WO2022032755A1 - 一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其制法和应用 - Google Patents

一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其制法和应用 Download PDF

Info

Publication number
WO2022032755A1
WO2022032755A1 PCT/CN2020/113167 CN2020113167W WO2022032755A1 WO 2022032755 A1 WO2022032755 A1 WO 2022032755A1 CN 2020113167 W CN2020113167 W CN 2020113167W WO 2022032755 A1 WO2022032755 A1 WO 2022032755A1
Authority
WO
WIPO (PCT)
Prior art keywords
antioxidant
dielectric loss
polypropylene resin
polypropylene
low dielectric
Prior art date
Application number
PCT/CN2020/113167
Other languages
English (en)
French (fr)
Inventor
袁宝
邓之俊
毛应涛
张坤
陆威
戴华俊
庄丽娜
章柏松
Original Assignee
江苏德威新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏德威新材料股份有限公司 filed Critical 江苏德威新材料股份有限公司
Publication of WO2022032755A1 publication Critical patent/WO2022032755A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Definitions

  • the invention relates to a polypropylene composition, in particular to a low dielectric loss thermoplastic polypropylene insulating composition, and belongs to the technical field of polypropylene materials.
  • the heat-resistant temperature of coaxial cables is mainly 105 °C.
  • the signal transmission is unstable, which is easy to cause signal distortion or excessive attenuation, resulting in reduced electrical properties of the material and shortened service life;
  • Coaxial cable insulation material with a thermal temperature of 125°C in order to improve the extrusion processing performance of the cable, it is inevitable to add a cross-linking agent or a cross-linking agent to the insulating material.
  • the addition of these additives will seriously affect the electrical properties of the coaxial cable.
  • the performance and signal are attenuated, and the cable after cabling needs to be irradiated by electron beam, thus increasing the manufacturing cost of the cable and reducing the production efficiency.
  • Coaxial cables usually use foamed polyethylene or polyethylene as the insulating layer, but due to the poor dielectric properties of polyethylene, the signal transmission of the cable is affected, and the overall performance of the cable is adversely affected.
  • an object of the present invention is to improve a low dielectric loss thermoplastic polypropylene insulating material with excellent performance, high heat resistance temperature, fast pay-off speed and stable production process.
  • Another object of the present invention is to provide a preparation method of the above polypropylene insulating material.
  • Another object of the present invention is to provide a cable with heat resistance that can achieve 125°C.
  • the present invention first provides a low dielectric loss thermoplastic polypropylene insulating composition, comprising the following raw material composition in parts by weight:
  • the composite polypropylene resin used comprises a first polypropylene resin with a melt index of 0.1g/10min-0.5g/10min and a second polypropylene with a melt index of 3.0-4.0g/10min resin.
  • the mass ratio of the first polypropylene resin and the second polypropylene resin is 4-8:1.
  • the first polypropylene resin used is Daqing Refinery EPS30R; the second polypropylene resin used is Yanshan Petrochemical SP179.
  • the first polypropylene resin can effectively improve the tensile strength, aging and electrical properties of the low dielectric loss thermoplastic polypropylene insulating composition
  • the second polypropylene resin can improve the low dielectric loss thermoplastic polypropylene insulating composition impact strength, environmental stress cracking resistance, fluidity and extrusion processability of the material.
  • the mixed use of the two polypropylene resins can make the polypropylene resin form a "bimodal" structure, thereby improving the physical and mechanical properties, electrical properties and processing performance of the low dielectric loss thermoplastic polypropylene insulating composition of the present invention as a whole, Overcome the disadvantages of using a single polypropylene resin.
  • the melt index of the high-density polyethylene resin is 3.0g/10min-6.0g/10min; specifically, the high-density polyethylene resin used is Dushanzi Petrochemical DMDA-8008.
  • the melt index of the linear low density polyethylene resin used is 1.5g/10min-2.5g/10min; specifically, the linear low density polyethylene resin used is Dushanzi Petrochemical DFDA-7042N .
  • the antioxidant used is at least selected from the group consisting of antioxidant AO-60, antioxidant AO-80, antioxidant 1024, antioxidant 300 and antioxidant HP-10 three.
  • antioxidants used are antioxidant AO-60, antioxidant 1024 and antioxidant HP-10 in a weight ratio of 1.5-2.5:1:1-2.
  • antioxidants used are antioxidant AO-80, antioxidant 1024 and antioxidant HP-10 in a weight ratio of 0.8-1.2:1:1-2.
  • the antioxidants used are antioxidants with a weight ratio of 1-1.5:1:1-2300, antioxidant 300, antioxidant 1024 and antioxidant HP-10.
  • antioxidants used are antioxidant AO-60, antioxidant 300 and antioxidant 1024 in a weight ratio of 0.8-1.5:0.8-1.5:1.
  • specific antioxidants can effectively increase the heat resistance and electrical properties of the dielectric loss thermoplastic polypropylene insulating composition.
  • the amount of antioxidants added will increase significantly, which will inevitably lead to increased material costs, and the use of antioxidants during the use of cables.
  • Frost precipitation affects the electrical performance and performance of the cable.
  • a single antioxidant is selected in the material, no matter how much it is added, it cannot protect the aging performance of the material and the discoloration of the cable during production, cable extrusion and use.
  • Metal conductors, resulting in copper oxidation resistance must be used.
  • the synergistic effect of the specific multiple low-polarity antioxidants of the present invention has a certain influence on the electrical properties of the cable.
  • the used lubricant is polyethylene wax; specifically, the average molecular weight of the used lubricant is 3000-5000.
  • the polyethylene wax can be AC6A from Honeywell.
  • the rheological agent used is a fluoropolymer processing aid; specifically, the fluoropolymer content of the rheological agent used is ⁇ 80%.
  • the fluoropolymer processing aid can be LujuChem PPA2300MA.
  • the use of lubricants and rheological agents helps to improve the low dielectric loss thermoplastic polypropylene insulation composition in the process of high-speed extrusion processing of die slag casting, cable surface roughness and cable failure.
  • the problem of high-speed extrusion processing can improve the cable extrusion processing speed, surface smoothness and improve the electrical performance of the cable.
  • the filler used is high-performance hollow glass microspheres; specifically, the density of the filler used is 0.2g/cm 3 -0.6g/cm 3 , and the particle size (D50) is 45 ⁇ m -60 ⁇ m.
  • the high-performance hollow glass microspheres can be GS40 of Sinosteel Microsphere Company.
  • the high-performance hollow glass microspheres can effectively improve the dielectric properties of the low dielectric loss thermoplastic polypropylene insulating composition, improve the attenuation of the cable during the signal transmission process, and prolong the service life of the cable.
