WO2022033507A1 - 电压转换电路及方法、电源管理芯片和移动终端 - Google Patents
电压转换电路及方法、电源管理芯片和移动终端 Download PDFInfo
- Publication number
- WO2022033507A1 WO2022033507A1 PCT/CN2021/111998 CN2021111998W WO2022033507A1 WO 2022033507 A1 WO2022033507 A1 WO 2022033507A1 CN 2021111998 W CN2021111998 W CN 2021111998W WO 2022033507 A1 WO2022033507 A1 WO 2022033507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power supply
- energy storage
- electronic switch
- voltage
- unit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/02—Conversion of dc power input into dc power output without intermediate conversion into ac
- H02M3/04—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
- H02M3/10—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M3/145—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M3/155—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/156—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
- H02M3/158—Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
Definitions
- the present application relates to the technical field of intelligent terminals, and in particular, to a voltage conversion circuit and method, a power management chip and a mobile terminal.
- Traditional mobile terminals usually use a buck circuit to convert the voltage of the system power supply into various supply voltages.
- the operating current of the buck circuit does not correspond to the optimal efficiency range of the buck circuit elements. Therefore, the power conversion efficiency of the buck circuit is low.
- the present application provides a voltage conversion circuit and method, a power management chip and a mobile terminal to improve power conversion efficiency.
- the present application provides a voltage conversion circuit, which is characterized by comprising: at least two energy storage units, a plurality of power supply branches and a control unit, and one end of the plurality of energy storage units is used to connect to a power source , the other ends of the plurality of energy storage units are connected to the plurality of power supply branches, and the control unit is respectively connected to the plurality of energy storage units and the plurality of power supply branches;
- Each energy storage unit includes an inductor, and the two energy storage units are a first energy storage unit and a second energy storage unit respectively;
- the first energy storage unit is configured to convert the voltage of the power supply into a preset voltage and output it to the plurality of power supply branches under the control of the control unit;
- Each of the power supply branches is configured to convert the preset voltage into a corresponding power supply voltage under the control of the control unit;
- the control unit is configured to control the second energy storage unit to work in parallel with the first energy storage unit when the output currents of the plurality of power supply branches are greater than the first preset current.
- the control unit controls the first energy storage unit to convert the voltage of the power supply into a preset voltage and outputs it to a plurality of power supply branches, and controls each power supply branch to convert the preset voltage into a corresponding power supply voltage, and when multiple power supply branches are used
- the second energy storage unit is controlled to work in parallel with the first energy storage unit, so that the first energy storage unit and the second energy storage unit share the output current of the multiple power supply branches together, and the Both the first energy storage unit and the second energy storage unit can work in a larger current range, thereby improving the power efficiency of the voltage conversion circuit, and ensuring that the working current of the inductor of the first energy storage unit is less than the maximum allowable output current of the inductor , so as to ensure the normal operation of the circuit.
- the number of the energy storage units is smaller than the number of the power supply branches.
- the number of power supply voltages obtained is greater than the number of energy storage units by the cooperation of the energy storage unit and the power supply branch, which reduces the number of energy storage units and reduces the PCB board area occupied by the voltage conversion circuit. reduce costs.
- the energy storage unit further includes a first electronic switch and a freewheeling element; the first end of the first electronic switch is used to connect to the power supply, and the first end of the first electronic switch The two ends are connected to the first end of the inductor, the control end of the first electronic switch is connected to the control unit; the first end of the freewheeling element is connected to the first end of the inductor, the continuous The second end of the flow element is grounded; the second end of the inductor is connected to the plurality of power supply branches.
- the frequency of on and off of the first electronic switch is controlled by the control unit, and the freewheeling action of the freewheeling element is used to control the magnitude of the voltage output by the first energy storage element.
- the freewheeling element is a freewheeling electronic switch, and the first end and the second end of the freewheeling element correspond to the first end and the second end of the freewheeling electronic switch, respectively.
- the control end of the freewheeling electronic switch is connected with the control unit.
- the freewheeling element is a freewheeling diode, and the first end and the second end of the freewheeling element correspond to the cathode and the anode of the freewheeling diode, respectively.
- the power supply branch includes a second electronic switch and a capacitor; the first end of the second electronic switch is connected to the second end of the inductor, and the second end of the second electronic switch is connected to the second end of the inductor.
- the terminal is connected to the first terminal of the capacitor, the control terminal of the second electronic switch is connected to the control unit; the second terminal of the capacitor is grounded; the second terminal of the second electronic switch outputs the power supply Voltage.
- a drain unit is further included, the drain unit is connected between the energy storage unit and the power supply branch, and the drain unit is used when the plurality of power supply branches When the sum of the output currents of the energy storage unit is greater than the second preset current, under the control of the control unit, the output current of the energy storage unit is drained.
- the bleeder unit bleeds the part where the output current of the energy storage units working in parallel is greater than the second preset current, so that the output current of the energy storage units working in parallel can be a stable second preset current. Set the current to ensure the stability of the power supply voltage output by the power supply branch.
- the leakage unit includes a third electronic switch, a first end of the third electronic switch is connected to a second end of the inductor, and a second end of the third electronic switch is grounded , the control end of the third electronic switch is connected with the control unit.
- the control unit controls the frequency of the turn-on and turn-off of the third electronic switch, and further controls the magnitude of the current flowing from the third electronic switch, so that the output current of the energy storage unit working in parallel is greater than that of the second electronic switch. Part of the preset current is led to the ground, so that the output current of the energy storage units working in parallel is the second preset current.
- a feedback unit is also included, the feedback unit is respectively connected to the second end of the second electronic switch and the control unit, and the feedback unit is used to detect the power supply of each power supply branch The voltage is fed back to the control unit, and the control unit adjusts the second electronic switch according to the power supply voltage fed back by the feedback unit.
- the feedback unit detects the power supply voltage of each power supply branch and feeds it back to the control unit, so that the control unit can fine-tune the second electronic switch according to the change of the power supply voltage to maintain the stability of the power supply voltage.
- the detection unit further includes a detection unit, the detection unit is connected between the energy storage unit and the power supply branch, the detection unit is further connected with the control unit, and the detection unit uses The output current of the energy storage unit is detected and transmitted to the control unit.
- the present application provides a power management chip, including the voltage conversion circuit described in any of the above designs.
- the present application provides a mobile terminal, including a power supply, a plurality of loads, and the power management chip according to the second aspect, each of the power supply branches is connected to one of the loads or a plurality of the loads, Each of the power supply branches is used to transmit a power supply voltage to a corresponding one or a plurality of loads, so as to supply power to the loads.
- the present application provides a voltage conversion method, comprising:
- controlling the first energy storage unit to convert the voltage of the power supply into a preset voltage and output it to the plurality of power supply branches;
- the second energy storage unit is controlled to work in parallel with the first energy storage unit.
- the output currents of the multiple power supply branches are detected, and when the output currents of the multiple power supply branches are greater than the first preset current, the second energy storage unit is controlled to be parallel with the first energy storage unit work, so that the first energy storage unit and the second energy storage unit jointly share the output current of multiple power supply branches, and both the first energy storage unit and the second energy storage unit can work in a larger current range, thereby increasing the voltage
- the power supply efficiency of the conversion circuit is improved, and the working current of the inductance of the first energy storage unit can be guaranteed to be less than the maximum allowable output current of the inductance, thereby ensuring the normal operation of the circuit.
- the voltage conversion method also includes:
- the output current of the energy storage unit is drained.
- the voltage conversion method also includes:
- the second electronic switch is adjusted according to the supply voltage.
- FIG. 1 is a schematic block diagram of a voltage conversion circuit provided by an embodiment of the present application
- FIG. 2 is a circuit diagram of a voltage conversion circuit provided by an embodiment of the present application.
- FIG. 3 is a circuit diagram of a voltage conversion circuit provided by another embodiment of the present application.
- FIG. 4 is a circuit diagram of a voltage conversion circuit provided by another embodiment of the present application.
- FIG. 5 is a schematic block diagram of a mobile terminal provided by an embodiment of the present application.
- FIG. 6 is a flowchart of a voltage conversion method provided by an embodiment of the present application.
- FIG. 7 is a flowchart of a voltage conversion method provided by another embodiment of the present application.
- connection can be a fixed connection, a detachable connection, or an integral Connection, or electrical connection; either directly or indirectly through an intermediary.
- the mobile terminal includes a power supply, a power management unit (Power Management Unit, PMU) and various loads.
- the power source can be a lithium battery.
- the power management unit usually includes a BUCK circuit and/or an LDO (low dropout regulator, low dropout linear regulator).
