
English (en)
French (fr)
Inventor
Pablo Ottersbach
Thomas Blödt
Original Assignee
Endress+Hauser SE+Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser SE+Co. KG filed Critical Endress+Hauser SE+Co. KG
Priority to US18/040,998 priority Critical patent/US20230266262A1/en
Priority to CN202180056364.XA priority patent/CN116034265A/zh
Priority to EP21748840.2A priority patent/EP4196776A1/de
Publication of WO2022033831A1 publication Critical patent/WO2022033831A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • G01R27/2623Measuring-systems or electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/26Measuring inductance or capacitance; Measuring quality factor, e.g. by using the resonance method; Measuring loss factor; Measuring dielectric constants ; Measuring impedance or related variables
    • G01R27/2617Measuring dielectric properties, e.g. constants
    • G01R27/2635Sample holders, electrodes or excitation arrangements, e.g. sensors or measuring cells

Definitions

  • the invention relates to a high-frequency-based measuring device for determining a dielectric value of a medium.
  • field devices are often used, which are used to record various measured variables.
  • the measured variable to be detected can be, for example, a fill level, a flow rate, a pressure, the temperature, the pH value, the redox potential, a conductivity or the dielectric value of a medium in a process plant.
  • the field devices each include suitable sensors or are based on suitable measurement methods. A large number of different types of field devices are manufactured and sold by the Endress + Hauser group of companies.
  • dielectric value also known as "dielectric constant” or “relative permittivity”
  • dielectric constant relative permittivity
  • the dielectric value of a medium can be determined, for example, by measuring the amplitude, the phase shift or the signal propagation time of high-frequency signals as they pass through the medium.
  • a high-frequency signal with a defined frequency or within a defined frequency band is coupled into the medium: After passing through the medium, the high-frequency signal is evaluated with regard to its amplitude, phase position or signal propagation time in relation to the transmitted high-frequency signal.
  • the term "high-frequency signal" in the context of this patent application refers to corresponding signals with frequencies between 10 MHz and 150 GHz.
  • a phase-based dielectric value measuring device is described, for example, in the publication DE 10 2017 130728 A1.
  • the effect is used that the signal propagation time of the high-frequency signal and thus the phase position along a measuring probe depends on the dielectric value of the medium that prevails along the measuring probe.
  • a distinction is made here between a relative and an absolute phase measurement, with a so-called quadrant correction also being carried out in the case of an absolute phase measurement.
  • the TDR principle (“Time Domain Reflectometry”) can be used to determine the dielectric value by measuring the transit time of high-frequency signals.
  • a signal generation unit emits a high-frequency signal with a frequency between 0.1 GHz and 150 GHz in pulse form along an electrically conductive measuring probe and measures the signal propagation time of the high-frequency pulse until it is received after reflection at the end of the probe .
  • the effect is used that the pulse propagation time depends on the dielectric value of the material surrounding the measuring probe.
  • the functional principle of TDR sensors is described, for example, in publication EP 0622 628 A2. TDR sensors are sold in numerous embodiments, for example, by the company IMKO Mikromodultechnik GmbH. The advantage of TDR sensors is that, especially with low dielectric values between 1 and 10, high measurement accuracy can be achieved even with a small measuring probe.
  • the medium whose dielectric value is to be determined often has a high moisture content, so that the dielectric value to be determined is in a high range between 60 and 85.
  • the measurement probe must be designed with correspondingly large dimensions in this case in order to be able to achieve sufficient measurement accuracy.
  • the dielectric value measuring device must also be correspondingly compact in order to be able to be attached to small process connections, such as a DN50 flange.
  • the invention is therefore based on the object of providing a compact measuring device for determining the dielectric value, by means of which the dielectric value of media with a particularly high moisture content can be determined with high accuracy.
  • the invention solves this problem with a high-frequency-based measuring device for determining a dielectric value of a medium, the measuring device comprising the following components for this purpose:
  • a signal generation unit which is designed to couple an electrical high-frequency signal with a defined frequency into a transmitting electrode which can be arranged in the medium, the transmitting electrode having a depth for emitting the high-frequency signal which a maximum of a quarter, in particular a maximum of an eighth of the wavelength corresponding to the frequency of the high-frequency signal, a receiving electrode which can be arranged in the medium and is at a distance from the transmitting electrode which is a maximum of a quarter and preferably a minimum of a sixteenth of the frequency wavelength corresponding to the high-frequency signal in order to receive the high-frequency signal after it has passed through the medium, and an evaluation unit which is connected to the receiving electrode and is designed to use at least the received high-frequency signal to determine the dielectric value of the medium .
  • This inventive dimensioning and arrangement of the electrodes in relation to the wavelength of the high-frequency signal can on the one hand maximize the measurement accuracy or measurement sensitivity of the dielectric value measurement and at the same time achieve a compact design of the measuring device.
  • the term “unit” is understood in principle to mean any electronic circuit that is suitably designed for the envisaged application. Depending on the requirements, it can therefore be an analog circuit for generating or processing corresponding analog signals. However, it can also be a digital circuit such as an FPGA or a storage medium in cooperation with a program. The program is designed to carry out the corresponding procedural steps or to apply the necessary arithmetic operations of the respective unit. In this context, different electronic units of the measuring device within the meaning of the invention can potentially also access a common physical memory or be operated using the same physical digital circuit.
  • the measuring device can be used to determine the dielectric value as a complex value, for example by the evaluation unit being designed to determine an imaginary part of the dielectric value based on an amplitude of the received high-frequency signal and/or based on a signal propagation time or a phase position of the received high-frequency signal to determine a real part of the dielectric value.
  • the signal propagation time can be determined corresponding to radar-based distance measurement, for example by means of the pulse propagation time method or the FMCW method.
  • the signal generation unit and the evaluation unit must be designed accordingly in order to determine the signal propagation time of the high-frequency signal through the medium using a pulse propagation time method or the FMCW method.
  • the transmitting electrode and the receiving electrode can have a round or an elliptical cross section, for example.
  • the transmission electrode and the reception electrode can be designed with a rectangular cross section and arranged parallel to one another.
  • the measuring device can be used, for example, in pipeline sections with flowing media due to the potentially favorable shape of the electrodes in terms of flow technology.
  • the transmitting electrode or the receiving electrode can in turn be designed with an annular cross section, with the other electrode being designed with a round cross section and being arranged centrally within the annular electrode.
  • the transmitting electrode and/or the receiving electrode can also have a rounded electrode end.
  • the transmitting electrode and/or the receiving electrode taper/taper in particular conically with increasing depth.
  • a temperature sensor such as a capacitive sensor or a resistance-based sensor, can be arranged inside the transmitting electrode or inside the receiving electrode to compensate for the temperature of the dielectric value measurement. Accordingly, given a suitable design, the evaluation unit can use the temperature sensor to determine the dielectric value of the medium in a temperature-compensated manner, for example on the basis of a look-up table or a compensation function.
  • the frequency of the high-frequency signal should be selected depending on the dielectric value measuring range.
  • the signal generation unit of the measuring device With a measuring range of the dielectric value between 60 and 90, i.e. with media with a high moisture content, the signal generation unit of the measuring device must be designed in such a way that the electrical high-frequency signal corresponding to this measuring range is generated with a frequency between 2 GHz and 8 GHz.