  • the present invention also provides a preparation method of a low dielectric loss thermoplastic polypropylene insulating composition, comprising the following steps:
  • the composite polypropylene resin, high-density polyethylene resin, linear low-density polyethylene resin, antioxidants, lubricants, rheological agents and fillers are mixed at high speed. After plasticization, single-screw granulation, and drying, a thermoplastic polypropylene insulating composition with low dielectric loss is obtained.
  • the high-speed mixing may be performed in a high-speed mixer.
  • the rotating speed of the high-speed mixing is 200rpm-275rpm.
  • the rotating speed of the high-speed mixing is adjusted to 400rpm-450rpm, and the material is discharged at 60°C.
  • the temperature of the BUSS host screw 150 ⁇ 10°C; the temperature of the pelletizing screw: 180 ⁇ 5°C; the temperature of the pelletizer: 185 ⁇ 5°C; /50-70, granulating screw speed/torque 55 ⁇ 5/50-60, pelletizer speed 750 ⁇ 100, upper material temperature 180 ⁇ 5°C, vacuum pump pressure 0.5-1.0bar; water spray pressure 0.5-2bar.
  • the present invention also provides a cable comprising the low dielectric loss thermoplastic polypropylene insulating composition of the present invention. It should be noted that the cables include but are not limited to coaxial cables.
  • the polypropylene resin in the low dielectric loss thermoplastic polypropylene insulating composition of the present invention, by using a composite polypropylene resin compounded by two polypropylene resins, the polypropylene resin can form a "bimodal" structure, and the defect of using a single resin can be overcome.
  • the high-performance hollow glass microspheres can improve the dielectric performance of the low dielectric loss thermoplastic polypropylene insulating composition, improve the attenuation of the cable during the signal transmission process, and prolong the service life of the cable.
  • the preparation method of the low dielectric loss thermoplastic polypropylene insulating composition of the present invention adopts the advanced Swiss BUSS line to produce, and has stable process, large output and high efficiency.
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables, which includes the following components by weight:
  • the first polypropylene resin is Daqing Refinery EPS30R
  • the second polypropylene resin is Yanshan Petrochemical SP179
  • rheology agent fluoropolymer processing aid, 90% fluoropolymer content, Luju Chemical PPA2300MA
  • filler density is 0.4 g/cm 3 , particle size is 50 ⁇ m, GS40 high-performance hollow glass microspheres from Sinosteel Microsphere Company).
  • the material is discharged, fed into a BUSS high-speed shearing machine, plasticized, granulated by a single screw, and dried to obtain the low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables at 125°C; among which the high-speed mixer The parameter is 200-275rpm, when the temperature rises to 40°C, the speed of the high-speed mixer is adjusted to 400-450rpm, and the material is discharged at 60°C; BUSS host screw temperature: 150 ⁇ 10°C; pelletizing screw temperature: 180 ⁇ 5°C; Pelletizer temperature: 185 ⁇ 5°C; host screw speed/torque change range 450 ⁇ 50/50-70, pelletizing screw speed/torque 55 ⁇ 5/50-60, pelletizer speed 750 ⁇ 100, upper material temperature 180 ⁇ 5°C, vacuum pump pressure 0.5-1.0bar; water spray pressure 0.5-2bar.
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables, the preparation method of which is exactly the same as that of embodiment 1, the difference is that its raw material components are different, and it includes the following parts by weight The components:
  • antioxidants antioxidants
  • antioxidant AO-60, antioxidant 1024 and antioxidant HP-10 antioxidants
  • proportion of the three parts by weight is 2:1:1, of which 1.2 parts of antioxidant AO-60 , 0.6 part of Antioxidant 1024 and 0.6 part of Antioxidant HP-10)
  • rheology agent fluoropolymer processing aid, 90% fluoropolymer content
  • filler high-performance hollow glass microspheres
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables, the preparation method of which is exactly the same as that of embodiment 1, the difference is that its raw material components are different, and it includes the following parts by weight The components:
  • antioxidant AO-60 antioxidant 1024 and antioxidant HP-10, and the proportion of the three parts by weight is 2:1:1, of which 0.6 part of antioxidant AO-60 , 0.3 parts Antioxidant 1024 and 0.3 parts Antioxidant HP-10)
  • rheology agent fluoropolymer processing aid, 90% fluoropolymer content
  • filler high-performance hollow glass microspheres
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • the weight ratio of the second polypropylene resin is different and is 4:1, wherein the first polypropylene resin is 60 parts and the second polypropylene resin is 15 parts.
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • the weight ratio of the second polypropylene resin is different and is 8:1.
  • the present invention provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • AO-80, Antioxidant 1024, Antioxidant HP-10, and the proportion by weight of the three materials is the same as that in Example 1, wherein 0.6 part of Antioxidant AO-80, 0.6 part of Antioxidant 1024, 0.6 part of Antioxidant Oxygen HP-10.
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • Oxidant 300, Antioxidant 1024, Antioxidant HP-10, and the proportions of the three materials by weight are the same as in Example 1, wherein 0.675 parts of Antioxidant 300, 0.45 parts of Antioxidant 1024, 0.675 parts of Antioxidant HP-10.
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • AO-60, antioxidant 300, antioxidant 1024, and the ratio of the four parts by weight is 1.25:1.25:1, of which 0.65 part of antioxidant AO-60, 0.65 part of antioxidant 300, 0.5 part of antioxidant Oxygen 1024.
  • This embodiment provides a 125°C low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • This embodiment provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • This comparative example provides a 125°C low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables. Its formula and components are basically the same as those in Example 1, and the preparation method is exactly the same. The only difference is that no composite polypropylene resin is added. , only add 75 parts of the first polypropylene resin.
  • This comparative example provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables. parts, and the ratio of the two parts by weight is the same as that in Example 1.
  • This comparative example provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables. parts, and the ratio of the two parts by weight is the same as that in Example 1.
  • This comparative example provides a 125°C low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables. Oxygen, add 1.8 parts of antioxidant AO-60.
  • This comparative example provides a 125°C low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables. Its formula and components are basically the same as those in Example 1, and the preparation method is exactly the same. The only difference is that there are two kinds of antioxidants. A compounded antioxidant, wherein 0.9 part of antioxidant AO-60 and 0.9 part of antioxidant 1024 are added.
