WO2022032580A1 - 热电偶冷端补偿电路、热电偶组件及温度传感器 - Google Patents

热电偶冷端补偿电路、热电偶组件及温度传感器 Download PDF

Info

Publication number
WO2022032580A1
WO2022032580A1 PCT/CN2020/108948 CN2020108948W WO2022032580A1 WO 2022032580 A1 WO2022032580 A1 WO 2022032580A1 CN 2020108948 W CN2020108948 W CN 2020108948W WO 2022032580 A1 WO2022032580 A1 WO 2022032580A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermocouple
rated
compensation circuit
cold junction
junction compensation
Prior art date
Application number
PCT/CN2020/108948
Other languages
English (en)
French (fr)
Inventor
田雨洪
Original Assignee
欧菲光集团股份有限公司
南昌欧菲显示科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 南昌欧菲显示科技有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/108948 priority Critical patent/WO2022032580A1/zh
Publication of WO2022032580A1 publication Critical patent/WO2022032580A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/02Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using thermoelectric elements, e.g. thermocouples
    • G01K7/10Arrangements for compensating for auxiliary variables, e.g. length of lead
    • G01K7/12Arrangements with respect to the cold junction, e.g. preventing influence of temperature of surrounding air
    • G01K7/13Circuits for cold-junction compensation

Definitions

  • the invention relates to the technical field of temperature detection, in particular to a thermocouple cold end compensation circuit, a thermocouple assembly and a temperature sensor.
  • Thermocouple is a commonly used temperature sensor in temperature measurement. Its main advantages are that it has a wide detection range and is suitable for various atmospheric environments. Moreover, it is sturdy, low in price, does not require power supply, and has low cost.
  • thermoelectric potential of a thermocouple is not only related to the temperature of the hot end, but also to the temperature of the cold end. Only when the temperature of the cold end is constant, the thermoelectric potential can correctly reflect the temperature of the hot end. Due to the short distance between the cold end and the hot end, the temperature of the cold end is also greatly affected by the high temperature equipment or the ambient temperature, so the temperature of the cold end cannot be constant, and the influence of the temperature change of the cold end on the measurement results needs to be eliminated.
  • the inventor found that there are at least the following problems in the prior art: the volume of thermocouples on the market is getting smaller and smaller, and the compensation circuit set by the existing unbalanced bridge compensation method usually has redundant components in the circuit , which leads to the problem that the circuit occupies a large space on the peripheral circuit board and cannot be directly integrated into the thermocouple.
  • thermocouple cold junction compensation circuit a thermocouple assembly and a temperature sensor to solve the above problems.
  • thermocouple cold junction compensation circuit comprising:
  • the first rated resistor, the second rated resistor, the third rated resistor and the thermistor are connected end to end through wires to form a Wheatstone bridge;
  • thermocouple unit The cold end of the thermocouple unit is electrically connected between the thermistor and the first rated resistor.
  • thermocouple cold junction compensation circuit proposed in the embodiment of the present application is surrounded by a plurality of bridge circuits on the peripheral side of the thermocouple unit, which solves the problem of redundant components in the circuit existing in the circuit set by the traditional thermocouple cold junction compensation method, resulting in circuit occupation.
  • the peripheral circuit board has a large space and cannot be directly integrated into the thermocouple.
  • thermoelectric junction of the thermocouple unit the thermistor, the first rated resistor, the second rated resistor, and the third rated resistor are evenly spaced around the thermoelectric junction of the thermocouple unit.
  • thermocouple cold junction compensation circuit can be realized.
  • the thermistor, the first rated resistance, the second rated resistance and the third rated resistance all include a plurality of first lines and a plurality of second lines, and the plurality of the first lines and the A plurality of the second lines are connected end to end and alternately arranged, a plurality of the first lines are parallel to each other, and two of the first lines adjacent to any of the second lines are located on the same side of the second line, and any of the first lines are located on the same side of the second line. The two second lines adjacent to the first line are located on different sides of the first line.
  • the resistors are designed with curved traces, which can save the occupied area and help realize the miniaturization and integration of the thermocouple cold junction compensation circuit.
  • the resistance value of the resistor can also be adjusted by adjusting the length of the curved section.
  • the line width of the first line and the second line ranges from 10 ⁇ m to 50 ⁇ m;
  • the line distance between two adjacent first lines ranges from 10 ⁇ m to 50 ⁇ m.
  • the resistor In the line width or line spacing range, it is convenient for the resistor to be routed in a curved shape, and it is convenient to adjust the resistance value by adjusting the line width or line length.
  • the second line of the junction extends in a circumferential direction centered on the thermoelectric junction of the thermocouple unit.
  • thermocouple cold junction compensation circuit can be realized.
  • the second line is perpendicular to the adjacent first line.
  • thermocouple cold junction compensation circuit can be realized.
  • the extension line of the first line of at least one of the thermistor, the first rated resistance, the second rated resistance and the third rated resistance passes through the thermoelectric junction of the thermocouple unit. .
  • thermocouple cold junction compensation circuit can be realized.
  • the material of the thermistor is copper
  • the material of the first rated resistor, the second rated resistor and the third rated resistor is copper-nickel alloy.
  • thermocouple cold junction compensation circuit is convenient for integrating the thermocouple cold junction compensation circuit into the thermocouple.
  • the material of the wire is copper; and/or
  • the line width of the wires ranges from 50 ⁇ m to 200 ⁇ m.
  • the wire material is copper, which has good electrical conductivity, and the wire width is wide enough to reduce the wire resistance to a level that does not affect the normal use of the thermocouple cold junction compensation circuit.
  • thermocouple assembly comprising:
  • thermocouple cold junction compensation circuit described in any of the above embodiments.
  • thermocouple unit disposed on one side of the base material, including a first metal electrode and a second metal electrode, one end of the first metal electrode is connected with one end of the second metal electrode to form a thermoelectric junction; the The first metal electrode is electrically connected between the thermistor and the first rated resistor through a wire.
  • thermoelectric potential fluctuation caused by the temperature change of the cold junction is reduced, and the measurement accuracy is improved. take up space.
  • the material of the first metal electrode is copper-nickel alloy
  • the material of the second metal electrode is copper
  • thermocouple The two stages of the thermocouple are composed of copper-nickel alloy and copper, so that the thermocouple can achieve a smaller volume while ensuring better detection accuracy.
  • thermocouple assembly includes a plurality of the thermocouple units connected in sequence;
  • the plurality of first metal electrodes and the plurality of second metal electrodes are connected end to end and alternately arranged.