  • the evaluation unit is also to be designed in such a way that it can process and evaluate the received high-frequency signal at the corresponding frequency.
  • the object on which the invention is based is also achieved by a corresponding method for operating the measuring device. Accordingly, the method comprises at least the following method steps: Decoupling the high-frequency signal into the transmitting electrode, decoupling the high-frequency signal from the receiving electrode after passing through the medium, and determining the dielectric value using at least the received high-frequency signal.
  • FIG. 1 shows a schematic arrangement of the measuring device 1 on a container s:
  • the container 3 is filled with a medium 2 whose dielectric value is to be determined.
  • the measuring device 1 is attached via a lateral external connection of the container 3, such as a flange of size DN50, in such a way that it is connected to the inside of the container or to the medium 2.
  • the measuring device 1 can be contacted with a higher-level unit 4, such as a process control system.
  • "PROFIBUS”, “HART”, “Wireless HART” or “Ethernet” can be implemented as an interface. This can be used to transmit the dielectric value of the medium 2, for example as an absolute value or as a complex value with a real part and an imaginary part.
  • other information about the general operating status of the measuring device 1 can also be communicated.
  • the measuring device 1 determines the dielectric value of the medium 2 transmitively, i.e. in that high-frequency signals SHF are transmitted via a transmitting electrode 12 and then received by a receiving electrode 13, so that the medium 2 radiates through over a defined measuring distance d will.
  • the electrodes 12, 13 protrude up to a defined depth h into the interior of the container or into the medium 2, respectively.
  • An evaluation unit 14 of the measuring device 1 can determine the real part of the dielectric value on the basis of the amplitude of the received high-frequency signal SHF.
  • the real part of the dielectric value can be determined on the basis of the signal propagation time or the phase position of the received high-frequency signal SHF.
  • the pulse transit time or the FMCW method for example, can be implemented as measuring principles for determining the signal propagation time analogous to radar-based distance measurement. Accordingly, the signal generation unit 11 and the evaluation unit 14 are to be designed according to the respective measurement principle.
  • Medium 2 can be liquids with a high water content, such as beverages or vaccines, particularly in the food or pharmaceutical industry.
  • the dielectric value range to be detected in these cases is between 60 and 90. According to this range, the signal generation unit 11 is designed to generate the high-frequency signal SHF with a frequency f between 2 GHz and 8 GHz.
  • the near field of the high-frequency signal SHF is coupled out via the transmission electrode 12 according to the invention.
  • the advantage here is the low attenuation in media 2 with high dielectric values and the associated high measuring sensitivity.
  • disruptive effects of the far field are avoided, such as undesired reflections on the inner wall of the container 2, which can falsify the measurement.
  • c is the propagation speed of the high-frequency signal SHF in the medium 2 with Speed of Light
  • DK is the dielectric value of the medium 2.
  • the inventive design of the electrode depth h also ensures that the measuring device 1 can be designed with compact dimensions, so that it can also be attached to small container openings.
  • the depth h of the electrodes 12, 13 relates to a planar wall 16 of the measuring device 1 in the medium or container interior, which wall 16 in the exemplary embodiment shown also acts as a signal ground for the high-frequency signal SHF. Accordingly, the wall 16 can be made of stainless steel, for example.
  • a minimum depth h of the electrodes 12, 13 in relation to the wall 16 is not fixed within the scope of the invention. In principle, it is even conceivable that the electrodes 12, 13 do not protrude beyond the wall 16 into the interior of the container. However, the advantage of a depth h of the electrodes 12, 13 greater than zero is the higher sensitivity of the dielectric value measurement.
  • the distance d between the transmitting electrode 12 and the receiving electrode 13 according to the invention is a maximum of one quarter and a minimum of one eighth of the wavelength A that corresponds to the frequency f of the high-frequency signal SHF according to the above formula . This exploits the effect that the transmission electrode 12 emits the high-frequency signal SHF at this distance A/8 ⁇ d A/4 with the highest field density, as is sketched in FIG.
  • the distance “d” relates to the distance between those two points on the surfaces of the electrodes 12, 13 that are at the shortest distance from one another.
  • both electrodes 12, 13 have the same geometry or the same depth h and/or taper conically with increasing depth h, as is the case in FIG. In the embodiment variant shown in FIG. 2, both electrodes 12, 13 also each have a rounded electrode end. This is particularly advantageous for hygienically sensitive applications where medium deposits are to be avoided.
  • This design of the electrodes 12, 13 is also advantageous for applications in which the medium 2 is not stored stationary in the container 3 but instead flows through a section of pipeline, for example, in order to suppress the formation of turbulence in the section of pipeline if the measuring device is arranged there.
  • the electrodes 12 , 13 are each electrically insulated by an insulation 15 which separates the respective electrode 12 , 13 from the wall 16 .
  • the electrical insulation 15 can be realized, for example, as an injection molded part.
  • PP, PTFE, PEEK or a ceramic such as aluminum oxide can be used as the material.
  • the two insulations 15 are designed in such a way that they terminate flush with the wall 16 in the medium 2 .
  • the insulation 15 of the electrodes 12, 13 are each in turn separated by the wall 16 functioning as a signal ground. This achieves the additional advantageous effect that the high-frequency signal SHF has to run through the medium 2 completely without being able to couple directly from the transmitting electrode 12 into the receiving electrode 12 at least in part. This further increases the sensitivity of the measurement.
  • a gap is introduced between the respective electrode 12, 13 and the wall 16 on the rear side in relation to the planar surface.
  • an electrically insulating filling with a dielectric value greater than one for example made of PEEK, PP, PE or PTFE, can also be introduced into this gap.
  • the dimensions of the respective electrode 12, 13 in relation to their depth h can be further reduced without reducing the sensitivity of the dielectric value measurement, since the effective wavelength ⁇ of the high-frequency signal SHF is reduced when the gap is dielectrically filled.
  • a temperature sensor 17 is arranged in the receiving electrode 13 for temperature compensation of the dielectric value measurement. Due to the depth h of the receiving electrode 13, the temperature sensor 17 protrudes beyond the container wall when the measuring device 1 is installed, so that the current medium temperature can be measured.
  • the evaluation unit 14 is to be designed in such a way that it correspondingly compensates for the measured dielectric value of the medium 2 on the basis of the measured temperature, for example by means of a compensation function.
  • the temperature sensor 17 can be designed as a capacitive sensor or as a resistance-based sensor, in particular as a PT 1000. In contrast to the representation shown, it is also possible to arrange any temperature sensor 17 in the transmitting electrode 12 .
  • the cross-sectional shape of the electrodes 12, 14 is not fixed within the scope of the invention. 3 to 5 therefore show various implementation options as a front view (in relation to the plane of the planar wall 16): In the embodiment variant shown in FIG. 3, the transmitting electrode 12 and the receiving electrode 13 each have a round cross section on. In this embodiment, the Electrodes 12, 13 can be manufactured with little effort, for example by turning a stainless steel blank.
  • FIG. 4 shows a rectangular cross-section of the electrodes 12, 13, which can be used, for example, in pipes with medium 2 flowing through them.
  • the radius of the ring-shaped receiving electrode 13 is dimensioned in such a way that the radial distance d from the central transmitting electrode 12 is again at most ⁇ /4.
  • the advantage of this embodiment variant of the electrodes 12, 13 is a potentially very high measurement accuracy or measurement sensitivity of the dielectric value measurement.
  • this advantage is also offered when, instead of the receiving electrode 13, the transmitting electrode 12 is ring-shaped and the receiving electrode 13 with a round cross section is arranged centrally within the transmitting electrode 12 .

