WO2022032820A1 - 基于光谱共聚焦位移传感器的自动对刀系统及方法 - Google Patents

基于光谱共聚焦位移传感器的自动对刀系统及方法 Download PDF

Info

Publication number
WO2022032820A1
WO2022032820A1 PCT/CN2020/117620 CN2020117620W WO2022032820A1 WO 2022032820 A1 WO2022032820 A1 WO 2022032820A1 CN 2020117620 W CN2020117620 W CN 2020117620W WO 2022032820 A1 WO2022032820 A1 WO 2022032820A1
Authority
WO
WIPO (PCT)
Prior art keywords
displacement sensor
confocal displacement
spectral confocal
axis motion
motion module
Prior art date
Application number
PCT/CN2020/117620
Other languages
English (en)
French (fr)
Inventor
陈明
安庆龙
明伟伟
蔡晓江
周如好
黄祥辉
Original Assignee
上海交通大学
上海航天控制技术研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学, 上海航天控制技术研究所 filed Critical 上海交通大学
Priority to US17/305,323 priority Critical patent/US12011795B2/en
Publication of WO2022032820A1 publication Critical patent/WO2022032820A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q5/00Driving or feeding mechanisms; Control arrangements therefor
    • B23Q5/22Feeding members carrying tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness

Definitions

  • the invention relates to a technology in the field of machining and manufacturing, in particular to an automatic tool setting system and method based on a spectral confocal displacement sensor.
  • the servo valve is the core hydraulic control element of the private service execution system, which converts the electrical input signal and converts it into controlled high-power hydraulic energy to drive the execution components.
  • the amount of mechanical zero overlap of the servo valve precision coupler is limited by the integrity of the functional edge. Excessive bluntness, residual burr and missing tread will affect the performance of the valve and even the attitude control function of the projectile/arrow.
  • edge processing there are two processes for edge processing. One is to use a cylindrical grinder for grinding, and to use manual grinding in the final overlap test. This method is inefficient and the rejection rate is as high as 50%. Another method is to lap burr removal special equipment on the grinding machine.
  • the manual tool setting method is mostly used for tool setting.
  • This method is not only cumbersome procedures, but also has high requirements on operation technology, and requires continuous debugging to achieve tool setting accuracy.
  • the error of the cutting edge, the cylindrical busbar, and the tool setting of the axis often leads to an error in the feed.
  • the removal is not effective, and the process currently lacks a set of methods to achieve automatic, fast and accurate tool setting.
  • the present invention proposes an automatic tool setting system and method based on a spectral confocal displacement sensor, which has the advantages of modular structure, high reconfigurability, no need for manual assistance and high precision, and can greatly reduce Manufacturing auxiliary process time saves manufacturing cost and can improve manufacturing accuracy.
  • the invention relates to an automatic tool setting system based on a spectral confocal displacement sensor, comprising: a three-dimensional moving platform, a tool setting assembly based on the spectral confocal displacement sensor, a workpiece clamping device, a machine tool and a control module, wherein: the three-dimensional moving platform It is fixedly arranged on the outside of the machine tool, the tool setting assembly is connected with the three-dimensional mobile platform, the workpiece clamping device clamps the workpiece and is set between the fixed top and the mobile top of the machine tool through a mechanical connection device, and the spectral confocal displacement sensor is connected with the control module. After judging the collected working condition data, output control commands to the 3D mobile platform.
