WO2022033518A1 - 一种介质滤波器 - Google Patents

一种介质滤波器 Download PDF

Info

Publication number
WO2022033518A1
WO2022033518A1 PCT/CN2021/112063 CN2021112063W WO2022033518A1 WO 2022033518 A1 WO2022033518 A1 WO 2022033518A1 CN 2021112063 W CN2021112063 W CN 2021112063W WO 2022033518 A1 WO2022033518 A1 WO 2022033518A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
source
coupling
resonant cavity
blind hole
Prior art date
Application number
PCT/CN2021/112063
Other languages
English (en)
French (fr)
Inventor
夏斌
段向阳
别业楠
戴洪晨
武增强
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022033518A1 publication Critical patent/WO2022033518A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters

Definitions

  • Embodiments of the present disclosure include, but are not limited to, the field of communication technologies, and in particular, relate to a dielectric filter.
  • Dielectric filters are widely used in base station equipment due to their good performance, small size and light weight.
  • the function of the filter is to pass the electromagnetic wave signal of a specific frequency range and to suppress the electromagnetic wave signal of the frequency corresponding to the out-of-band transmission zero point.
  • Dielectric filters are widely used in filters due to their advantages of high quality factor, small insertion loss, high power, and easy miniaturization.
  • the conventional dielectric filter with the increase of the out-of-band transmission zero point, will reduce its mechanical strength and be easily damaged during use.
  • the main purpose of the embodiments of the present disclosure is to propose a dielectric filter, which aims to realize a dielectric filter with high mechanical strength and good out-of-band suppression capability.
  • an embodiment of the present disclosure provides a dielectric filter, including: a dielectric body, the dielectric body includes a resonance region and a port-source coupling region located on one side of the resonance region; a first The resonant area of the surface is provided with at least one dielectric resonant cavity, and each dielectric resonant cavity is provided with a first blind hole, and the first blind hole is used to adjust the frequency of the dielectric resonant cavity; the first blind hole of the dielectric body
  • the port source coupling region of the surface is provided with at least one source coupling cavity and at least one port source, the source coupling cavity being provided with an active coupling window configured to accommodate at least one of the port sources and at least one port source The coupling strength of the source coupled resonator.
  • the dielectric filter proposed by the present disclosure adds a port source coupling area on the dielectric body, that is, increases the mechanical strength of the dielectric filter. Additionally, a port source can be coupled to at least one source-coupled resonator through a source-coupling window.
  • the topology structure of the dielectric filter is enriched, thereby increasing the number of out-of-band transmission zeros and improving the performance of the dielectric filter. Out-of-band rejection capability.
  • FIG. 1 is a top view of a dielectric filter provided by an embodiment of the present disclosure
  • FIG. 2 is a perspective view of a dielectric filter provided by an embodiment of the present disclosure
  • FIG. 3 is a top view of another dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 4 is a perspective view of another dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 5 is a graph of the S-parameter versus frequency response of a dielectric filter provided by an embodiment of the present disclosure
  • FIG. 6 is a graph of the S-parameter versus frequency response of another dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 8 is a top view of yet another dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of the port source in the direction D1-D2 of FIG. 3 .
  • the conventional dielectric filter will reduce its mechanical strength and be easily damaged during use.
  • the dielectric filter in the prior art only includes a resonance region.
  • grooves are usually arranged in the resonance region as a negative coupling structure to realize the coupling of adjacent dielectric resonators to enrich the topology of the dielectric filter, thereby increasing the out-of-band transmission zero of the dielectric filter.
  • the setting of the grooves needs to be realized by removing part of the material of the medium body. Since the dielectric filter in the prior art only includes the resonance region, the volume of the dielectric body in the resonance region directly determines the mechanical strength of the dielectric filter. Therefore, the coupling of adjacent dielectric resonators is achieved by using the groove as a negative coupling structure, thereby increasing the out-of-band transmission zero of the dielectric filter.
  • this approach reduces its mechanical strength and is easily damaged during use.
  • embodiments of the present disclosure provide a dielectric filter, which increases the number of out-of-band transmission zeros of the dielectric filter and improves the out-of-band suppression capability of the dielectric filter on the basis of ensuring the mechanical strength of the dielectric filter. .
  • FIG. 1 is a top view of a dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 2 is a perspective view of a dielectric filter provided by an embodiment of the present disclosure.
  • the filter includes: a dielectric body 10, the dielectric body 10 includes a resonance region 10A and a port source coupling region 10B on one side of the resonance region 10A; the resonance region 10A of the first surface 100 of the dielectric body 10 is provided There is at least one dielectric resonant cavity 11, and each dielectric resonant cavity 11 is provided with a first blind hole 11A; the port source coupling region 10B of the first surface 100 of the dielectric body 10 is provided with at least one source coupling resonant cavity 12 and at least one port source 13.
  • the source coupling resonator 12 is provided with an active coupling window 120, and the source coupling window 120 is used to adjust the coupling strength of the at least one port source 13 and the at least one source coupling resonator 12.
  • the source coupling window 120 in FIG. 1 and FIG. 2 refers to the main body part of the medium between the port source 13 and a source coupling resonant cavity 12 .
  • the reference numerals of the source coupling window 120 are only shown in Fig. 1 .
  • FIG. 1 and FIG. 2 exemplarily show four dielectric resonators 11 , each of which is provided with a first blind hole 11A, and the corresponding medium can be adjusted by the depth of the first blind hole 11A.
  • the frequency of the resonant cavity 11 , and the four first blind holes 11A divide the resonant region 10A into four dielectric resonant cavities 11 .
  • the depths of the first blind holes 11A provided in each dielectric resonant cavity 11 are the same, so as to obtain the dielectric resonant cavity 11 with the same frequency.
  • the out-of-band transmission zero point refers to a certain frequency point outside the passband of the filter, and the suppression of the signal at this point by the filter is theoretically infinite at this frequency point. Adding out-of-band transmission zeros can effectively enhance the near-end suppression of the filter, that is, the suppression of frequencies closer to the passband.
  • the technical solution of this embodiment is that a port source coupling region 10B is added on the dielectric main body 10, that is, the mechanical strength of the dielectric filter is increased.
