WO2022032831A1 - 一种螺旋塔输送设备 - Google Patents

一种螺旋塔输送设备 Download PDF

Info

Publication number
WO2022032831A1
WO2022032831A1 PCT/CN2020/119254 CN2020119254W WO2022032831A1 WO 2022032831 A1 WO2022032831 A1 WO 2022032831A1 CN 2020119254 W CN2020119254 W CN 2020119254W WO 2022032831 A1 WO2022032831 A1 WO 2022032831A1
Authority
WO
WIPO (PCT)
Prior art keywords
chain
conveying
guide block
spiral tower
toggle rod
Prior art date
Application number
PCT/CN2020/119254
Other languages
English (en)
French (fr)
Inventor
吴宝东
Original Assignee
吴宝东
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010808009.0A external-priority patent/CN112027452A/zh
Application filed by 吴宝东 filed Critical 吴宝东
Publication of WO2022032831A1 publication Critical patent/WO2022032831A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G21/00Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors
    • B65G21/16Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors for conveyors having endless load-carriers movable in curved paths
    • B65G21/18Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors for conveyors having endless load-carriers movable in curved paths in three-dimensionally curved paths

Definitions

  • the invention relates to the technical field of conveying devices, in particular to a spiral tower conveying device.
  • the spiral tower conveying equipment used in the existing industry is divided into two conveying systems: inner drive and outer drive.
  • the externally driven spiral tower conveying system refers to the outer edge of the conveying network chain of the spiral tower, which can be one side or multiple side edges, and multiple sets of rotating gears are arranged, and the gears mesh with the outer edge of the conveying network chain. , drive the conveyor network chain to transport on the spiral tower track.
  • the inner drive conveying system is divided into two types: friction drive and forced drive.
  • the inner forced drive spiral tower conveying system refers to a drum with an integrated structure in the middle part of the spiral tower, and the motor is used to drive the drum to rotate at a constant speed.
  • Auxiliary sleeves are arranged outside the circumference of the drum to directly drive the helical movement of the conveyor chain.
  • the triangular protrusions on the auxiliary sleeve will abut with the diamond-shaped end face of the conveyor network chain.
  • the triangular protrusions on the auxiliary sleeve and the diamond-shaped end surface of the conveyor network chain will dislocate each other with a high probability, and cut in smoothly, but the two The raised triangular tips occasionally touch each other at the same position, resulting in an inescapable staggering phenomenon.
  • the conveyor network chain continues to rotate upward, and the triangular protrusions on the auxiliary sleeve generate a certain pressure on the end of the conveyor network chain, and when the pressure reaches a critical value, the end of the conveyor network chain will jump into the auxiliary sleeve or break.
  • the conveyor mesh chain When the tension of the conveyor mesh chain gradually increases to exceed the frictional force of the auxiliary sleeve, the conveyor mesh chain will slip off the auxiliary sleeve instantly, causing the conveyor mesh chain to jump.
  • the end side of the existing conveyor mesh chain is a parallel plane.
  • the toggle rod is rectangular, and the end of the conveyor chain is easy to come out of the jumping teeth when it is rotated under heavy load or fast.
  • the present invention provides a spiral tower conveying equipment to solve the problem that the conveying network chain slips out of the auxiliary sleeve toggle rod when the conveying network chain runs with a large load in the internal forced-driven spiral tower conveying system in the prior art.
  • the present invention provides the following technical solutions:
  • a spiral tower conveying equipment including a rotating drum, an auxiliary sleeve structure for driving the rotation of the conveying network chain is arranged in the circumferential direction of the rotating drum, and the inner side of the conveying network chain is provided with an end, so
  • the auxiliary sleeve structure includes a toggle rod, a guide block and a column, wherein the column is evenly arranged along the circumferential direction of the drum, and the guide block is fixed on the side of the column facing the conveyor network chain,
  • the guide block can be installed at the lower end position or the upper end position of the vertical column according to the operation requirements of the equipment.
  • One end of the inclined plane is connected to the plane, the other end of the inclined plane is connected to the top surface of the guide block, the angle between the inclined plane and the plane is an obtuse angle, and a hole is provided on the inclined plane.
  • the toggle rod is arranged in the hole.
  • the toggle rod is cylindrical or D-shaped, and the end is spherical.
  • the side surface of the end of the conveyor net chain is an inner arc or an inclined surface; the top of the end is a circular arc or an inclined surface; the top of the end is in contact with the surface of the column without a gap.
  • the holes are arranged through the inclined plane.
  • the screw tower conveying equipment further includes a motor and a gear, the motor drives the rotating drum to rotate, and when the conveying mesh chain is in a straight section, the conveying mesh chain is arranged on the upper surface of the gear.
  • a groove is formed on the side of the guide block facing the upright column, and the upright column is clamped in the groove.
  • the groove is a rectangular groove, and the depth of the groove is 0.3-0.8 times the thickness of the guide block.
  • the angle between the inclined plane and the horizontal plane is 5-20°.
  • edge of the toggle rod in the width direction is flush with the edge of the guide block.
  • the engaging surface of the toggle lever is an inclined surface or an arc-shaped surface, so that the force-bearing direction of the engaging surface of the toggle lever is offset inward with respect to the rotation direction of the helical tower.
  • the conveying network chain gradually enters the toggle rod after entering 1/4 to 1/2 of the circumference of the rotating drum, and the conveying network chain rotates forward 1/4 circle before being rotated out of the rotating drum. out the end of the toggle lever.