Abstract

Die Erfindung betrifft ein Hochfrequenz-basiertes Messgerät (1) zur Bestimmung eines Dielektrizitätswertes eines Mediums (2), folgende Komponenten umfassend: Eine Signalerzeugungs-Einheit (11) zur Einkopplung eines elektrischen Hochfrequenz-Signals (sHF) in eine im Medium (2) angeordnete Sende-Elektrode (12). Dabei weist die Sende-Elektrode (12) zum Aussenden des Hochfrequenz-Signals (sHF) eine Tiefe (h) auf, die maximal ein Viertel der Wellenlänge (λ) des Hochfrequenz-Signals (sHF) beträgt; Eine ebenfalls im Medium (2) angeordnete Empfangs-Elektrode (13), die sich in einem Abstand (d) zur Sende-Elektrode (13) befindet, der maximal ein Viertel der Wellenlänge (λ) des Hochfrequenz-Signals (sHF) beträgt, um das Hochfrequenz-Signal (sHF) nach Durchgang durch das Medium (2) zu empfangen, und; Eine Auswertungs-Einheit (14), die ausgelegt ist, anhand des empfangenen Hochfrequenz-Signals (sHF) den Dielektrizitätswert zu bestimmen. Durch diese erfindungsgemäße Dimensionierung und Anordnung der Elektroden (12, 13) in Bezug zur Wellenlänge (λ) des Hochfrequenz Signals (sHF) kann einerseits die Mesgenauigkeit bzw. die Messempfindlichkeit der Dielektrizitätswert-Messung maximiert und gleichzeitig eine kompakte Auslegung des Messgerätes (1) erreicht werden.