  • one port source 13 can be coupled with at least one source coupling resonator 12 through the source coupling window 120 , on the basis of the conventional topology composed of at least one dielectric resonator 11 in the resonance region 10A of the first surface 100 of the dielectric body 10 , which enriches the topology of the dielectric filter, thereby increasing the number of out-of-band transmission zeros and improving the out-of-band suppression capability of the dielectric filter.
  • the number of source-coupled resonators 12 coupled to one port source 13 is equal to the number of out-of-band transmission zeros that can be increased.
  • 1 and 2 exemplarily show two source-coupled resonators 12 and two port sources 13 , wherein one port source 13 is coupled with one source-coupled resonator 12 through a source coupling window 120 .
  • Embodiments of the present disclosure include, but are not limited to.
  • the number of port sources 13 may be one or more than two, and each port source 13 may be coupled with two or more than two source coupling resonators 12 .
  • a port source coupling region 10B is added on the dielectric main body 10, that is, the mechanical strength of the dielectric filter is increased.
  • one port source 13 may be coupled with at least one source-coupled resonator 12 through a source-coupling window 120 .
  • the topology structure of the dielectric filter is enriched, thereby increasing the number of out-of-band transmission zeros, improving the Out-of-band rejection of dielectric filters.
  • the embodiments of the present disclosure do not limit the shapes of the dielectric resonant cavity 11 and the source-coupled resonant cavity 12 .
  • the shape of the dielectric resonant cavity 11 and the source-coupling resonant cavity 12 may be a rectangular parallelepiped, a cube, or other shapes.
  • FIG. 3 is a top view of another dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 4 is a perspective view of another dielectric filter provided by an embodiment of the present disclosure.
  • the port source 13 includes a signal input port source 13S and a signal output port source 13L.
  • both the signal input port source 13S and the signal output port source 13L can be coupled with the corresponding source coupling resonator 12 through the source coupling window 120 .
  • the topology structure of the dielectric filter is enriched, thereby increasing the number of out-of-band transmission zeros and improving the dielectric filter out-of-band rejection capability of the device.
  • the port source coupling region 10B is added on the dielectric body 10, that is, the mechanical strength of the dielectric filter is increased.
  • one port source 13 can be coupled with at least one source coupling resonator 12 through the source coupling window 120, thereby increasing the number of out-of-band transmission zeros.
  • the relationship between the frequency of the source-coupled resonator 12 and the frequency of the dielectric resonator 11 will affect the out-of-band transmission zero of the entire dielectric filter due to the coupling between the port source 13 and at least one source-coupled resonator 12 through the source coupling window 120. Frequency of.
  • FIG. 5 is a graph showing the S-parameter versus frequency response of a dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 6 is a graph of the S-parameter versus frequency response of another dielectric filter provided by an embodiment of the present disclosure.
  • FIG. 7 is a graph of the S-parameter versus frequency response of yet another dielectric filter provided by an embodiment of the present disclosure.
  • the first surface 100 of the dielectric body 10 is provided with a low-end source-coupled resonator and/or a high-end source-coupled resonator, and the frequency of the low-end source-coupled resonator is lower than that of the dielectric cavity 11 .
  • frequency, the frequency of the high-end source-coupled resonator is greater than the frequency of the dielectric resonator 11 .
  • the source coupling resonator 12 corresponding to the signal input port source 13S is a low-end source coupling resonator
  • the source coupling resonator 12 corresponding to the signal output port source 13L is a high-end source coupling. resonant cavity.
  • the frequency of the out-of-band transmission zero point C1 generated by the coupling of the low-end source coupling resonator and the signal input port source 13S is less than the bandpass frequency
  • the frequency of the zero point C2 is greater than the bandpass frequency.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a low-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a low-end source.
  • the frequency of the coupling resonator, the out-of-band transmission zero point C1 generated by the coupling of the low-end source coupling resonator and the signal input port source 13S, and the out-of-band transmission zero point C2 generated by the coupling of the low-end source coupling resonator and the signal output port source 13L are all less than the bandpass frequency.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a high-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a high-end source-coupled resonant cavity.
  • the frequency of the out-of-band transmission zero point C1 generated by the coupling of the high-end source coupled resonator with the signal input port source 13S and the out-of-band transmission zero point C2 generated by the coupling of the high-end source coupled resonator with the signal output port source 13L is greater than the bandpass frequency. .
  • the frequency of the source-coupled resonator can be adjusted in two ways.
  • the following introduces the first technical solution for adjusting the frequency of the source-coupled resonator.
  • the source coupling resonator 12 is provided with a second blind hole 12A, the source coupling window 120 is located between the second blind hole 12A and the port source 13 , and the second blind hole 12A is used to adjust the source The frequency of the coupling cavity 12 .
  • the source coupling window 120 refers to the main body portion of the medium between the port source 13 and the corresponding second blind hole 12A in FIGS. 3 and 4 .
  • the second blind hole 12A divides the dielectric body 10 into different source coupling resonators 12 , and each source coupling resonator 12 is provided with a second blind hole 12A.
  • the depths of the second blind holes 12A are different, and the frequencies of the corresponding source-coupling resonators 12 are different, and after the corresponding source-coupling resonators 12 are coupled with the port source 13 through the source-coupling window 120 , an additional out-of-band transmission zero point is added. frequency is different.
  • the deeper the depth of the second blind hole 12A the lower the frequency corresponding to the increased out-of-band transmission zero.
  • the shallower the depth of the second blind hole 12A the greater the frequency corresponding to the increased out-of-band transmission zero.
  • the first surface 100 of the medium body 10 is provided with a second deep blind hole and/or a second shallow blind hole, the depth of the second deep blind hole is greater than the depth of the first blind hole, and the depth of the second shallow blind hole less than the depth of the first blind hole.
  • the second blind hole 12A in the source coupling resonator 12 corresponding to the signal input port source 13S is a second deep blind hole
  • the second blind hole 12A in the cavity 12 is a second shallow blind hole.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a low-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a high-end source-coupled resonant cavity
  • the low-end source-coupled resonant cavity and the signal input port source The frequency of the out-of-band transmission zero point C1 generated by the coupling of 13S is lower than the band-pass frequency