  • thermocouple units By connecting multiple thermocouple units in series, the detected potential difference is multiplied, and the temperature measurement accuracy is improved.
  • the base material is in the shape of a plate, and the thermocouple unit and the thermocouple cold junction compensation circuit are arranged on the same side of the base material.
  • thermocouple assembly The plate shape of the substrate enables the thermocouple assembly to be "thin-film", reducing the space occupied by the thermocouple assembly.
  • thermocouple assembly also includes a thermal insulation layer
  • the thermal insulation layer covers a side of the thermocouple unit and the thermocouple cold junction compensation circuit away from the substrate.
  • the thermal insulation layer is used for thermal insulation, preventing the influence of ambient temperature changes on the compensation circuit, and also preventing metal oxidation in the thermocouple unit and the thermocouple cold junction compensation circuit.
  • An embodiment of the present invention further provides a temperature sensor, including a measurement unit, the above-mentioned thermocouple assembly and a bridge power supply;
  • One end of the measuring unit is electrically connected between the second rated resistor and the third rated resistor, and the other end is electrically connected to the second metal electrode;
  • the measuring unit is used to sense the potential difference between the first metal electrode and the second metal electrode, and obtain the detected temperature according to the potential difference;
  • the bridge power supply includes a positive electrode and a negative electrode, the positive electrode is electrically connected between the first rated resistor and the second rated resistor through a wire, and the negative electrode is electrically connected to the third rated resistor and the second rated resistor through a wire. between the thermistors.
  • thermocouple cold junction compensation circuit, thermocouple assembly and temperature sensor proposed in the embodiments of the present invention solve the traditional thermocouple cold junction compensation method due to the newly designed compensation bridge and the arrangement of the thermocouple units surrounding the bridge.
  • the set circuit has redundant components in the circuit, which leads to the problem that the circuit occupies a large space on the peripheral circuit board and cannot be directly integrated into the thermocouple.
  • the embodiment of the present invention improves the compensation accuracy of the compensation bridge by integrating the thermocouple cold junction compensation circuit inside the thermocouple assembly, and the bridge circuit surrounds the thermocouple unit, and reduces the length of the thermocouple cold junction compensation circuit and the thermocouple assembly. volume.
  • FIG. 1 is a schematic plan view of a temperature sensor in a first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of a temperature sensor in a second embodiment of the present invention.
  • FIG. 3 is a schematic plan view of a temperature sensor in a third embodiment of the present invention.
  • Thermocouple unit 20 Thermocouple unit 20
  • the first metal electrode 21 is the first metal electrode 21
  • a component when a component is said to be “electrically connected” to another component, it may be directly on the other component or there may also be an intervening component.
  • a component when a component is considered to be “electrically connected” to another component, it can be a contact connection, e.g., in the form of a wire connection, or a non-contact connection, e.g., by a non-contact coupling.
  • thermocouple cold junction compensation circuit 30 for eliminating the influence of the temperature change of the thermocouple cold junction on the measurement.
  • the thermocouple cold junction compensation circuit 30 includes a first rated resistor 31 (R1), a second rated resistor 32 (R2), a third rated resistor 33 (R3) and a thermistor 34 ( Rcu ).
  • the first rated resistor 31 , the second rated resistor 32 , the third rated resistor 33 and the thermistor 34 are connected end to end in a ring shape through a wire 36 . That is, the first rated resistor 31 , the second rated resistor 32 , the third rated resistor 33 and the thermistor 34 are connected in series to form a ring structure. And the thermoelectric junction of the thermocouple unit 20 is surrounded by the annular structure inside. It should be noted that the first rated resistor 31 , the second rated resistor 32 , the third rated resistor 33 and the thermistor 34 can form a Wheatstone bridge after being connected end to end.
  • thermocouple unit 20 is located in the annular structure formed by the first rated resistance 31 , the second rated resistance 32 , the third rated resistance 33 and the thermistor 34 , and the thermocouple unit 20 is used for the temperature-sensing thermoelectric junction (that is, the thermoelectric junction).
  • the hot end of the pair unit 20) is located in the central area of the ring structure, that is, the temperature sensing area 50, and the cold end of the thermocouple and the compensation circuit 30 of the cold end of the thermocouple are located in the room temperature area 60.
  • the temperature sensing area 50 is an area extending in the opposite direction to the central area.
  • one electrode of the cold end of the compensated thermocouple unit 20 is connected between the first rated resistance 31 and the thermistor 34, and one end of the external measuring unit 210 (usually a voltmeter, but not limited to this) is connected to The other end of the second rated resistor 32 and the third rated resistor 33 is connected to the other electrode of the thermocouple unit 20 .
  • the measuring unit 210 detects the potential difference inside the thermocouple unit 20, the cold junction will be affected by temperature changes, resulting in a potential deviation.
  • the current flowing through the cold junction passes through the bridge circuit of the thermocouple cold junction compensation circuit 30, and the deviation of the cold junction is corrected.
  • thermocouple cold junction compensation circuit 30 is arranged around the periphery of the thermocouple unit 20 , which saves the occupied space and realizes the miniaturization of the thermocouple as a whole.
  • the first rated resistor 31 , the second rated resistor 32 and the third rated resistor 33 are made of copper-nickel alloy with equal resistance values, and the thermistor 34 is made of copper.
  • a copper-nickel alloy as the material of the rated resistance has a similar resistance temperature coefficient compared to the manganese-copper wire used in the traditional process, but the copper-nickel alloy can use a smaller volume to achieve a similar performance as the manganese-copper wire.
  • the effect is conducive to realizing the miniaturization and integration of the compensation bridge.
  • metal copper has a good thermal coefficient, and can stably change the resistance value with the change of temperature, and the volume is well controlled and the cost is low.
  • thermocouple unit 20 since the thermistor 34 and the cold end of the thermocouple unit 20 are disposed in the room temperature region 60 together, it is ensured that the thermistor 34 and the cold end are at the same temperature. When the ambient temperature changes, the cold end of the thermocouple unit 20 and the thermistor 34 are simultaneously affected and the potential changes, so that the correct compensation value can be obtained.
  • the wire 36 is made of copper, and the line width of the wire 36 is preferably 50 ⁇ m-200 ⁇ m, for example: 50 ⁇ m, 60 ⁇ m, 100 ⁇ m, 150 ⁇ m, 180 ⁇ m, 200 ⁇ m, etc.