- the load can be SOC (System on Chip, system-on-chip), LCD (Liquid Crystal Display, liquid crystal display), camera, CPU (central processing unit, central processing unit), GPU (Graphics Processing Unit, graphics processor), earpiece, microphone, etc.
- SOC System on Chip, system-on-chip
- LCD Liquid Crystal Display, liquid crystal display
- CPU central processing unit, central processing unit
- GPU Graphics Processing Unit, graphics processor
- earpiece microphone, etc.
- the power management unit adopts the buck circuit to convert the voltage of the power supply into the power supply voltage of each load, one buck circuit outputs one power supply voltage. Therefore, the number of buck circuits required is large. For example, the buck circuits of some mobile terminals exceed
- the buck circuit is also called a step-down circuit.
- the buck circuit usually includes a switch tube, an inductor, a capacitor and a freewheeling diode.
- the BUCK circuit can form a switching power supply with other devices.
- the maximum allowable output current of various components that make up the switching power supply is 5A, and the maximum allowable output current is the maximum current that the component can withstand. When the working current on the component is greater than the maximum allowable output current, the component may damage.
- the operating current of the traditional switching power supply is generally small. However, the best efficiency of the switching power supply is generally in the range of large current. For example, the operating current of the switching power supply with an output voltage of 1.1V is usually less than 150mA, and the best efficiency of the power supply is When the current is greater than 350mA, the power efficiency of the traditional switching power supply is low.
- the optimal efficiency range of the switching power supply is in the certain operating current range of the switching power supply, and in the larger operating current range of the switching power supply.
- the power efficiency of the switching power supply is higher.
- an embodiment of the present application provides a voltage conversion circuit, and the voltage conversion circuit is used to convert the voltage of the power supply 100 into a supply voltage for powering each load.
- the voltage conversion circuit includes at least two energy storage units 10 , a plurality of power supply branches 20 and a control unit 30 .
- One end of the plurality of energy storage units 10 is used to connect to the power source 100 , and the other ends of the plurality of energy storage units 10 are connected to the plurality of power supply branches 20 .
- the control unit 30 is respectively connected to the plurality of energy storage units 10 and the plurality of power supply branches 20 .
- Each energy storage unit 10 includes an inductor, and two of the energy storage units 10 are a first energy storage unit and a second energy storage unit, respectively.
- the first energy storage unit is used to convert the voltage of the power supply 100 into a preset voltage and output it to the plurality of power supply branches 20 under the control of the control unit 30 .
- Each power supply branch 20 is used to convert a preset voltage into a corresponding power supply voltage under the control of the control unit 30.
- the control unit 30 is configured to control the second energy storage unit to work in parallel with the first energy storage unit when the output currents of the plurality of power supply branches 20 are greater than the first preset current.
- the second energy storage unit and the first energy storage unit work in parallel, that is, the second energy storage unit and the first energy storage unit are both in the working state under the control of the control unit 30, and the control unit 30 respectively controls the second energy storage unit and the first energy storage unit.
- the energy storage unit and the first energy storage unit are independently controlled, and the operations of the second energy storage unit and the first energy storage unit are independent of each other and do not affect each other.
- the first preset current is the maximum allowable output current of the inductor.
- the inductance value of the inductance of each energy storage unit 10 may be different from each other.
- the supply voltage may be 0.6V, 0.9V, 1.1V, 1.3V, 1.8V, 1.95V, and so on.
- the first energy storage unit is controlled by the control unit 30 to convert the voltage of the power supply 100 into a preset voltage and output to the plurality of power supply branches 20, and each power supply branch 20 is controlled to convert the preset voltage into a corresponding power supply voltage, and when multiple power supply branches 20 are controlled
- the second energy storage unit is controlled to work in parallel with the first energy storage unit, so that the first energy storage unit and the second energy storage unit share a plurality of power supply branches together 20 output current, both the first energy storage unit and the second energy storage unit can work in a larger current range, thereby improving the efficiency of the power supply 100 of the voltage conversion circuit, and ensuring the working current of the inductance of the first energy storage unit Less than the maximum allowable output current of the inductor, thus ensuring the normal operation of the circuit.
- the number of energy storage units 10 is less than the number of power supply branches 20 .
- the number of energy storage units 10 is less than the number of power supply branches 20 , so the cooperation between the energy storage unit 10 and the power supply branch 20 will result in a greater number of power supply voltages than the number of energy storage units 10 , that is to say, the output of one power supply voltage does not need to be One energy storage unit 10 is occupied, thereby reducing the number of energy storage units 10, reducing the PCB board area occupied by the voltage conversion circuit, and reducing the cost.
- the energy storage unit 10 further includes a first electronic switch Q1 and a freewheeling element.
- the first end of the first electronic switch Q1 is connected to the power supply 100
- the second end of the first electronic switch Q1 is connected to the first end of the inductor L1
- the control end of the first electronic switch Q1 is connected to the control unit 30 .
- the first end of the freewheeling element is connected to the first end of the inductor L1, and the second end of the freewheeling element is grounded.
- the second end of the inductor L1 is connected to the plurality of power supply branches 20 .
- the first terminals of the plurality of first electronic switches Q1 are connected to the input terminal IN, and the input terminal IN is connected to the power supply 100 .
- the control unit 30 can control the turn-on and turn-off frequencies of the first electronic switch Q1 by transmitting the first control signal to the control terminal of the first electronic switch Q1, and the freewheeling effect of the freewheeling element, thereby controlling the output of the inductor L1. the magnitude of the voltage.
- the freewheeling element can be the freewheeling electronic switch Q2, the first end and the second end of the freewheeling element correspond to the first and second ends of the freewheeling electronic switch Q2 respectively, and the control end of the freewheeling electronic switch Q2 is the same as the control end of the freewheeling electronic switch Q2.
- the control unit 30 is connected. The control unit 30 also controls the turn-on and turn-off frequencies of the freewheeling electronic switch Q2 by transmitting the second control signal to the third terminal of the freewheeling electronic switch Q2.
- the voltage output by the inductor L1 is the preset voltage.
- the output voltage of the inductor L1 is lower than the voltage of the power supply 100 .
- the first control signal and the second control signal may be PWM (Pulse width modulation, pulse width modulation) signals, and the frequencies of the first control signal and the second control signal may be the same or different.
- the first electronic switch Q1 may be a PMOS tube
- the freewheeling electronic switch Q2 may be an NMOS tube
- the first end, the second end and the control end of the first electronic switch Q1 correspond to the drain, source and gate of the PMOS tube, respectively
- the first terminal, the second terminal and the control terminal of the freewheeling electronic switch Q2 correspond to the drain, source and gate of the NMOS transistor, respectively.
- the first electronic switch Q1 and the freewheeling electronic switch Q2 use metal oxide semiconductor field effect transistors, which have the advantages of low noise, low power consumption, large dynamic range and easy integration.
- the first electronic switch Q1 can also be a PNP triode
- the freewheeling electronic switch Q2 can also be an NPN triode
- the first end, the second end and the control end of the first electronic switch Q1 correspond to the collector, emitter and base of the PNP triode respectively.
- the first end, the second end and the control end of the freewheeling electronic switch Q2 correspond to the collector, the emitter and the base of the NPN triode respectively.
- the freewheeling element may also be a freewheeling diode, and the first end and the second end of the freewheeling element correspond to the cathode and the anode of the freewheeling diode, respectively.
- the use of diodes for the freewheeling element has the advantage of low cost.
- the control unit 30 controls the turn-on and turn-off frequencies of the first electronic switch Q1, so as to control the magnitude of the voltage and current output by the inductor L1, so that the inductor L1 outputs a preset voltage and a preset current, thereby realizing the power supply 100 voltage conversion.
- the power supply branch 20 includes a second electronic switch Q3 and a capacitor C1.
- the first end of the second electronic switch Q3 is connected to the second end of the inductor L1
- the second end of the second electronic switch Q3 is connected to the first end of the capacitor C1
- the control end of the second electronic switch Q3 is connected to the control unit 30 .
- the second end of the capacitor C1 is grounded.
- the second terminal of the second electronic switch Q3 is used as the output terminal OUT of the power supply voltage, and outputs the power supply voltage.
- the supply voltage is less than the preset voltage.
- the control unit 30 can control the turn-on and turn-off frequencies of the second electronic switch Q3 by transmitting the third control signal to the control terminal of the second electronic switch Q3, thereby controlling the magnitude of the voltage output by the second terminal of the second electronic switch Q3 .
- the control unit 30 can transmit different third control signals to the second electronic switches Q3 of different power supply branches 20, so that each power supply branch 20 outputs different power supply voltages.
- the third control signal may be a PWM (Pulse width modulation, pulse width modulation) signal.
- the second electronic switch Q3 may be an NMOS transistor.