  • the frequency of the out-of-band transmission zero point C2 generated by the coupling of the high-end source coupling resonator and the signal output port source 13L is greater than the band-pass frequency.
  • the second blind hole 12A in the source coupling resonator 12 corresponding to the signal input port source 13S is a second deep blind hole
  • the source coupling resonance corresponding to the signal output port source 13L The second blind hole 12A in the cavity 12 is a second deep blind hole.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a low-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a low-end source-coupled resonant cavity
  • the low-end source-coupled resonant cavity is connected to the signal input port.
  • the frequencies of the out-of-band transmission zero point C1 generated by the coupling of the source 13S and the out-of-band transmission zero point C2 generated by the coupling of the low-end source coupling resonator and the signal output port source 13L are both lower than the bandpass frequency.
  • the second blind hole 12A in the source coupling resonator 12 corresponding to the signal input port source 13S is a second shallow blind hole
  • the source coupling resonance corresponding to the signal output port source 13L The second blind hole 12A in the cavity 12 is a second shallow blind hole.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a high-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a high-end source-coupled resonant cavity.
  • the frequency of the out-of-band transmission zero point C1 generated by the coupling and the out-of-band transmission zero point C2 generated by the coupling of the high-end source coupling resonator and the signal output port source 13L is greater than the bandpass frequency.
  • the resonance region 10A of the first surface 100 of the dielectric body 10 is provided with at least two dielectric resonant cavities 11 and at least one negative coupling structure 14 .
  • the dielectric body 10 between the first blind holes 11A constitutes the dielectric coupling window 110 .
  • the dielectric coupling window 110 is used to couple adjacent dielectric resonators 11 .
  • the negative coupling structure 14 is used for coupling adjacent dielectric resonators. Part or all of the projection of the negative coupling structure 14 on the dielectric body 10 overlaps with the projection of the dielectric coupling window 110 on the dielectric body 10 .
  • FIGS. 3 and 4 are exemplary, showing a technical solution in which the projection of the negative coupling structure 14 on the dielectric body 10 overlaps with the projection of the dielectric coupling window 110 on the dielectric body 10 .
  • FIG. 3 and FIG. 4 exemplarily show four dielectric resonant cavities 11 , each dielectric resonant cavity 11 is provided with a first blind hole 11A, and the corresponding dielectric resonance can be adjusted by the depth of the first blind hole 11A Cavity 11 frequency.
  • the four dielectric resonant cavities 11 in this embodiment are respectively the first dielectric resonant cavity 111, the second dielectric resonant cavity 112, the third dielectric resonant cavity 113 and the fourth dielectric resonant cavity 114.
  • the four dielectric resonant cavities 11 pass through the first dielectric resonant cavity 112.
  • the dielectric coupling window 110 formed by the dielectric body 10 between the blind holes 11A is coupled, which is called inductive coupling or positive coupling.
  • the negative coupling structure 14 is used to couple the adjacent dielectric resonators 11, which is called capacitive coupling or negative coupling.
  • the technical solution in this embodiment enriches the topology of the dielectric filter, increases out-of-band transmission zeros C3 and C4 , thereby effectively enhancing the near-end suppression of the dielectric filter.
  • the material of the dielectric body 10 is increased, and the negative coupling structure 14 can be ignored on the basis of enhancing the mechanical strength of the dielectric filter and increasing the out-of-band transmission zero points C1 and C2 The effect of the setting on the mechanical strength of the dielectric filter.
  • the size of the dielectric coupling window 110 can affect the coupling strength of the adjacent dielectric resonator cavities 11 and correspondingly increase the strength of the out-of-band transmission zero.
  • At least one negative coupling groove is provided on the first surface of the dielectric body 10 between the two first blind holes 11A, and the negative coupling groove serves as the negative coupling structure 14 .
  • the negative coupling groove constitutes a negative coupling structure for coupling adjacent dielectric resonators 11, which is called capacitive coupling or negative coupling.
  • This structure enriches the topology of the dielectric filter and increases the out-of-band transmission zeros C3 and C4, thereby effectively enhancing the near-end rejection of the dielectric filter.
  • the material of the dielectric body 10 is increased, and on the basis of enhancing the mechanical strength of the dielectric filter and increasing the out-of-band transmission zeros C1 and C2, the setting of the negative coupling structure 14 can be ignored. The influence of the mechanical strength of the dielectric filter.
  • the negative coupling groove is a T-type negative coupling groove, but the embodiment of the present disclosure does not limit the shape of the negative coupling groove.
  • the depth of the negative coupling groove is greater than or equal to 1/3 of the thickness of the dielectric body 10 and less than the thickness of the dielectric body 10. Within this depth range, the phase can be adjusted by adjusting the depth of the negative coupling groove.
  • the volume of the low-end source-coupled resonant cavity is larger than that of the dielectric resonant cavity, and the volume of the high-end source-coupled resonant cavity is smaller than that of the dielectric resonant cavity.
  • FIG. 8 is a top view of another dielectric filter provided by an embodiment of the present disclosure.
  • the volume of the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is larger than that of the dielectric resonant cavity 11
  • the volume of the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is smaller than that of the dielectric resonator.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a low-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a high-end source-coupled resonant cavity
  • the low-end source-coupled resonant cavity and the signal input port source The frequency of the out-of-band transmission zero point C1 generated by the coupling of 13S is lower than the band-pass frequency
  • the frequency of the out-of-band transmission zero point C2 generated by the coupling of the high-end source coupling resonator and the signal output port source 13L is greater than the band-pass frequency.
  • FIG. 8 only shows that the volume of the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is larger than that of the dielectric resonant cavity 11 , and the volume of the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is smaller than that of the dielectric resonator.
  • Technical solution for the volume of cavity 11 The following two technical solutions are not shown in the figures.
  • the volume of the source-coupled resonant cavity 12 corresponding to the signal input port source 13S can also be set to be larger than the volume of the dielectric resonant cavity 11 , and the volume of the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is larger than that of the dielectric resonant cavity 11 . volume.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a low-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a low-end source-coupled resonant cavity