  • This comparative example provides a 125°C low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • This comparative example provides a 125°C low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables.
  • This comparative example provides a 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables, the formulation and components of which are basically the same as those in Example 1, and the preparation method is exactly the same. The only difference is that the filler is 60 parts.
  • This comparative example provides a 125°C low-dielectric loss thermoplastic polypropylene insulating material for coaxial cables, the formula components of which are exactly the same as those in Example 1, and the preparation method adopts a conventional process: the formula components are manually weighed and put into High-speed mixer mixes, and after mixing for a certain period of time, the material is fed to a twin-screw extruder for melting, kneading and granulation.
  • Example 1 Example 4-Example 5 and Comparative Example 1 that due to the low melt index and narrow molecular weight distribution of the first polypropylene resin, single use leads to a decrease in the pay-off speed and a rough surface of the cable, which affects the electrical properties of the cable. performance and signal attenuation.
  • Example 1 Example 4-Example 5, it can be seen that the combination of different proportions of composite polypropylene resin has a certain impact on the performance of the material: the increase in the amount of the second polypropylene resin makes the mechanical properties and electrical properties of the insulating material slightly lower. There is a decrease, mainly because the second polypropylene resin has a large melt index, poor crystallinity and molecular chain regularity, but can improve the extrusion speed of the material and the surface smoothness of the cable.
  • the three kinds of high-density polyethylene in the present invention are indispensable.
  • Example 1 Example 4-Example 5 and Comparative Example 2-Comparative Example 3 that excessively reducing the amount of composite polypropylene resin makes the proportion of filler in the material too large, and too much filler hinders the polymer segment Movement, resulting in a decline in the mechanical properties of the material; at the same time, the surface of the extruded cable is rough and has particles, which cannot meet the standard requirements of coaxial cables.
  • Excessively increasing the amount of composite polypropylene resin reduces the proportion of fillers in the material, resulting in an increase in the dielectric loss factor of the material, affecting the signal transmission of the coaxial cable, and adversely affecting the overall performance of the cable.
  • Example 6-Example 8 and Comparative Example 4-Comparative Example 5 it can be seen that a single antioxidant AO-60 cannot make the material meet the requirements of thermal aging, and the mechanical properties of the material after aging decrease significantly, and it cannot be The main reason for meeting the requirements of the material is that the antioxidant AO-60 has poor high temperature resistance and thermal stability, and cannot effectively protect the material properties during high temperature and long-term aging.
  • the use of oxygen agent AO-60 and antioxidant 1024 cannot make the material meet the requirements of thermal aging, and the mechanical properties of the material decrease significantly after aging, which can lead to cable cracking and cannot meet the requirements of material use; three or four kinds of composite materials in the example materials. The anti-aging performance test of the material has passed.
  • Example 1 and Comparative Example 6 From Example 1 and Comparative Example 6, it can be seen that without adding rheological agent, the speed of pay-off and cable formation is reduced, the slag is deposited in the pay-off port, and the surface of the cable is rough. It migrates to the surface of the wire and protects the wire surface extruded at high speed at the extruder die. Due to the lack of rheological agent, the wire loses its lubricating protection during extrusion from the die, and the wire surface becomes rough and forms ejection, forming slag, which in turn reduces the pay-off speed.
  • Example 1 Example 9-Example 10 and Comparative Example 7-Comparative Example 8 that the addition of filler improves the mechanical properties and electrical properties of the material, mainly because the high-performance hollow glass microspheres have excellent Fluidity and dispersibility, the interface between the glass beads and the resin matrix is well combined, which can reduce the viscosity and internal stress of the resin, increase the hardness and elastic modulus of the material, and improve the strength of the material, but excessive filler leads to extrusion of the cable.
  • the surface is rough, which affects the transmission of coaxial cable signals.
  • Example 1-Example 10 and Comparative Example 9 that the production capacity is greatly reduced by using the traditional twin-screw melt-kneading and granulation method. Due to the manual operation method, the production efficiency is reduced, the product stability and consistency are reduced, and at the same time , In the twin-screw production process, because there is no air extraction device or the air extraction device is easy to block during continuous production, the production efficiency is reduced.
  • the selection of composite polypropylene resin can take into account the mechanical properties and surface smoothness of the material.
  • the selection and compounding of antioxidants have a key impact on the aging performance of materials, and are the key to whether the temperature resistance level of insulating materials can be achieved.
  • the selection of non-polar or low-polarity antioxidants can also be reduced to a certain extent.
  • the dielectric dissipation factor of the material improves the problem of slag accumulation in the high-speed extrusion die of the material, the quality of the coaxial cable surface is improved, and the signal transmission and attenuation are improved.
  • Using the BUSS production line imported from Switzerland can not only greatly improve the production efficiency and stability of materials, but also ensure the stability of continuous extrusion of coaxial cables.
  • the present invention adopts the 125°C low dielectric loss thermoplastic polypropylene insulating material for coaxial cables produced by the BUSS line imported from Switzerland, which has good mechanical properties, electrical properties and heat resistance properties. Fast, good extrusion surface, high efficiency, large output, suitable for the production of high-performance coaxial cables.
  • the preparation method of 125 °C low dielectric loss thermoplastic polypropylene insulating material for coaxial cable has high yield and stable process, and the output can reach 3.5 tons per hour. At present, it is the first domestic manufacturer to use imported BUSS line to produce insulating material for coaxial cable. , breaking through the use of conventional internal mixer and twin-screw production process, greatly improving the production efficiency, is a good material for coaxial cables in the future.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