  • the three-dimensional mobile platform includes: three mutually perpendicular motion modules and their corresponding bases and a first adapter plate, wherein: the X-axis motion module base is fixedly arranged on the outside of the machine tool, and the X-axis motion module and the X-axis are fixed.
  • the motion module base is connected
  • the Y-axis motion module base is connected with the X-axis motion module
  • the Y-axis motion module is connected with the Y-axis motion module base
  • the Z-axis motion module base is fixedly arranged on the Y-axis through the first adapter plate
  • the Z-axis motion module is connected to the base of the Z-axis motion module.
  • Described three motion modules all include: linear motor, grating ruler and crawler, wherein: linear motor is connected with control module and receives control instruction to drive crawler to move, grating ruler senses movement position and feeds back calibration information to control module.
  • the tool setting assembly includes: a diamond turning tool, a spectral confocal displacement sensor, a second adapter plate, a spectral confocal displacement sensor fixing cover, a spectral confocal displacement sensor and a turning tool support seat, wherein: the second adapter plate It is connected with the Z-axis motion module, the spectral confocal displacement sensor and the turning tool support seat are respectively connected with the second adapter plate, and the spectral confocal displacement sensor fixed cover is respectively connected with the spectral confocal displacement sensor and the turning tool support seat.
  • the knives are respectively connected with the spectral confocal displacement sensor and the turning tool support, and the spectral confocal displacement sensor is clamped and fixed by the spectral confocal displacement sensor fixing cover, the spectral confocal displacement sensor and the turning tool support.
  • the axis of the spectral confocal displacement sensor and the diamond cutting edge are in the same plane, and the error is within the range of 0.1 mm.
  • the workpiece clamping device includes: a machine tool fixed top, a machine tool movable top, a rotation limit block, a clamping ring and a workpiece to be processed, wherein the rotation limit block is fixedly arranged on the machine bed by screws, and the workpiece to be processed is fixedly arranged Between the fixed center and the moving center of the machine tool, the clamping ring is clamped on the cylindrical workpiece by screws, and the handle extended from the clamping ring is in contact with the rotation limit block. When the machine tool rotates, the limit block drives the clamp ring. Rotate, and then drive the workpiece to rotate.
  • the control module includes: a displacement data reading unit, a state decision-making unit and a motion execution unit, wherein: the displacement data reading unit is connected with the state decision-making unit, and transmits the pose data read from the spectral displacement sensor to the state decision-making unit , the state decision unit is connected with the motion execution unit, judges the acquired pose information and sends motion commands to the three-axis motion platform.
  • the invention as a whole solves the problems that the tool setting method of the existing moving platform relies on manual completion for safety, the procedures are cumbersome, and the higher precision requires rich operating experience.
  • the invention adopts the spectral confocal displacement sensor and the automatic control motion platform to drive the linear motion module with micron-level positioning accuracy, realizes a higher-precision tool setting process, and has low operation requirements and short consumption time.