  • the low-end source-coupled resonant cavity is connected to the signal input port.
  • the frequencies of the out-of-band transmission zero point C1 generated by the coupling of the source 13S and the out-of-band transmission zero point C2 generated by the coupling of the low-end source coupling resonator and the signal output port source 13L are both lower than the bandpass frequency.
  • the volume of the source-coupled resonant cavity 12 corresponding to the signal input port source 13S can also be set to be smaller than the volume of the dielectric resonant cavity 11 , and the volume of the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is smaller than that of the dielectric resonant cavity 11 . volume.
  • the source-coupled resonant cavity 12 corresponding to the signal input port source 13S is a high-end source-coupled resonant cavity
  • the source-coupled resonant cavity 12 corresponding to the signal output port source 13L is a high-end source-coupled resonant cavity.
  • the frequency of the out-of-band transmission zero point C1 generated by the coupling and the out-of-band transmission zero point C2 generated by the coupling of the high-end source coupling resonator and the signal output port source 13L is greater than the bandpass frequency.
  • the dielectric body 10 of the port source coupling region 10B is provided with at least one first isolation groove 15 , and the first isolation groove 15 is provided between the source coupling resonators 12 .
  • the groove 15 runs through the first surface 100 of the medium body 10 and the second surface 101 opposite to the first surface 100 .
  • the projection of the first isolation groove 15 on the medium body 10 does not intersect with the projection of the source coupling window 120 on the medium body 10 stack.
  • the first isolation grooves 15 are disposed between the source-coupled resonators 12 to isolate the mutual interference between the coupled signals of the two port sources 13 and their corresponding source-coupled resonators 12 , thereby avoiding different port sources 13 The incoming or outgoing electromagnetic wave signals will not interfere with each other.
  • the dielectric body 10 of the resonance region 10A is provided with at least one second isolation groove 16 , and the second isolation groove 16 is provided between the first blind holes 11A.
  • the second isolation groove 16 penetrates through the first surface 100 of the dielectric body 10 and the second surface 101 opposite to the first surface 100 .
  • the projection of the second isolation groove 16 on the dielectric body 10 and the dielectric coupling window 110 on the dielectric body 10 do not overlap, and the projection of the second isolation groove 16 on the medium body 10 does not overlap with the projection of the negative coupling structure 14 on the medium body 10 .
  • the second isolation grooves 16 are disposed between the first blind holes 11A, that is, between the dielectric resonators 11 , for adjusting the coupling strength between the dielectric resonators 11 .
  • one port source 13 may be coupled with at least one source coupling resonator 12 through the source coupling window 120 .
  • the topology structure of the dielectric filter is enriched, thereby increasing the number of out-of-band transmission zeros, improving the Out-of-band rejection of dielectric filters.
  • the specific structure of the port source 13 is further detailed below.
  • the first surface 100 of the dielectric body 10 is provided with at least one through hole 17 , and the dielectric body 10 between the through hole 17 and the port source 13 constitutes a source coupling window 120 .
  • the medium body 10 between the through hole 17 and the port source 13 constitutes the source coupling window 120 .
  • the size of the source coupling window 120 can affect the strength of the coupling between the port source 13 and the source coupling resonator 12, which in turn affects the strength of the increased out-of-band transmission zero.
  • two through holes 17 are provided for each source coupling resonator 12 .
  • the straight line where the two through holes 17 are located coincides with the straight line where the two port sources 13 are located.
  • Such a structure is set so that the source coupling windows 120 of the port source 13 are distributed in the medium body between the through hole 17 and the port source 13 , that is, near the port source 13 .
  • the dielectric body of the through holes 17 away from the port source 13 cannot serve as the source coupling window 120 to couple the port source 13 and the source coupling resonator 12 .
  • the mutual interference between the coupled signals of the two port sources 13 and their corresponding source coupling resonators 12 can be isolated, thereby preventing the input or output electromagnetic wave signals of different port sources 13 from interfering with each other.
  • FIG. 9 is a cross-sectional view of the port source in the direction D1-D2 of FIG. 3 .
  • the port source 13 includes an insulating isolation region 130 and a conductive portion 131 , and the insulating isolation region 130 is located on the first surface of the dielectric body 10 and surrounds the conductive portion 131 .
  • the insulating isolation region 130 is used to isolate the port source 13 and the source-coupled resonant cavity 12 from each other.
  • the setting of the insulating isolation region 130 can also make a welding structure in the insulating isolation region 130 , which facilitates the fabrication of an external device connected to the port source 13 .
  • the second surface 101 of the medium body 10 opposite to the first surface 100 is provided with a third blind hole 18 , and the projection of the third blind hole 18 on the medium body 10 is located at the port source 13 in the medium within the projection of the body 10 .
  • the time delay of the port source 13 can be adjusted by adjusting the depth of the third blind hole 18 .
  • the dielectric filter further includes a shielding layer 20, the shielding layer 20 surrounds the dielectric body 10, wherein the shielding layer 20 is provided with an isolation groove, and the isolation groove exposes the port source 13.
  • the shielding layer 20 can prevent external signals from interfering with electromagnetic wave signals input or output by the dielectric filter.
  • the conductive portion 131 and the shielding layer 20 may be prepared from the same conductive layer.
  • the shielding layer 20 surrounds the dielectric body 10, that is, the shielding layer 20 covers the surface of the dielectric body, as well as the various first blind holes 11A, second blind holes 12A, third blind holes 18 and negative coupling grooves. Sidewalls and bottom surfaces and the sidewalls of the first isolation groove 15 , the second isolation groove 16 and the through hole 17 .
  • the first blind hole 11A, the second blind hole 12A, the third blind hole 18 , the sidewalls and bottom surfaces of the grooves, and the first isolation grooves 15 , the second The area of the sidewall of the isolation groove 16 and the through hole 17 is used to adjust the intensity and frequency of the out-of-band transmission zero of the dielectric filter.
  • the dielectric body 10 may be composed of a solid ceramic material, which has a relatively high relative permittivity, which facilitates the propagation of electromagnetic wave signals in the dielectric body 10 without being transmitted from the shielding layer 20 .
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
  • Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include, but are not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, magnetic disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media, as is well known to those of ordinary skill in the art .