Description

Dielektrizitätswert-Messgerät
Die Erfindung betrifft ein Hochfrequenz-basiertes Messgerät zur Bestimmung eines Dielektrizitätswertes eines Mediums.
In der Automatisierungstechnik, insbesondere zur Prozessautomatisierung werden vielfach Feldgeräte eingesetzt, die zur Erfassung diverser Messgrößen dienen. Bei der zu erfassenden Messgröße kann es sich beispielsweise um einen Füllstand, einen Durchfluss, einen Druck, die Temperatur, den pH-Wert, das Redoxpotential, eine Leitfähigkeit oder den Dielektrizitätswert eines Mediums in einer Prozessanlage handeln. Zur Erfassung der entsprechenden Messwerte umfassen die Feldgeräte jeweils geeignete Sensoren bzw. basieren auf geeigneten Mess-Verfahren. Eine Vielzahl verschiedener Feldgeräte-Typen wird von der Firmen-Gruppe Endress + Hauser hergestellt und vertrieben.
Die Bestimmung des Dielektrizitätswertes (auch bekannt als „Dielektrizitätszahl“ oder „Relative Permittivität“) diverser Medien ist sowohl bei Feststoffen, als auch bei flüssigen und gasförmigen Füllgütern, wie beispielsweise Treibstoffen, Abwässern, Gasen, Gasphasen oder Chemikalien von großem Interesse, da dieser Wert einen zuverlässigen Indikator für Verunreinigungen, den Feuchtegehalt, die Stoffkonzentration bzw. die Stoffzusammensetzung darstellen kann.
Hochfrequenz-technisch kann der Dielektrizitätswert eines Mediums beispielsweise bestimmt werden, indem die Amplitude, die Phasenverschiebung oder die Signal-Laufzeit von Hochfrequenz-Signalen bei Durchgang durch das Medium gemessen wird. Dazu wird ein Hochfrequenz-Signal mit einer definierten Frequenz bzw. innerhalb eines definierten Frequenzbandes in das Medium eingekoppelt: Nach Durchgang durch das Medium wird das Hochfrequenz-Signal bezüglich seiner Amplitude, Phasenlage oder Signallaufzeit in Bezug zum ausgesendeten Hochfrequenz-Signal ausgewertet. Dabei bezieht sich der Begriff „Hochfrequenz-Signal' im Kontext dieser Patentanmeldung auf entsprechende Signale mit Frequenzen zwischen 10 MHz und 150 GHz.
Ein phasenbasiertes Dielektrizitätswert-Messgerät wird beispielsweise in der Veröffentlichungsschrift DE 10 2017 130728 A1 beschrieben. In diesem Fall wird der Effekt genutzt, dass die Signallaufzeit des Hochfrequenz-Signals und somit die Phasenlage entlang einer Mess-Sonde vom Dielektrizitätswert desjenigen Mediums abhängt, das entlang der Mess-Sonde vorherrscht. Prinzipiell wird hierbei zwischen einer relativen und einer absoluten Phasenmessung unterschieden, wobei im Falle einer absoluten Phasenmessung zusätzlich eine so genannte Quadranten-Korrektur durchgeführt wird. Zur Bestimmung des Dielektrizitätswertes mittels Laufzeit-Messung von Hochfrequenz- Signalen kann beispielsweise das TDR-Prinzip ( „Time Domain Reflectometiy-, zu Deutsch „Zeitbereichsreflektometrie“) angewendet werden. Bei diesem Messprinzip sendet eine Signalerzeugungs-Einheit ein Hochfrequenz-Signal mit einer Frequenz zwischen 0,1 GHz und 150 GHz pulsförmig entlang einer elektrisch leitfähigen Mess- Sonde aus und misst die Signallaufzeit des Hochfrequenz-Pulses bis zu dessen Empfang nach Reflektion am Sonden-Ende. Dabei wird der Effekt genutzt, dass die Pulslaufzeit abhängig vom Dielektrizitätswert desjenigen Stoffes ist, der die Mess-Sonde umgibt. Beschrieben ist das Funktionsprinzip von TDR-Sensoren beispielsweise in der Veröffentlichungsschrift EP 0622 628 A2. TDR-Sensoren werden in zahlreichen Ausführungsformen beispielsweise von der Firma IMKO Mikromodultechnik GmbH vertrieben. Vorteilhaft an TDR-Sensoren ist, dass insbesondere bei niedrigen Dielektrizitätswerten zwischen 1 und 10 bereits bei einer kleinen Mess-Sonde eine hohe Messgenauigkeit erreicht werden kann.
Bei hygienisch sensiblen Anwendungen, wie in der Pharma- oder Lebensmittelbranche, hat das Medium, dessen Dielektrizitätswert zu bestimmen ist, oftmals eine hohen Feuchteanteil, so dass der zu bestimmende Dielektrizitätswert in einem hohen Bereich zwischen 60 und 85 liegt. Für bekannte Hochfrequenz-basierte Messverfahren, wie dem TDR-Verfahren, bedeutet dies jedoch, dass die Mess-Sonde in diesem Fall mit entsprechend großen Dimensionen ausgelegt werden muss, um eine hinreichende Messgenauigkeit erzielen zu können. Da Durchfluss-Rohre und Prozessbehälter in der Pharma- und Lebensmittelbranche oftmals sehr klein sind, muss jedoch auch das Dielektrizitätswert-Messgerät entsprechend kompakt sein, um an kleinen Prozessanschlüssen, wie beispielsweise einem Flansch der Größe DN50 angebracht werden zu können.
Der Erfindung liegt daher die Aufgabe zugrunde, ein kompaktes Messgerät zur Bestimmung des Dielektrizitätswertes bereitzustellen, mittels dem der Dielektrizitätswert von Medien mit insbesondere hohem Feuchteanteil mit hoher Genauigkeit bestimmt werden kann.
Die Erfindung löst diese Aufgabe durch ein Hochfrequenz-basiertes Messgerät zur Bestimmung eines Dielektrizitätswertes eines Mediums, wobei das Messgerät hierzu folgende Komponenten umfasst:
Eine Signalerzeugungs-Einheit, die ausgelegt ist, ein elektrisches Hochfrequenz- Signal mit einer definierten Frequenz in eine im Medium anordbare Sende-Elektrode einzukoppeln, wobei die Sende- Elektrode zum Aussenden des Hochfrequenz-Signals eine Tiefe aufweist, die maximal em Viertel, insbesondere maximal em Achtel der zur Frequenz des Hochfrequenz-Signals korrespondierenden Wellenlänge beträgt, eine im Medium anordbare Empfangs-Elektrode, die sich in einem Abstand zur Sende-Elektrode befindet, der maximal ein Viertel und vorzugsweise minimal ein Sechzehntel der zur Frequenz des Hochfrequenz-Signals korrespondierenden Wellenlänge beträgt, um das Hochfrequenz-Signal nach Durchgang durch das Medium zu empfangen, und eine mit der Empfangs-Elektrode verbundene Auswertungs-Einheit, die ausgelegt ist, anhand zumindest des empfangenen Hochfrequenz-Signals den Dielektrizitätswert des Mediums zu bestimmen.
Durch diese erfindungsgemäße Dimensionierung und Anordnung der Elektroden in Bezug zur Wellenlänge des Hochfrequenz-Signals kann einerseits die Mesgenauigkeit bzw. die Messempfindlichkeit der Dielektrizitätswert-Messung maximiert und gleichzeitig eine kompakte Auslegung des Messgerätes erreicht werden.
Unter dem Begriff „Einheit“ wird im Rahmen der Erfindung prinzipiell jede elektronische Schaltung verstanden, die für den angedachten Einsatzzweck geeignet ausgelegt ist. Es kann sich also je nach Anforderung um eine Analogschaltung zur Erzeugung bzw. Verarbeitung entsprechender analoger Signale handeln. Es kann sich jedoch auch um eine Digitalschaltung wie ein FPGA oder ein Speichermedium in Zusammenwirken mit einem Programm handeln. Dabei ist das Programm ausgelegt, die entsprechenden Verfahrensschritte durchzuführen bzw. die notwendigen Rechenoperationen der jeweiligen Einheit anzuwenden. In diesem Kontext können verschiedene elektronische Einheiten des Messgerätes im Sinne der Erfindung potenziell auch auf einen gemeinsamen physikalischen Speicher zurückgreifen bzw. mittels derselben physikalischen Digitalschaltung betrieben werden.