  • the auxiliary process time of mechanical manufacturing is reduced, the manufacturing positioning accuracy is improved, and the standardization of components is used to facilitate assembly and reset.
  • Fig. 1 is a top view of an automatic tool setting device based on a spectral confocal sensor
  • Fig. 2 is the structure diagram observed from A-A' section based on spectral confocal sensor automatic tool setting device;
  • FIG. 3 is a schematic diagram of the control flow of the automatic tool setting device.
  • this embodiment relates to an automatic tool setting device based on an optical focus displacement sensor for a servo valve core edge burr turning and removing device that requires high-precision working edges, including: a Y axis Motion module base 1, Y-axis motion module 2, grating ruler 3, X-axis motion module 4, X-axis motion module base 5, machine tool fixed top end bed 6, rotation limit block 7, machine tool fixed top 8 , Workpiece to be processed 9, machine tool moving top 10, machine tool moving top end bed 11, moving top control handle 12, Z-axis motion module base 13, Z-axis motion module 14, second adapter plate 15, bolts 16,
  • the device is assembled in the following ways: the X-axis motion model base 5 is fixed on the machine bed by bolts, the X-axis motion module 4 is fixed on the X-axis motion module base 5, and the Y-axis motion base 1 is fixed by screws On the X-axis motion module 4, the Y-axis motion module 2 is fixed on the Y-axis motion base 1, the first adapter plate 22 is fixed on the Y-axis motion module 2 by screws, and the Z-axis motion module base 13 is fixed on the first adapter plate 22, the Z-axis motion module 14 is fixed on the Z-axis motion module base 13, the second adapter plate 15 is fixed on the Z-axis motion module 14 by screws, and the spectrum
  • the confocal displacement sensor and the turning tool support 21 are fixed on the second adapter plate 15 by bolts, the diamond turning tool 20 is fixed on the spectral confocal displacement sensor and the turning tool support 21, and the spectral confocal displacement sensor 18 is placed On the spectral confocal
  • the specific working process of the device is as follows: install the valve core on the cylindrical grinder, select the corresponding valve core model and press the automatic tool setting, the three-axis mobile platform first automatically returns to the zero position, and then the X axis moves forward to the cylindrical surface of the valve core , when the Y-axis moves forward until the spectral confocal displacement sensor shows a reading, the focusing process is completed. Then the Z-axis motion platform moves upward. If the reading of the confocal displacement sensor increases, it starts to move downward, and the reading will begin to decrease. When the reading of the displacement sensor increases again, stop the Z-axis movement. At this time, the Z-axis center height setting is completed. Move down and move forward along the Y-axis.
  • the original tool setting process takes four minutes to achieve micron-level tool-setting accuracy.
  • a junior operator can complete the sub-micron-level tool setting operation in 20 seconds, and the accuracy is improved by one 10 times faster, 12 times faster, and less demanding on operators.
  • the device can quickly realize the high-precision tool setting function and reduce the operation requirements by adding the Z-axis motion degree of freedom and the spectral confocal displacement sensor and the corresponding control process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