本发明提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其制法和应用。该聚丙烯绝缘组合物包括:50-100份的复合聚丙烯树脂,5-20份的高密度聚乙烯树脂,5-15份的线性低密度聚乙烯树脂,1.2-2.4份的抗氧剂,0.5-1.5份的润滑剂,0.5-1.5份的流变剂,10-40份的填充剂。本发明还提供了上述组合物的制备方法。本发明的聚丙烯组合物可以作为电缆材料。

Description

一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其制法和应用 技术领域
本发明涉及一种聚丙烯组合物,尤其涉及一种低介电损耗热塑性聚丙烯绝缘组合物,属于聚丙烯材料技术领域。
背景技术
由于我国近年来不断加大基础设施建设,交通、能源、通信以及住宅、汽车的发展给同轴电缆行业带来了新的发展机遇。同轴电缆的特殊结构,使其具备辐射损耗小、抗干扰能力强的特性,但随着移动通信覆盖面不断扩大、基站数扩增以及对移动信号要求的不断提高,其对射频同轴电缆提出了更高的要求。
目前,同轴电缆的耐热温度主要为105℃,在环境温度较高时信号传输不稳定,易造成信号失真或衰减过大,导致材料电气性能降低、使用寿命缩短;而辐照交联耐热温度125℃的同轴电缆绝缘料,为提高电缆的挤出加工性能,不可避免的在绝缘料中加入交联剂或助交联剂,这些助剂的加入会严重影响同轴电缆的电气性能和信号衰减,且成缆后的电缆需进行电子束辐照,因此增加了电缆的制造成本并降低了生产效率。同轴电缆通常采用发泡聚乙烯或聚乙烯作为绝缘层,但由于聚乙烯的介电性能较差,影响了电缆的信号传输,对电缆的整体性能产生了不利影响。
发明内容
为了解决上述技术目的,本发明的一个目的在于提高一种性能优异、耐热温度高、放线速度快、生产工艺稳定的低介电损耗热塑性聚丙烯绝缘材料。
本发明的又一目的在于提供一种上述聚丙烯绝缘材料的制备方法。
本发明的再一目的在于提供一种耐热可以实现125℃的电缆。
为了实现上述任一目的,本发明首先提供了一种低介电损耗热塑性聚丙烯绝缘组合物,包括如下重量份数的原料组成:
Figure PCTCN2020113167-appb-000001
Figure PCTCN2020113167-appb-000002
在本发明的一具体实施方式中,采用的复合聚丙烯树脂包括熔融指数为0.1g/10min-0.5g/10min的第一聚丙烯树脂和熔融指数为3.0-4.0g/10min的第二聚丙烯树脂。在本发明的进一步的具体实施方式中,第一聚丙烯树脂和第二聚丙烯树脂质量比为4-8:1。在本发明更进一步的具体实施方式中,采用的第一聚丙烯树脂为大庆炼化EPS30R;采用的第二聚丙烯树脂为燕山石化SP179。
在本发明中,第一聚丙烯树脂可以有效提高低介电损耗热塑性聚丙烯绝缘组合物的拉伸强度、老化及电气性能,第二聚丙烯树脂可以提升低介电损耗热塑性聚丙烯绝缘组合物的冲击强度、耐环境应力开裂性能及材料的流动性和挤出加工工艺性。两种聚丙烯树脂的混合使用,可使聚丙烯树脂形成“双峰”结构,从整体上提升本发明的低介电损耗热塑性聚丙烯绝缘组合物的物理机械性能、电气性能及加工工艺性能,克服使用单一聚丙烯树脂的缺陷。
在本发明的一具体实施方式中,所述高密度聚乙烯树脂的熔融指数为3.0g/10min-6.0g/10min;具体地,采用的高密度聚乙烯树脂为独山子石化DMDA-8008。
在本发明的一具体实施方式中,采用的线性低密度聚乙烯树脂的熔融指数为1.5g/10min-2.5g/10min;具体地,采用的线性低密度聚乙烯树脂为独山子石化DFDA-7042N。
在本发明的一具体实施方式中,采用的抗氧剂选自抗氧剂AO-60、抗氧剂AO-80、抗氧剂1024、抗氧剂300和抗氧剂HP-10中的至少三种。
具体地,采用的抗氧剂为重量比为1.5-2.5:1:1-2的抗氧剂AO-60、抗氧剂1024和抗氧剂HP-10。
具体地,采用的抗氧剂为重量比为0.8-1.2:1:1-2的抗氧剂AO-80、抗氧剂1024和抗氧剂HP-10。
具体地,采用的抗氧剂为重量比为1-1.5:1:1-2300的抗氧剂为抗氧剂300、抗氧剂1024和抗氧剂HP-10。
具体地,采用的抗氧剂为重量比为0.8-1.5:0.8-1.5:1的抗氧剂AO-60、抗氧剂300和抗氧剂1024。
在本发明中,特定的抗氧剂可以有效高低介电损耗热塑性聚丙烯绝缘组合物的耐热性能,以及电气性能。对于本发明的低介电损耗热塑性聚丙烯绝缘料的老化,若使用传统抗氧剂,会造成抗氧剂加入量的大幅上升,其必然会导致材料成本上升、电缆使用过程中抗氧剂喷霜析出,影响电缆的电气性能及使用性能。同时,若在材料中选择单一的抗氧剂,不论其加入 量多少都无法起到对材料在生产加工、电缆挤出及使用过程中老化性能及电缆变色的保护,且因汽车电线中存在的金属导体,造成抗铜氧化剂必须加以使用。另外,本发明的特定多种低极性抗氧剂的协同作用,对电缆电气性能有一定影响。
在本发明的一具体实施方式中,采用的润滑剂为聚乙烯蜡;具体地,采用的润滑剂的平均分子量为3000-5000。比如,聚乙烯蜡可以为Honeywell公司的AC6A。采用的流变剂为含氟聚合物加工助剂;具体地,采用的流变剂的氟聚合物含量≥80%。比如,含氟聚合物加工助剂可以为鲁聚化学PPA2300MA。
在本发明中,润滑剂和流变剂的使用,有助于改善低介电损耗热塑性聚丙烯绝缘组合物在高速挤出加工过程中的模口积渣流延、电缆线面粗糙及电缆无法高速挤出加工的问题,可提高电缆挤出加工速度、表面光滑度并有利于电缆电气性能的提升。
在本发明的一具体实施方式中,采用的填充剂为高性能空心玻璃微珠;具体地,采用的填充剂的密度为0.2g/cm 3-0.6g/cm 3,粒径(D50)45μm-60μm。比如,高性能空心玻璃微珠可以为中钢微珠公司的GS40。
在本发明中,高性能空心玻璃微珠可有效提高低介电损耗热塑性聚丙烯绝缘组合物的介电性能,改善电缆在信号传输过程中的衰减,提升电缆使用寿命。