  • the wire 36 is made of copper, which has good electrical conductivity, and when the wire width of the wire 36 is wide enough, the wire resistance can be reduced to a level that does not affect the normal use of the thermocouple cold junction compensation circuit 30 .
  • first rated resistance 31 , the second rated resistance 32 , the third rated resistance 33 and the thermistor 34 each include a plurality of first lines 311 and a plurality of second lines 312 , and a plurality of first lines 311 and a plurality of first lines 311
  • the two lines 312 are connected end-to-end and alternately arranged, a plurality of first lines 311 are parallel to each other, and two first lines 311 adjacent to any second line 312 are located on the same side of the second line 312 , and two second lines adjacent to any first line 311 312 are located on different sides of the first line 311 .
  • the outlines of the first rated resistor 31 , the second rated resistor 32 , the third rated resistor 33 and the thermistor 34 are all continuously arranged “S”-shaped zigzag wiring structures. It can be understood that the design of the curved line can save the occupied area, and is helpful to realize the miniaturization and integration of the thermocouple cold junction compensation circuit 30 .
  • thermocouple cold junction compensation circuit 30 when the thermocouple cold junction compensation circuit 30 is actually applied, the trace lengths of the first rated resistor 31 , the second rated resistor 32 , the third rated resistor 33 and the thermistor 34 can be adjusted according to the required resistance value. .
  • the line width between the first line 311 and the second line 312 ranges from 10 ⁇ m to 50 ⁇ m, for example: 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, and 50 ⁇ m.
  • this line width unit it is convenient for the resistor to bend the trace in an "S" shape, and it is easy to adjust the resistance value.
  • the line spacing between two adjacent first lines 311 ranges from 10 ⁇ m to 50 ⁇ m, for example: 10 ⁇ m, 20 ⁇ m, 30 ⁇ m, 40 ⁇ m, and 50 ⁇ m. Within the line distance range, the occupied space of the varistor 30 can be reasonably controlled.
  • the second line 312 of the thermistor 34 , the first rated resistance 31 , the second rated resistance 32 and the third rated resistance 33 is close to the thermoelectric junction of the thermocouple unit 20 and/or far away from the thermoelectric junction of the thermocouple unit 20 .
  • the second wire 312 extends in the circumferential direction with the thermoelectric junction of the thermocouple unit 20 as the center.
  • the extension line of the first line 311 of at least one of the thermistor 34 , the first rated resistance 31 , the second rated resistance 32 and the third rated resistance 33 passes through the thermoelectric junction of the thermocouple unit 20 .
  • the bridge has no effect on the readings of the external detection module connected to the thermocouple unit 20 .
  • the thermoelectric potential of the thermocouple unit 20 will decrease.
  • the resistance of the thermistor 34 will also increase due to the increase in temperature, and the potential at both ends of the bridge circuit will also increase.
  • thermocouple cold junction compensation circuit 30 Due to the design of the thermocouple cold junction compensation circuit 30, the potential increase at both ends of the bridge circuit is equal to the thermoelectric potential decrease of the thermocouple unit 20, which compensates for the potential fluctuation of the cold junction due to temperature changes, and prevents the external detection module from reading error occurs.
  • thermocouple cold junction compensation circuit 30 is set according to the actual working environment of the thermocouple unit 20 and the parameters of the thermocouple, and is not limited to the specific values in the above embodiments.
  • the first embodiment of the present invention further provides a thermocouple assembly 100 for measuring temperature, which includes a substrate 10 , at least one thermocouple unit 20 and the above-mentioned thermocouple cold junction compensation circuit 30 .
  • the base material 10 is in the shape of a circular plate with a relatively thin thickness, and is used to carry the thermocouple unit 20 and the thermocouple cold junction compensation circuit 30 .
  • thermocouple unit 20 is disposed on one side of the substrate 10 , the thermocouple unit 20 includes a first metal electrode 21 and a second metal electrode 22 , and one end of the first metal electrode 21 is connected with one end of the second metal electrode 22 to form a thermoelectric junction. (that is, the hot end, not shown), the thermoelectric junction and its vicinity constitute a temperature sensing area 50, and the temperature sensing area 50 is used for contacting the component to be measured for temperature measurement.
  • thermocouple cold junction compensation circuit 30 is located in the room temperature region 60 together with the part of the thermocouple unit 20 away from the temperature sensing region 50 , and the room temperature region 60 surrounds the temperature sensing region 50 .
  • the part to be measured is close to the temperature sensing area 50 for temperature measurement, and the thermocouple cold junction compensation circuit 30 in the room temperature area 60 is not affected by the temperature of the part to be measured.
  • the first metal electrode 21 and the second metal electrode 22 are substantially elongated and spaced apart, and the ends of the first metal electrode 21 and the second metal electrode 22 located on the same side are connected and conducted.
  • the connected part is a thermoelectric junction.
  • the thermoelectric junction is used for temperature sensing and is located in the temperature sensing area 50.
  • the ends of the first metal electrode 21 and the second metal electrode 22 away from the thermoelectric junction are used to connect to an external detection module.
  • thermocouple units 20 is one.
  • the number of thermocouple units 20 may also be multiple, and the multiple first metal electrodes 21 and the multiple second metal electrodes 22 in the multiple thermocouple units 20 are connected end to end and alternately arranged, And a plurality of thermoelectric junctions are located in the same temperature sensing region 50 .
  • the number of thermocouple units 20 may be one or more.
  • the arrangement of the first metal electrodes 21 and the second metal electrodes 22 of the plurality of thermocouple units 20 is not limited to being arranged in parallel and spaced apart, and may also be annularly arranged around the center of the substrate 10 (the plurality of thermocouple units 20 are connected in series in sequence.
  • the plurality of thermocouple units 20 are connected in series in sequence.
  • M multiple thermoelectric junctions are located in the temperature sensing area 50 near the center of the circle), etc., as long as the thermoelectric junctions in each thermocouple unit 20 are all located in the same temperature sensing area 50 for temperature measurement. .
  • thermocouple units 20 is preferably 1-10 pairs.
  • thermocouple assembly 100 since multiple thermocouple units 20 are connected in series, during the detection process, the potential difference between the electrodes will be multiplied, which helps to improve the detection accuracy of the thermocouple assembly 100 .
  • thermocouple cold junction compensation circuit 30 and the thermocouple unit 20 are disposed on the same side of the substrate 10 , and the first rated resistance 31 of the thermocouple cold junction compensation circuit 30 and the thermistor 34 are electrically connected to the first metal through a wire 36
  • the electrode 21 is at one end away from the thermoelectric junction. That is, the external detection module is connected to one electrode of the thermocouple unit 20 through the thermocouple cold junction compensation circuit 30 .