Mittels des Messgerätes kann der Dielektrizitätswert als komplexer Wert ermittelt werden, beispielsweise indem die Auswertungs-Einheit ausgelegt ist, um anhand einer Amplitude des empfangenen Hochfrequenz-Signals einen Imaginärteil des Dielektrizitätswertes zu bestimmen, und/oder um anhand einer Signal-Laufzeit oder einer Phasenlage des empfangenen Hochfrequenz-Signals einen Realteil des Dielektrizitätswertes zu bestimmen. Die Bestimmung der Signal-Laufzeit kann korrespondierend zu Radarbasierter Abstandsmessung beispielsweise mittels des Pulslaufzeit-Verfahrens oder des FMCW-Verfahrens erfolgen. In diesen Fällen sind die Signalerzeugungs-Einheit und die Auswertungs-Einheit entsprechend auszulegen, um die Signallaufzeit des Hochfrequenz- Signals durch das Medium mittels eines Pulslaufzeit-Verfahrens oder des FMCW- Verfahrens zu ermitteln. Die Querschnittsform der Elektroden ist im Rahmen der Erfindung nicht fest vorgegeben: Zwecks einfacher Fertigbarkeit können die Sende-Elektrode und die Empfangs-Elektrode beispielsweise einen runden oder einen elliptischen Querschnitt aufweisen. Alternativ hierzu können die Sende-Elektrode und die Empfangs-Elektrode mit einem rechteckigen Querschnitt ausgelegt und parallel zueinander angeordnet werden. Hierdurch kann das Messgerät aufgrund der strömungstechnisch potenziell günstigen Formgebung der Elektroden beispielsweise in Rohrleitungsabschnitten mit strömenden Medien eingesetzt werden. Sofern eine größtmögliche Messgenauigkeit erwünscht ist, kann die Sende- Elektrode oder die Empfangs-Elektrode wiederum mit einem ringförmigen Querschnitt ausgelegt werden, wobei die jeweils andere Elektrode mit einem runden Querschnitt ausgelegt ist und zentrisch innerhalb der ringförmigen Elektrode angeordnet ist. Zum hygienischen Schutz gegen Ablagerungen oder zur Optimierung des Strömungswiderstandes können/kann die Sende-Elektrode und/oder die Empfangs- Elektrode außerdem ein abgerundetes Elektroden-Ende aufweisen. Diesbezüglich ist es außerdem vorteilhaft, wenn sich Sende-Elektrode und/oder die Empfangs-Elektrode mit zunehmender Tiefe insbesondere konisch verjüngen/verjüngt.
Da der Dielektrizitätswert insbesondere von feuchtehaltigen Medin stark Temperaturabhängig ist, kann zur Temperaturkompensation der Dielektrizitätswert- Messung im Inneren der Sende-Elektrode oder im Inneren der Empfangs-Elektrode ein Temperatur-Sensor, wie beispielsweise ein kapazitiver Sensor oder ein Widerstandsbasierter Sensor angeordnet werden. Demensprechend kann die Auswertungs-Einheit bei geeigneter Auslegung anhand des Temperatur-Sensors den Dielektrizitätswert des Mediums temperaturkompensiert bestimmen, beispielsweise auf Basis einer Look-up Table oder einer Kompensationsfunktion.
Die Frequenz des Hochfrequenz-Signals ist prinzipiell in Abhängigkeit des Dielektrizitätswert-Messbereichs zu wählen. Bei einem Messbereich des Dielektrizitätswertes zwischen 60 und 90, also bei stark feuchtehaltigen Medien, ist die Signalerzeugungs-Einheit des Messgerätes so auszulegen, um das elektrische Hochfrequenz-Signal korrespondierend zu diesem Mess-Bereich mit einer Frequenz zwischen 2 GHz und 8 GHz zu erzeugen. Analog dazu ist auch die Auswertungs-Einheit so auszulegen, dass sie das empfangene Hochfrequenz-Signal bei der entsprechenden Frequenz verarbeiten und auswerten kann.
Korrespondierend zu dem erfindungsgemäßen Dielektrizitätswert-Messgerät gemäß einer der zuvor beschriebenen Ausführungsvarianten wird die Aufgabe, die der Erfindung zugrunde liegt, außerdem durch ein entsprechendes Verfahren zum Betrieb des Messgerätes gelöst. Dementsprechend umfasst das Verfahren zumindest folgende Verfahrensschritte: Emkoppeln des Hochfrequenz-Signals in die Sende-Elektrode, Auskoppeln des Hochfrequenz-Signals aus der Empfangs-Elektrode nach Durchgang durch das Medium, und Bestimmung des Dielektrizitätswertes anhand zumindest des empfangenen Hochfrequenz-Signals.
Anhand der nachfolgenden Figuren wird die Erfindung näher erläutert. Es zeigt:
Fig. 1 : Ein erfindungsgemäßes Dielektrizitätswert-Messgerät an einem Behälter,
Fig. 2: eine Querschnitts-Ansicht des erfindungsgemäßen Messgerätes,
Fig. 3: eine Frontalansicht einer ersten Variante des Messgerätes,
Fig. 4: eine Frontalansicht einer zweiten Variante des Messgerätes,
Fig. 5: eine Frontalansicht einer dritten Variante des Messgerätes, und
Fig. 6: eine schematische Feldverteilung an der Sende-Elektrode.
Zum Verständnis des erfindungsgemäßen Dielektrizitätswert-Messgerätes 1 ist in Fig. 1 eine schematische Anordnung des Messgerätes 1 an einem Behälter s gezeigt: Dabei ist der Behälter 3 mit einem Medium 2 gefüllt, dessen Dielektrizitätswert zu bestimmen ist. Um den Dielektrizitätswert des Mediums 2 bestimmen zu können, ist das Messgerät 1 über einen seitlichen Außenanschluss des Behälters 3, wie bspw. einen Flansch der Größe DN50 derart befestigt, dass es in Verbindung mit dem Behälter-Inneren bzw. dem Medium 2 steht. Optional kann das Messgerät 1 mit einer übergeordneten Einheit 4, wie zum Beispiel einem Prozessleitsystem kontaktiert werden. Als Schnittstelle kann etwa „PROFIBUS“, „HART“, „Wireless HART“ oder „Ethernet“ implementiert sein. Hierüber kann der Dielektrizitätswert des Mediums 2 beispielsweise als Betrag, oder komplexwertig mit Realteil und Imaginärteil übermittelt werden. Es können aber auch anderweitige Informationen über den allgemeinen Betriebszustand des Messgerätes 1 kommuniziert werden.
Das erfindungsgemäße Messgerät 1 ermittelt den Dielektrizitätswert des Mediums 2 transmitiv, also indem Hochfrequenz-Signale SHF über eine Sende-Elektrode 12 ausgesendet und im Anschluss durch eine Empfangs-Elektrode 13 empfangen werden, so dass das Medium 2 über eine definierte Mess-Strecke d durchstrahlt wird. Wie aus Fig. 1 zu erkennen ist, stehen die Elektroden 12, 13 hierzu bis zu einer definierten Tiefe h in das Behälter-Innere bzw. gen Medium 2 ab. Dabei wird das Hochfrequenz-Signal SHF in einer hierfür ausgelegten Signalerzeugungs-Emheit 11 des Messgerätes 1 erzeugt. Im Rahmen der Erfindung ist es dabei irrelevant, ob die Elektroden 12, 13 komplett aus einem leitfähigen Material gefertigt sind, wie beispielsweise gedrehtem Edelstahl, oder ob die Elektroden 12, 13 lediglich eine elektrisch leitfähige Oberflächen-Beschichtung ausweisen. Eine etwaige Metallisierung der Elektroden-Oberfläche kann beispielsweise mittels Plasmabeschichtung wie PECVD („Plasma Enhanced Vapor Deposition“) aufgetragen werden.
Anhand der Amplitude des empfangenen Hochfrequenz-Signals SHF kann eine Auswertungs-Einheit 14 des Messgerätes 1 den Realteil des Dielektrizitätswertes bestimmen. Anhand der Signallaufzeit bzw. der Phasenlage des empfangenen Hochfrequenz-Signals SHF kann der Realteil des Dielektrizitätswertes bestimmt werden. Dabei können als Messprinzipien zur Bestimmung der Signallaufzeit analog zu Radarbasierter Abstandsmessung beispielsweise das Pulslaufzeit- oder das FMCW-Verfahren implementiert werden. Dementsprechend sind die Signalerzeugungs-Einheit 11 und die Auswertungs-Einheit 14 gemäß des jeweiligen Messprinzips zu konzipieren.
Insbesondere in der Lebensmittel- oder Pharmabranche kann es sich bei dem Medium 2 um stark wasserhaltige Flüssigkeiten wie Getränke oder Impfstoffe handeln.
Dementsprechend liegt der zu erfassende Dielektrizitätswert-Bereich in diesen Fällen zwischen 60 und 90. Entsprechend dieses Bereichs ist die Signalerzeugungs-Einheit 11 ausgelegt, das Hochfrequenz-Signal SHF mit einer Frequenz f zwischen 2 GHz und 8 GHz zu erzeugen.
Damit auch in diesem Dielektrizitätswert-Bereich eine hohe Auflösung erzielt werden kann, wird erfindungsgemäß über die Sende-Elektrode 12 lediglich das Nahfeld des Hochfrequenz-Signals SHF ausgekoppelt. Vorteilhaft ist hieran die geringe Dämpfung in Medien 2 mit hohen Dielektrizitätswerten und die damit verbundene, hohe Messempfindlichkeit. Außerdem werden störende Effekte des Fernfeldes vermieden, wie beispielsweise unerwünschte Reflexionen an der Innenwand des Behälters 2, wodurch die Messung verfälscht werden kann. Wie in der Querschnittsansicht in Fig. 2 näher dargestellt ist, wird die Sende-Elektrode 12 zur überwiegenden Abstrahlung im Nahfeld daher mit einer Tiefe h ausgelegt, die gemäß
Figure imgf000008_0001