  • the conveying net chain gradually enters from the outer circumference of the toggle rod, bites the toggle rod, and the entry method is from the outside to the inside.
  • the spiral tower conveying equipment can effectively solve the problem of the entrance position of the inner drive single-cylinder spiral tower: the free state conveyor network chain randomly slides into the toggle rod on the guide block and then enters the rotating drum, which solves the problem of fewer chain links on the inner side of the conveyor network chain. Progressive hysteresis.
  • the conveyor chain on the drum is in a relaxed conveying state to avoid breakage on the outside of the conveyor chain due to excessive tension.
  • the interlocking structure of the end of the conveyor chain and the toggle rod solves the problem of the force structure that the drum pushes the conveyor chain outward, so that the end of the chain is stressed inward (toward the center of the circle).
  • FIG. 1 is a schematic structural diagram of a spiral tower conveying device according to an exemplary embodiment
  • FIG. 2 is a schematic diagram of a distribution structure of an auxiliary sleeve structure according to an exemplary embodiment
  • Fig. 3 is a three-dimensional schematic diagram showing an auxiliary sleeve structure in an initial state according to an exemplary embodiment
  • FIG. 4 is a schematic three-dimensional structural diagram showing another auxiliary sleeve structure in a normal state according to an exemplary embodiment
  • FIG. 5 is a plan view of an auxiliary sleeve structure according to an exemplary embodiment
  • FIG. 6 is a plan view from another perspective of an auxiliary sleeve structure according to an exemplary embodiment
  • FIG. 7 is a schematic diagram showing the connection structure between the top end of the toggle lever and the upright column according to an exemplary embodiment
  • FIG. 8 is a schematic diagram of another connection structure between the top end of the toggle lever and the upright column according to an exemplary embodiment
  • FIG. 9 is a schematic diagram showing the structure of the conveyor mesh chain and the toggle rod being engaged on the left side according to an exemplary embodiment
  • FIG. 10 is a schematic diagram showing the structure of the conveyor mesh chain and the toggle rod being engaged on the right side according to an exemplary embodiment
  • FIG. 11 is a schematic structural diagram of a conveyor mesh chain and a toggle rod before engaging according to an exemplary embodiment
  • FIG. 12 is a schematic structural diagram of a conveyor mesh chain and a toggle rod when they are engaged according to an exemplary embodiment
  • FIG. 13-19 are schematic diagrams of the three-dimensional structure of the conveyor mesh chain and the toggle rod in different engagement states according to an exemplary embodiment
  • a spiral tower conveying device including a rotating drum 11 , and an auxiliary sleeve structure for driving the conveying network chain 13 to rotate is arranged in the circumferential direction of the rotating drum 11 .
  • the inner side of the conveyor network chain 13 is provided with an end 14
  • the auxiliary sleeve structure includes a toggle rod 15 , a guide block 16 and a column 17 , wherein the column 17 is uniform along the circumference of the drum 11 .
  • the guide block 16 is fixed on the side of the vertical column 17 facing the conveyor network chain 13 , and the guide block 16 has an inclined surface 161 and a flat surface 162 on the side facing the conveyor network chain 13 , and the inclined surface 161 is located at Above the flat surface 162, one end of the inclined surface 161 is connected to the flat surface 162, the other end of the inclined surface 161 is connected to the top surface of the guide block 16, between the inclined surface 161 and the flat surface 162
  • the included angle is an obtuse angle
  • a hole 163 is provided on the inclined surface 161
  • the toggle rod 15 is arranged in the hole 163 .
  • the spiral tower conveying equipment can effectively solve the inlet position of the inner drive single-cylinder spiral tower, and the lag phenomenon caused by the inward link of the conveying network chain 13 is less.
  • the conveying mesh chain 13 is in a relaxed conveying state to avoid the conveying mesh chain 13 from being broken due to excessive tension.
  • the conveyor mesh chain 13 in the relaxed state freely slides into the guide block 16 and the toggle rod 15 randomly, and the conveyor mesh chain 13 is symmetrically distributed on the circumferential plane of the drum 11 .
  • the interlocking structure of the end 14 of the conveyor chain 13 and the toggle rod 15 solves the problem of the force structure of the rotating drum 11 pushing the conveyor chain 13 outward, so that the end 14 of the conveyor chain 13 is forced inward ( to the center of the circle).
  • the toggle rod 15 is cylindrical or D-shaped, and its side is arc-shaped; the end head 14 is spherical, and its two sides are both arc-shaped, so that the two sides are both arc-shaped. There can be a smooth transition connection between them, and there is no gap between the toggle rod 15 and the end head 14 after they are connected and engaged.
  • the guide block 16 and the upright post 17 are connected by bolts 20, wherein the number of the bolts 20 is 6, and the guide block 16 and the upright post 17 are detachably connected together.
  • the hole 163 is disposed through the inclined surface 161 .
  • the spiral tower conveying equipment also includes a motor 18 and a gear 19.
  • the motor 18 drives the drum 11 to rotate.
  • the conveying mesh chain 13 is arranged on the upper surface of the gear 19
  • the conveyor mesh chain 13 is laid on the wear strip, which is a U-shaped structure and is stuck on the track.
  • a groove 164 is formed on the side of the guide block 16 facing the upright post 17 , and the upright post 17 is clamped in the groove 164 .
  • the groove 164 is a rectangular groove, and the depth of the groove 164 is 0.3-0.8 times the thickness of the guide block 16.
  • the thickness of the guide block 16 refers to the maximum thickness between the plane 162 and its opposite side.
  • the groove 164 The thickness of the guide block 16 is not easy to be too large, otherwise the guide block 16 may be easily broken.
  • the spiral tower conveying equipment also includes a frame 12, which is arranged on the outside of the drum 11 to support the entire equipment, and the angle between the inclined plane 161 and the horizontal plane is 5-20°, such as 15° or 18°, etc., Of course, the angle between the inclined plane 161 and the horizontal plane can also be set to other angles, which can be adjusted as required.