  • the material of the substrate 10 can be selected from at least one of polyethylene terephthalate (PET) and polyimide (PI), but is not limited thereto.
  • PET and PI materials can take into account the overall flexibility, stability and reliability, are more suitable in terms of thermal conductivity, and have insulating properties at the same time, which can prevent errors due to conduction of the substrate 10 during the measurement of the potential difference.
  • the thickness of the substrate 10 is preferably 30 ⁇ m-300 ⁇ m, such as 30 ⁇ m, 50 ⁇ m, 80 ⁇ m, 100 ⁇ m, 150 ⁇ m, 200 ⁇ m, 250 ⁇ m, 300 ⁇ m, etc., but not limited thereto, the thickness range can play a role in comparing the other components it carries. It is well supported and ensures that the substrate will not be thermally insulated to affect the test data. In the actual application process, the appropriate thickness can be selected according to the required measurement range and space constraints.
  • first metal electrode 21 and the second metal electrode 22 are made of metals of different materials, when the temperature in the temperature sensing area 50 changes, a corresponding potential difference will be generated between them. The temperature of the part to be measured in the temperature sensing area 50 .
  • the material of the first metal electrode 21 is copper-nickel alloy
  • the material of the second metal electrode 22 is copper.
  • the thermocouple using copper-copper-nickel alloy has the advantages of wide measurement range, good stability and sensitivity, high mechanical strength, good pressure resistance and low cost. It can be understood that in other embodiments of the present application, the materials of the first metal electrode 21 and the second metal electrode 22 are not limited to copper-nickel alloy and copper, and suitable metal materials or Other material.
  • the mass ratio of copper to nickel is preferably in the range of 4:6 to 5:5, but not limited thereto.
  • the first metal electrode 21 and the second metal electrode 22 are generally combined with the substrate 10 by surface sputtering, but not limited thereto.
  • the lengths of the first metal electrode 21 and the second metal electrode 22 can be adjusted according to the required detection accuracy, and the distance between the first metal electrode 21 and the second metal electrode 22 perpendicular to the extending direction is preferably in the range of 5 ⁇ m-200 ⁇ m. , for example: 5 ⁇ m, 10 ⁇ m, 50 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 180 ⁇ m, 200 ⁇ m, etc. Spacing within this range can better avoid interference between the two electrodes. If the spacing is too short, it is easy to cause mutual interference, and if the spacing is too long, it will cause a waste of space.
  • the line widths of the first metal electrode 21 and the second metal electrode 22 are preferably 10 ⁇ m-200 ⁇ m, for example: 10 ⁇ m, 30 ⁇ m, 50 ⁇ m, 100 ⁇ m, 120 ⁇ m, 150 ⁇ m, 200 ⁇ m, etc.
  • the first metal electrode 21 and the second metal electrode 22 with the line width can reduce the space occupied by the thermocouple unit 20 while ensuring the detection accuracy.
  • thermocouple assembly 100 is generally circular as a whole, and is easy to be directly integrated into electronic devices such as smart watches, mobile phones, and biometric identification devices.
  • thermocouple assembly 100 provides a thermocouple assembly 100 .
  • the thermocouple assembly 100 in this embodiment is additionally provided with an insulating layer 40 , and the insulating layer 40 covers The thermocouple unit 20 and the thermocouple cold junction compensation circuit 30 are on the side away from the substrate 10 .
  • the heat insulating layer 40 covers one side of the substrate 10 in a ring shape, the temperature sensing area 50 is exposed in the middle of the ring heat insulating layer 40 for sensing temperature, and the heat insulating layer 40 covers the room temperature area 60 for preventing the thermocouple assembly
  • the thermocouple cold junction compensation circuit 30 due to the change of the ambient temperature, the change of the internal resistance of the thermocouple cold junction compensation circuit 30 due to the change of the ambient temperature is avoided, which affects the compensation accuracy.
  • the thermal insulation layer 40 can also be used to prevent oxidation of the metals in the thermocouple unit 20 and the thermocouple cold junction compensation circuit 30, thereby affecting the measurement accuracy.
  • the material of the heat insulating layer 40 can be selected from insulating materials such as resin or rubber, which has good heat insulating properties and also takes into account the insulating properties.
  • the thickness of the heat insulating layer 40 is preferably 2 ⁇ m-30 ⁇ m, for example: 2 ⁇ m, 3 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, 25 ⁇ m, 30 ⁇ m and the like.
  • the thermal insulation layer 40 in this thickness range can achieve better thermal insulation effect.
  • An embodiment of the present invention provides a temperature sensor 200 for detecting temperature.
  • the temperature sensor 200 includes a measurement unit 210 , the thermocouple assembly 100 in any of the above embodiments, and the bridge power supply 35 .
  • the measurement unit 210 is electrically connected between the second metal electrode 22 and the second rated resistance 32 and the third rated resistance 33 in the thermocouple cold junction compensation circuit 30 , that is, the measurement unit 210 is directly electrically connected to the second rated resistance of the thermocouple unit 20 .
  • the metal electrode 22 is indirectly electrically connected to the first metal electrode 21 of the thermocouple unit 20 through the thermocouple cold junction compensation circuit 30 .
  • the measuring unit 210 is used for sensing the potential difference between the first metal electrode 21 and the second metal electrode 22, so as to calculate the temperature of the area to be measured according to the potential difference.
  • the measurement unit 210 is a voltmeter. In other embodiments of the present application, the measurement unit 210 may also be other instruments capable of detecting the potential difference, such as a multimeter.
  • thermocouple assemblies 100 can be connected to different thermocouple assemblies 100 according to the change of the usage environment, so as to be used in different environments.
  • the bridge power supply 35 includes a positive electrode and a negative electrode.
  • the positive electrode is electrically connected between the first rating resistor 31 and the second rating resistor 32 through a wire 36
  • the negative electrode is electrically connected between the third rating resistor 33 and the thermistor 34 through a wire 36 .
  • the bridge power supply 35 is used to supply voltage to the thermocouple cold junction compensation circuit 30 .
  • the voltage value range provided by the bridge power supply 35 is preferably 1.3V-6.7V, for example: 1.3V, 2V, 3.7V, 5V, 6.7V, etc.
  • the voltage value within this range can reduce the compensation accuracy while ensuring the compensation accuracy. Small power consumption.
  • the appropriate voltage value can be selected according to the needs of the measurement environment or external conditions.