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本公开公开一种介质滤波器,该介质滤波器包括:介质主体,介质主体包括谐振区域和位于谐振区域一侧的端口源耦合区域;介质主体的第一表面的谐振区域设置有至少一个介质谐振腔,每一介质谐振腔设置有第一盲孔,第一盲孔用于调节介质谐振腔的频率;介质主体的第一表面的端口源耦合区域设置有至少一个源耦合谐振腔和至少一个端口源,源耦合谐振腔设置有源耦合窗口,源耦合窗口被构造成调节至少一个端口源和至少一个源耦合谐振腔的耦合强度。本公开的技术方案,旨在实现一种机械强度高和带外抑制能力良好的介质滤波器。

Description

一种介质滤波器
相关申请的交叉引用
本公开要求在2020年8月13日提交国家知识产权局、申请号为202010814838.X、发明名称为“一种介质滤波器”的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开的实施例包括但不限于通信技术领域,尤其涉及一种介质滤波器。
背景技术
通信技术的快速发展推动着通信基站设备向小型化,集成化,轻量化的局势演进。介质滤波器由于其良好的性能、小体积和轻重量而被广泛的应用于基站设备中。滤波器的作用是使得特定频率范围的电磁波信号通过以及对带外传输零点对应的频率的电磁波信号产生抑制。
介质滤波器因具有高品质因数、小插损、大功率以及方便实现小型化等优点,在滤波器具有广泛的应用。但是常规的介质滤波器,随着带外传输零点的增加,会降低其机械强度,容易在使用过程中损毁。
发明内容
本公开实施例的主要目的在于提出一种介质滤波器,旨在实现一种机械强度高和带外抑制能力良好的介质滤波器。
为实现上述目的,本公开实施例提供了一种介质滤波器,包括:介质主体,所述介质主体包括谐振区域和位于所述谐振区域一侧的端口源耦合区域;所述介质主体的第一表面的谐振区域设置有至少一个介质谐振腔, 每一所述介质谐振腔设置有第一盲孔,所述第一盲孔用于调节所述介质谐振腔的频率;所述介质主体的第一表面的端口源耦合区域设置有至少一个源耦合谐振腔和至少一个端口源,所述源耦合谐振腔设置有源耦合窗口,所述源耦合窗口被构造成调节至少一个所述端口源和至少一个所述源耦合谐振腔的耦合强度。
本公开提出的介质滤波器,相对现有技术来说在介质主体上增设了端口源耦合区域,即增加了介质滤波器的机械强度。此外,一个端口源可以和至少一个源耦合谐振腔通过源耦合窗口进行耦合。在介质主体的第一表面的谐振区域包括的至少一个介质谐振腔组成的常规拓扑结构的基础上,丰富了介质滤波器的拓扑结构,进而可以增加带外传输零点的数量,提升介质滤波器的带外抑制能力。
附图说明
图1是本公开实施例提供的一种介质滤波器的俯视图;
图2是本公开实施例提供的一种介质滤波器的立体图;
图3是本公开实施例提供的另一种介质滤波器的俯视图;
图4是本公开实施例提供的另一种介质滤波器的立体图;
图5是本公开实施例提供的一种介质滤波器的S-参数随频率响应的曲线图;
图6是本公开实施例提供的另一种介质滤波器的S-参数随频率响应的曲线图;
图7是本公开实施例提供的又一种介质滤波器的S-参数随频率响应的曲线图;
图8是本公开实施例提供的又一种介质滤波器的俯视图;以及
图9是图3中端口源在D1-D2方向的剖面图。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本公开的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
正如背景技术中所述,常规的介质滤波器,随着带外传输零点的增加,会降低其机械强度,容易在使用过程中损毁。究其原因,现有技术中的介质滤波器仅包括谐振区域。在现有技术中,通常在谐振区域设置凹槽作为负性耦合结构,实现相邻介质谐振腔的耦合,来丰富介质滤波器的拓扑结构,进而增加介质滤波器的带外传输零点。凹槽的设置需要去除部分介质主体材料来实现。由于现有技术中的介质滤波器仅包括谐振区域,谐振区域的介质主体的体积直接决定了介质滤波器的机械强度。因此,通过凹槽作为负性耦合结构来实现相邻介质谐振腔的耦合,从而增加介质滤波器的带外传输零点。然而,这种方式会降低其机械强度,容易在使用过程中损毁。
针对上述技术问题,本公开实施例提供一种介质滤波器,在保证介质滤波器机械强度的基础上,增加了介质滤波器的带外传输零点的数量,提升了介质滤波器的带外抑制能力。
图1是本公开实施例提供的一种介质滤波器的俯视图。图2是本公开实施例提供的一种介质滤波器的立体图。参见图1和图2,该滤波器包括:介质主体10,介质主体10包括谐振区域10A和位于谐振区域10A一侧的端口源耦合区域10B;介质主体10的第一表面100的谐振区域10A设置有至少一个介质谐振腔11,每一介质谐振腔11设置有第一盲孔11A;介质主体10的第一表面100的端口源耦合区域10B设置有至少一个源耦合谐振腔12和至少一个端口源13,源耦合谐振腔12设置有源耦合窗口120,源耦合窗口120用于调节至少一个端口源13和至少一个源耦合谐振腔12的耦合强度。
需要说明的是,源耦合窗口120在图1和图2中指的是端口源13与一个源耦合谐振腔12之间的介质主体部分。为了清晰呈现介质滤波器的 结构,源耦合窗口120的附图标记仅仅在图1中示出。
示例性的,图1和图2示例性的示出了4个介质谐振腔11,每一个介质谐振腔11设置有第一盲孔11A,可以通过第一盲孔11A的深度来调节对应的介质谐振腔11的频率,且4个第一盲孔11A将谐振区域10A划分成4个介质谐振腔11。在本实施例中,每个介质谐振腔11设置的第一盲孔11A的深度相同,以得到频率相同的介质谐振腔11。
需要说明的是,带外传输零点,是指滤波器通带外的某个频点,在该频点上滤波器对该点的信号的抑制理论上是无穷大的。增加带外传输零点,可以有效增强滤波器的近端抑制,即离通带较近的频点的抑制。本实施例的技术方案相对现有技术来说,是在介质主体10上增设了端口源耦合区域10B,即增加了介质滤波器的机械强度。此外,一个端口源13可以和至少一个源耦合谐振腔12通过源耦合窗口120进行耦合,在介质主体10的第一表面100的谐振区域10A至少一个介质谐振腔11组成的常规拓扑结构的基础上,丰富了介质滤波器的拓扑结构,进而可以增加带外传输零点的数量,提升介质滤波器的带外抑制能力。
在本文中,与一个端口源13耦合的源耦合谐振腔12的数量等于可以增加的带外传输零点的数量。图1和图2示例性地示出了两个源耦合谐振腔12和两个端口源13,其中,一个端口源13与一个源耦合谐振腔12通过源耦合窗口120进行耦合。本公开实施例包括但不限于此。端口源13可以为一个,也可以大于两个,每一个端口源13可以与两个以及两个以上的源耦合谐振腔12进行耦合的技术方案。
本实施例提供的技术方案,相对现有技术来说在介质主体10上增设了端口源耦合区域10B,即增加了介质滤波器的机械强度。此外,一个端口源13可以和至少一个源耦合谐振腔12通过源耦合窗口120进行耦合。在介质主体10的第一表面100的谐振区域10A包括的至少一个介质谐振腔11组成的常规拓扑结构的基础上,丰富了介质滤波器的拓扑结构,进而可以增加带外传输零点的数量,提升介质滤波器的带外抑制能力。
本公开实施例对于介质谐振腔11和源耦合谐振腔12的形状不作限定。介质谐振腔11和源耦合谐振腔12的形状可以是长方体,可以是正方 体,还可以是其它形状。
图3是本公开实施例提供的另一种介质滤波器的俯视图。图4是本公开实施例提供的另一种介质滤波器的立体图。可选地,参见图3和图4,端口源13包括信号输入端口源13S和信号输出端口源13L。在本实施例中,信号输入端口源13S和信号输出端口源13L均可以通过源耦合窗口120与对应的源耦合谐振腔12进行耦合。在介质主体10的第一表面100的谐振区域10A至少一个介质谐振腔11组成的常规拓扑结构的基础上,丰富了介质滤波器的拓扑结构,进而可以增加带外传输零点的数量,提升介质滤波器的带外抑制能力。此外,相对现有技术来说,在介质主体10上增设了端口源耦合区域10B,即增加了介质滤波器的机械强度。