  • the edge of the toggle rod 15 in the width direction is flush with the edge of the guide block 16 , and there is no gap between the top of the end 14 of the conveyor mesh chain 13 and the upright column 17 .
  • the engaging surface of the toggle lever 15 is an inclined surface, an arc-shaped surface, or any other shape that can be engaged, so that the force direction of the engaging surface of the toggle lever 15 is relative to that of the helix tower.
  • the direction of rotation is offset inward.
  • the spiral tower conveying equipment can be designed with different tower heights and floor heights according to the actual application environment height and the height of the conveyed products.
  • a spiral tower conveying equipment is generally designed with more than ten layers.
  • the conveyor network chain 13 first passes through the straight part outside the spiral tower, and then enters the entrance of the spiral tower conveying equipment and slides against the plane 162 of the guide block 16, and runs on the circular track on the first layer of the spiral tower for more than 1/4 of the circumference and then slides.
  • the inclined surface 161 of the toggle lever 15 and the guide block 16 gradually slides into the position where the toggle lever 15 engages along the inclined surface 161 to form an interlocking structure.
  • the outermost part of the end 14 of the conveyor mesh chain 13 is set in a circular arc shape, so that when the high point of the toggle rod 15 meets randomly, the conveyor mesh chain 13 is slid away from the toggle rod 15, and it is easier to enter the toggle rod 15. engagement position.
  • the left and right sides of the end 14 of the conveyor net chain 13 are also in a concave arc shape, and an interlocking structure is formed after engaging with the circular arc of the toggle rod 15 .
  • the uprights 17 are evenly distributed along the frame 12 of the circumference of the drum 11 .
  • Each of the uprights 17 is fixedly connected to a guide block 16 .
  • the toggle lever 15 can also be welded to the upright post 17 in parallel. It should be pointed out that not every column 17 and every guide block 16 is connected to the toggle lever 15 . It is also possible to connect all the toggle rods 15, but in practical applications, the toggle rods 15 are arranged at intervals, accounting for about 1/3 of the number of the uprights 17, and the functional requirements can be achieved by even arrangement.
  • the height of the toggle rod 15 starts from a position of 1/4 the height of the spiral layer at the entrance of the conveyor network chain 13 and ends at a position about 1/8 of the height of the topmost track of the spiral tower.
  • One end of the toggle rod 15 is connected to the inclined surface 161 of the guide block 16, and the other end is cut to fit the inclined surface of the column 15, forming a pointed wedge shape when viewed from the front, and then bent to be parallel to the column 17 and then welded to the column. 17 on.
  • the end of the toggle lever 15 is also an inclined plane, and the conveyor net chain 13 slides along the toggle lever 15 and naturally slips off the toggle lever 15 along the inclined plane.
  • the slope at the end of the toggle lever 15 also acts to expand the width of the track.
  • the inner side of the conveyor mesh chain 13 gradually becomes a tension state from the folded state along the spiral tower track, so that when entering the straight section, the tension on the inner and outer sides of the conveyor mesh chain 13 is restored to the same.
  • the conveying network chain 13 gradually enters the toggle rod 15 after entering 1/4 to 1/2 of the circumference of the drum 11 . Unscrew the end of the toggle lever 15 beforehand.
  • the conveying network chain 13 slides from the flat surface 162 of the guide block 16 to the inclined surface 161, gradually enters along the outer circumference of the toggle lever 15, and engages the toggle lever 15, and the entry method is from the outside to the inside, Achieve smooth transitions.
  • the spiral tower conveying equipment can effectively solve the technical problem of driving the entrance of the single-cylinder spiral tower inside. This avoids the problem that the toggle lever 15 hinders the entry of the inner chain link.
  • the conveying net chain 13 is stressed on the outside of the drum 11, and the inner net chain is piled up. It cannot enter the circular arc of the drum 11 at the same time. If the boss at the entrance plays a driving role, the actual length of the conveying net chain 11 accumulated on the inside will not reach the arc length of the outer net chain, resulting in the actual length of the outer net chain. Not enough, which is why the network chain is over-stretched.
  • the technical problem solved by the present invention is that the conveying net chain 13 enters the drum 11 along the plane of the guide block 16, and the inner net chain is piled up (the application state at this stage is similar to the friction structure). Affected by the external pulling force, the inner side of the conveyor mesh chain 13 will slide to the corresponding position with the outer mesh chain after rotating a certain angle. Entering the toggle lever 15, the inner and outer positions of the mesh chain in this state are synchronized, which avoids the above-mentioned insufficient length of the inner mesh chain causing the outer mesh chain to fail to reach the actual required length, and avoids the conveyor mesh chain from breaking due to excessive tension.
  • the conveyor mesh chain 13 in the relaxed state freely and randomly slides into the guide block 16 and the toggle rod 15 , and the conveyor mesh chain is symmetrically distributed on the circumferential plane of the drum 11 .
  • the interlocking structure between the end of the conveyor chain 13 and the toggle rod 15 solves the problem of the force structure that the rotating drum 11 pushes the conveyor chain 13 outward, so that the end of the conveyor chain 13 is stressed inward (toward the center of the circle). ).
  • the conveyor net chain 13 unscrews the end of the toggle rod 15 before 1/4 circle before the rotating drum 11, so that the conveyor net chain 13 at the exit is disengaged from the engaged toggle rod 15, which ensures the smooth unscrewing. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Screw Conveyors (AREA)