一种基于光谱共聚焦位移传感器的自动对刀系统,包括:三维移动平台、基于光谱共聚焦位移传感器的对刀组件、工件夹持装置、机床以及控制模块,三维移动平台固定设置于机床外侧,对刀组件与三维移动平台相连,工件夹持装置夹持待加工工件(9),待加工工件(9)通过机械连接装设于机床固定顶尖(8)和机床移动顶尖(10)之间,光谱共聚焦位移传感器(18)与控制模块相连,该控制模块对采集到的工况数据进行判断后输出控制指令至三维移动平台。

Description

基于光谱共聚焦位移传感器的自动对刀系统及方法 技术领域
本发明涉及的是一种机械加工制造领域的技术,具体是一种基于光谱共聚焦位移传感器的自动对刀系统及方法。
背景技术
伺服阀是私服执行系统核心的液压控制元件,将电气输入信号转换并方法为受控的大功率液压能量去驱动执行部件。然而伺服阀精密偶件机械零位叠合量受制于功能棱边完整性,过度钝圆、残余毛刺和亏缺踏边都会影响私服阀性能乃至弹/箭姿态控制功能。当前对于棱边加工存在两种工艺,一种是使用外圆磨床进行磨削,并在最后叠合量测试使用人工打磨,此种方法效率低下,废品率高达50%。另一种方法是在磨床上搭接毛刺去除专用设备。
现有技术多采用手工对刀的方法进行对刀。该方法不仅手续繁琐,而且对操作技术有较高的要求,需要不断调试来达到对刀精度。在航天伺服阀阀芯棱边加工过程中切削刃、圆柱母线、轴心对刀的误差往往会导致进给量存在误差,较大的进给量会导致工件报废,较小的进给量毛刺去除达不到效果,该工艺目前缺乏一套实现自动快速精准对刀的方法。
发明内容
本发明针对现有技术存在的上述不足,提出一种基于光谱共聚焦位移传感器的自动对刀系统及方法,具有结构模块化、可重配性高、无需人工辅助且精度高等优点,能够大幅减少制造辅助工艺时间节约制造成本而且能够提高制造精度。
本发明是通过以下技术方案实现的:
本发明涉及的一种基于光谱共聚焦位移传感器的自动对刀系统,包括:三维移动平台、基于光谱共聚焦位移传感器的对刀组件、工件夹持装置、机床以及控制模块,其中:三维移动平台固定设置于机床外侧,对刀组件与三维移动平台相连,工件夹持装置夹持工件通过机械连接装设置于机床固定顶尖和移动顶尖之间,光谱共聚焦位移传感器与控制模块相连,该控制模块对采集到的工况数据进行判断后输出控制指令至三维移动平台。
所述的三维移动平台包括:互相垂直的三个运动模组及其对应的底座以及第一转接板,其中:X轴运动模组底座固定设置于机床外侧,X轴运动模组与X轴运动模组底座相连,Y轴运动模组底座与X轴运动模组相连,Y轴运作模组与Y轴运动模组底座相连,Z轴运动模组底座通过第一转接板固定设置于Y轴运动模组上,Z轴运动模组与Z轴运动模组底座相连。
所述的三个运动模组均包括:直线电机、光栅尺和履带,其中:直线电机与控制模块相 连并接收控制指令以驱动履带运动,光栅尺感应运动位置并将标定信息反馈至控制模块。
所述的对刀组件包括:金刚石车刀、光谱共聚焦位移传感器、第二转接板、光谱共聚焦位移传感器固定盖、光谱共聚焦位移传感器及车刀支撑座,其中:第二转接板与Z轴运动模组相连,光谱共聚焦位移传感器及车刀支撑座分别与第二转接板相连,光谱共聚焦位移传感器固定盖分别与光谱共聚焦位移传感器及车刀支撑座相连,金刚石车刀分别与光谱共聚焦位移传感器及车刀支撑座相连,光谱共聚焦位移传感器通过光谱共聚焦位移传感器固定盖和光谱共聚焦位移传感器及车刀支撑座实现夹持固定。
所述的光谱共聚焦位移传感器轴心与金刚石切削刃在同一平面内,误差在0.1mm范围内。
所述的工件夹持装置包括:机床固定顶尖、机床移动顶尖、旋转限位块、夹持环和待加工工件,其中:旋转限位块通过螺钉固定设置于机床床身上,待加工工件固定设置于机床固定顶尖和移动顶尖之间,夹持环通过螺钉夹持在圆柱状工件上同时夹持环伸出的把手与旋转限位块相接触,当机床旋转时由限位块带动夹持环转动,进而带动工件转动。