在上述技术方案中,一个端口源13可以和至少一个源耦合谐振腔12通过源耦合窗口120进行耦合,进而可以增加带外传输零点的数量。其中,源耦合谐振腔12的频率与介质谐振腔11频率的大小关系,会影响整个介质滤波器因端口源13和至少一个源耦合谐振腔12通过源耦合窗口120进行耦合增加的带外传输零点的频率。
图5是本公开实施例提供的一种介质滤波器的S-参数随频率响应的曲线图。图6是本公开实施例提供的另一种介质滤波器的S-参数随频率响应的曲线图。图7是本公开实施例提供的又一种介质滤波器的S-参数随频率响应的曲线图。
可选地,参见图3和图4,介质主体10的第一表面100设置有低端源耦合谐振腔和/或高端源耦合谐振腔,低端源耦合谐振腔的频率小于介质谐振腔11的频率,高端源耦合谐振腔的频率大于介质谐振腔11的频率。
示例性的,参见图3、图4和图5,信号输入端口源13S对应的源耦合谐振腔12为低端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为高端源耦合谐振腔。参见图5,低端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1的频率小于带通频率,高端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率大于带通频率。
示例性的,参见图3、图4和图6,信号输入端口源13S对应的源耦合谐振腔12为低端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为低端源耦合谐振腔,低端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1以及低端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率均小于带通频率。
示例性的,参见图3、图4和图7,信号输入端口源13S对应的源耦合谐振腔12为高端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为高端源耦合谐振腔,高端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1以及高端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率均大于带通频率。
具体的,可以通过两种方式来调节源耦合谐振腔的频率。下面介绍第一种调节源耦合谐振腔的频率的技术方案。
可选地,参见图3和图4,源耦合谐振腔12设置有第二盲孔12A,源耦合窗口120位于第二盲孔12A和端口源13之间,第二盲孔12A用于调节源耦合谐振腔12的频率。
在本实施例中,源耦合窗口120在图3和图4中指的是端口源13与对应的第二盲孔12A之间的介质主体部分。其中,在端口源耦合区域10B,第二盲孔12A将介质主体10划分成不同的源耦合谐振腔12,每一个源耦合谐振腔12内设置有一第二盲孔12A。具体的,第二盲孔12A的深度不同,对应的源耦合谐振腔12的频率不同,进而对应的源耦合谐振腔12通过源耦合窗口120和端口源13进行耦合之后,增加的带外传输零点的频率不同。其中,第二盲孔12A的深度越深,对应增加的带外传输零点的频率越小。第二盲孔12A的深度越浅,对应增加的带外传输零点的频率越大。
可选地,介质主体10的第一表面100设置有第二深盲孔和/或第二浅盲孔,第二深盲孔的深度大于第一盲孔的深度,第二浅盲孔的深度小于第一盲孔的深度。
示例性的,参见图3、图4和图5,信号输入端口源13S对应的源耦合谐振腔12中的第二盲孔12A为第二深盲孔,信号输出端口源13L对应 的源耦合谐振腔12中的第二盲孔12A为第二浅盲孔。信号输入端口源13S对应的源耦合谐振腔12为低端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为高端源耦合谐振腔,低端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1的频率小于带通频率,高端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率大于带通频率。
示例性的,参见图3、图4和图6,信号输入端口源13S对应的源耦合谐振腔12中的第二盲孔12A为第二深盲孔,信号输出端口源13L对应的源耦合谐振腔12中的第二盲孔12A为第二深盲孔。信号输入端口源13S对应的源耦合谐振腔12为低端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为低端源耦合谐振腔,低端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1以及低端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率均小于带通频率。
示例性的,参见图3、图4和图7,信号输入端口源13S对应的源耦合谐振腔12中的第二盲孔12A为第二浅盲孔,信号输出端口源13L对应的源耦合谐振腔12中的第二盲孔12A为第二浅盲孔。信号输入端口源13S对应的源耦合谐振腔12为高端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为高端源耦合谐振腔,高端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1以及高端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率均大于带通频率。
下面具体介绍介质主体10的第一表面100的谐振区域10A设置的具体结构。
可选地,参见图3和图4,介质主体10的第一表面100的谐振区域10A设置有至少两个介质谐振腔11和至少一个负性耦合结构14。第一盲孔11A之间的介质主体10构成介质耦合窗口110。介质耦合窗口110用于耦合相邻的介质谐振腔11。负性耦合结构14用于耦合相邻的介质谐振腔。负性耦合结构14在介质主体10的投影的部分或者全部与介质耦合窗口 110在介质主体10的投影相交叠。图3和图4示例性的,示出的是负性耦合结构14在介质主体10的投影的部分与介质耦合窗口110在介质主体10的投影相交叠的技术方案。
具体的,图3和图4示例性的示出了4个介质谐振腔11,每一个介质谐振腔11设置有第一盲孔11A,可以通过第一盲孔11A的深度来调节对应的介质谐振腔11的频率。本实施例中的4个介质谐振腔11分别是第一介质谐振腔111、第二介质谐振腔112、第三介质谐振腔113和第四介质谐振腔114。4个介质谐振腔11通过第一盲孔11A之间的介质主体10构成的介质耦合窗口110进行耦合,称之为感性耦合或者正耦合。负性耦合结构14用于耦合相邻的介质谐振腔11,称之为容性耦合或者负耦合。参见图5、图6和图7,本实施例中的技术方案丰富了介质滤波器的拓扑结构,增加了带外传输零点C3和C4,进而有效增强了介质滤波器的近端抑制。需要说明的是,由于端口源耦合区域10B的设置,增加了介质主体10的材料,在增强介质滤波器的机械强度和增加带外传输零点C1和C2的基础上,可以忽略负性耦合结构14的设置对于介质滤波器的机械强度的影响。介质耦合窗口110的大小可以影响相邻的介质谐振腔11的耦合强度以及对应增加带外传输零点的强度。介质耦合窗口110越大,相邻的介质谐振腔11的耦合强度以及对应增加带外传输零点的强度越大。
可选地,参见图3和图4,两个第一盲孔11A之间的介质主体10的第一表面设置有至少一个负性耦合凹槽,负性耦合凹槽作为负性耦合结构14。
具体的,负性耦合凹槽构成负性耦合结构用于耦合相邻的介质谐振腔11,称之为容性耦合或者负耦合。这种构造丰富了介质滤波器的拓扑结构,增加了带外传输零点C3和C4,进而有效增强了介质滤波器的近端抑制。此外,由于端口源耦合区域10B的设置,增加了介质主体10的材料,在增强介质滤波器的机械强度和增加带外传输零点C1和C2的基础上,可以忽略负性耦合结构14的设置对于介质滤波器的机械强度的影响。