本发明的又提供了一种低介电损耗热塑性聚丙烯绝缘组合物的制备方法,包括如下步骤:
将复合聚丙烯树脂、高密度聚乙烯树脂、线性低密度聚乙烯树脂、抗氧剂、润滑剂、流变剂、填充剂进行高速混合,混合均匀后出料,喂入BUSS高速剪切机,经塑化和单螺杆造粒、干燥,得到低介电损耗热塑性聚丙烯绝缘组合物。
在本发明的一具体实施方式中,高速混合可以在高速混合机中进行。高速混合的转速为200rpm-275rpm,温度升至40℃时,高速混合的转速调整至400rpm-450rpm,60℃时出料。
在本发明的一具体实施方式中,BUSS主机螺杆温度:150±10℃;造粒螺杆温度:180±5℃;切粒机温度:185±5℃;主机螺杆转速/扭矩变化幅度450±50/50-70、造粒螺杆转速/扭矩55±5/50-60、切粒机转速750±100,上阶级料温180±5℃,真空泵压力0.5-1.0bar;喷水压力0.5-2bar。
本发明还提供了一种电缆,该电缆包括本发明的低介电损耗热塑性聚丙烯绝缘组合物。需要说明的是,电缆包括但不限于同轴电缆。
本发明的低介电损耗热塑性聚丙烯绝缘组合物中,通过采用了两种聚丙烯树脂复配的复合聚丙烯树脂,可使聚丙烯树脂形成“双峰”结构,克服使用单一树脂的缺陷,起到了互补作用;通过采用复合抗氧剂,从整体上提升该低介电损耗热塑性聚丙烯绝缘组合物的耐热温度及加工工艺性能;通过润滑剂和流变剂的加入改善了低介电损耗热塑性聚丙烯绝缘组合物 在高速挤出加工过程中存在的模口积渣流延、电缆线面粗糙及电缆无法高速挤出加工的问题,可提高电缆挤出加工速度、表面光滑度,有利于电缆电气性能的提升;同时,高性能空心玻璃微珠可提高该低介电损耗热塑性聚丙烯绝缘组合物的介电性能,改善电缆在信号传输过程中的衰减,提升电缆使用寿命。
本发明的低介电损耗热塑性聚丙烯绝缘组合物制备方法采用先进的瑞士BUSS线生产,工艺稳定、产量大、效率高。
具体实施方式
实施例1
本实施例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其包括如下重量份数的组分:
复合聚丙烯树脂75份;(第一聚丙烯树脂和第二聚丙烯树脂的质量比为6:1。第一聚丙烯树脂为大庆炼化EPS30R,第二聚丙烯树脂为燕山石化SP179)
高密度聚乙烯树脂12.5份(熔融指数为5.0g/10min,独山子石化DMDA-8008);
线性低密度聚乙烯树脂10份(熔融指数为2.0g/10min,独山子石化DFDA-7042N);
抗氧剂1.8份;(抗氧剂AO-60、抗氧剂1024和抗氧剂HP-10,且三者的重量份数比例为2:1:1,其中0.9份抗氧剂AO-60、0.45份抗氧剂1024和0.45份抗氧剂HP-10)
润滑剂0.75份(平均分子量为4000,Honeywell公司的AC6A);
流变剂0.75份(含氟聚合物加工助剂,氟聚合物含量90%,鲁聚化学PPA2300MA);
填充剂25份(密度为0.4g/cm 3,粒径为50μm,中钢微珠公司的GS40高性能空心玻璃微珠)。
上述同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料的制备方法,它包括如下步骤:
采用瑞士进口BUSS线生产,将称量好的复合聚丙烯树脂、高密度聚乙烯树脂、线性低密度聚乙烯树脂、抗氧剂、润滑剂、流变剂、填充剂采用高速混合机进行高速混合,混合均匀后出料,喂入BUSS高速剪切机,经塑化和单螺杆造粒、干燥,即得所述同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料;其中高速混合机参数为200-275rpm,温度升至40℃时,高速混合机转速调整至400-450rpm,60℃时出料;BUSS主机螺杆温度:150±10℃;造粒螺杆温度:180±5℃;切粒机温度:185±5℃;主机螺杆转速/扭矩变化幅度450±50/50-70、造粒螺杆转速/扭矩55±5/50-60、切粒机转速750±100,上阶级料温180±5℃,真空泵压力0.5-1.0bar;喷水压力0.5-2bar。
实施例2
本实施例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,它的制备方法与实施例1完全相同,不同的是它的原料组分不同,其包括如下重量份数的组分:
复合聚丙烯树脂100份;(第一聚丙烯树脂和第二聚丙烯树脂的质量比为6:1)
高密度聚乙烯树脂20份;
线性低密度聚乙烯树脂15份;
抗氧剂2.4份;(抗氧剂AO-60、抗氧剂1024和抗氧剂HP-10,且三者的重量份数比例为2:1:1,其中1.2份抗氧剂AO-60、0.6份抗氧剂1024和0.6份抗氧剂HP-10)
润滑剂1.5份;
流变剂1.5份(含氟聚合物加工助剂,氟聚合物含量90%);
填充剂40份(高性能空心玻璃微珠)。
实施例3
本实施例提供一种了同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,它的制备方法与实施例1完全相同,不同的是它的原料组分不同,其包括如下重量份数的组分:
复合聚丙烯树脂50份;(第一聚丙烯树脂和第二聚丙烯树脂的质量比为6:1)
高密度聚乙烯树脂5份;
线性低密度聚乙烯树脂5份;
抗氧剂1.2份;(抗氧剂AO-60、抗氧剂1024和抗氧剂HP-10,且三者的重量份数比例为2:1:1,其中0.6份抗氧剂AO-60、0.3份抗氧剂1024和0.3份抗氧剂HP-10)
润滑剂0.5份;
流变剂0.5份(含氟聚合物加工助剂,氟聚合物含量90%);
填充剂10份(高性能空心玻璃微珠)。
实施例4
本实施例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:第一聚丙烯树脂和第二聚丙烯树脂的重量份数比例不同,为4:1,其中第一聚丙烯树脂60份、第二聚丙烯树脂15份。
实施例5