- the first terminal, the second terminal and the control terminal of the second electronic switch Q3 correspond to the drain, source and gate of the NMOS transistor respectively.
- the second electronic switch Q3 adopts a metal oxide semiconductor field.
- the effect transistor has the advantages of low noise, low power consumption, large dynamic range and easy integration.
- the second electronic switch Q3 may be an NPN transistor, and the first terminal, the second terminal and the control terminal of the second electronic switch Q3 correspond to the collector, emitter and base of the NPN transistor, respectively.
- the capacitor C1 is used to stabilize and filter the power supply voltage output by the second terminal of the second electronic switch Q3, so that the power supply voltage output by the second terminal of the second electronic switch Q3 is a constant voltage.
- the control unit 30 controls the turn-on and turn-off frequencies of the second electronic switch Q3, so as to control the magnitude of the voltage output by each power supply branch 20, so that each power supply branch 20 outputs a corresponding power supply voltage, thereby realizing the The preset voltage is converted into the supply voltage.
- the voltage conversion circuit further includes a bleeder unit 40 , the bleeder unit 40 is connected between the energy storage unit 10 and the power supply branch 20 , and the bleeder unit 40 is used when the output of the plurality of power supply branches 20 is When the sum of the currents is greater than the second preset current, the output current of the energy storage unit 10 is drained under the control of the control unit 30 .
- the sum of the output currents of the multiple power supply branches 20 is equal to the sum of the currents output by the energy storage units 10 working in parallel, and the control unit 30 can directly or indirectly detect the output current of each power supply branch 20 .
- the part where the output current of the energy storage units 10 working in parallel is greater than the second preset current is drained through the bleeder unit 40, so that the The output current of the energy storage units 10 working in parallel is a stable second preset current, so as to ensure the stability of the power supply voltage output by the power supply branch 20 .
- the leakage unit 40 includes a third electronic switch Q4, the first end of the third electronic switch Q4 is connected to the second end of the inductor L1, the second end of the third electronic switch Q4 is grounded, and the control of the third electronic switch Q4 The terminal is connected to the control unit 30 .
- the control unit 30 can control the turn-on and turn-off frequencies of the third electronic switch Q4 by transmitting the fourth control signal to the control terminal of the third electronic switch Q4, thereby controlling the magnitude of the current flowing from the third electronic switch Q4, so as to control the frequency of the third electronic switch Q4.
- the part of the output current of the energy storage units 10 working in parallel that is greater than the second preset current is diverted to the ground, so that the output current of the energy storage units 10 working in parallel is the second preset current.
- the fourth control signal may be a PWM (Pulse width modulation, pulse width modulation) signal.
- the third electronic switch Q4 can be an NMOS transistor.
- the first terminal, the second terminal and the control terminal of the third electronic switch Q4 correspond to the drain, source and gate of the NMOS transistor respectively.
- the third electronic switch Q4 adopts a metal oxide semiconductor field.
- the effect transistor has the advantages of low noise, low power consumption, large dynamic range and easy integration.
- the third electronic switch Q4 may also be an NPN transistor, and the first terminal, the second terminal and the control terminal of the third electronic switch Q4 correspond to the collector, emitter and base of the NPN transistor, respectively.
- the voltage conversion circuit further includes a feedback unit 50, which is respectively connected to the second end of the second electronic switch Q3 and the control unit 30, and the feedback unit 50 is used to detect each power supply
- the power supply voltage of the branch 20 is fed back to the control unit 30 , and the control unit 30 adjusts the second electronic switch Q3 according to the power supply voltage fed back by the feedback unit 50 .
- the first terminals of the plurality of first electronic switches Q1 are connected to the input terminal IN, and the input terminal IN is connected to the power supply 100 .
- the second terminal of the second electronic switch Q3 serves as the output terminal OUT of the power supply voltage.
- the power supply voltage of each power supply branch 20 is detected by the feedback unit 50 and fed back to the control unit 30, so that the control unit 30 can fine-tune the second electronic switch Q3 according to the change of the power supply voltage to maintain the stability of the power supply voltage.
- the power supply voltage normally output by the power supply branch 20 is 1.1V
- the control unit 30 transmits the voltage to the second electronic switch by adjusting
- the frequency of the PWM signal of Q3 keeps the power supply voltage of the power supply branch 20 at 1.1V.
- the voltage conversion circuit further includes a detection unit 60, the detection unit 60 is connected between the energy storage unit 10 and the power supply branch 20, the detection unit 60 is further connected with the control unit 30, and the detection unit 60 is used for detecting the storage
- the output current of the energy unit 10 is transmitted to the control unit 30 .
- the detection unit 60 may be a sampling resistor R1.
- the control unit 30 detects the voltage across the sampling resistor R1 and calculates to obtain the current flowing through the sampling resistor R1, that is, the output current of the energy storage unit 10 working in parallel.
- control unit 30 can flexibly detect the output current of the energy storage unit 10 .
- the power supply efficiency of the voltage conversion circuit is located in the optimal efficiency range.
- FIG. 4 is a circuit diagram of a voltage conversion circuit provided by an embodiment of the present application.
- the voltage conversion circuit includes i inductors L11 to L1i, i switches Q11 to Q1i, and five power supply branches 20 .
- Vin is the voltage of the power supply 100
- one end of the inductor L11 is connected to the first common terminal a1 through the switch Q11
- the other end of the inductor L11 is connected to the second common terminal a2
- one end of the inductor L12 is connected to the first common terminal through the switch Q12 a1
- the other end of the inductor L12 is connected to the second common terminal a2
- one end of the inductor L1i is connected to the first common terminal a1 through the switch Q1i (not shown), and the other end of the inductor L1i is connected to the second common terminal a2.
- the switch Q11 includes a first electronic switch Q1 and a freewheeling electronic switch Q2, the first end of the first electronic switch Q1 is connected to the first common terminal a1, and the second end of the first electronic switch Q1 is connected to one end corresponding to an inductor , the control terminal of the first electronic switch Q1 is connected to the control unit 30, the first terminal of the freewheeling electronic switch Q2 is connected to one terminal corresponding to an inductor, the second terminal of the freewheeling electronic switch Q2 is grounded, and the first terminal of the freewheeling electronic switch Q2 is connected to the ground.
- the three terminals are connected to the control unit 30 .
- the first common terminal a1 receives the voltage Vin of the power source 100 .
- Each power supply branch 20 includes a second electronic switch Q3 and a capacitor C1.
- the first terminal of the second electronic switch Q3 is connected to the second common terminal a2, and the second terminal of the second electronic switch Q3 is connected to the first terminal of the capacitor C1.
- the control terminal of the second electronic switch Q3 is connected to the control unit 30, and the second terminal of the capacitor C1 is grounded.
- the first ends of the five capacitors C1 respectively output five power supply voltages of 0.9V, 1.1V, 1.3V, 1.8V, and 1.95V.
- Each supply voltage can power one load 80 or multiple loads 80 .
- I is an integer greater than or equal to 2.
- the control unit 30 may first control n switches among the i switches to be turned on. For example, the switches Q11 to Q1n are turned on, and the inductors L11 to L1n work in parallel with each other, so that the power supply 100 charges the inductors L11 to L1n, and the inductors L11 to L1n are output to The voltage and current of the second common terminal a2 are the first voltage and the first current, respectively.
- the control unit 30 transmits PWM signals of five frequencies to the second electronic switch Q3, so that the first terminals of the five capacitors C1 output five power supply voltages of 0.9V, 1.1V, 1.3V, 1.8V, and 1.95V, respectively. .
- the control unit 30 controls the corresponding one of the switches to be turned on by transmitting the PWM signal to the first electronic switch Q1 and the freewheeling electronic switch Q2 of each switch.
- the control unit 30 detects the first current output by the second common terminal a2.
- the first current is the sum of the currents of the five power supply branches 20 , that is, the sum of the currents of the loads connected to the five power supply branches 20 .
- the control unit 30 selects m inductors from the i inductors, and controls the switches corresponding to the m inductors to be turned on, and the switches corresponding to the remaining i to m inductors are turned off.
- the m inductors that are turned on work in parallel, and the total inductance value of the m inductors working in parallel is greater than or equal to 1uH.
- m inductors with a total inductance greater than 1uH are controlled to work in parallel, so that the power supply efficiency of the voltage conversion circuit can be located in the optimal efficiency range.
- m is an integer greater than or equal to 1 and less than or equal to i.
- the control unit 30 selects x inductances from the i inductances, and controls the switches corresponding to the x inductances to be turned on, and the switches corresponding to the remaining i to x inductances are turned off.
- the connected x inductors work in parallel, and the total inductance of the x inductors working in parallel is 110nH ⁇ 1uH.