Abstract

一种螺旋塔输送设备,包括转筒(11),转筒(11)的周向布置有用于带动输送网链(13)转动的辅助套结构,输送网链(13)的内侧设有端头(14),辅助套结构包括拨动杆(15)、导向块(16)和立柱(17),立柱(17)沿着转筒(11)的周向均匀设置,立柱(17)朝向输送网链(13)的侧面上固定有导向块(16),导向块(16)根据设备运行要求,可安装在立柱(17)的下端或上端位置,导向块(16)朝向输送网链(13)的侧面具有斜面(161)和平面(162),斜面(161)位于平面(162)的上方,且斜面(161)的一端与平面(162)连接,斜面(161)的另一端与导向块(16)的顶面连接,斜面(161)与平面(162)之间的夹角为钝角,斜面(161)上设有孔洞(163),拨动杆(15)设置于孔洞(163)内。辅助套结构的拨动杆(15)的弧形面和输送网链(13)的端头(14)的弧形面互扣咬合,输送网链(13)在螺旋塔内输送时被拨动杆(15)勾住,不会从辅助套结构上脱离,输送网链(13)不会发生跳动。

Description

一种螺旋塔输送设备 技术领域
本发明涉及运输装置技术领域,具体涉及一种螺旋塔输送设备。
背景技术
现有行业内使用的螺旋塔输送设备分内侧驱动和外侧驱动两种输送系统。外侧驱动的螺旋塔输送系统是指在螺旋塔的输送网链的外侧边缘,可以是一侧,也可以是多个侧面边缘,设置多组旋转齿轮,齿轮与输送网链的外侧边缘啮合旋转驱动,带动输送网链在螺旋塔轨道上输送传送。内侧驱动输送系统又分为摩擦式驱动和强制驱动两种,其中内侧强制驱动的螺旋塔输送系统是指在螺旋塔的中间部分设置一体式结构的转筒,运用电机马达驱动转筒匀速旋转。转筒圆周外侧设置辅助套直接驱动输送网链螺旋运动。转筒外侧的辅助套上有三角尖形凸起并垂直向上延伸。辅助套上的三角凸起会与输送网链的菱形端面发生抵接,切入咬合时辅助套上的三角凸起会与输送网链的菱形端面大概率情况下互相错位,顺利切入,但两个凸起的三角尖偶尔在同一位置互顶,导致出现无法错开的现象。输送网链继续向上转动,辅助套上的三角凸起对输送网链的端头产生一定压力,且当压力达到临界值时会发生输送网链的端头蹦入辅助套或者断裂现象。
当输送网链的张力逐渐增大到超过辅助套的摩擦力时,输送网链又会从辅助套上瞬间滑落,造成输送网链的跳动,现有的输送网链的端头侧面为平行平面,拨动杆为矩形形状,输送网链的端头在重载转 动或快速转动时容易脱出跳齿。
发明内容
为此,本发明提供一种螺旋塔输送设备,以解决现有技术中的内侧强制驱动的螺旋塔输送系统当输送网链大负载运转时,输送网链从辅助套拨动杆上滑出跳齿的问题,网链进入辅助套时与其互顶的问题,本发明同时解决了输送网链进入转筒后过张紧过大的问题。
为了实现上述目的,本发明提供如下技术方案:
根据本发明,提供了一种螺旋塔输送设备,包括转筒,所述转筒的周向布置有用于带动输送网链转动的辅助套结构,所述输送网链的内侧设有端头,所述辅助套结构包括拨动杆、导向块和立柱,其中,所述立柱沿着所述转筒的周向均匀设置,所述立柱朝向所述输送网链的侧面上固定有所述导向块,所述导向块根据设备运行要求,可安装在所述立柱的下端位置或上端位置,所述导向块朝向所述输送网链的侧面具有斜面和平面,所述斜面位于所述平面的上方,且所述斜面的一端与所述平面连接,所述斜面的另一端与所述导向块的顶面连接,所述斜面与所述平面之间的夹角为钝角,所述斜面上设有孔洞,所述拨动杆设置于所述孔洞内。
进一步地,所述拨动杆呈圆柱形或者D形,所述端头呈球形。
进一步地,所述输送网链的端头的侧面为内弧形或者斜面;端头的顶部为圆弧或斜面;端头的顶部与所述立柱的表面贴合,没有间隙。
进一步地,所述孔洞贯穿所述斜面设置。
进一步地,螺旋塔输送设备还包括马达和齿轮,所述马达驱动转筒转动,当所述输送网链在直线段时,所述输送网链设置于所述齿轮的上表面。
进一步地,所述导向块朝向所述立柱的侧面上设有凹槽,所述凹槽中卡设有所述立柱。
进一步地,所述凹槽呈矩形槽,所述凹槽的深度为所述导向块厚度的0.3-0.8倍。
进一步地,所述斜面与水平面的夹角为5-20°。
进一步地,所述拨动杆宽度方向的边缘与所述导向块的边缘平齐。
进一步地,所述拨动杆的啮合面为斜面或者弧形面,使得所述拨动杆的啮合面的受力方向相对于螺旋塔的转动方向向内偏移。
进一步地,所述输送网链进入所述转筒的1/4至1/2圆周后渐入所述拨动杆,所述输送网链在旋出所述转筒前1/4圆前旋出所述拨动杆的端头。
进一步地,所述输送网链从所述拨动杆的外周渐渐进入,咬合所述拨动杆,进入方式是由外向内。
本发明具有如下优点:
螺旋塔输送设备能够有效的解决内侧驱动单筒螺旋塔的入口位置的问题:自由状态的输送网链随机滑入导向块上的拨动杆后进入转筒,解决了输送网链内侧链节少进的滞后现象。转筒上的输送网链处于松弛的输送状态,避免输送网链外侧由于张力过大造成的断裂。输 送网链端头和拨动杆的互扣结构,解决了转筒将输送网链向外推的受力结构问题,使网链端头受力向内(向圆心)。辅助套结构的拨动杆的弧形面和输送网链的端头的弧形面互扣咬合,输送网链被勾住,因此网链与拨动杆不会互相脱离,输送网链也就不会发生跳齿现象。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
本说明书所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本发明可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本发明所能产生的功效及所能达成的目的下,均应仍落在本发明所揭示的技术内容得能涵盖的范围内。
图1为根据一示范性实施例示出的一种螺旋塔输送设备的结构示意图;
图2为根据一示范性实施例示出的一种辅助套结构的分布结构示意图;
图3为根据一示范性实施例示出的一种辅助套结构处于初始状 态的立体结构示意图;
图4为根据一示范性实施例示出的另一种辅助套结构处于正常状态的立体结构示意图;
图5为根据一示范性实施例示出的一种辅助套结构的平面图;
图6为根据一示范性实施例示出的一种辅助套结构的另一视角的平面图;
图7为根据一示范性实施例示出的拨动杆的顶端与立柱的连接结构示意图;
图8为根据一示范性实施例示出的拨动杆的顶端与立柱的另一连接结构示意图;
图9为根据一示范性实施例示出的输送网链和拨动杆在左侧咬合的结构示意图;
图10为根据一示范性实施例示出的输送网链和拨动杆在右侧咬合的结构示意图;
图11为根据一示范性实施例示出的输送网链和拨动杆在咬合前的结构示意图;
图12为根据一示范性实施例示出的输送网链和拨动杆在咬合时的结构示意图;
图13-图19为根据一示范性实施例示出的输送网链和拨动杆在不同咬合状态时的立体结构示意图;
图中:11、转筒;12、框架;13、输送网链;14、端头;15、拨动杆;16、导向块;161、斜面;162、平面;163、孔洞;164、凹槽;17、 立柱;18、马达;19、齿轮;20、螺栓。
具体实施方式
以下由特定的具体实施例说明本发明的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本发明的其他优点及功效,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
根据本发明实施例,提供了一种螺旋塔输送设备,如图1至图19所示,包括转筒11,所述转筒11的周向布置有用于带动输送网链13转动的辅助套结构,所述输送网链13的内侧设有端头14,所述辅助套结构包括拨动杆15、导向块16和立柱17,其中,所述立柱17沿着所述转筒11的周向均匀设置,所述立柱17朝向所述输送网链13的侧面上固定有所述导向块16,所述导向块16朝向所述输送网链13的侧面具有斜面161和平面162,所述斜面161位于所述平面162的上方,且所述斜面161的一端与所述平面162连接,所述斜面161的另一端与所述导向块16的顶面连接,所述斜面161与所述平面162之间的夹角为钝角,所述斜面161上设有孔洞163,所述拨动杆15设置于所述孔洞163内。
螺旋塔输送设备能够有效的解决内侧驱动单筒螺旋塔的入口位置,输送网链13的内侧链节少进造成滞后现象。输送网链13处于松弛的输送状态,避免输送网链13由于张力过大造成的断裂。此外, 松弛状态的输送网链13自由的随机滑入导向块16和拨动杆15,转筒11的圆周平面上形成输送网链13对称的分布。输送网链13的端头14和拨动杆15互扣结构,解决了转筒11将输送网链13向外推的受力结构问题,使输送网链13的端头14受力向内(向圆心)。辅助套结构的拨动杆15的弧形面和输送网链13的端头14的弧形面互扣咬合,输送网链13被勾住,因此输送网链13与拨动杆15不会互相脱离,输送网链13也就不会发生跳齿现象。
在一些可选实施例中,所述拨动杆15呈圆柱形或者D形,其侧面呈圆弧形;所述端头14呈球形,其两个侧面呈均圆弧形,使得二者之间能够圆滑过渡连接,拨动杆15和端头14连接咬合后之间没有间隙。
在一些可选实施例中,所述导向块16与所述立柱17之间采用螺栓20连接,其中,螺栓20的数量为6个,将导向块16与立柱17可拆卸地连接在一起。
在一些可选实施例中,所述孔洞163贯穿所述斜面161设置。螺旋塔输送设备还包括马达18和齿轮19,所述马达18驱动转筒11转动,当所述输送网链13在直线段时,所述输送网链13设置于所述齿轮19的上表面,当输送网链13进入螺旋塔后,输送网链13铺设在耐磨条上,耐磨条是U型结构,卡在轨道上。所述导向块16朝向所述立柱17的侧面上设有凹槽164,所述凹槽164中卡设有所述立柱17。所述凹槽164呈矩形槽,所述凹槽164的深度为所述导向块16厚度的0.3-0.8倍,导向块16的厚度是指平面162与其相对侧面之 间的最大厚度,凹槽164的厚度不易过大,否则容易导致导向块16出现断裂的情况。