所述的控制模块包括:位移数据读取单元、状态决策单元和运动执行单元,其中:位移数据读取单元与状态决策单元相连,将从光谱位移传感器读取的位姿数据传送到状态决策单元,状态决策单元与运动执行单元相连,对获取的位姿信息进行判断并发送运动指令到三轴运动平台。
技术效果
本发明整体解决了现有运动平台的对刀方式安全依赖人工完成,手续繁琐且较高精度需要丰富的操作经验才可以完成的不足。本发明采用采用光谱共聚焦位移传感器和自动控制运动平台对直线运动模组进行微米级定位精度的驱动,实现更高精度的对刀工艺,操作要求低且消耗时间短。减少了机械制造辅助工艺时间,提高了制造定位精度,此外采用元件标准化利于装配和重置。
附图说明
图1为基于光谱共聚焦传感器自动对刀装置的俯视图;
图2为基于光谱共聚焦传感器自动对刀装置从A-A’截面观测的结构图;
图3为自动对刀装置控制流程示意图。
具体实施方式
如图1和图2所示,为本实施例涉及一种针对有高精度工作棱边要求的伺服阀芯棱边毛刺车削去除装置的基于光聚焦位移传感器的自动对刀装置,包括:Y轴运动模组底座1、Y轴运动模组2、光栅尺3、X轴运动模组4、X轴运动模组底座5、机床固定顶尖端床身6、旋转限 位块7、机床固定顶尖8、待加工工件9、机床移动顶尖10、机床移动顶尖端床身11、移动顶尖控制柄12、Z轴运动模组底座13、Z轴运动模组14、第二转接板15、螺栓16、光谱共聚焦位移传感器夹持盖17、光谱共聚焦位移传感器18、夹持环19、金刚石车刀20、光谱共聚焦位移传感器与车刀支撑座21、第一转接板22。
本装置通过以下方式进行组装:X轴运动模型底座5通过螺栓固定设置于机床床身上,X轴运动模组4固定设置于X轴运动模组底座5上,Y轴运动底座1通过螺钉固定设置于X轴运动模组4上,Y轴运动模组2固定设置于Y轴运动底座1上,第一转接板22通过螺钉固定设置于Y轴运动模组2上,Z轴运作模组底座13固定设置于第一转接板22上,Z轴运动模组14固定设置于Z轴运动模组底座13上,第二转接板15通过螺钉固定设置于Z轴运动模组14上,光谱共聚焦位移传感器及车刀支撑座21通过螺栓固定设置于第二转接板15上,金刚石车刀20固定设置于光谱共聚焦位移传感器及车刀支撑座21上,光谱共聚焦位移传感器18放置在光谱共聚焦位移传感器及车刀支撑座21上,光谱共聚焦传感器固定盖17将光谱共聚焦位移传感器18固定设置于光谱共聚焦位移传感器与车刀支撑座21上,夹持环19夹持在待加工工件9上,搬动移动顶尖控制柄12使移动顶尖10向右移动,待加工工件9放置在机床固定顶尖8上,夹持环19的一端搭在旋转限位块7上,光谱共聚焦位移传感器18、X运动模组、Y运动模组、Z运动模组与工控机连接在一起。
本装置的具体工作过程为:在外圆磨床上装夹阀芯,选择相应阀芯型号按下自动对刀后,三轴移动平台首先自动回零位,然后X轴向前运动至阀芯圆柱面处,Y轴向前运动至光谱共聚焦位移传感器出现读数时,即完成对焦过程。随后Z轴运动平台向上运动,如果共聚焦位移传感器读数增大则开始向下运动读数将开始减小,当位移传感器示数再次变大停止Z轴运动此时完成Z轴中心高对刀,接下来沿Y轴向前运动,当光谱共聚焦传感器读数等于光谱共聚焦位移传感器与切削刃的距离时,完成Y轴对刀,X轴对刀依据工件型号运动至指定位置完成对刀,至此自动对刀完成,相应流程如图3所示。
本实施例对于一个中等程度操作工,原始对刀工艺需要四分钟实现微米级对刀精度,使用本装置/方法初级操作人员即可在20秒完成亚微米级对刀操作,在精度上提升一个10倍,在速度上提升12倍,并对操作人员降低要求。
与现有技术相比,本装置通过添加Z轴运动自由度和光谱共聚焦位移传感器以及相应控制流程,可以快速实现高精度对刀功能并降低操作要求。
上述具体实施可由本领域技术人员在不背离本发明原理和宗旨的前提下以不同的方式对其进行局部调整,本发明的保护范围以权利要求书为准且不由上述具体实施所限,在其范围内的各个实现方案均受本发明之约束。