- the control of x inductors with a total inductance value of 110nH-1uH to work in parallel can make the power efficiency of the voltage conversion circuit in the optimum efficiency range.
- x is an integer greater than or equal to 1 and less than or equal to i.
- the voltage conversion circuit includes five inductors L11-L15 and five switches Q11-Q15.
- the inductance values of the five inductors L11-L15 are 1uH, 470nH, 470nH, 110nH, and 110nH, respectively.
- the control unit 30 can control the switch Q11 to be turned on and the switches Q12 to Q15 to be turned off, so that the inductor L11 works and the inductors L12 to L15 do not work.
- the control unit 30 can control the inductor L14 or the inductor L15 with an inductance value of 110nH to work, that is, the switch Q14 is turned on, the switches Q11-Q13 and the switch Q15 are turned off, the inductor L14 works, the inductors L11-L13, The inductor L15 does not work, or the control switch Q15 is turned on, the switches Q11 to Q14 are turned off, the inductor L15 works, and the inductors L11 to L14 do not work.
- the control unit 30 selects y inductances from the i inductances, and controls the switches corresponding to the y inductances to be turned on, and the switches corresponding to the remaining i to y inductances are turned off.
- the y inductors work in parallel, and the total inductance value of the y inductors working in parallel is less than 110nH.
- y inductors with a total inductance value less than 110nH are controlled to work in parallel, so that the power supply efficiency of the voltage conversion circuit can be located in the optimal efficiency range.
- y is an integer greater than or equal to 1 and less than or equal to i.
- the maximum allowable output current of a single inductor usually does not exceed 5A. If the first current is greater than 5A, the current capacity of a single inductor cannot meet the current requirement of the load 80. For example, when the first current is 8A, the current capacity of a single inductor cannot meet If the current requirement of the load 80 is 8A, the control unit 30 needs to select 2 or more inductances from the i inductances to operate, so that the inductances work at the optimal efficiency point.
- the first current output by the second common terminal a2 can also be a current in a smaller range, for example, 100mA ⁇ 500mA, 500mA ⁇ 1A, 1A ⁇ 2A, when the first current is 100mA ⁇ 500mA or 500mA ⁇ 1A or 1A ⁇ 2A,
- the control unit 30 controls the switches corresponding to two or more of the i inductors to be turned on, and the switches corresponding to the remaining inductors are turned off, so that the currents output by the five power supply branches 20 can better match the optimal efficiency of the inductors. point.
- the switches corresponding to the respective inductors are controlled independently of each other and do not affect each other.
- the control unit 30 independently controls the switches corresponding to each inductor by transmitting PWM signals of different frequencies to the switches corresponding to each inductor.
- the control unit 30 can transmit a PWM signal with a corresponding frequency to a switch corresponding to the inductance according to the inductance value of the inductance. For example, the control unit 30 transmits a PWM signal with a smaller frequency to a switch corresponding to an inductance with a larger inductance value, and transmits a PWM signal with a larger frequency. The signal is sent to the switch corresponding to the inductor with the smaller inductance value.
- Embodiments of the present application further provide a power management chip, where the power management chip includes the voltage conversion circuit referred to in any of the foregoing embodiments.
- an embodiment of the present application further provides a mobile terminal, where the mobile terminal includes a power source 100 , a plurality of loads 200 and the above-mentioned power management chip.
- Each power supply branch 20 is connected to one load 200 or a plurality of loads 200 , and each power supply branch 20 is used for transmitting a supply voltage to a corresponding one or a plurality of loads 200 so as to supply power to the loads 200 .
- the number of loads 200 corresponds to the number of power supply branches 20 one-to-one, and one power supply branch 20 supplies power to one load 200 .
- the load 200 may be various chips in the mobile terminal.
- an embodiment of the present application further provides a voltage conversion method.
- the voltage conversion method is applied to the voltage conversion circuit in any of the foregoing embodiments, and the method includes:
- Step S10 controlling the first energy storage unit to convert the voltage of the power supply into a preset voltage and output it to a plurality of power supply branches.