螺旋塔输送设备还包括框架12,所述框架12设置于转筒11的外侧,用于支撑整个设备,所述斜面161与水平面的夹角为5-20°,如15°或者18°等,当然,斜面161与水平面的夹角也可以设置为其他角度,根据需要进行调整。
在一些可选实施例中,所述拨动杆15宽度方向的边缘与所述导向块16的边缘平齐,输送网链13的端头14顶部和立柱17之间贴合没有间隙。
在一些可选实施例中,所述拨动杆15的啮合面为斜面、弧形面、或其他任何可以啮合的形状,使得所述拨动杆15啮合面的受力方向相对于螺旋塔的转动方向向内偏移。
螺旋塔输送设备可根据实际应用的环境高度和输送产品的高度,设计不同的塔高和层高。一座螺旋塔输送设备一般设计有十几层。
输送网链13首先从螺旋塔外的直线部分通过,然后进入螺旋塔输送设备的入口贴着导向块16的平面162滑动,在螺旋塔第一层圆形轨道上运行大于1/4圆周后滑入拨动杆15和导向块16的斜面161,沿斜面161渐渐滑入啮合拨动杆15的位置形成互扣结构。
输送网链13的端头14的最外部设置成圆弧形,这样同拨动杆15的高点随机相遇时,使输送网链13滑离拨动杆15,更加容易进入拨动杆15的啮合位置。其中,拨动杆15的啮合位置有两个,分别位于其两侧。
输送网链13的端头14的左右两个侧面也是一个内凹的圆弧形,与拨动杆15的圆形弧度啮合后产生一种互扣结构。
此外,立柱17沿着转筒11圆周的框架12均匀分布。每根立柱17都固定连接一个导向块16。拨动杆15也可以平行焊接到立柱17上。需要指出的是,不是每根立柱17、每个导向块16都连接拨动杆15。全部连接拨动杆15也是可以的,但是实际应用中,拨动杆15间隔布置,约占立柱17的1/3数量,均匀布置即可实现功能需要。
拨动杆15的高度从输送网链13的入口高度1/4螺旋层高位置开始,到距离螺旋塔最顶层轨道约1/8层高位置结束。拨动杆15的一端连接在导向块16的斜面161上,另一端切割成贴合立柱15的斜面状,从正面看形成一个尖头的楔形,再折弯成与立柱17平行后焊接在立柱17上。拨动杆15的末端也是一个斜面,输送网链13沿着拨动杆15滑动,自然顺着斜面从拨动杆15上滑脱。拨动杆15末端的斜面也起到扩大轨道宽度的作用。输送网链13的内侧从收拢状态沿着螺旋塔轨道逐渐变成张紧状态,这样进入直线段时,输送网链13的内外两侧的张力恢复到一样。
输送网链13从螺旋塔输送设备上沿着轨道传送到出口时,输送网链13在螺旋塔输送设备的转筒11上距离出口还有一段行程时,逐渐脱离拨动杆15,从螺旋塔出口出来进入螺旋塔输送设备的回程直线段。
所述输送网链13进入所述转筒11的1/4至1/2圆周后渐入所述拨动杆15,所述输送网链13在旋出所述转筒11前1/4圆前旋出所 述拨动杆15的端头。
在实施例中,所述输送网链13从导向块16的平面162滑动到斜面161,沿所述拨动杆15的外周渐渐进入,咬合所述拨动杆15,进入方式是由外向内,实现平滑过渡。
螺旋塔输送设备能够有效的解决内侧驱动单筒螺旋塔的入口的技术问题,输送网链13在入口处自由进入,进入转筒11的1/4-1/2后才渐渐进入拨动杆15的位置,避免了拨动杆15阻碍内侧链节进入的问题,输送网链13在转筒11上的外侧受力,内侧网链堆积,受直线段网链牵引拉力影响,内侧网链与外侧网链不能同时进入转筒11的圆弧,如果在入口位置凸台就起到驱动作用,会造成内侧堆积的输送网链11的实际长度达不到外侧网链的弧长,造成外侧网链实际长度不够,这也正是网链过度张紧的原因。
本发明解决的技术问题的方法是,输送网链13沿导向块16平面进入转筒11,内侧网链堆积(这个阶段的应用状态类似于摩擦式结构)。受外侧拉力影响,输送网链13的内侧转动一定角度后会滑动到同外侧网链相应位置,输送网链13在进入入口后沿导向块16的平面旋转1/4至1/2圆后再进入拨动杆15,这个状态的网链内外侧位置同步,避免了上述内侧网链长度不足造成外侧网链达不到实际需求长度,避免输送网链由于张力过大造成的断裂。
松弛状态的输送网链13自由的随机滑入导向块16和拨动杆15,转筒11的圆周平面上形成输送网链对称的分布。输送网链13的端头和拨动杆15互扣结构,解决了转筒11将输送网链13向外推的受力 结构问题,使输送网链13的端头受力向内(向圆心)。辅助套结构的拨动杆15的弧形面和输送网链13的端头的弧形面互扣咬合,并且输送网链13的端头贴紧立柱17的表面,输送网链13被拨动杆15勾住,不会从辅助套结构上向内向外脱离,输送网链13也就不会发生跳动。
输送网链13在旋出所述转筒11前1/4圆前旋出所述拨动杆15的端头,使出口处输送网链13脱离啮合的拨动杆15,保证了旋出顺利。
虽然,上文中已经用一般性说明及具体实施例对本发明作了详尽的描述,但在本发明基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本发明精神的基础上所做的这些修改或改进,均属于本发明要求保护的范围。