  • FIG. 3 is a schematic plan view of a temperature sensor according to a third embodiment of the present invention.
  • the structure of the temperature sensor 200 in the third embodiment is substantially the same as that of the temperature sensor 200 in the first embodiment, except that the second line 312 is perpendicular to the adjacent first line 311 .
  • thermocouple cold junction compensation circuit 30, the thermocouple assembly 100 and the temperature sensor 200 proposed in the embodiment of the present invention solve the problems of traditional thermocouples due to the newly designed compensation bridge and the arrangement of the thermocouple unit 20 surrounding the bridge.
  • the circuit set by the cold junction compensation method has redundant components in the circuit, which leads to the problem that the circuit occupies a large space on the peripheral circuit board and cannot be directly integrated into the thermocouple.
  • the thermocouple cold junction compensation circuit 30 by integrating the thermocouple cold junction compensation circuit 30 inside the thermocouple assembly 100, and surrounding the bridge circuit with the thermocouple unit 20, the compensation accuracy of the compensation bridge is improved, and the thermocouple cold junction compensation circuit 30 and the thermocouple cold junction compensation circuit 30 and The volume of the thermocouple assembly 100 .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

一种热电偶冷端补偿电路(30)、具有该热电偶冷端补偿电路(30)的热电偶组件(100)和温度传感器(200),其中热电偶冷端补偿电路(30)包括第一定额电阻(31)、第二定额电阻(32)、第三定额电阻(33)和热敏电阻(34),第一定额电阻(31)、第二定额电阻(32)、第三定额电阻(33)和热敏电阻(34)通过导线(36)首尾连接形成惠斯通电桥;热敏电阻(34)与第一定额电阻(31)之间电连接热电偶单元(20)的冷端。该热电偶冷端补偿电路(30)解决了传统热电偶冷端补偿方法设置的电路存在的电路内元件冗杂,导致电路占用外围电路板空间较大,且无法直接集成于热电偶内部的问题。

Description

热电偶冷端补偿电路、热电偶组件及温度传感器 技术领域
本发明涉及温度检测技术领域,尤其涉及一种热电偶冷端补偿电路、热电偶组件及温度传感器。
背景技术
在工业生产、智能加工及可穿戴电子设备等领域,对温度检测的需求越来越高。热电偶是温度测量中较为常用的温度传感器,其主要的优点为检测范围较宽及适应各种大气环境,而且其结实、价低,无需供电,成本也较低。
然而,热电偶的热电势的大小不仅与热端温度有关,还与冷端温度有关,只有在冷端温度恒定的情况下,热电势才能正确反映热端温度高低。由于冷端与热端的距离较近,冷端温度也会受到高温设备或环境温度的较大影响,因此冷端的温度不可能恒定不变,需要消除冷端温度变化对测量结果的影响。
在实现本申请的过程中,发明人发现现有技术中至少存在如下问题:市面上热电偶的体积越来越小,现有的不平衡电桥补偿方法设置的补偿电路通常存在电路内元件冗杂,导致电路占用外围电路板空间较大,且无法直接集成于热电偶内部的问题。
发明内容
有鉴于此,有必要提供一种热电偶冷端补偿电路、热电偶组件及温度传感器,以解决上述问题。
本发明的实施例提供一种热电偶冷端补偿电路,包括:
第一定额电阻、第二定额电阻、第三定额电阻和热敏电阻,通过导线首尾连接并形成惠斯通电桥;
所述热敏电阻与所述第一定额电阻之间电连接所述热电偶单元的冷端。
本申请实施例提出的热电偶冷端补偿电路通过多个桥路围设于热电偶单元的周侧,解决了传统热电偶的冷端补偿方法设置的电路存在的电路内元件冗杂,导致电路占用外围电路板空间较大,且无法直接集成于热电偶内部的问题。
进一步地,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻围绕热电偶单元的热电结均匀间隔设置。
如此,能够节省占用面积,有助于实现热电偶冷端补偿电路的小型化与集成化。
进一步地,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻均包括多个第一线和多个第二线,多个所述第一线与多个所述第二线首尾相连且交替设置,多个所述第一线互相平行且任一所述第二线相邻的两所述第一线位于所述第二线的同一侧,任一所述第一线相邻的两所述第二线位于所述第一线的不同侧。
电阻使用弯曲走线设计,能节省占用面积,有助于实现热电偶冷端补偿电路的小型化与集成化,还可通过调整弯曲段的长度调节电阻的阻值大小。
进一步地,所述第一线及所述第二线的线宽范围为10μm-50μm;
和/或,相邻两所述第一线之间的线距范围为10μm-50μm。
在该线宽或线距范围内,便于电阻以弯曲的形状走线,且便于通过调整线宽或线长调整阻值。
进一步地,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻中的靠近热电偶单元的热电结的第二线和/或远离热电偶单元的热电结的第二线为沿以热电偶单元的热电结为圆心的圆周方向延伸。
如此,能够节省占用面积,有助于实现热电偶冷端补偿电路的小型化与集成化。
进一步地,所述第二线与相邻的所述第一线垂直设置。
如此,能够节省占用面积,有助于实现热电偶冷端补偿电路的小型化与集成化。