- Step S20 controlling each power supply branch to convert the preset voltage into a corresponding power supply voltage.
- Step S30 detecting the output currents of the multiple power supply branches.
- Step S40 when the output currents of the multiple power supply branches are greater than the first preset current, the second energy storage unit is controlled to work in parallel with the first energy storage unit.
- the second energy storage unit By detecting the output currents of the multiple power supply branches, and when the output currents of the multiple power supply branches are greater than the first preset current, the second energy storage unit is controlled to work in parallel with the first energy storage unit, so that the first energy storage unit Share the output current of multiple power supply branches together with the second energy storage unit, both the first energy storage unit and the second energy storage unit can work in a larger current range, thereby improving the power efficiency of the voltage conversion circuit, and can It is ensured that the working current of the inductance of the first energy storage unit is less than the maximum allowable output current of the inductance, thereby ensuring the normal operation of the circuit.
- the voltage conversion method further includes:
- the output current of the energy storage unit is drained.
- the output current is a stable second preset current, so as to ensure the stability of the power supply voltage output by the power supply branch.
- the voltage conversion method further includes:
- Step S101 detecting the power supply voltage of each power supply branch.
- Step S102 the second electronic switch is adjusted according to the supply voltage.
- the second electronic switch By detecting the power supply voltage of the power supply branch, the second electronic switch can be fine-tuned according to the change of the power supply voltage to maintain the stability of the power supply voltage.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本申请实施例提供一种电压转换电路及方法、电源管理芯片和移动终端,电压转换电路包括至少两个储能单元、多个供电支路及控制单元,多个储能单元的一端用于与电源连接,另一端与多个供电支路连接,控制单元分别与多个储能单元及多个供电支路连接;每个储能单元包括电感,其中的两个储能单元分别为第一储能单元及第二储能单元;第一储能单元用于在控制单元的控制下,将电源的电压转换成预设电压并输出至多个供电支路;每个供电支路用于在控制单元的控制下,将预设电压转换成对应一个供电电压;控制单元用于当多个供电支路的输出电流大于第一预设电流时,控制第二储能单元与第一储能单元并行工作。上述的电压转换电路能够提高电源效率。
Description
本申请要求于2020年8月12日提交中国专利局、申请号为202010808308.4、申请名称为“电压转换电路及方法、电源管理芯片和移动终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及智能终端技术领域,特别涉及电压转换电路及方法、电源管理芯片和移动终端。
随着移动终端功能的增加,性能的日益提升,移动终端采用的芯片的制程工艺得到飞速发展,芯片的低供电电压和低功耗成为一种追求,因此,移动终端对供电电源的要求也越来越高,供电电压的划分也越来越细。
传统的移动终端通常采用BUCK电路将系统电源的电压转换成各个供电电压,BUCK电路的工作电流与BUCK电路元件的最佳效率区间不对应,因此,BUCK电路的电源转换效率较低。
发明内容
本申请提供了电压转换电路及方法、电源管理芯片和移动终端,以提高电源转换效率。
第一方面,本申请提供了一种电压转换电路,其特征在于,包括:至少两个储能单元、多个供电支路及控制单元,所述多个储能单元的一端用于与电源连接,所述多个储能单元的另一端与所述多个供电支路连接,所述控制单元分别与所述多个储能单元及所述多个供电支路连接;
每个储能单元包括电感,其中的两个储能单元分别为第一储能单元及第二储能单元;
所述第一储能单元用于在所述控制单元的控制下,将所述电源的电压转换成预设电压并输出至所述多个供电支路;
每个所述供电支路用于在所述控制单元的控制下,将所述预设电压转换成对应一个供电电压;
所述控制单元用于当所述多个供电支路的输出电流大于第一预设电流时,控制所述第二储能单元与所述第一储能单元并行工作。
通过控制单元控制第一储能单元将电源的电压转换成预设电压并输出至多个供电支路和控制每个供电支路将预设电压转换成对应一个供电电压,并当多个供电支路的 输出电流大于第一预设电流时,控制第二储能单元与第一储能单元并行工作,使得第一储能单元和第二储能单元共同分摊多个供电支路的输出电流,第一储能单元和第二储能单元均能够工作在较大的电流区间上,从而提高电压转换电路的电源效率,而且能够保证第一储能单元的电感的工作电流小于电感的最大允许输出电流,从而保证电路的正常工作。
在一种可能的设计中,所述储能单元的数量小于所述供电支路的数量。通过本实施例提供的方案,储能单元与供电支路的配合,得到的供电电压的数量大于储能单元的数量,减少了储能单元的数量,减小电压转换电路占用的PCB板面积,降低成本。
在一种可能的设计中,所述储能单元还包括第一电子开关及续流元件;所述第一电子开关的第一端用于与所述电源连接,所述第一电子开关的第二端与所述电感的第一端连接,所述第一电子开关的控制端与所述控制单元连接;所述续流元件的第一端与所述电感的第一端连接,所述续流元件的第二端接地;所述电感的第二端与所述多个供电支路连接。通过本实施例提供的方案,通过控制单元控制第一电子开关的导通与截止的频率,以及通过续流元件的续流作用,从而控制第一储能元件输出的电压的大小。
在一种可能的设计中,所述续流元件为续流电子开关,所述续流元件的第一端及第二端分别对应所述续流电子开关的第一端及第二端,所述续流电子开关的控制端与控制单元连接。
在一种可能的设计中,所述续流元件为续流二极管,所述续流元件的第一端及第二端分别对应所述续流二极管的阴极及阳极。
在一种可能的设计中,所述供电支路包括第二电子开关及电容;所述第二电子开关的第一端与所述电感的第二端连接,所述第二电子开关的第二端与所述电容的第一端连接,所述第二电子开关的控制端与所述控制单元连接;所述电容的第二端接地;所述第二电子开关的第二端输出所述供电电压。通过本实施例提供的方案,通过控制单元控制第二电子开关的导通与截止的频率,进而能够控制每个供电支路输出的电压的大小,从而使得每个供电支路输出一个对应的供电电压,实现将预设电压转换成供电电压。
在一种可能的设计中,还包括泄流单元,所述泄流单元连接于所述储能单元与所述供电支路之间,所述泄流单元用于当所述多个供电支路的输出电流的总和大于第二预设电流时,在所述控制单元的控制下,对所述储能单元的输出电流进行泄流。通过本实施例提供的方案,泄流单元对并行工作的储能单元的输出电流大于第二预设电流的部分进行泄流,可以使得并行工作的储能单元的输出电流为稳定的第二预设电流,从而保证供电支路输出的供电电压的稳定性。
在一种可能的设计中,所述泄流单元包括第三电子开关,所述第三电子开关的第一端与所述电感的第二端连接,所述第三电子开关的第二端接地,所述第三电子开关的控制端与所述控制单元连接。通过本实施例提供的方案,控制单元控制第三电子开关的导通与截止的频率,进而控制从第三电子开关流出的电流的大小,从而将并行工作的储能单元的输出电流大于第二预设电流的部分引流至地,使得并行工作的储能单元的输出电流为第二预设电流。
在一种可能的设计中,还包括反馈单元,所述反馈单元分别与所述第二电子开关的第二端及所述控制单元连接,所述反馈单元用于检测每个供电支路的供电电压并反馈至所述控制单元,所述控制单元根据所述反馈单元反馈的供电电压对所述第二电子开关进行调节。通过本实施例提供的方案,反馈单元检测每个供电支路的供电电压并反馈至控制单元,从而控制单元能够根据供电电压的变化对第二电子开关进行微调,维持供电电压的稳定。
在一种可能的设计中,还包括检测单元,所述检测单元连接于所述储能单元与所述供电支路之间,所述检测单元还与所述控制单元连接,所述检测单元用于检测所述储能单元的输出电流并传输至所述控制单元。通过本实施例提供的方案,能够灵活地检测到多个储能单元的输出电流。
第二方面,本申请提供一种电源管理芯片,包括上述任一种设计所述的电压转换电路。
第三方面,本申请提供一种移动终端,包括电源、多个负载及如第二方面所述的电源管理芯片,每个所述供电支路与一个所述负载或多个所述负载连接,每个所述供电支路用于传输供电电压至对应一个或对应多个负载,以对所述负载供电。
第四方面,本申请提供一种电压转换方法,包括:
控制第一储能单元将电源的电压转换成预设电压并输出至所述多个供电支路;
控制每个所述供电支路将所述预设电压转换成对应一个供电电压;
检测所述多个供电支路的输出电流;