本实施例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:第一聚丙烯树脂和第二聚丙烯树脂的重量份数比例不同,为8:1。
实施例6
本发明提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:抗氧剂为抗氧剂AO-80、抗氧剂1024、抗氧剂HP-10,且三者投料重量份数比例与实施例1相同,其中0.6份抗氧剂AO-80、0.6份抗氧剂1024、0.6份抗氧剂HP-10。
实施例7
本实施例提供了提供一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:抗氧剂为抗氧剂300、抗氧剂1024、抗氧剂HP-10,且三者投料重量份数比例与实施例1相同,其中0.675份抗氧剂300、0.45份抗氧剂1024、0.675份抗氧剂HP-10。
实施例8
本实施例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:抗氧剂为抗氧剂AO-60、抗氧剂300、抗氧剂1024,且四者投料重量份数比例为1.25:1.25:1,其中0.65份抗氧剂AO-60、0.65份抗氧剂300、0.5份抗氧剂1024。
实施例9
本实施例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:填充剂为10份。
实施例10
本实施例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:填充剂为40份。
对比例1
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:不添加复合聚丙烯树脂,只添加第一聚丙烯树脂75份。
对比例2
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:添加复合聚丙烯树脂25份,二者的重量份数比例与实施例1相同。
对比例3
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:添加复合聚丙烯树脂130份,二者 的重量份数比例与实施例1相同。
对比例4
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:抗氧剂为单一抗氧剂,添加1.8份抗氧剂AO-60。
对比例5
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:抗氧剂为两种复配的抗氧剂,其中添加0.9份抗氧剂AO-60、0.9份抗氧剂1024。
对比例6
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:不添加流变剂。
对比例7
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:填充剂为5份。
对比例8
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1基本相同,制备方法完全相同,不同点仅在于:填充剂为60份。
对比例9
本对比例提供了一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,其配方组分与实施例1完全相同,制备方法采用常规工艺:将其配方组分人工称重并投入高速混合机混合,混合一定时间后将物料喂至双螺杆挤出机熔融混炼并造粒。
表1实施例1-9的物理性能测试结果(参考JB/T 10437)
Figure PCTCN2020113167-appb-000003
Figure PCTCN2020113167-appb-000004
表2实施例10和对比例1-9的物理性能测试结果(参考JB/T 10437)
Figure PCTCN2020113167-appb-000005
从实施例1、实施例4-实施例5与对比例1中可知,因第一聚丙烯树脂熔指较低,分子量分布窄,单独使用导致放线速度降低并电缆表面毛糙,影响电缆的电气性能和信号衰减。
从实施例1、实施例4-实施例5可知复合聚丙烯树脂的不同比例的搭配,对材料的性能具有一定影响:第二聚丙烯树脂量的提升,使得绝缘料的力学性能和电气性能略有下降,其主要是因为第二聚丙烯树脂熔融指数大,结晶度及分子链规整性较差,但可提高材料的挤出成缆速度及电缆的表面光滑度。本发明中的三种高密度聚乙烯,缺一不可。
从实施例1、实施例4-实施例5与对比例2-对比例3可知,过分减少复合聚丙烯树脂的量使得材料中填充剂占比过大,过多的填充剂阻碍高分子链段运动,导致材料力学性能下降;同时,挤出电缆表面毛糙、有颗粒,无法满足同轴电缆标准要求。过分增加复合聚丙烯树脂的量使得材料中填充剂占比减少,导致材料的介电损耗因数增大,影响同轴电缆的信号传输,对电缆的整体性能产生了不利影响。
从实施例1、实施例6-实施例8与对比例4-对比例5中可知,单一的抗氧剂AO-60无法使材料满足热老化的要求,老化后材料的力学性能下降明显,无法达到材料的使用要求,其主要是因为抗氧剂AO-60耐高温热稳定性较差,在高温及长时间老化过程中无法对材料性能有效保护;两者复配的抗氧剂,如抗氧剂AO-60与抗氧剂1024的使用无法使材料满足热老化的要求,老化后材料力学性能下降明显,可导致电缆开裂,无法满足材料使用要求;实施例材料中三种或者四种复配的抗氧剂,材料的抗老化性能测试均通过。
从实施例1与对比例6中可知,不添加流变剂导致放线成缆速度降低、放线口模积渣、电缆表面毛糙,其主要是因为流变剂在材料挤出放线时可迁移至电线表面,在挤出机口模处保护高速挤出的线面。因流变剂的缺少,电线在口模挤出时失去润滑保护,线面变得粗糙并形成喷出物,形成积渣,进而导致放线速度降低。