进一步地,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻中至少一者的所述第一线的延伸线穿过热电偶单元的热电结。
如此,能够节省占用面积,有助于实现热电偶冷端补偿电路的小型化与集成化。
进一步地,所述热敏电阻的材质为铜,所述第一定额电阻、所述第二定额电阻和所述第三定额电阻的材质为铜镍合金。
金属铜具有较好地热敏系数且体积可控、成本较低;铜镍合金具有稳定的电阻温度系数,以较小的体积就可实现现有技术中锰铜丝的效果,进而减小了热电偶冷端补偿电路整体的体积,便于将热电偶冷端补偿电路集合到热电偶中。
进一步地,所述导线的材质为铜;和/或
所述导线的线宽范围为50μm-200μm。
导线材质选为铜,具有较好地导电能力,且导线线宽在足够宽的情况下,才可以将线阻降低到不影响热电偶冷端补偿电路正常使用的水平。
本发明实施例还提供一种热电偶组件,包括:
基材;
上述任一实施例所述的热电偶冷端补偿电路;
热电偶单元,设置于所述基材的一侧,包括第一金属电极和第二金属电极, 所述第一金属电极的一端与所述第二金属电极的一端相连接形成热电结;所述第一金属电极通过导线电连接于所述热敏电阻与所述第一定额电阻之间。
热电偶组件的冷端连接上述热电偶冷端补偿电路后,消减了冷端因温度变化引起的热电势波动,提高了测量精度,且补偿电桥桥路围设于热电结周侧,节省了占用空间。
进一步地,所述第一金属电极的材质为铜镍合金,所述第二金属电极的材质为铜。
铜镍合金与铜组成热电偶的两级,使得热电偶在保证较好检测精度的同时,也能做到较小的体积。
进一步地,所述热电偶组件包括多个依次连接的所述热电偶单元;
多个所述第一金属电极与多个所述第二金属电极首尾相连且交替设置。
通过串联多个热电偶单元,成倍地放大了检测的电势差值,提高了测温精度。
进一步地,所述基材呈板状,所述热电偶单元与所述热电偶冷端补偿电路设置于所述基材的同一侧。
基材呈板状可使热电偶组件实现“薄膜式”,减小热电偶组件占用的空间。
进一步地,所述热电偶组件还包括隔热层;
所述隔热层覆盖所述热电偶单元和所述热电偶冷端补偿电路远离所述基材的一侧。
隔热层用于隔热,防止环境温度变化对补偿电路的影响,还能防止热电偶单元及热电偶冷端补偿电路内的金属氧化。
本发明实施例还提供一种温度传感器,包括量测单元、上述的热电偶组件及桥路电源;
所述量测单元的一端电连接所述第二定额电阻与所述第三定额电阻之间,另一端电连接所述第二金属电极;
所述量测单元用于感应所述第一金属电极与所述第二金属电极之间的电势差,并依据所述电势差获得检测温度;
所述桥路电源包括正极和负极,所述正极通过导线电连接于所述第一定额电阻与所述第二定额电阻之间,所述负极通过导线电连接于所述第三定额电阻与所述热敏电阻之间。
本发明实施例提出的热电偶冷端补偿电路、热电偶组件及温度传感器,由于新设计的补偿电桥及电桥围设热电偶单元的排布方式,解决了传统热电偶的冷端补偿方法设置的电路存在的电路内元件冗杂,导致电路占用外围电路板空间较大,且无法直接集成于热电偶内部的问题。本发明实施例通过将热电偶冷端补偿电路集成于热电偶组件内部,且桥路围设热电偶单元,提高了补偿电桥的补偿精度,缩减了热电偶冷端补偿电路及热电偶组件的体积。
附图说明
图1为本发明第一实施例中温度传感器的平面结构示意图。
图2为本发明第二实施例中温度传感器的平面结构示意图。
图3为本发明第三实施例中温度传感器的平面结构示意图。
主要元件符号说明
热电偶组件                  100
基材                        10
热电偶单元                  20
第一金属电极                21
第二金属电极                22
热电偶冷端补偿电路          30
第一定额电阻                31
第一线                      311
第二线                      312
第二定额电阻                32
第三定额电阻                33
热敏电阻                    34
桥路电源                    35
导线                        36
隔热层                      40
感温区                      50
室温区                      60
温度传感器                  200
量测单元                    210
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当一个组件被称为“电连接”另一个组件,它可以直接在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“电连接”另一个组 件,它可以是接触连接,例如,可以是导线连接的方式,也可以是非接触式连接,例如,可以是非接触式耦合的方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
下面结合附图,对本发明的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
请参阅图1,本发明第一实施例提供一种热电偶冷端补偿电路30,用于消除热电偶的冷端温度变化对测量的影响。热电偶冷端补偿电路30包括第一定额电阻31(R1)、第二定额电阻32(R2)、第三定额电阻33(R3)及热敏电阻34(Rc u)。
其中,第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34通过导线36呈环形首尾连接。即,第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34串联成环形结构。且热电偶单元20的热电结被环形结构围设于内部。需要说明的是,第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34通过首尾相连后可形成惠斯通电桥。
具体地,热电偶单元20位于第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34形成的环形结构内,热电偶单元20用于感温的热电结(即热电偶单元20的热端)位于环形结构的中心区域,即感温区50,热电偶的冷端与热电偶冷端补偿电路30一同处于室温区60。可以理解,感温区50为向中心区域相反的方向延伸的区域。
使用时,被补偿的热电偶单元20冷端的一个电极连接于第一定额电阻31与热敏电阻34之间,外部的量测单元210(通常为电压计,但不限于此)的一端连接于第二定额电阻32与第三定额电阻33之间,另一端连接热电偶单元20的另一个电极。量测单元210在检测热电偶单元20内部的电势差时,冷端会受到温度变化影响导致电势出现偏差,流过冷端的电流经过热电偶冷端补偿电路30的桥路后,校正了冷端的偏差,使测量结果更准确,且热电偶冷端补偿电路30的桥路环绕设置于热电偶单元20的周侧,节约了占用空间,实现了热电偶整体的小型化。
进一步地,在本实施例中,第一定额电阻31、第二定额电阻32和第三定额电阻33的材质为铜镍合金且阻值相等,热敏电阻34的材质为铜。