wesentlich kleiner als ein Viertel der Wellenlänge A des Hochfrequenz-Signals SHF ist, also beispielsweise ein Achtel der Wellenlänge A. Hierbei ist c die Ausbreitungsgeschwindigkeit des Hochfrequenz-Signals SHF im Medium 2 mit Lichtgeschwindigkeit; DK ist der Dielektrizitätswert des Mediums 2. Durch die erfindungsgemäße Konzipierung der Elektroden-Tiefe h wird nebenher sichergestellt, dass das Messgerät 1 mit kompakten Abmessungen ausgelegt werden kann, so dass es auch an kleinen Behälter-Öffnungen anbringbar ist. Die Tiefe h der Elektroden 12, 13 bezieht sich dabei auf eine gen Medium bzw. Behälter-Inneren planare Wandung 16 des Messgerätes 1 , welche im gezeigten Ausführungsbeispiel gleichzeitig als Signalmasse für das Hochfrequenz-Signal SHF fungiert. Dementsprechend kann die Wandung 16 beispielsweises aus einem Edelstahl gefertigt sein.
Eine in Bezug zur Wandung 16 minimale Tiefe h der Elektroden 12, 13 ist im Rahmen der Erfindung nicht fest vorgegeben. Prinzipiell ist es sogar denkbar, dass die Elektroden 12, 13 nicht über die Wandung 16 hinaus in das Behälter-Innere abstehen. Vorteilhat an einer Tiefe h der Elektroden 12, 13 größer null ist jedoch die höhere Empfindlichkeit der Dielektrizitätswert-Messung.
Wie in Fig. 2 außerdem angedeutet wird, ist der Abstand d zwischen der Sende-Elektrode 12 und der Empfangs-Elektrode 13 erfindungsgemäß maximal ein Viertel und minimal ein Achtel derjenigen Wellenlänge A, die gemäß obiger Formel zur Frequenz f des Hochfrequenz-Signals SHF korrespondiert. Hierdurch wird der Effekt ausgenutzt, dass die Sende-Elektrode 12 das Hochfrequenz-Signal SHF in diesem Abstand A/8 < d A/4 mit der höchsten Felddichte aussendet, wie es in Fig. 6 skizziert ist.
Der Abstand „d“ bezieht sich dabei auf die Entfernung zwischen denjenigen zwei Punkten auf den Oberflächen der Elektroden 12, 13, die den geringsten Abstand zueinander aufweisen.
Durch diese Positionierung der Empfangs-Elektrode 13 in Bezug zur Send-Elektrode 12 wird bewirkt, dass die Empfindlichkeit der Dielektrizitätswert-Messung maximiert wird. Unterstützt wird dieser Effekt, wenn beide Elektroden 12, 13 dieselbe Geometrie bzw. dieselbe Tiefe h aufweisen und/oder sich mit zunehmender Tiefe h konisch verjüngen, wie es in Fig. 2 der Fall ist. Bei der in Fig. 2 dargestellten Ausführungsvariante weisen beide Elektroden 12, 13 zudem jeweils ein abgerundetes Elektroden-Ende auf. Vorteilhaft ist dies insbesondere bei hygienisch sensiblen Anwendungen, bei denen Mediums- Ablagerungen zu vermeiden sind. Auch für Anwendungen, bei denen das Medium 2 nicht stationär im Behälter 3 lagert, sondern beispielsweise einen Rohrleitungs-Abschnitt durchströmt, ist diese Auslegung der Elektroden 12, 13 vorteilhaft, um Wirbelbildung im Rohrleitungs-Abschnitt zu unterdrücken, sofern das Messgerät dort angeordnet ist.
Elektrisch isoliert werden die Elektroden 12, 13 jeweils durch eine Isolation 15, welche die jeweilige Elektrode 12, 13 gegenüber der Wandung 16 abtrennt. Dabei kann die elektrische Isolation 15 beispielsweise als Spntzgussteil realisiert sein. Als Material kann beispielsweise PP, PTFE, PEEK oder eine Keramik, wie Aluminiumoxid verwendet werden. Bei dem in Fig. 2 gezeigten Ausführungsbeispiel sind die zwei Isolationen 15 so ausgelegt, dass sie gen Medium 2 bündig zur Wandung 16 abschließen. Außerdem wird aus Fig. 2 ersichtlich, dass die Isolationen 15 der Elektroden 12, 13 jeweils wiederum durch die als Signalmasse fungierende Wandung 16 getrennt sind. Hierdurch wird der zusätzlich vorteilhafte Effekt erreicht, dass das Hochfrequenz-Signal SHF vollständig das Medium 2 durchlaufen muss, ohne zumindest teilweise direkt von der Sende-Elektrode 12 in die Empfangs-Elektrode 12 einkoppeln zu können. Somit wird die Empfindlichkeit der Messung weiter erhöht.
Bei der in Fig. 2 gezeigten Ausführungsvariante des Messgerätes 1 ist in Bezug zur planaren Oberfläche rückseitig zwischen der jeweiligen Elektrode 12, 13 und der Wandung 16 ein Spalt eingebracht. Im Gegensatz zu dieser gezeigten Darstellung kann auch in diesem Spalt eine elektrisch isolierende Füllung mit einem Dielektrizitätswert größer Eins, beispielsweise aus PEEK, PP, PE oder PTFE eingebracht werden. Hierdurch können die Abmessungen der jeweiligen Elektrode 12, 13 in Bezug auf deren Tiefe h weiter reduziert werden, ohne dass die Empfindlichkeit der Dielektrizitätswert- Messung verringert wird, da sich die effektive Wellenlänge A des Hochfrequenz-Signals SHF bei dielektrischer Füllung des Spaltes reduziert.
Zur Temperaturkompensation der Dielektrizitätswert-Messung ist bei der Ausführungsvariante gemäß Fig 2 in der Empfangs-Elektrode 13 ein Temperatur-Sensor 17 angeordnet. Durch die Tiefe h der Empfangs-Elektrode 13 steht der Temperatur- Sensor 17 im montierten Zustand des Messgerätes 1 über die Behälterwand hinaus ab, so dass die aktuelle Mediums-Temperatur gemessen werden kann. Die Auswertungs- Einheit 14 ist bei dieser optionalen Ausführung derart auszulegen, um den gemessenen Dielektrizitätswert des Mediums 2 auf Basis der gemessenen Temperatur entsprechend zu kompensieren, beispielsweise mittels einer Kompensations-Funktion. Dabei kann der Temperatur-Sensor 17 als kapazitiver Sensor oder als Widerstandsbasierter Sensor, insbesondere als PT 1000 ausgelegt sein. Im Gegensatz zu der gezeigten Darstellung ist es auch möglich, einen etwaigen Temperatur-Sensor 17 in der Sende-Elektrode 12 anzuordnen.
Die Querschnittsform der Elektroden 12, 14 ist im Rahmen der Erfindung nicht fest vorgegeben. In Fig. 3 bis Fig. 5 sind daher verschiedene Realisierungsmöglichkeiten als Frontalansicht (in Bezug zur Ebene der planaren Wandung 16) dargestellt: Bei der in Fig. 3 gezeigten Ausführungsvariante weisen die Sende-Elektrode 12 und die Empfangs- Elektrode 13 jeweils einen runden Querschnitt auf. Bei dieser Ausführungsform sind die Elektroden 12, 13 aufwandsarm fertigbar, beispielsweise mittels Drehen eines Edelstahl- Rohlings.
Alternativ zu einem runden Querschnitt ist in Fig. 4 eine rechteckige Querschnittsform der Elektroden 12, 13 dargestellt, die beispielsweise bei Rohren mit durchströmendem Medium 2 Anwendung finden kann. Hierbei sind die Elektroden 12, 13 - in Bezug zur Rechteckform - im Abstand d parallel zueinander angeordnet, so dass sie in strömenden Medien 2 bei entsprechender Ausrichtung einen minimierten Strömungswiderstand darstellen. In Anlehnung an die in Fig. 4 gezeigte Ausführungsvariante ist es darüber hinaus natürlich auch denkbar, den rechteckigen Querschnitt der Elektroden 12, 13 abzurunden bzw. strömungstechnisch weiter zu optimieren.
Bei der in Fig. 5 gezeigten Ausführungsvariante der Elektroden 12, 13 ist die Empfangs- Elektrode 13 mit einem ringförmigen Querschnitt ausgelegt, während die Sende-Elektrode 12 einen runden Querschnitt aufweist und zentrisch innerhalb der Empfangs-Elektrode 13 angeordnet ist. Dabei ist der Radius der ringförmigen Empfangs-Elektrode 13 so bemessen, dass der radiale Abstand d zur mittigen Sende-Elektrode 12 wiederum maximal A/4 beträgt. Vorteilhaft an dieser Ausführungsvariante der Elektroden 12, 13 ist eine potenziell sehr hohe Messgenauigkeit bzw. Messempfindlichkeit der Dielektrizitätswert-Messung. Im Gegensatz zu der in Fig. 5 gezeigten Ausgestaltungsvariante bietet sich dieser Vorteil auch dann, wenn anstelle der Empfangs- Elektrode 13 die Sende-Elektrode 12 ringförmig ausgebildet ist und die Empfangs- Elektrode 13 mit rundem Querschnitt zentrisch innerhalb der Sende-Elektrode 12 angeordnet ist.
Bezugszeichenhste
1 Messgerät
2 Medium
3 Behälter
4 Übergeordnete Einheit
11 Signalerzeugungs-Einheit
12 Sende-Elektrode
13 Empfangs-Elektrode
14 Auswertungs-Einheit
15 Elektrische Isolation
16 Wandung
17 Temperatur-Sensor d Abstand zwischen den Elektroden f Frequenz des Hochfrequenz-Signals h Tiefe der Elektrode
SHF Hochfrequenz-Signal
A Wellenlänge des Hochfrequenz-Signals