从实施例1,实施例9-实施例10与对比例7-对比例8中可知,填充剂的加入提高了材料的力学性能和电气性能,其主要是因为高性能空心玻璃微珠具有优异的流动性和分散性,玻璃微珠与树脂基体界面结合良好,可降低树脂的黏度和内应力,是材料的硬度和弹性模量增加,提升材料的强度,但过量的填充剂导致了挤出电缆表面毛糙,影响了同轴电缆信号的传输。同时,因空心玻璃微珠颗粒的大部分体积被空气占据,可降低材料的介电损耗提升,但材料中过多的填充剂导致挤出电缆出现毛糙和口模处积渣,使信号传输衰减加剧。
从实施例1-实施例10与对比例9中可知,使用传统双螺杆熔融混炼造粒的方式,产能大大降低,因采用人工操作方式,生产效率下降,产品稳定性及一致性下降,同时,在双螺杆生产过程中因没有抽气装置或抽气装置在连续生产时易堵塞,降低生产效率。
综上,从实施例和对比例中可知,复合聚丙烯树脂的选择可兼顾材料的力学性能和表面光滑度。抗氧剂的选择和复配使用对材料的老化性能产生关键影响,是绝缘料耐温等级能否达到的关键,同时非极性或低极性抗氧剂的选择也可从一定程度上降低材料的介电损耗因数。 流变剂的使用改善了材料高速挤出口模积渣的问题,同轴电缆线面质量得到提高,信号传输及衰减得到改善。使用瑞士进口BUSS产线不仅可以大大提高材料生产效率及稳定性,可保证同轴电缆连续挤出的稳定性。
根据表1与表2结果可知,本发明采用瑞士进口BUSS线生产的同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料,具有良好的力学性能、电气性能及耐热性能,开线速度快、挤出表面良好,效率高、产量大,适于高性能同轴电缆的生产。同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘料的制备方法产量高、工艺稳定,产量可达每小时3.5吨,目前是国内首家使用进口BUSS线生产同轴电缆用绝缘料的厂家,突破了采用常规密炼机及双螺杆生产的工艺,大大提高了生产效率,是未来同轴电缆的良好使用材料。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种低介电损耗热塑性聚丙烯绝缘组合物,包括如下重量份数的原料组成:
    Figure PCTCN2020113167-appb-100001
  2. 根据权利要求1所述的组合物,其中,所述复合聚丙烯树脂包括熔融指数为0.1g/10min-0.5g/10min的第一聚丙烯树脂和熔融指数为3.0-4.0g/10min的第二聚丙烯树脂。
  3. 根据权利要求2所述的组合物,其中,所述第一聚丙烯树脂和第二聚丙烯树脂的质量比为4-8:1。
  4. 根据权利要求2或3所述的组合物,其中,所述第一聚丙烯树脂为大庆炼化EPS30R;
    优选地,第二聚丙烯树脂为燕山石化SP179。
  5. 根据权利要求1所述的组合物,其中,所述高密度聚乙烯树脂的熔融指数为3.0g/10min-6.0g/10min;优选地,所述高密度聚乙烯树脂为独山子石化DMDA-8008;
    所述线性低密度聚乙烯树脂的熔融指数为1.5g/10min-2.5g/10min;优选地,所述线性低密度聚乙烯树脂为独山子石化DFDA-7042N。
  6. 根据权利要求1所述的组合物,其中,所述抗氧剂选自抗氧剂AO-60、抗氧剂AO-80、抗氧剂1024、抗氧剂300和抗氧剂HP-10中的至少三种。
    优选地,所述抗氧剂为重量比为1.5-2.5:1:1-2的抗氧剂AO-60、抗氧剂1024和抗氧剂HP-10;
    优选地,所述抗氧剂为重量比为0.8-1.2:1:1-2的抗氧剂AO-80、抗氧剂1024和抗氧剂HP-10;
    优选地,所述抗氧剂为重量比为1-1.5:1:1-2300的抗氧剂为抗氧剂300、抗氧剂1024和抗氧剂HP-10;
    优选地,所述抗氧剂为重量比为0.8-1.5:0.8-1.5:1的抗氧剂AO-60、抗氧剂300和抗氧剂1024。
  7. 根据权利要求1所述的组合物,其中,所述润滑剂为聚乙烯蜡;优选地,所述润滑剂的平均分子量为3000-5000;
    所述流变剂为含氟聚合物加工助剂;优选地,所述流变剂的氟聚合物含量≥80%;
    所述填充剂为高性能空心玻璃微珠;优选地,所述填充剂的密度为0.2g/cm 3-0.6g/cm 3,粒径(D50)为45μm-60μm。
  8. 权利要求1-7任一项所述的低介电损耗热塑性聚丙烯绝缘组合物的制备方法,包括如下步骤:
    将复合聚丙烯树脂、高密度聚乙烯树脂、线性低密度聚乙烯树脂、抗氧剂、润滑剂、流变剂、填充剂进行高速混合,混合均匀后出料,喂入BUSS高速剪切机,经塑化和单螺杆造粒、干燥,得到低介电损耗热塑性聚丙烯绝缘组合物。
  9. 根据权利要求8所述的制备方法,其中,高速混合的转速为200rpm-275rpm,温度升至40℃时,高速混合的转速调整至400rpm-450rpm,60℃时出料;
    BUSS主机螺杆温度:150±10℃;造粒螺杆温度:180±5℃;切粒机温度:185±5℃;主机螺杆转速/扭矩变化幅度450±50/50-70、造粒螺杆转速/扭矩55±5/50-60、切粒机转速750±100,上阶级料温180±5℃,真空泵压力0.5-1.0bar;喷水压力0.5-2bar。
  10. 一种电缆,该电缆包括权利要求1-7任一项所述的低介电损耗热塑性聚丙烯绝缘组合物。
PCT/CN2020/113167 2020-08-13 2020-09-03 一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其制法和应用 WO2022032755A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010813110.5A CN111909453B (zh) 2020-08-13 2020-08-13 一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其应用
CN202010813110.5 2020-08-13