具体地,使用铜镍合金作为定额电阻的材质,相较于传统工艺中使用较多的锰铜丝,具有相似的电阻温度系数,但铜镍合金可使用更小的体积达到类似于锰铜丝的效果,有利于实现补偿电桥的小型化与集成化。使用铜作为热敏电阻34的材质,金属铜具有较好地热敏系数,能够随温度的变化稳定的改变阻值,且体积较好控制,成本较低。
可以理解,由于热敏电阻34与热电偶单元20的冷端一同设置在室温区60,以确保热敏电阻34与冷端处于同一温度下。当环境温度发生变化时,热电偶单元20的冷端与热敏电阻34同时受影响发生电势变化,才能得到正确的补偿数值。
进一步地,在本实施例中,导线36的材质为铜,且导线36的线宽范围优选为50μm-200μm,例如:50μm、60μm、100μm、150μm、180μm、200μm等。
具体地,导线36材质选为铜,具有较好地导电能力,且导线36线宽在足够宽的情况下,才可以将线阻降低到不影响热电偶冷端补偿电路30正常使用的水平。
进一步地,第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34均包括多个第一线311和多个第二线312,多个第一线311与多个第二线312首尾相连且交替设置,多个第一线311互相平行且任一第二线312相邻的两第一线311位于第二线312的同一侧,任一第一线311相邻的两第二线312位于第一线311的不同侧。例如:在本实施例中,第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34的外形轮廓均为连续设置的“S”形曲折走线结构。可以理解,弯曲走线设计能节省占用面积,有助于实现热电偶冷端补偿电路30的小型化与集成化。
可以理解,在热电偶冷端补偿电路30实际应用时,可以依据所需的电阻值,调整第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34的走线长度。
进一步地,第一线311与第二线312之间的线宽范围为10μm-50μm,例如:10μm、20μm、30μm、40μm、50μm。在该线宽单位内,便于电阻以“S”形弯曲走线,且便于调整阻值。
进一步地,相邻两第一线311之间的线距范围为10μm-50μm,例如:10μm、20μm、30μm、40μm、50μm。在该线距范围内,能够合理控制压敏电阻30的占用空间。
其中,热敏电阻34、第一定额电阻31、第二定额电阻32和第三定额电阻33中的靠近热电偶单元20的热电结的第二线312和/或远离热电偶单元20的热电结的第二线312沿以热电偶单元20的热电结为圆心的圆周方向延伸。
热敏电阻34、第一定额电阻31、第二定额电阻32和第三定额电阻33中至少一者的第一线311的延伸线穿过热电偶单元20的热电结。
在本实施例中,当环境温度为t 0时,第一定额电阻31、第二定额电阻32、第三定额电阻33和热敏电阻34的阻值相等,此时桥路两端的电势为0,电桥对连接热电偶单元20的外部检测模块的读数没有影响。当热电偶冷端的温度升高时,热电偶单元20的热电势会降低,此时热敏电阻34受温度升高影响电阻也会升高,桥路两端的电势也随着增加。由于热电偶冷端补偿电路30的设计,使 得桥路两端的电势增加量等于热电偶单元20的热电势减少量,则补偿了冷端由于温度变化造成的电势波动,避免外部检测模块在读数时产生误差。
可以理解,热电偶冷端补偿电路30设置的补偿值依据实际的热电偶单元20工作环境和热电偶的参数而设定,不限于上述实施例中的各项具体数值。
请继续参阅图1,本发明第一实施例还提供一种热电偶组件100,用于测量温度,其包括基材10、至少一个热电偶单元20和上述热电偶冷端补偿电路30。
在本实施例中,基材10呈圆板状,且厚度较薄,用于承载热电偶单元20和热电偶冷端补偿电路30。
热电偶单元20设置于基材10的一侧,热电偶单元20包括第一金属电极21和第二金属电极22,第一金属电极21的一端与第二金属电极22的一端相连并形成热电结(即为热端,未标出),热电结及其附近的区域构成感温区50,感温区50用于接触待测部件进行测温。
可以理解,热电偶冷端补偿电路30与热电偶单元20远离感温区50的部分一同处于室温区60,室温区60环绕感温区50。测试时,待测部位靠近感温区50进行测温,处于室温区60的热电偶冷端补偿电路30不受待测部位温度影响。
在本实施例中,第一金属电极21与第二金属电极22均大致呈长条形并间隔设置,第一金属电极21与第二金属电极22的位于同侧的一端相连接并导通,相连接的部分即为热电结,热电结用于感测温度,并处于感温区50内,第一金属电极21与第二金属电极22远离热电结的一端用于连接外部检测模块。
进一步地,在本实施例中,热电偶单元20的数量为一个。
在本申请的其他实施例中,热电偶单元20的数量还可为多个,多个热电偶单元20内的多个第一金属电极21与多个第二金属电极22首尾相连且交替设置,且多个热电结位于同一感温区50内。
进一步地,在本申请的其他实施例中,热电偶单元20的数量可为一个或多个。多个热电偶单元20的第一金属电极21与第二金属电极22的排布方式不限于平行间隔排布,也可为绕基材10的圆心环形排布(多个热电偶单元20依次串联成“M”形,多个热电结均位于靠近圆心处的感温区50内)等,只要能满足每个热电偶单元20内的热电结都处于同一感温区50内进行测温即可。
具体地,热电偶单元20的数量优选为1-10对。
可以理解,由于串联了多个热电偶单元20,在检测过程中,电极之间的电势差会成倍地放大,有助于提高热电偶组件100的检测精度。
热电偶冷端补偿电路30与热电偶单元20设置于基材10的同一侧,且热电偶冷端补偿电路30的第一定额电阻31与热敏电阻34之间通过导线36电连接第一金属电极21远离热电结的一端。即外部检测模块通过热电偶冷端补偿电路30连接热电偶单元20的一个电极。
进一步地,在本实施例中,基材10的材质可选用聚对苯二甲酸乙二醇酯 (PET)、聚酰亚胺(PI)中的至少一种,但不限于此。PET和PI材质能够兼顾整体的柔韧性、稳定性、可靠性,在导热能力方面较为适合,且同时具有绝缘特性,能够防止电势差测量时由于基材10的传导产生误差。
进一步地,基材10的厚度优选为30μm-300μm,例如30μm、50μm、80μm、100μm、150μm、200μm、250μm、300μm等,但不限于此,该厚度范围能够对其承载的其他元件起到较好地支撑并保证了基材不会隔热影响检测数据。在实际运用过程中,依据所需的测量范围及空间限制选用合适的厚度即可。
可以理解,第一金属电极21与第二金属电极22通过采用不同材质的金属,当感温区50内温度发生变化时,二者之间会产生相应的电势差,通过测量电势差的大小,可获得处于感温区50内的待测部位的温度。
在本实施例中,第一金属电极21的材质为铜镍合金,第二金属电极22的材质为铜。使用铜-铜镍合金的热电偶,具有测量范围广、稳定性与灵敏度较好、机械强度高、耐压性好、成本低廉的优点。可以理解,在本申请的其他实施例中,第一金属电极21与第二金属电极22的材质不限于铜镍合金和铜,也可依据所需的检测范围或成本考量选用合适的金属材质或其他材质。
具体地,铜镍合金中,铜与镍的质量比范围优选为4:6到5:5之间,但不限于此。第一金属电极21与第二金属电极22一般通过表面溅射的方式与基材10相结合,但不限于此。