Claims

Patentansprüche
1 . Hochfrequenz-basiertes Messgerät zur Bestimmung eines Dielektrizitätswertes eines Mediums (2), umfassend:
Eine Signalerzeugungs-Einheit (11), die ausgelegt ist, ein elektrisches Hochfrequenz-Signal (SHF) mit einer definierten Frequenz (f) in eine im Medium (2) anordbare Sende-Elektrode (12) einzukoppeln, wobei die Sende-Elektrode (12) zum Aussenden des Hochfrequenz-Signals (SHF) eine Tiefe (h) aufweist, die maximal ein Viertel der zur Frequenz (f) des Hochfrequenz- Signals (SHF) korrespondierenden Wellenlänge (A) beträgt, eine im Medium (2) anordbare Empfangs-Elektrode (13), die sich in einem Abstand (d) zur Sende-Elektrode (12) befindet, der maximal ein Viertel der zur Frequenz (f) des Hochfrequenz-Signals (SHF) korrespondierenden Wellenlänge (A) beträgt, um das Hochfrequenz-Signal (SHF) nach Durchgang durch das Medium (2) zu empfangen, und eine mit der Empfangs-Elektrode (13) verbundene Auswertungs-Einheit (14), die ausgelegt ist, anhand zumindest des empfangenen Hochfrequenz-Signals (SHF) den Dielektrizitätswert des Mediums (2) zu bestimmen.
2. Messgerät nach Anspruch 1 , wobei die Auswertungs-Einheit (14) ausgelegt ist, um anhand einer Amplitude des empfangenen Hochfrequenz-Signals (SHF) einen Imaginärteil des Dielektrizitätswertes zu bestimmen, und/oder um anhand einer Signal-Laufzeit oder einer Phasenlage des empfangenen Hochfrequenz-Signals (SHF) einen Realteil des Dielektrizitätswertes zu bestimmen.
3. Messgerät nach Anspruch 1 oder 2, wobei die Sende-Elektrode (12) und/oder die Empfangs-Elektrode zum Aussenden des Hochfrequenz-Signals (SHF) eine Tiefe (h) aufweisen/aufweist, die maximal ein Achtel der zur Frequenz (f) des Hochfrequenz- Signals (SHF) korrespondierenden Wellenlänge (A) beträgt.
4. Messgerät nach Anspruch 1 , 2 oder 3, wobei der Abstand (d) der Empfangs-Elektrode (13) zur Sende-Elektrode (12) minimal ein Sechzehntel, insbesondere ein Achtel der zur Frequenz (f) des Hochfrequenz-Signals (SHF) korrespondierenden Wellenlänge (A) beträgt.
5. Messgerät nach einem der Ansprüche 1 bis 4, wobei die Sende-Elektrode (12) und die Empfangs-Elektrode (13) einen runden oder einen elliptischen Querschnitt aufweisen.
6. Messgerät nach einem der Ansprüche 1 bis 4, wobei die Sende-Elektrode (12) und die Empfangs-Elektrode (13) einen rechteckigen Querschnitt aufweisen und parallel zueinander angeordnet sind.
7. Messgerät nach einem der Ansprüche 1 bis 4, wobei die Sende-Elektrode (12) oder die Empfangs-Elektrode (13) mit einem ringförmigen Querschnitt ausgelegt ist, wobei die jeweils andere Elektrode (12, 13) mit einem runden Querschnitt ausgelegt ist und zentrisch innerhalb der ringförmigen Elektrode (12, 13) angeordnet ist.
8. Messgerät nach einem der vorhergehenden Ansprüche, wobei die Sende-Elektrode (12) und/oder die Empfangs-Elektrode (13) ein abgerundetes Elektroden-Ende aufweisen/aufweist.
9. Messgerät nach zumindest einem der vorhergehenden Ansprüche, wobei sich die Sende-Elektrode (12) und/oder die Empfangs-Elektrode (13) mit zunehmender Tiefe (h) insbesondere konisch verjüngen/verjüngt.
10. Messgerät nach einem der vorhergehenden Ansprüche, wobei im Inneren der Sende-Elektrode (12) oder im Inneren der Empfangs-Elektrode (13) ein Temperatur- Sensor (17), insbesondere ein kapazitiver Sensor oder ein Widerstands-basierter Sensor angeordnet ist, und wobei die Auswertungs-Einheit (14) ausgelegt ist, anhand des Temperatur-Sensors (17) den Dielektrizitätswert des Mediums (2) temperaturkompensiert zu bestimmen.
11 . Messgerät nach zumindest einem der vorhergehenden Ansprüche, wobei die Signalerzeugungs-Einheit (11) ausgelegt ist, das elektrische Hochfrequenz-Signal (SHF) mit einer Frequenz zwischen 0,1 GHz und 30 GHz, insbesondere zwischen 2 GHz und 8 GHz, zu erzeugen.
12. Verfahren zur Bestimmung des Dielektrizitätswertes eines Mediums (2) mittels des Messgerätes (1) nach einem der vorhergehenden Ansprüche, folgende Verfahrensschritte umfassend:
Einkoppeln des Hochfrequenz-Signals (SHF) in die Sende-Elektrode (12), Auskoppeln des Hochfrequenz-Signals (SHF) aus der Empfangs-Elektrode (13) nach Durchgang durch das Medium (2), und
Bestimmung des Dielektrizitätswertes anhand zumindest des empfangenen Hochfrequenz-Signals (SH ).
PCT/EP2021/070511 2020-08-11 2021-07-22 Dielektrizitätswert-messgerät WO2022033831A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/040,998 US20230266262A1 (en) 2020-08-11 2021-07-22 Dielectric-constant measuring device
CN202180056364.XA CN116034265A (zh) 2020-08-11 2021-07-22 介电常数测量设备
EP21748840.2A EP4196776A1 (de) 2020-08-11 2021-07-22 Dielektrizitätswert-messgerät