Claims (12)

  1. 一种螺旋塔输送设备,其特征在于,包括转筒,所述转筒的周向布置有用于带动输送网链转动的辅助套结构,所述输送网链的内侧设有端头,所述辅助套结构包括拨动杆、导向块和立柱,其中,所述立柱沿着所述转筒的周向均匀设置,所述立柱朝向所述输送网链的侧面上固定有所述导向块,所述导向块根据设备运行要求,可安装在所述立柱的下端位置或上端位置,所述导向块朝向所述输送网链的侧面具有斜面和平面,所述斜面位于所述平面的上方,且所述斜面的一端与所述平面连接,所述斜面的另一端与所述导向块的顶面连接,所述斜面与所述平面之间的夹角为钝角,所述斜面上设有孔洞,所述拨动杆设置于所述孔洞内。
  2. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述拨动杆呈圆柱形或者D形,所述端头呈球形。
  3. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述输送网链的端头的侧面为内弧形或者斜面;端头的顶部为圆弧或斜面;端头的顶部与所述立柱的表面贴合,没有间隙。
  4. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述孔洞贯穿所述斜面设置。
  5. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,还包括马达和齿轮,所述马达驱动转筒转动,当所述输送网链在直线段时,所述输送网链设置于所述齿轮的上表面。
  6. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述 导向块朝向所述立柱的侧面上设有凹槽,所述凹槽中卡设有所述立柱。
  7. 根据权利要求6所述的一种螺旋塔输送设备,其特征在于,所述凹槽呈矩形槽,所述凹槽的深度为所述导向块厚度的0.3-0.8倍。
  8. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述斜面与水平面的夹角为5-20°。
  9. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述拨动杆宽度方向的边缘与所述导向块的边缘平齐。
  10. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述拨动杆的啮合面为斜面、弧形面、V形接触面或者T形接触面,使得所述拨动杆的啮合面的受力方向相对于螺旋塔的转动方向向内偏移。
  11. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述输送网链进入所述转筒1/4至1/2圆周后渐入所述拨动杆,所述输送网链在旋出所述转筒前1/4圆前旋出所述拨动杆的端头。
  12. 根据权利要求1所述的一种螺旋塔输送设备,其特征在于,所述输送网链从所述拨动杆的外周渐渐进入,咬合所述拨动杆,进入方式是由外向内。
PCT/CN2020/119254 2020-08-12 2020-09-30 一种螺旋塔输送设备 WO2022032831A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010808009.0A CN112027452A (zh) 2020-08-12 2020-08-12 一种螺旋塔输送设备
CN202010808009.0 2020-08-12
CN202021671688 2020-08-12
CN202021671688.3 2020-08-12