当所述多个供电支路的输出电流大于第一预设电流时,控制所述第二储能单元与所述第一储能单元并行工作。
通过本实施例提供的方案,通过检测多个供电支路的输出电流,并当多个供电支路的输出电流大于第一预设电流时,控制第二储能单元与第一储能单元并行工作,使得第一储能单元和第二储能单元共同分摊多个供电支路的输出电流,第一储能单元和第二储能单元均能够工作在较大的电流区间上,从而提高电压转换电路的电源效率,而且能够保证第一储能单元的电感的工作电流小于电感的最大允许输出电流,从而保证电路的正常工作。
在一种可能的设计中,电压转换方法还包括:
当所述多个供电支路的输出电流的总和大于第二预设电流时,对所述储能单元的输出电流进行泄流。
在一种可能的设计中,电压转换方法还包括:
检测每个供电支路的供电电压;
根据所述供电电压对所述第二电子开关进行调节。
图1为本申请一实施例提供的电压转换电路的原理框图;
图2为本申请一实施例提供的电压转换电路的电路图;
图3为本申请另一实施例提供的电压转换电路的电路图;
图4为本申请又一实施例提供的电压转换电路的电路图;
图5为本申请一实施例提供的移动终端的原理框图;
图6为本申请一实施例提供的电压转换方法的流程图;
图7为本申请另一实施例提供的电压转换方法的流程图。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
移动终端包括电源、电源管理单元(Power Management Unit,PMU)和各种负载。电源可以是锂电池。电源管理单元通常包括BUCK电路和/或LDO(low dropout regulator,低压差线性稳压器)。负载可以是SOC(System on Chip,系统级芯片)、LCD(Liquid Crystal Display,液晶显示器)、摄像头、CPU(central processing unit,中央处理器)、GPU(Graphics Processing Unit,图形处理器)、听筒、麦克风等等。当电源管理单元采用BUCK电路将电源的电压转换成为各个负载供电的供电电压时,一个BUCK电路输出一个供电电压,因此,所需BUCK电路的数量较多,如,一些移动终端的BUCK电路超过20个,BUCK电路占据大部分的PCB(Printed Circuit Board,印制电路板)面积,成本高。
BUCK电路也称降压式电路,BUCK电路通常包括开关管、电感、电容和续流二极管。BUCK电路可以与其他器件组成开关电源。通常,组成开关电源的各种元器件的最大允许输出电流为5A,最大允许输出电流也即元器件能承受的最大电流,当元器件上的工作电流大于最大允许输出电流时,元器件可能会损坏。传统的开关电源的工作电流一般较小,然而,开关电源的最佳效率一般在电流较大的区间上,如,输出电压为1.1V的开关电源的工作电流通常小于150mA,电源最佳效率在电流大于350mA的区间上,传统的开关电源的电源效率较低。
开关电源的最佳效率区间在开关电源一定的工作电流区间上,且在开关电源较大的工作电流区间上。当开关电源工作在最佳效率区间时,开关电源的电源效率较高。
请参考图1,本申请实施例提供一种电压转换电路,该电压转换电路用于将电源100的电压转换成为各个负载供电的供电电压。电压转换电路包括至少两个储能单元10、多个供电支路20及控制单元30。多个储能单元10的一端用于与电源100连接,多个储能单元10的另一端与多个供电支路20连接。控制单元30分别与多个储能单元10及多个供电支路20连接。每个储能单元10包括电感,其中的两个储能单元10分别为第一储能单元及第二储能单元。第一储能单元用于在控制单元30的控制下,将电源100的电压转换成预设电压并输出至多个供电支路20。每个供电支路20用于在控 制单元30的控制下,将预设电压转换成对应一个供电电压。控制单元30用于当多个供电支路20的输出电流大于第一预设电流时,控制第二储能单元与第一储能单元并行工作。
需要说明的是,第二储能单元与第一储能单元并行工作即第二储能单元与第一储能单元均在控制单元30的控制下处于工作状态,且控制单元30分别对第二储能单元和第一储能单元进行独立控制,第二储能单元与第一储能单元的工作相互独立,互不影响。第一预设电流为电感的最大允许输出电流。每个储能单元10的电感的感值可以互不相同。
示例的,供电电压可以是0.6V、0.9V、1.1V、1.3V、1.8V、1.95V等。
通过控制单元30控制第一储能单元将电源100的电压转换成预设电压并输出至多个供电支路20和控制每个供电支路20将预设电压转换成对应一个供电电压,并当多个供电支路20的输出电流大于第一预设电流时,控制第二储能单元与第一储能单元并行工作,使得第一储能单元和第二储能单元共同分摊多个供电支路20的输出电流,第一储能单元和第二储能单元均能够工作在较大的电流区间上,从而提高电压转换电路的电源100效率,而且能够保证第一储能单元的电感的工作电流小于电感的最大允许输出电流,从而保证电路的正常工作。
在其中一个实施例中,储能单元10的数量小于供电支路20的数量。
储能单元10的数量小于供电支路20的数量,从而储能单元10与供电支路20的配合,得到的供电电压的数量大于储能单元10的数量,也就是说一个供电电压的输出无需占用一个储能单元10,从而减少了储能单元10的数量,减小电压转换电路占用的PCB板面积,降低成本。
请参考图2,在其中一个实施例中,储能单元10还包括第一电子开关Q1及续流元件。第一电子开关Q1的第一端用于与电源100连接,第一电子开关Q1的第二端与电感L1的第一端连接,第一电子开关Q1的控制端与控制单元30连接。续流元件的第一端与电感L1的第一端连接,续流元件的第二端接地。电感L1的第二端与多个供电支路20连接。图中多个第一电子开关Q1的第一端连接至输入端IN,输入端IN与电源100连接。
控制单元30可以通过传输第一控制信号至第一电子开关Q1的控制端,控制第一电子开关Q1的导通与截止的频率,以及通过续流元件的续流作用,从而控制电感L1输出的电压的大小。
进一步地,续流元件可以是续流电子开关Q2,续流元件的第一端及第二端分别对应续流电子开关Q2的第一端及第二端,续流电子开关Q2的控制端与控制单元30连接。控制单元30还通过传输第二控制信号至续流电子开关Q2的第三端,控制续流电子开关Q2的导通与截止的频率。当控制单元30传输的第一控制信号使得第一电子开关Q1以第一预设频率导通与截止,传输的第二控制信号使得续流电子开关Q2以第二预设频率导通与截止时,电感L1输出的电压为预设电压。电感L1的输出电压小于电源100的电压。
第一控制信号和第二控制信号可以是PWM(Pulse width modulation,脉冲宽度调制)信号,第一控制信号和第二控制信号的频率可以相同也可以不相同。
第一电子开关Q1可以是PMOS管,续流电子开关Q2可以是NMOS管,第一电子开关Q1的第一端、第二端及控制端分别对应PMOS管的漏极、源极及栅极,续流电子开关Q2的第一端、第二端及控制端分别对应NMOS管的漏极、源极及栅极。第一电子开关Q1和续流电子开关Q2采用金属氧化物半导体场效应晶体管,具有噪声小、功耗低、动态范围大、易于集成的优点。第一电子开关Q1还可以是PNP三极管,续流电子开关Q2还可以是NPN三极管,第一电子开关Q1的第一端、第二端及控制端分别对应PNP三极管的集电极、发射极及基极,续流电子开关Q2的第一端、第二端及控制端分别对应NPN三极管集电极、发射极及基极。
续流元件还可以是续流二极管,续流元件的第一端及第二端分别对应续流二极管的阴极及阳极。续流元件采用二极管具有成本低的优点。
通过控制单元30控制第一电子开关Q1的导通与截止的频率,进而能够控制电感L1输出的电压和电流的大小,使得电感L1输出预设的电压和预设的电流,从而实现对电源100电压的转换。
在其中一个实施例中,供电支路20包括第二电子开关Q3及电容C1。第二电子开关Q3的第一端与电感L1的第二端连接,第二电子开关Q3的第二端与电容C1的第一端连接,第二电子开关Q3的控制端与控制单元30连接。电容C1的第二端接地。第二电子开关Q3的第二端作为供电电压的输出端OUT,输出供电电压。供电电压小于预设电压。
控制单元30可以通过传输第三控制信号至第二电子开关Q3的控制端,控制第二电子开关Q3的导通与截止的频率,从而控制第二电子开关Q3的第二端输出的电压的大小。控制单元30可以通过传输不同的第三控制信号至不同的供电支路20的第二电子开关Q3,从而使得每个供电支路20输出不同的供电电压。
第三控制信号可以是PWM(Pulse width modulation,脉冲宽度调制)信号。
第二电子开关Q3可以是NMOS管,第二电子开关Q3第一端、第二端及控制端分别对应NMOS管的漏极、源极及栅极,第二电子开关Q3采用金属氧化物半导体场效应晶体管,具有噪声小、功耗低、动态范围大、易于集成的优点。第二电子开关Q3可以是NPN三极管,第二电子开关Q3的第一端、第二端及控制端分别对应NPN三极管集电极、发射极及基极。
电容C1用于对第二电子开关Q3的第二端输出的供电电压进行稳压和滤波,使得第二电子开关Q3的第二端输出的供电电压为恒压。
通过控制单元30控制第二电子开关Q3的导通与截止的频率,进而能够控制每个供电支路20输出的电压的大小,从而使得每个供电支路20输出一个对应的供电电压,实现将预设电压转换成供电电压。
在其中一个实施例中,电压转换电路还包括泄流单元40,泄流单元40连接于储能单元10与供电支路20之间,泄流单元40用于当多个供电支路20的输出电流的总和大于第二预设电流时,在控制单元30的控制下,对储能单元10的输出电流进行泄流。
可以理解,多个供电支路20的输出电流的总和与并行工作的储能单元10输出的电流之和相等,控制单元30可以直接或间接地检测每个供电支路20的输出电流。
当多个供电支路20的输出电流的总和大于第二预设电流时,通过泄流单元40对并行工作的储能单元10的输出电流大于第二预设电流的部分进行泄流,可以使得并行工作的储能单元10的输出电流为稳定的第二预设电流,从而保证供电支路20输出的供电电压的稳定性。
进一步地,泄流单元40包括第三电子开关Q4,第三电子开关Q4的第一端与电感L1的第二端连接,第三电子开关Q4的第二端接地,第三电子开关Q4的控制端与控制单元30连接。
控制单元30可以通过传输第四控制信号至第三电子开关Q4的控制端,控制第三电子开关Q4的导通与截止的频率,进而控制从第三电子开关Q4流出的电流的大小,从而将并行工作的储能单元10的输出电流大于第二预设电流的部分引流至地,使得并行工作的储能单元10的输出电流为第二预设电流。
第四控制信号可以是PWM(Pulse width modulation,脉冲宽度调制)信号。
第三电子开关Q4可以是NMOS管,第三电子开关Q4第一端、第二端及控制端分别对应NMOS管的漏极、源极及栅极,第三电子开关Q4采用金属氧化物半导体场效应晶体管,具有噪声小、功耗低、动态范围大、易于集成的优点。第三电子开关Q4还可以是NPN三极管,第三电子开关Q4的第一端、第二端及控制端分别对应NPN三极管集电极、发射极及基极。
请参考图3,在其中一个实施例中,电压转换电路还包括反馈单元50,反馈单元50分别与第二电子开关Q3的第二端及控制单元30连接,反馈单元50用于检测每个供电支路20的供电电压并反馈至控制单元30,控制单元30根据反馈单元50反馈的供电电压对第二电子开关Q3进行调节。图中多个第一电子开关Q1的第一端连接至输入端IN,输入端IN与电源100连接。第二电子开关Q3的第二端作为供电电压的输出端OUT。