Claims (7)

  1. 一种基于光谱共聚焦位移传感器的自动对刀系统,其特征在于,包括:三维移动平台、基于光谱共聚焦位移传感器的对刀组件、工件夹持装置、机床以及控制模块,其中:三维移动平台固定设置于机床外侧,对刀组件与三维移动平台相连,工件夹持装置夹持工件通过机械连接装设置于机床固定顶尖和移动顶尖之间,光谱共聚焦位移传感器与控制模块相连,该控制模块对采集到的工况数据进行判断后输出控制指令至三维移动平台。
  2. 根据权利要求1所述的基于光谱共聚焦位移传感器的自动对刀系统,其特征是,所述的三维移动平台包括:互相垂直的三个运动模组及其对应的底座以及第一转接板,其中:X轴运动模组底座固定设置于机床外侧,X轴运动模组与X轴运动模组底座相连,Y轴运动模组底座与X轴运动模组相连,Y轴运作模组与Y轴运动模组底座相连,Z轴运动模组底座通过第一转接板固定设置于Y轴运动模组上,Z轴运动模组与Z轴运动模组底座相连。
  3. 根据权利要求2所述的基于光谱共聚焦位移传感器的自动对刀系统,其特征是,所述的三个运动模组均包括:直线电机、光栅尺和履带,其中:直线电机与控制模块相连并接收控制指令以驱动履带运动,光栅尺感应运动位置并将标定信息反馈至控制模块。
  4. 根据权利要求1所述的基于光谱共聚焦位移传感器的自动对刀系统,其特征是,所述的对刀组件包括:金刚石车刀、光谱共聚焦位移传感器、第二转接板、光谱共聚焦位移传感器固定盖、光谱共聚焦位移传感器及车刀支撑座,其中:第二转接板与Z轴运动模组相连,光谱共聚焦位移传感器及车刀支撑座分别与第二转接板相连,光谱共聚焦位移传感器固定盖分别与光谱共聚焦位移传感器及车刀支撑座相连,金刚石车刀分别与光谱共聚焦位移传感器及车刀支撑座相连,光谱共聚焦位移传感器通过光谱共聚焦位移传感器固定盖和光谱共聚焦位移传感器及车刀支撑座实现夹持固定。
  5. 根据权利要求1所述的基于光谱共聚焦位移传感器的自动对刀系统,其特征是,所述的光谱共聚焦位移传感器轴心与金刚石切削刃在同一平面内,误差在0.1mm范围内。
  6. 根据权利要求1所述的基于光谱共聚焦位移传感器的自动对刀系统,其特征是,所述的工件夹持装置包括:机床固定顶尖、机床移动顶尖、旋转限位块、夹持环和待加工工件,其中:旋转限位块通过螺钉固定设置于机床床身上,待加工工件固定设置于机床固定顶尖和移动 顶尖之间,夹持环通过螺钉夹持在圆柱状工件上同时夹持环伸出的把手与旋转限位块相接触,当机床旋转时由限位块带动夹持环转动,进而带动工件转动。
  7. 根据权利要求1所述的基于光谱共聚焦位移传感器的自动对刀系统,其特征是,所述的控制模块包括:位移数据读取单元、状态决策单元和运动执行单元,其中:位移数据读取单元与状态决策单元相连,将从光谱位移传感器读取的位姿数据传送到状态决策单元,状态决策单元与运动执行单元相连,对获取的位姿信息进行判断并发送运动指令到三轴运动平台。
PCT/CN2020/117620 2020-08-14 2020-09-25 基于光谱共聚焦位移传感器的自动对刀系统及方法 WO2022032820A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/305,323 US12011795B2 (en) 2020-08-14 2021-07-05 Automatic tool setting system and method based on spectral confocal displacement sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010817042.X 2020-08-14
CN202010817042.XA CN111922765A (zh) 2020-08-14 2020-08-14 基于光谱共聚焦位移传感器的自动对刀系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/305,323 Continuation-In-Part US12011795B2 (en) 2020-08-14 2021-07-05 Automatic tool setting system and method based on spectral confocal displacement sensor

Publications (1)

Publication Number Publication Date
WO2022032820A1 true WO2022032820A1 (zh) 2022-02-17

Family

ID=73310922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117620 WO2022032820A1 (zh) 2020-08-14 2020-09-25 基于光谱共聚焦位移传感器的自动对刀系统及方法

Country Status (2)