可选地,负性耦合凹槽为T型负性耦合凹槽,但是本公开实施例对于负性耦合凹槽的形状不作限定。可选地,负性耦合凹槽的深度大于或等于 介质主体10厚度的1/3,且小于介质主体10的厚度,在该深度范围内,可以通过调节负性耦合凹槽的深度来调整相邻的介质谐振腔11的耦合强度,以及增加的带外传输零点C3和C4的强度。
下面介绍第二种调节源耦合谐振腔的频率的技术方案。
可选地,低端源耦合谐振腔的体积大于介质谐振腔的体积,高端源耦合谐振腔的体积小于介质谐振腔的体积。
图8是本公开实施例提供的又一种介质滤波器的俯视图。
示例性的,参见图8和图5,信号输入端口源13S对应的源耦合谐振腔12的体积大于介质谐振腔11的体积,信号输出端口源13L对应的源耦合谐振腔12的体积小于介质谐振腔11的体积。信号输入端口源13S对应的源耦合谐振腔12为低端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为高端源耦合谐振腔,低端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1的频率小于带通频率,高端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率大于带通频率。
需要说明的是,图8仅仅示出了信号输入端口源13S对应的源耦合谐振腔12的体积大于介质谐振腔11的体积,信号输出端口源13L对应的源耦合谐振腔12的体积小于介质谐振腔11的体积的技术方案。下面两种技术方案并未在图中示出。
示例性的,还可以设置成信号输入端口源13S对应的源耦合谐振腔12的体积大于介质谐振腔11的体积,信号输出端口源13L对应的源耦合谐振腔12的体积大于介质谐振腔11的体积。信号输入端口源13S对应的源耦合谐振腔12为低端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为低端源耦合谐振腔,低端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1以及低端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率均小于带通频率。
示例性的,还可以设置成信号输入端口源13S对应的源耦合谐振腔12的体积小于介质谐振腔11的体积,信号输出端口源13L对应的源耦合谐 振腔12的体积小于介质谐振腔11的体积。信号输入端口源13S对应的源耦合谐振腔12为高端源耦合谐振腔,信号输出端口源13L对应的源耦合谐振腔12为高端源耦合谐振腔,高端源耦合谐振腔与信号输入端口源13S进行耦合产生的带外传输零点C1以及高端源耦合谐振腔与信号输出端口源13L进行耦合产生的带外传输零点C2的频率均大于带通频率。
为了将不同端口源之间的输入或者输出的电磁波信号不会相互干扰,本公开实施例提出了如下技术方案:
可选地,参见图3和图4,端口源耦合区域10B的介质主体10设置有至少一个第一隔离凹槽15,第一隔离凹槽15设置在源耦合谐振腔12之间,第一隔离凹槽15贯穿介质主体10的第一表面100与第一表面100相对设置的第二表面101,第一隔离凹槽15在介质主体10的投影与源耦合窗口120在介质主体10的投影无交叠。
具体的,第一隔离凹槽15设置在源耦合谐振腔12之间,用于隔离两个端口源13与各自对应的源耦合谐振腔12耦合信号之间的相互干扰,进而避免不同端口源13之间的输入或者输出的电磁波信号不会相互干扰。可选地,参见图3和图4,谐振区域10A的介质主体10设置有至少一个第二隔离凹槽16,第二隔离凹槽16设置在第一盲孔11A之间。第二隔离凹槽16贯穿介质主体10的第一表面100与第一表面100相对设置的第二表面101,第二隔离凹槽16在介质主体10的投影与介质耦合窗口110在介质主体10的投影无交叠,且第二隔离凹槽16在介质主体10的投影与负性耦合结构14在介质主体10的投影无交叠。
具体的,第二隔离凹槽16设置在第一盲孔11A之间,即设置在介质谐振腔11之间,用于调节介质谐振腔11之间的耦合强度。第二隔离凹槽16开槽面积越大,对于介质主体10去除的材料越多,介质谐振腔11之间的耦合强度就越弱。第二隔离凹槽16开槽面积越小,对于介质主体10去除的材料越少,介质谐振腔11之间的耦合强度就越强。
在上述技术方案中,一个端口源13可以和至少一个源耦合谐振腔12通过源耦合窗口120进行耦合。在介质主体10的第一表面100的谐振区域10A包括的至少一个介质谐振腔11组成的常规拓扑结构的基础上,丰 富了介质滤波器的拓扑结构,进而可以增加带外传输零点的数量,提升介质滤波器的带外抑制能力。下面进一步细化端口源13的具体结构。
可选地,参见图3和图4,介质主体10的第一表面100设置有至少一个通孔17,通孔17和端口源13之间的介质主体10构成源耦合窗口120。
具体的,通孔17和端口源13之间的介质主体10构成源耦合窗口120。
源耦合窗口120的大小可以影响端口源13和源耦合谐振腔12之间的耦合强度,进而影响增加的带外传输零点的强度。源耦合窗口120越大,端口源13和源耦合谐振腔12之间的耦合强度,以及增加的带外传输零点的强度越大。
示例性的,图3和图4中示出的介质滤波器中,每一个源耦合谐振腔12设置了两个通孔17。这两个通孔17所在的直线与两个端口源13所在直线重合。这样的结构设置,使得端口源13的源耦合窗口120分布在通孔17和端口源13之间的介质主体,即端口源13附近。两个通孔17所在的直线方向上,通孔17远离端口源13之外的介质主体不能作为源耦合窗口120将端口源13和源耦合谐振腔12进行耦合。这样,可以隔离两个端口源13与各自对应的源耦合谐振腔12耦合信号之间的相互干扰,进而避免不同端口源13之间的输入或者输出的电磁波信号不会相互干扰。
图9是图3中端口源在D1-D2方向的剖面图。可选地,参见图9,端口源13包括绝缘隔离区130和导电部131,绝缘隔离区130位于介质主体10的第一表面,且包围导电部131。
具体的,绝缘隔离区130是为了使得端口源13和源耦合谐振腔12互相绝缘。此外,绝缘隔离区130的设置还可以在绝缘隔离区130制作焊接结构,便于制作与端口源13连接的外接器件。
可选地,参见图4和图9,介质主体10与第一表面100相对的第二表面101设置有第三盲孔18,第三盲孔18在介质主体10的投影位于端口源13在介质主体10的投影之内。
具体的,可以通过调节第三盲孔18的深度来调节端口源13的时延。
可选地,参见图9,介质滤波器还包括屏蔽层20,屏蔽层20包围介 质主体10,其中屏蔽层20设置有隔离槽,隔离槽暴露出端口源13。具体的,屏蔽层20可以防止外界信号对于介质滤波器输入或输出的电磁波信号的干扰。
可选地,导电部131和屏蔽层20可以由同一导电层制备。需要说明的是,屏蔽层20包围介质主体10,即屏蔽层20覆盖介质主体的表面,以及各种第一盲孔11A、第二盲孔12A、第三盲孔18和负性耦合凹槽的侧壁和底面以及第一隔离凹槽15、第二隔离凹槽16和通孔17的侧壁。在本实施例中,还可以分别通过调整屏蔽层20覆盖第一盲孔11A、第二盲孔12A、第三盲孔18和凹槽的侧壁和底面以及第一隔离凹槽15、第二隔离凹槽16和通孔17的侧壁的面积,来调节介质滤波器的带外传输零点的强度和频率。
可选地,介质主体10可以由实心陶瓷材料组成,其相对介电常数较高,有助于电磁波信号在介质主体10内传播,而不会从屏蔽层20传出。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存 储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
以上参照附图说明了本公开的优选实施例,并非因此局限本公开的权利范围。本领域技术人员不脱离本公开的范围和实质内所作的任何修改、等同替换和改进,均应在本公开的权利范围之内。