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020121154.6 2020-08-11
DE102020121154.6A DE102020121154A1 (de) 2020-08-11 2020-08-11 Dielektrizitätswert-Messgerät

Publications (1)

Publication Number Publication Date
WO2022033831A1 true WO2022033831A1 (de) 2022-02-17

Family

ID=77155767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/070511 WO2022033831A1 (de) 2020-08-11 2021-07-22 Dielektrizitätswert-messgerät

Country Status (5)

Country Link
US (1) US20230266262A1 (de)
EP (1) EP4196776A1 (de)
CN (1) CN116034265A (de)
DE (1) DE102020121154A1 (de)
WO (1) WO2022033831A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108337A1 (de) 2022-04-06 2023-10-12 Endress+Hauser SE+Co. KG Dielektrizitätswert-Messgerät
DE102022120466A1 (de) 2022-08-12 2024-02-15 Endress+Hauser Group Services Ag Hochfrequenz-basierte Feuchte-Messung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622628A2 (de) 1993-04-29 1994-11-02 imko INTELLIGENTE MICROMODULE KÖHLER GmbH Sonde für Materialfeuchtesensor
EP1983357A1 (de) * 2007-04-16 2008-10-22 Services Pétroliers Schlumberger Antenne für eine elektromagnetische Sonde zur Untersuchung geologischer Formationen
WO2011064770A2 (en) * 2009-11-25 2011-06-03 S.A.E Afikim Milking Systems Agricultural Cooperative Ltd. Dielectric spectroscopic milk analyzer and method
DE102015112543A1 (de) * 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102017130728A1 (de) 2017-12-20 2019-06-27 Endress+Hauser SE+Co. KG Messgerät zur Dielektrizitätswert-Bestimmung
DE102018130260A1 (de) * 2018-11-29 2020-06-04 Endress+Hauser SE+Co. KG Messgerät

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2833705B1 (fr) 2001-12-13 2004-06-04 Inst Francais Du Petrole Capteur detecteur d'interface
DE102019101598A1 (de) 2019-01-23 2020-07-23 Endress+Hauser SE+Co. KG Messgerät zur Bestimmung eines Dielektrizitätswertes
DE102019102142A1 (de) 2019-01-29 2020-07-30 Endress+Hauser SE+Co. KG Messgerät

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622628A2 (de) 1993-04-29 1994-11-02 imko INTELLIGENTE MICROMODULE KÖHLER GmbH Sonde für Materialfeuchtesensor
EP1983357A1 (de) * 2007-04-16 2008-10-22 Services Pétroliers Schlumberger Antenne für eine elektromagnetische Sonde zur Untersuchung geologischer Formationen
WO2011064770A2 (en) * 2009-11-25 2011-06-03 S.A.E Afikim Milking Systems Agricultural Cooperative Ltd. Dielectric spectroscopic milk analyzer and method
DE102015112543A1 (de) * 2015-07-30 2017-02-02 Endress+Hauser Gmbh+Co. Kg Vorrichtung zur Bestimmung und/oder Überwachung zumindest einer Prozessgröße
DE102017130728A1 (de) 2017-12-20 2019-06-27 Endress+Hauser SE+Co. KG Messgerät zur Dielektrizitätswert-Bestimmung
DE102018130260A1 (de) * 2018-11-29 2020-06-04 Endress+Hauser SE+Co. KG Messgerät

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108337A1 (de) 2022-04-06 2023-10-12 Endress+Hauser SE+Co. KG Dielektrizitätswert-Messgerät
WO2023194144A1 (de) 2022-04-06 2023-10-12 Endress+Hauser Se Gmbh+Co. Kg Dielektrizitätswert-messgerät
DE102022120466A1 (de) 2022-08-12 2024-02-15 Endress+Hauser Group Services Ag Hochfrequenz-basierte Feuchte-Messung

Also Published As

Publication number Publication date
US20230266262A1 (en) 2023-08-24
EP4196776A1 (de) 2023-06-21
CN116034265A (zh) 2023-04-28
DE102020121154A1 (de) 2022-02-17

Similar Documents

Publication Publication Date Title
WO2022033831A1 (de) Dielektrizitätswert-messgerät
EP2154495B1 (de) TDR-Sensor und -Messverfahren
DE102007060579A1 (de) Verfahren zur Ermittlung und/oder zur Beurteilung des Befüllzustands eines mit zumindest einem Medium gefüllten Behälter
WO2019214924A1 (de) Tdr-messvorrichtung zur bestimmung der dielektrizitätskonstanten
EP3918313B1 (de) Messgerät zur bestimmung eines dielektrizitätswertes
DE19961855B4 (de) Verfahren und Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter
DE102005011778A1 (de) Verfahren zur Messung des Füllstands eines in einem Behälter vorgesehenen Mediums auf der Grundlage des Radar-Prinzips
DE102018130260A1 (de) Messgerät
WO2021104839A1 (de) Fmcw-basiertes abstandsmessgerät
US20230003667A1 (en) Measuring device for determining a dielectric value
EP4014028A1 (de) Messgerät zur bestimmung eines dielektrizitätswertes
EP4196775A1 (de) Temperaturkompensiertes dielektrizitätswert-messgerät
DE102019124825B4 (de) Messgerät zur Bestimmung eines Dielelektrizitätswertes
US20210172786A1 (en) Fill level measuring device
WO2023194144A1 (de) Dielektrizitätswert-messgerät
DE102018106723A1 (de) Messgerät
WO2022128403A1 (de) Hochfrequenz-basiertes feldgerät
DE102018129356A1 (de) Messgerät
DE102020100861A1 (de) Messgerät zur Bestimmung eines Dielektrizitätswertes
DE102020103191A1 (de) Pulslaufzeit-basiertes Messgerät zur Leitfähigkeitsmessung
Schroth C7. 2-Novel Multi Parameter Sensor Approach for Interface Measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021748840

Country of ref document: EP

Effective date: 20230313