Country Link
CN (1) CN111922765A (zh)
WO (1) WO2022032820A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113510503B (zh) * 2021-07-28 2022-06-03 安庆皖台精密机械有限公司 一种用于精密机床生产加工用的固定机构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263380A (ja) * 1999-03-11 2000-09-26 Sony Corp 工作物の加工方法およびその装置
CN105108579A (zh) * 2015-09-25 2015-12-02 哈尔滨工业大学 一种三维微位移调整台
CN108942413A (zh) * 2018-08-28 2018-12-07 天津科技大学 超精密车削金刚石刀具非接触精准对刀仪及对刀方法
CN109648400A (zh) * 2019-01-25 2019-04-19 上海交通大学 基于白光共焦在位测量的阀芯工作边毛刺形态重构方法
CN109894924A (zh) * 2019-03-20 2019-06-18 长春理工大学 一种金刚石刀具切削刃磨损检测模块及检测方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010003338A1 (de) * 2010-03-26 2011-09-29 Komet Group Gmbh Werkzeugmaschine mit Drehübertrager für Daten
CN104070183B (zh) * 2014-06-23 2016-03-30 上海交通大学 用于在线去除伺服阀阀芯工作边微小毛刺的自控设备
CN106736849B (zh) * 2017-01-06 2018-09-21 长春理工大学 微径铣刀主动探测式高精度对刀装置及方法
CN107263319B (zh) * 2017-05-25 2019-11-08 郑州磨料磨具磨削研究所有限公司 一种寻迹法砂轮对刀方法及系统
CN108195292B (zh) * 2018-02-02 2021-05-07 吴飞斌 一种位移量测量方法
CN108205290B (zh) * 2018-02-06 2023-05-26 华侨大学 基于激光位移传感器的工件调平装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000263380A (ja) * 1999-03-11 2000-09-26 Sony Corp 工作物の加工方法およびその装置
CN105108579A (zh) * 2015-09-25 2015-12-02 哈尔滨工业大学 一种三维微位移调整台
CN108942413A (zh) * 2018-08-28 2018-12-07 天津科技大学 超精密车削金刚石刀具非接触精准对刀仪及对刀方法
CN109648400A (zh) * 2019-01-25 2019-04-19 上海交通大学 基于白光共焦在位测量的阀芯工作边毛刺形态重构方法
CN109894924A (zh) * 2019-03-20 2019-06-18 长春理工大学 一种金刚石刀具切削刃磨损检测模块及检测方法

Also Published As

Publication number Publication date
CN111922765A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
CN202129707U (zh) 精密刀具自动化成型设备
CN111716147B (zh) 回转壳体零件壁厚误差精确控制加工装置及方法
CN201168887Y (zh) 旋转定位夹具
WO2022032820A1 (zh) 基于光谱共聚焦位移传感器的自动对刀系统及方法
CN103111847A (zh) 一种多功能数控机床
CN110712124A (zh) 九轴智控工具磨床
CN111408952A (zh) 一种环形工件铣磨测混合加工机床及其控制方法
CN113953850A (zh) 一种针对固定直径圆环类工件加工设备
CN114178594A (zh) 含偏差筒形薄壁铸件内腔铣削加工系统及加工方法
CN211439305U (zh) 一种盘式刹车片内外弧边缘倒角磨床
CN210849513U (zh) 适应于高精度伺服阀阀芯的磨削同步去毛刺机构
US12011795B2 (en) Automatic tool setting system and method based on spectral confocal displacement sensor
CN215846632U (zh) 一种用于离心式风机叶轮焊接的自动分度定位装置
CN110936245A (zh) 一种盘式刹车片内外弧边缘倒角磨床
CN216227960U (zh) 六轴雕铣批复合cnc机床
CN205200885U (zh) 蓄电池安装加强板夹具装置
CN205200886U (zh) 发动机电子控制单元安装支架夹具装置
JP5072743B2 (ja) マイクロマシンおよびマイクロフライスマシン
CN210334698U (zh) 一种数控切割装置
CN216264586U (zh) 一种针对固定直径圆环类工件加工设备
CN211162908U (zh) 切削定位装置
CN216326786U (zh) 数控车磨一体机床
CN219967186U (zh) 一种cnc加工制造用工件定位装置
CN107520618A (zh) 钢结构关节球五轴加工中心及其工作方法
CN211662470U (zh) 一种机器人加工工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949317

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20949317

Country of ref document: EP

Kind code of ref document: A1