Claims (14)

  1. 一种介质滤波器,包括:
    介质主体,所述介质主体包括谐振区域和位于所述谐振区域一侧的端口源耦合区域;
    所述介质主体的第一表面的谐振区域设置有至少一个介质谐振腔,每一所述介质谐振腔设置有第一盲孔,所述第一盲孔被构造成调节所述介质谐振腔的频率;
    所述介质主体的第一表面的端口源耦合区域设置有至少一个源耦合谐振腔和至少一个端口源,所述源耦合谐振腔设置有源耦合窗口,所述源耦合窗口被构造成调节至少一个所述端口源和至少一个所述源耦合谐振腔的耦合强度。
  2. 根据权利要求1所述的介质滤波器,其中,所述端口源包括信号输入端口源和信号输出端口源。
  3. 根据权利要求1所述的介质滤波器,其中,所述介质主体的第一表面设置有低端源耦合谐振腔和/或高端源耦合谐振腔,所述低端源耦合谐振腔的频率小于所述介质谐振腔的频率,所述高端源耦合谐振腔的频率大于所述介质谐振腔的频率。
  4. 根据权利要求1所述的介质滤波器,其中,所述源耦合谐振腔设置有第二盲孔,所述源耦合窗口位于所述第二盲孔和所述端口源之间,所述第二盲孔用于调节所述源耦合谐振腔的频率。
  5. 根据权利要求4所述的介质滤波器,其中,所述介质主体的第一表面设置有第二深盲孔和/或第二浅盲孔,所述第二深盲孔的深度大于所述第一盲孔的深度,所述第二浅盲孔的深度小于所述第一盲孔的深度。
  6. 根据权利要求1所述的介质滤波器,其中,所述介质主体的第一表面的谐振区域设置有至少两个介质谐振腔和至少一个负性耦合结构,所述第一盲孔之间的介质主体构成介质耦合窗口,所述介质耦合窗口被构造成耦合相邻的所述介质谐振腔,所述负性耦合结构被构造成耦合相邻的所述介质谐振腔,所述负性耦合结构在所述介质主体的投影的部分或者全部与所述介质耦合窗口在所述介质主体的投影相交叠。
  7. 根据权利要求6所述的介质滤波器,其中,两个所述第一盲孔之间的介质主体的第一表面设置有至少一个负性耦合凹槽,所述负性耦合凹槽作为所述负性耦合结构。
  8. 根据权利要求3所述的介质滤波器,其中,所述低端源耦合谐振腔的体积大于所述介质谐振腔的体积,所述高端源耦合谐振腔的体积小于所述介质谐振腔的体积。
  9. 根据权利要求1所述的介质滤波器,其中,所述端口源耦合区域的介质主体设置有至少一个第一隔离凹槽,所述第一隔离凹槽设置在所述源耦合谐振腔之间,所述第一隔离凹槽贯穿所述介质主体的第一表面与所述第一表面相对设置的第二表面,所述第一隔离凹槽在所述介质主体的投影与所述源耦合窗口在所述介质主体的投影无交叠。
  10. 根据权利要求6所述的介质滤波器,其中,所述谐振区域的介质主体设置有至少一个第二隔离凹槽,所述第二隔离凹槽设置在所述第一盲孔之间,所述第二隔离凹槽贯穿所述介质主体的第一表面与所述第一表面相对设置的第二表面,所述第二隔离凹槽在所述介质主体的投影与所述介质耦合窗口在所述介质主体的投影无交叠,且所述第二隔离凹槽在所述介质主体的投影与所述负性耦合结构在所述介质主体的投影无交叠。
  11. 根据权利要求1所述的介质滤波器,其中,所述介质主体的第一表面设置有至少一个通孔,所述通孔和所述端口源之间的介质主体构成所述源耦合窗口。
  12. 根据权利要求1所述的介质滤波器,其中,所述端口源包括绝缘隔离区和导电部,所述绝缘隔离区位于所述介质主体的第一表面,且包围所述导电部。
  13. 根据权利要求1所述的介质滤波器,其中,所述介质主体与所述第一表面相对的第二表面设置有第三盲孔,所述第三盲孔在所述介质主体的投影位于所述端口源在所述介质主体的投影之内。
  14. 根据权利要求1所述的介质滤波器,其中,所述介质滤波器还包括屏蔽层,所述屏蔽层包围所述介质主体,其中所述屏蔽层设置有隔离槽,所述隔离槽暴露出所述端口源。
PCT/CN2021/112063 2020-08-13 2021-08-11 一种介质滤波器 WO2022033518A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010814838.XA CN113258231A (zh) 2020-08-13 2020-08-13 一种介质滤波器
CN202010814838.X 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022033518A1 true WO2022033518A1 (zh) 2022-02-17

Family

ID=77220150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112063 WO2022033518A1 (zh) 2020-08-13 2021-08-11 一种介质滤波器

Country Status (2)

Country Link
CN (1) CN113258231A (zh)
WO (1) WO2022033518A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295983A (zh) * 2022-07-26 2022-11-04 武汉凡谷电子技术股份有限公司 一种滤波器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926079A (en) * 1996-12-05 1999-07-20 Motorola Inc. Ceramic waveguide filter with extracted pole
CN110098456A (zh) * 2019-05-24 2019-08-06 武汉凡谷电子技术股份有限公司 一种容性耦合装置及含有该容性耦合装置的滤波器
US20190305396A1 (en) * 2018-04-03 2019-10-03 Intel Corporation Microelectronic assemblies with substrate integrated waveguide
CN110828947A (zh) * 2019-11-15 2020-02-21 中国电子科技集团公司第二十六研究所 一种交叉耦合介质波导滤波器
CN110896163A (zh) * 2019-11-19 2020-03-20 摩比科技(深圳)有限公司 可实现单个带外传输零点的介质波导滤波器
CN111129669A (zh) * 2020-01-08 2020-05-08 摩比天线技术(深圳)有限公司 混合电磁耦合全介质滤波器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8823470B2 (en) * 2010-05-17 2014-09-02 Cts Corporation Dielectric waveguide filter with structure and method for adjusting bandwidth
CN203218423U (zh) * 2013-04-16 2013-09-25 深圳光启创新技术有限公司 腔体滤波器
CN208548438U (zh) * 2018-06-06 2019-02-26 深圳三星通信技术研究有限公司 一种tem模介质滤波器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5926079A (en) * 1996-12-05 1999-07-20 Motorola Inc. Ceramic waveguide filter with extracted pole
US20190305396A1 (en) * 2018-04-03 2019-10-03 Intel Corporation Microelectronic assemblies with substrate integrated waveguide
CN110098456A (zh) * 2019-05-24 2019-08-06 武汉凡谷电子技术股份有限公司 一种容性耦合装置及含有该容性耦合装置的滤波器
CN110828947A (zh) * 2019-11-15 2020-02-21 中国电子科技集团公司第二十六研究所 一种交叉耦合介质波导滤波器
CN110896163A (zh) * 2019-11-19 2020-03-20 摩比科技(深圳)有限公司 可实现单个带外传输零点的介质波导滤波器
CN111129669A (zh) * 2020-01-08 2020-05-08 摩比天线技术(深圳)有限公司 混合电磁耦合全介质滤波器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115295983A (zh) * 2022-07-26 2022-11-04 武汉凡谷电子技术股份有限公司 一种滤波器
CN115295983B (zh) * 2022-07-26 2024-01-02 武汉凡谷电子技术股份有限公司 一种滤波器

Also Published As

Publication number Publication date
CN113258231A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
CN110265755B (zh) 一种介质波导滤波器
CN107819180B (zh) 基片集成波导器件与基片集成波导滤波器
CN110265753B (zh) 一种介质波导滤波器
TWI483455B (zh) 安裝於pcb板上之微波凹入孔共振腔的耦合機構
WO2018098642A1 (zh) 一种滤波器及通信设备
WO2020088620A1 (zh) 一种介质滤波器及通信设备
WO2022033518A1 (zh) 一种介质滤波器
CN111668580A (zh) 具有陡峭带外抑制的介质滤波器及天线
JP2010098673A (ja) 誘電体フィルタ
US11145945B2 (en) Dielectric filter
CN111129667B (zh) 一种应用于介质波导滤波器中的负耦合结构及介质波导滤波器
WO2021129133A1 (zh) 一种交叉耦合介质滤波器及设备
WO2021056415A1 (zh) 陶瓷介质滤波器
WO2021170119A1 (zh) 介质滤波器和通信设备
CN212182505U (zh) 具有陡峭带外抑制的介质滤波器及天线
CN115000661A (zh) 应用于5g通信系统的双模介质波导滤波器
JP4384620B2 (ja) 誘電体導波管帯域阻止フィルタ
CN209913004U (zh) 基于共面波导的宽阻带微波滤波器
CN109546269B (zh) 介质波导滤波器
CN110896163A (zh) 可实现单个带外传输零点的介质波导滤波器
WO2021077379A1 (zh) 带阻滤波器及电子设备
JP2012204844A (ja) バンドパスフィルタ
JP2002057508A (ja) 誘電体フィルタ、誘電体デュプレクサおよび通信装置
CN212011221U (zh) 一种介质谐振器及介质波导滤波器
KR20200030377A (ko) 세라믹 도파관 필터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03.07.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21855569

Country of ref document: EP

Kind code of ref document: A1