Publications (1)

Publication Number Publication Date
WO2022032831A1 true WO2022032831A1 (zh) 2022-02-17

Family

ID=80246869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119254 WO2022032831A1 (zh) 2020-08-12 2020-09-30 一种螺旋塔输送设备

Country Status (1)

Country Link
WO (1) WO2022032831A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205135A (en) * 1991-11-13 1993-04-27 Liquid Carbonic Corporation Helical conveyor freezer
CN1963354A (zh) * 2006-11-27 2007-05-16 南通冷冻设备有限公司 螺旋冻结装置的摩擦转筒
US20100147161A1 (en) * 2007-04-11 2010-06-17 Mayekawa Mfg. Co., Ltd. Spiral transfer heat treatment apparatus
CN102910414A (zh) * 2012-06-18 2013-02-06 金拯 一种输送带输送机构及其应用装置
CN107352231A (zh) * 2017-07-18 2017-11-17 吴宝东 螺旋输送网链
CN109230299A (zh) * 2018-08-02 2019-01-18 扬州市伟东传送设备有限公司 螺旋塔入口辅助套
CN209758453U (zh) * 2019-01-16 2019-12-10 扬州市伟东传送设备有限公司 螺旋塔入口拨动杆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5205135A (en) * 1991-11-13 1993-04-27 Liquid Carbonic Corporation Helical conveyor freezer
CN1963354A (zh) * 2006-11-27 2007-05-16 南通冷冻设备有限公司 螺旋冻结装置的摩擦转筒
US20100147161A1 (en) * 2007-04-11 2010-06-17 Mayekawa Mfg. Co., Ltd. Spiral transfer heat treatment apparatus
CN102910414A (zh) * 2012-06-18 2013-02-06 金拯 一种输送带输送机构及其应用装置
CN107352231A (zh) * 2017-07-18 2017-11-17 吴宝东 螺旋输送网链
CN109230299A (zh) * 2018-08-02 2019-01-18 扬州市伟东传送设备有限公司 螺旋塔入口辅助套
CN209758453U (zh) * 2019-01-16 2019-12-10 扬州市伟东传送设备有限公司 螺旋塔入口拨动杆

Similar Documents

Publication Publication Date Title
US10766706B2 (en) Methods for positively-driving spiral conveyors
CN112027452A (zh) 一种螺旋塔输送设备
CN101400923B (zh) 利用斜齿驱动的低摩擦直接驱动型输送机
US9394109B2 (en) Positive-drive spiral conveyor
CN113022954B (zh) 一种螺旋塔输送机
WO2022032831A1 (zh) 一种螺旋塔输送设备
CN107438573B (zh) 具有传送带的输送系统
EP3573918B1 (de) Seildurchlaufwinde
CN104736459A (zh) 强制性驱动低张力传送输送机
CN115593869A (zh) 螺旋式网链输送机
US11066275B2 (en) Conveyance belt for a conveyor
WO2008070444A2 (en) Intermediate-drive conveyor and method
AU2014240227B2 (en) Positive-drive spiral conveyor and belt
DE102014216733B4 (de) Tragrollenantrieb für eine Bandförderanlage
CN112278788B (zh) 一种用于起重链条的进料传送装置
JPH10139381A (ja) ロープ巻取りドラム
KR100407181B1 (ko) 처짐방지용 이송관을 갖는 원심성형관용 콘크리트투입기
DE1431664C (de) Stabförderer
DE102016210647B3 (de) Keilkupplung-Synchronisation
JP2023535525A (ja) モジュール式搬送ベルト用の直接駆動ドラム
DE3018224C2 (de) Endlos umlaufendes Förderband
JPS58207207A (ja) チエン
DE2233659A1 (de) Seilscheibe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949328

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949328

Country of ref document: EP

Kind code of ref document: A1