Publications (1)

Publication Number Publication Date
WO2022032755A1 true WO2022032755A1 (zh) 2022-02-17

Family

ID=73284570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113167 WO2022032755A1 (zh) 2020-08-13 2020-09-03 一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其制法和应用

Country Status (2)

Country Link
CN (1) CN111909453B (zh)
WO (1) WO2022032755A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539693A (zh) * 2022-03-07 2022-05-27 宁波市青湖弹性体科技有限公司 一种阻燃低介电常数聚丙烯绝缘材料及其制备方法
CN115490965A (zh) * 2022-10-27 2022-12-20 郑州市彦峰塑料包装有限公司 一种可高温加热的食品包装膜及其生产工艺
CN117343420A (zh) * 2023-12-05 2024-01-05 润海铁建科技发展有限公司 高分子防水材料以及复合防水卷材及其制备方法和应用
CN117511110A (zh) * 2023-11-09 2024-02-06 山东方特管业有限公司 一种电缆护套用聚丙烯复合材料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115873339B (zh) * 2022-05-27 2024-02-27 江苏上上电缆集团新材料有限公司 一种高电性耐长期老化耐高温聚丙烯绝缘料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259579A (ja) * 2003-02-26 2004-09-16 Yazaki Corp リサイカブルケーブル
CN105713299A (zh) * 2016-04-28 2016-06-29 江苏德威新材料股份有限公司 一种耐温125℃免辐照聚丙烯改性材料
CN108047557A (zh) * 2017-12-19 2018-05-18 上海至正道化高分子材料股份有限公司 一种耐气候老化125度热塑性聚烯烃电缆料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19653590C2 (de) * 1996-12-20 1998-10-15 Benecke Kaliko Ag Hochfrequenzverschweißbare Polymermischung
WO2015042820A1 (en) * 2013-09-26 2015-04-02 Dow Global Technologies Llc A polymeric blend composition
CN104744791B (zh) * 2013-12-31 2017-07-18 上海凯波特种电缆料厂有限公司 一种低烟无卤阻燃聚烯烃电缆料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259579A (ja) * 2003-02-26 2004-09-16 Yazaki Corp リサイカブルケーブル
CN105713299A (zh) * 2016-04-28 2016-06-29 江苏德威新材料股份有限公司 一种耐温125℃免辐照聚丙烯改性材料
CN108047557A (zh) * 2017-12-19 2018-05-18 上海至正道化高分子材料股份有限公司 一种耐气候老化125度热塑性聚烯烃电缆料及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114539693A (zh) * 2022-03-07 2022-05-27 宁波市青湖弹性体科技有限公司 一种阻燃低介电常数聚丙烯绝缘材料及其制备方法
CN114539693B (zh) * 2022-03-07 2023-03-28 宁波市青湖弹性体科技有限公司 一种阻燃低介电常数聚丙烯绝缘材料及其制备方法
CN115490965A (zh) * 2022-10-27 2022-12-20 郑州市彦峰塑料包装有限公司 一种可高温加热的食品包装膜及其生产工艺
CN115490965B (zh) * 2022-10-27 2023-07-04 郑州市彦峰塑料包装有限公司 一种可高温加热的食品包装膜及其生产工艺
CN117511110A (zh) * 2023-11-09 2024-02-06 山东方特管业有限公司 一种电缆护套用聚丙烯复合材料及其制备方法
CN117511110B (zh) * 2023-11-09 2024-05-10 山东方特管业有限公司 一种电缆护套用聚丙烯复合材料及其制备方法
CN117343420A (zh) * 2023-12-05 2024-01-05 润海铁建科技发展有限公司 高分子防水材料以及复合防水卷材及其制备方法和应用
CN117343420B (zh) * 2023-12-05 2024-02-23 润海铁建科技发展有限公司 高分子防水材料以及复合防水卷材及其制备方法和应用

Also Published As

Publication number Publication date
CN111909453A (zh) 2020-11-10
CN111909453B (zh) 2021-05-14

Similar Documents

Publication Publication Date Title
WO2022032755A1 (zh) 一种同轴电缆用125℃低介电损耗热塑性聚丙烯绝缘组合物及其制法和应用
CN103554633B (zh) 一种性能优异的高压电缆结构
CN101817950B (zh) 35kv级中高压交联电缆导体层用屏蔽料及其制备方法
CN113956565A (zh) 一种基于高结构导电炭黑的超光滑高压电缆半导电屏蔽料及制备方法
CN110746763A (zh) 一种聚苯醚树脂基复合材料及其制备方法和应用
US4804697A (en) Thermoplastic resin composition having an improved chemical resistance
CN112592589A (zh) 一种用于制作5g通讯滤波器的改性工程塑料及其制备方法
CN111303611A (zh) 用于5g的增强聚苯醚组合物及其制备方法
CN113788999A (zh) 一种高阻燃耐寒低烟无卤电缆料及其制备工艺
CN111423723A (zh) 用于5g的增强聚苯硫醚组合物及其制备方法
CN115260756A (zh) 一种无卤阻燃生物基耐高温尼龙合金/聚苯醚复合材料
CN103435901A (zh) 紫外光交联低烟无卤阻燃聚烯烃绝缘料及其制备方法
WO2018233350A1 (zh) 偏航制动器隔衬垫及其制备方法
CN102321369B (zh) 低密度聚芳硫醚复合材料及其制备方法
CN113637248A (zh) 一种低收缩hdpe护套料的制备
CN111635578A (zh) 一种电动汽车电缆用无卤低烟阻燃交联聚烯烃护套料制备方法
CN104212047B (zh) 第三代核电站用热缩应力管料及其制备方法
CN112194855A (zh) 一种防水耐油橡胶电缆料
CN110982186A (zh) 一种电器连接线绝缘层及其制备方法
CN115322497B (zh) 防潮型耐热聚氯乙烯电缆护套料和其制备方法与应用以及电缆护套、电线电缆
CN110845935A (zh) 一种小马达绝缘粉末及其制备方法
CN116120747A (zh) 一种塑料腔体滤波器用导热超低线性膨胀系数pps复合材料及其制备方法
CN115651316A (zh) 一种稻壳填充pp复合材料及其制备方法
CN111334042A (zh) 低介电常数聚苯硫醚组合物及其制备方法
CN111808356A (zh) 引入柠檬酸树脂与偶联剂的车身空腔隔音材料及其制备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949252

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949252

Country of ref document: EP

Kind code of ref document: A1