通过反馈单元50检测每个供电支路20的供电电压并反馈至控制单元30,从而控制单元30能够根据供电电压的变化对第二电子开关Q3进行微调,维持供电电压的稳定。比如,供电支路20正常输出的供电电压为1.1V,当某一时刻反馈单元50检测到该供电支路20的供电电压大于或小于1.1V时,控制单元30通过调节传输给第二电子开关Q3的PWM信号的频率,使得该供电支路20的供电电压维持在1.1V。
在其中一个实施例中,电压转换电路还包括检测单元60,检测单元60连接于储能单元10与供电支路20之间,检测单元60还与控制单元30连接,检测单元60用于检测储能单元10的输出电流并传输至控制单元30。
检测单元60可以是采样电阻R1,控制单元30通过检测采样电阻R1两端的电压,并通过计算,得到流过采样电阻R1的电流,也即并行工作的储能单元10的输出电流。
通过检测单元60,控制单元30能够灵活地检测到储能单元10的输出电流。
当多个供电支路20的输出电流与并行工作的电感的总感值相匹配时,电压转换电路的电源效率位于最佳效率区间。
请参考图4,图4为本申请一实施例提供的电压转换电路的电路图。该实施例中,电压转换电路包括i个电感L11~L1i,i个开关Q11~Q1i,5个供电支路20。其中,Vin为电源100的电压,电感L11的一端通过开关Q11连接至第一公共端a1,电感L11 的另一端连接至第二公共端a2,电感L12的一端通过开关Q12连接至第一公共端a1,电感L12的另一端连接至第二公共端a2,以此类推,电感L1i的一端通过开关Q1i(图未示)连接至第一公共端a1,电感L1i的另一端连接至第二公共端a2。其中,开关Q11包括第一电子开关Q1及续流电子开关Q2,第一电子开关Q1的第一端连接至第一公共端a1,第一电子开关Q1的第二端与对应一个电感的一端连接,第一电子开关Q1的控制端与控制单元30连接,续流电子开关Q2的第一端与对应一个电感的一端连接,续流电子开关Q2的第二端接地,续流电子开关Q2的第三端与控制单元30连接。第一公共端a1接收电源100的电压Vin。每个供电支路20包括第二电子开关Q3及电容C1,第二电子开关Q3的第一端连接至第二公共端a2,第二电子开关Q3的第二端与电容C1的第一端连接,第二电子开关Q3的控制端与控制单元30连接,电容C1的第二端接地。其中5个电容C1的第一端分别输出5个供电电压0.9V、1.1V、1.3V、1.8V、1.95V。每个供电电压可以为一个负载80供电,也可以为多个负载80供电。I为大于或等于2的整数。
控制单元30可以先控制i个开关中的n个开关导通,比如,开关Q11~Q1n导通,电感L11~L1n相互并行工作,从而电源100对电感L11~L1n充电,电感L11~L1n输出至第二公共端a2的电压和电流分别为第一电压和第一电流。同时,控制单元30传输5个频率的PWM信号至第二电子开关Q3,使得其中5个电容C1的第一端分别输出0.9V、1.1V、1.3V、1.8V、1.95V的5个供电电压。
其中,n为小于或等于i的整数。控制单元30通过传输PWM信号至每个开关的第一电子开关Q1和续流电子开关Q2,从而控制对应一个开关导通。
控制单元30检测第二公共端a2输出的第一电流。第一电流为5个供电支路20的电流之和,也即与5个供电支路20连接的负载的电流之和。
当第一电流为0~100mA时,控制单元30从i个电感中选择m个电感,并控制该m个电感对应的开关导通,其余的i~m个电感对应的开关截止,此时,导通的m个电感并行工作,并且该m个电感并行工作的总感值大于或等于1uH。当第一电流为0~100mA时,控制总感值大于1uH的m个电感并行工作,能够使得电压转换电路的电源效率位于最佳效率区间。其中,m为大于或等于1且小于或等于i的整数。
当第一电流为100mA~1A时,控制单元30从i个电感中选择x个电感,并控制该x个电感对应的开关导通,其余的i~x个电感对应的开关截止,此时,导通的x个电感并行工作,并且该x个电感并行工作的总感值为110nH~1uH。当第一电流为100mA~1A时,控制总感值为110nH~1uH的x个电感并行工作,能够使得电压转换电路的电源效率位于最佳效率区间。其中,x为大于或等于1且小于或等于i的整数。
具体的,当i=5时,即电压转换电路包括5个电感L11~L15,5个开关Q11~Q15。5个电感L11~L15的感值分别为1uH、470nH、470nH、110nH和110nH。当第一电流为0~100mA时,控制单元30可以控制开关Q11导通,开关Q12~Q15截止,则电感L11工作,电感L12~L15不工作。当第一电流为1A时,控制单元30可以控制感值为110nH的电感L14或电感L15工作,即控制开关Q14导通,开关Q11~Q13、开关Q15截止,电感L14工作,电感L11~L13、电感L15不工作,或者控制开关Q15导通,开关Q11~Q14截止,电感L15工作,电感L11~L14不工作。
当第一电流大于1A时,控制单元30从i个电感中选择y个电感,并控制该y个电感对应的开关导通,其余的i~y个电感对应的开关截止,此时,导通的y个电感并行工作,并且该y个电感并行工作的总感值小于110nH。当第一电流大于1A时,控制总感值为小于110nH的y个电感并行工作,能够使得电压转换电路的电源效率位于最佳效率区间。其中,y为大于或等于1且小于或等于i的整数。
单个电感的最大允许输出电流通常不超过5A,如果第一电流大于5A,单个电感的通流能力不能满足负载80的电流需求,如,第一电流为8A时,单个电感的通流能力不能满足负载80的8A电流需求,则控制单元30需要从i个电感中选择2个或2个以上电感工作,以使得电感工作在最佳效率点。
第二公共端a2输出的第一电流还可以是更小区间的电流,如,100mA~500mA,500mA~1A,1A~2A,当第一电流为100mA~500mA或500mA~1A或1A~2A,控制单元30控制i个电感中的2个或2个以上电感对应的开关导通,其余电感对应的开关截止,使得5个供电支路20输出的电流可以更好地匹配电感工作的最佳效率点。
需要说明的是,当控制单元30控制2个或2个以上的电感并行工作时,各个电感对应的开关的控制相互独立,互不影响。控制单元30通过传输不同频率的PWM信号至各个电感对应的开关,从而独立控制每个电感对应的开关。控制单元30可以根据电感的感值传输对应频率的PWM信号至电感对应的开关,如,控制单元30传输频率较小的PWM信号至感值较大的电感对应的开关,传输频率较大的PWM信号至感值较小的电感对应的开关。
本申请实施例还提供一种电源管理芯片,该电源管理芯片包括上述任意实施例所称的电压转换电路。
请参考图5,本申请实施例还提供一种移动终端,该移动终端包括电源100、多个负载200及上述的电源管理芯片。每个供电支路20与一个负载200或多个负载200连接,每个供电支路20用于传输供电电压至对应一个或对应多个负载200,以对所述负载200供电。图5中,负载200的数量与供电支路20的数量一一对应,一个供电支路20为一个负载200供电。负载200可以是移动终端中的各种芯片。
请参考图6,本申请实施例还提供一种电压转换方法,该电压转换方法应用于上述任意实施例所称的电压转换电路,该方法包括:
步骤S10,控制第一储能单元将电源的电压转换成预设电压并输出至多个供电支路。
步骤S20,控制每个供电支路将预设电压转换成对应一个供电电压。
步骤S30,检测多个供电支路的输出电流。
步骤S40,当多个供电支路的输出电流大于第一预设电流时,控制第二储能单元与第一储能单元并行工作。
通过检测多个供电支路的输出电流,并当多个供电支路的输出电流大于第一预设电流时,控制第二储能单元与第一储能单元并行工作,使得第一储能单元和第二储能单元共同分摊多个供电支路的输出电流,第一储能单元和第二储能单元均能够工作在较大的电流区间上,从而提高电压转换电路的电源效率,而且能够保证第一储能单元的电感的工作电流小于电感的最大允许输出电流,从而保证电路的正常工作。
在其中一个实施例中,电压转换方法还包括:
当多个供电支路的输出电流的总和大于第二预设电流时,对储能单元的输出电流进行泄流。
当多个供电支路的输出电流的总和大于第二预设电流时,通过对并行工作的储能单元的输出电流大于第二预设电流的部分进行泄流,可以使得并行工作的储能单元的输出电流为稳定的第二预设电流,从而保证供电支路输出的供电电压的稳定性。
请参考图7,在其中一个实施例中,电压转换方法还包括:
步骤S101,检测每个供电支路的供电电压。
步骤S102,根据供电电压对第二电子开关进行调节。
通过检测供电支路的供电电压,从而能够根据供电电压的变化对第二电子开关进行微调,维持供电电压的稳定。
关于电压转换方法的具体限定可以参见上文中对于电压转换电路的限定,在此不再赘述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (15)
- 一种电压转换电路,其特征在于,包括:至少两个储能单元、多个供电支路及控制单元,所述多个储能单元的一端用于与电源连接,所述多个储能单元的另一端与所述多个供电支路连接,所述控制单元分别与所述多个储能单元及所述多个供电支路连接;每个储能单元包括电感,其中的两个储能单元分别为第一储能单元及第二储能单元;所述第一储能单元用于在所述控制单元的控制下,将所述电源的电压转换成预设电压并输出至所述多个供电支路;每个所述供电支路用于在所述控制单元的控制下,将所述预设电压转换成对应一个供电电压;所述控制单元用于当所述多个供电支路的输出电流大于第一预设电流时,控制所述第二储能单元与所述第一储能单元并行工作。
- 如权利要求1所述的电压转换电路,其特征在于,所述储能单元的数量小于所述供电支路的数量。
- 如权利要求1所述的电压转换电路,其特征在于,所述储能单元还包括第一电子开关及续流元件;所述第一电子开关的第一端用于与所述电源连接,所述第一电子开关的第二端与所述电感的第一端连接,所述第一电子开关的控制端与所述控制单元连接;所述续流元件的第一端与所述电感的第一端连接,所述续流元件的第二端接地;所述电感的第二端与所述多个供电支路连接。
- 如权利要求3所述的电压转换电路,其特征在于,所述续流元件为续流电子开关,所述续流元件的第一端及第二端分别对应所述续流电子开关的第一端及第二端,所述续流电子开关的控制端与控制单元连接。
- 如权利要求3所述的电压转换电路,其特征在于,所述续流元件为续流二极管,所述续流元件的第一端及第二端分别对应所述续流二极管的阴极及阳极。
- 如权利要求3所述的电压转换电路,其特征在于,所述供电支路包括第二电子开关及电容;所述第二电子开关的第一端与所述电感的第二端连接,所述第二电子开关的第二端与所述电容的第一端连接,所述第二电子开关的控制端与所述控制单元连接;所述电容的第二端接地;所述第二电子开关的第二端输出所述供电电压。
- 如权利要求1所述的电压转换电路,其特征在于,还包括泄流单元,所述泄流单元连接于所述储能单元与所述供电支路之间,所述泄流单元用于当所述多个供电支路的输出电流的总和大于第二预设电流时,在所述控制单元的控制下,对所述储能单元的输出电流进行泄流。
- 如权利要求7所述的电压转换电路,其特征在于,所述泄流单元包括第三电子开关,所述第三电子开关的第一端与所述电感的第二端连接,所述第三电子开关的第二端接地,所述第三电子开关的控制端与所述控制单元连接。
- 如权利要求6所述的电压转换电路,其特征在于,还包括反馈单元,所述反馈单元分别与所述第二电子开关的第二端及所述控制单元连接,所述反馈单元用于检测每个供电支路的供电电压并反馈至所述控制单元,所述控制单元根据所述反馈单元反馈的供电电压对所述第二电子开关进行调节。
- 如权利要求1所述的电压转换电路,其特征在于,还包括检测单元,所述检测单元连接于所述储能单元与所述供电支路之间,所述检测单元还与所述控制单元连接,所述检测单元用于检测所述储能单元的输出电流并传输至所述控制单元。
- 一种电源管理芯片,其特征在于,包括如权利要求1-10任一项所述的电压转换电路。
- 一种移动终端,其特征在于,包括电源、多个负载及如权利要求11所述的电源管理芯片,每个所述供电支路与一个所述负载或多个所述负载连接,每个所述供电支路用于传输供电电压至对应一个或对应多个负载,以对所述负载供电。
- 一种电压转换方法,应用于如权利要求1-10任一项所述的电压转换电路,其特征在于,所述方法包括:控制第一储能单元将电源的电压转换成预设电压并输出至所述多个供电支路;控制每个所述供电支路将所述预设电压转换成对应一个供电电压;检测所述多个供电支路的输出电流;当所述多个供电支路的输出电流大于第一预设电流时,控制所述第二储能单元与所述第一储能单元并行工作。
- 如权利要求13所述的方法,其特征在于,还包括:当所述多个供电支路的输出电流的总和大于第二预设电流时,对所述储能单元的输出电流进行泄流。
- 如权利要求13所述的方法,其特征在于,还包括:检测每个供电支路的供电电压;根据所述供电电压对所述第二电子开关进行调节。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010808308.4A CN114079376A (zh) | 2020-08-12 | 2020-08-12 | 电压转换电路及方法、电源管理芯片和移动终端 |
CN202010808308.4 | 2020-08-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022033507A1 true WO2022033507A1 (zh) | 2022-02-17 |
Family
ID=80246989
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/111998 WO2022033507A1 (zh) | 2020-08-12 | 2021-08-11 | 电压转换电路及方法、电源管理芯片和移动终端 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114079376A (zh) |
WO (1) | WO2022033507A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115981438A (zh) * | 2022-12-30 | 2023-04-18 | 中科可控信息产业有限公司 | 服务器供电装置和方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114860017B (zh) * | 2022-04-15 | 2023-09-26 | 芯海科技(深圳)股份有限公司 | 一种ldo电路、控制方法、芯片及电子设备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070007935A1 (en) * | 2005-07-06 | 2007-01-11 | Dell Products L.P. | Extending the continuous mode of operation for a buck converter |
CN1996730A (zh) * | 2006-12-27 | 2007-07-11 | 中国科学院上海光学精密机械研究所 | 高效率同步整流降压型开关变换器 |
US20150015219A1 (en) * | 2013-04-15 | 2015-01-15 | Rohm Co., Ltd | Dc/dc converter |
CN105119482A (zh) * | 2015-07-22 | 2015-12-02 | 矽力杰半导体技术(杭州)有限公司 | 单电感多输出的升降压型电路及其控制方法 |
CN105515376A (zh) * | 2015-12-31 | 2016-04-20 | 矽力杰半导体技术(杭州)有限公司 | 基于单电感多输出的电压调节电路及其控制方法 |
CN105874692A (zh) * | 2014-01-14 | 2016-08-17 | 联发科技股份有限公司 | 电压供给电路及其控制方法 |
CN110875730A (zh) * | 2018-08-29 | 2020-03-10 | 三星电子株式会社 | 单电感多输出转换器及单电感多输出转换器的控制方法 |
-
2020
- 2020-08-12 CN CN202010808308.4A patent/CN114079376A/zh active Pending
-
2021
- 2021-08-11 WO PCT/CN2021/111998 patent/WO2022033507A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070007935A1 (en) * | 2005-07-06 | 2007-01-11 | Dell Products L.P. | Extending the continuous mode of operation for a buck converter |
CN1996730A (zh) * | 2006-12-27 | 2007-07-11 | 中国科学院上海光学精密机械研究所 | 高效率同步整流降压型开关变换器 |
US20150015219A1 (en) * | 2013-04-15 | 2015-01-15 | Rohm Co., Ltd | Dc/dc converter |
CN105874692A (zh) * | 2014-01-14 | 2016-08-17 | 联发科技股份有限公司 | 电压供给电路及其控制方法 |
CN105119482A (zh) * | 2015-07-22 | 2015-12-02 | 矽力杰半导体技术(杭州)有限公司 | 单电感多输出的升降压型电路及其控制方法 |
CN105515376A (zh) * | 2015-12-31 | 2016-04-20 | 矽力杰半导体技术(杭州)有限公司 | 基于单电感多输出的电压调节电路及其控制方法 |
CN110875730A (zh) * | 2018-08-29 | 2020-03-10 | 三星电子株式会社 | 单电感多输出转换器及单电感多输出转换器的控制方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115981438A (zh) * | 2022-12-30 | 2023-04-18 | 中科可控信息产业有限公司 | 服务器供电装置和方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114079376A (zh) | 2022-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI645277B (zh) | 封包追蹤電源供應調控器 | |
JP6434913B2 (ja) | 電源及び電源電圧調整方法 | |
US10873262B2 (en) | Semiconductor chip power supply system | |
TWI475349B (zh) | 電壓調節器、包絡追蹤電源系統、傳輸模組、及集成電路設備 | |
WO2022033507A1 (zh) | 电压转换电路及方法、电源管理芯片和移动终端 | |
US20100097045A1 (en) | Single inductor multiple output power supply | |
KR20000028826A (ko) | Dc-dc 컨버터의 제어 방법, dc-dc 컨버터의 제어회로 및 dc-dc 컨버터 | |
US20180145682A1 (en) | Positive and negative dc-dc converter for biasing rf circuits | |
US20230198402A1 (en) | Dynamic biasing circuit for main comparator to improve load-transient and line-transient performance of buck converter in 100% mode | |
US8269461B2 (en) | Hybrid battery charger and control circuit and method thereof | |
US20210075324A1 (en) | Semiconductor chip power supply system | |
CN109814650A (zh) | 一种低压差线性稳压器用箝位晶体管结构 | |
CN101478237A (zh) | 优化dc/dc转换器稳定性的补偿方法 | |
CN110677042B (zh) | 电压变换电路及电源系统 | |
CN110071641B (zh) | 一种转电供电电路及其运行方法 | |
US11784577B2 (en) | Low noise power conversion system and method | |
CN117595671A (zh) | 供电电路以及应用其的不对称半桥反激变换器 | |
CN109217671B (zh) | 一种浮地稳压供电电路 | |
Yang et al. | Design of high-power white LED drive chip with fully integrated PWM dimming function | |
US11081955B2 (en) | Unidirectional ring mitigation in a voltage converter | |
CN110719073A (zh) | 应用于射频功率放大器的混合包络调制方法及其电路 | |
CN214707537U (zh) | 一种多路输出直流电源 | |
CN220421659U (zh) | 过压保护电路及开关电源电路 | |
CN110518804B (zh) | 同步整流的控制电路及其供电方法以及隔离式电源变换电路 | |
US12015348B2 (en) | Control circuit for adaptive noise margin control for a constant on time converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21855558 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21855558 Country of ref document: EP Kind code of ref document: A1 |