进一步地,第一金属电极21与第二金属电极22的长度可依据所需的检测精度进行调整,第一金属电极21与第二金属电极22沿垂直于延伸方向的间距优选范围为5μm-200μm,例如:5μm、10μm、50μm、100μm、120μm、150μm、180μm、200μm等。该范围内的间距可较好地避免两个电极之间的干扰。如间距太短容易引发相互干扰,如间距过长会造成空间的浪费。
进一步地,在本实施例中,第一金属电极21与第二金属电极22的线宽优选为10μm-200μm,例如:10μm、30μm、50μm、100μm、120μm、150μm、200μm等。具有该线宽的第一金属电极21与第二金属电极22能够在保证检测精度的同时,缩小热电偶单元20占用的空间。
可以理解,热电偶组件100整体大致呈圆形,易直接集成于智能手表、手机、生物识别装置等电子设备内部。
请一并参阅图2,本发明第二实施例提出一种热电偶组件100,相较于第一实施例,本实施例中的热电偶组件100增设了隔热层40,隔热层40覆盖热电偶单元20和热电偶冷端补偿电路30远离基材10的一侧。
具体地,隔热层40呈环形覆盖于基材10的一侧,环形的隔热层40中间露出感温区50用于感应温度,隔热层40覆盖室温区60,用于防止热电偶组件100使用过程中由于环境温度的变化对热电偶冷端补偿电路30,避免了由于环境温度变化导致热电偶冷端补偿电路30内阻值变化,影响补偿精度。
可以理解,隔热层40同时可用于防止热电偶单元20和热电偶冷端补偿电路30内的金属发生氧化,进而影响测量的精度。隔热层40的材质可选用树脂或橡胶等绝缘材料,具有较好隔热特性的同时也兼顾绝缘性。
进一步地,隔热层40的厚度优选为2μm-30μm,例如:2μm、3μm、10μm、15μm、20μm、25μm、30μm等。该厚度范围的隔热层40可以在实现较好地隔热效果。
请同时参阅图1与图2,本发明实施例提供一种温度传感器200,用于检测温度。温度传感器200包括量测单元210、上述任一实施例中的热电偶组件100和桥路电源35。
量测单元210电连接第二金属电极22及热电偶冷端补偿电路30内的第二定额电阻32与第三定额电阻33之间,即量测单元210直接电连接热电偶单元20的第二金属电极22,并通过热电偶冷端补偿电路30间接电连接热电偶单元20的第一金属电极21。
量测单元210用于感应第一金属电极21与第二金属电极22之间的电势差,从而依据该电势差计算出待测区域的温度。
具体地,在本实施例中,量测单元210为电压计,在本申请的其他实施例中,量测单元210还可为其他能够检测电势差的仪器,例如:万用表。
可以理解,温度传感器200依据使用环境的变化,量测单元210可连接不同的热电偶组件100,从而实现在不同环境下使用。
桥路电源35包括正极和负极,正极通过导线36电连接于第一定额电阻31和第二定额电阻32之间,负极通过导线36电连接于第三定额电阻33与热敏电阻34之间。桥路电源35用于向热电偶冷端补偿电路30提供电压。
进一步地,桥路电源35提供的电压值范围优选为1.3V-6.7V,例如:1.3V、2V、3.7V、5V、6.7V等,该范围内的电压值能够在保证补偿精度的同时减小功耗。实际使用过程中可依据测量环境或外部条件的需要选用合适的电压值。
请参见图3,图3为本发明第三实施例中温度传感器的平面结构示意图。
第三实施例中的温度传感器200与第一实施例中的温度传感器200的结构大致相同,不同之处在于:第二线312与相邻的所述第一线311垂直设置。
本发明实施例提出的热电偶冷端补偿电路30、热电偶组件100及温度传感器200,由于新设计的补偿电桥及电桥围设热电偶单元20的排布方式,解决了传统热电偶的冷端补偿方法设置的电路存在的电路内元件冗杂,导致电路占用外围电路板空间较大,且无法直接集成于热电偶内部的问题。本发明实施例通过将热电偶冷端补偿电路30集成于热电偶组件100内部,且桥路围设热电偶单元20,提高了补偿电桥的补偿精度,缩减了热电偶冷端补偿电路30及热电偶组件100的体积。
以上实施方式仅用以说明本发明的技术方案而非限制,尽管参照以上较佳 实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换都不应脱离本发明技术方案的精神和范围。本领域技术人员还可在本发明精神内做其它变化等用在本发明的设计,只要其不偏离本发明的技术效果均可。这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (15)

  1. 一种热电偶冷端补偿电路,其特征在于,包括:
    第一定额电阻、第二定额电阻、第三定额电阻和热敏电阻,通过导线首尾连接并形成惠斯通电桥;
    所述热敏电阻与所述第一定额电阻之间电连接所述热电偶单元的冷端。
  2. 如权利要求1所述的热电偶冷端补偿电路,其特征在于,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻围绕热电偶单元的热电结均匀间隔设置。
  3. 如权利要求1所述的热电偶冷端补偿电路,其特征在于,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻均包括多个第一线和多个第二线,多个所述第一线与多个所述第二线首尾相连且交替设置,多个所述第一线互相平行且任一所述第二线相邻的两所述第一线位于所述第二线的同一侧,任一所述第一线相邻的两所述第二线位于所述第一线的不同侧。
  4. 如权利要求3所述的热电偶冷端补偿电路,其特征在于,所述第一线及所述第二线的线宽范围为10μm-50μm;
    和/或,相邻两所述第一线之间的线距范围为10μm-50μm。
  5. 如权利要求3所述的热电偶冷端补偿电路,其特征在于,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻中的靠近热电偶单元的热电结的第二线和/或远离热电偶单元的热电结的第二线为沿以热电偶单元的热电结为圆心的圆周方向延伸。
  6. 如权利要求3所述的热电偶冷端补偿电路,其特征在于,所述第二线与相邻的所述第一线垂直设置。
  7. 如权利要求3所述的热电偶冷端补偿电路,其特征在于,所述热敏电阻、所述第一定额电阻、所述第二定额电阻和所述第三定额电阻中至少一者的所述第一线的延伸线穿过热电偶单元的热电结。
  8. 如权利要求1所述的热电偶冷端补偿电路,其特征在于,所述热敏电阻的材质为铜,所述第一定额电阻、所述第二定额电阻和所述第三定额电阻的材质为铜镍合金。
  9. 如权利要求1所述的热电偶冷端补偿电路,其特征在于,所述导线的材质为铜;和/或
    所述导线的线宽范围为50μm-200μm。
  10. 一种热电偶组件,其特征在于,包括:
    基材;
    如权利要求1-9任一项所述的热电偶冷端补偿电路;
    热电偶单元,设置于所述基材的一侧,包括第一金属电极和第二金属电极, 所述第一金属电极的一端与所述第二金属电极的一端相连接形成热电结;所述第一金属电极通过导线电连接于所述热敏电阻与所述第一定额电阻之间。
  11. 如权利要求10所述的热电偶组件,其特征在于,所述第一金属电极的材质为铜镍合金,所述第二金属电极的材质为铜。
  12. 如权利要求10所述的热电偶组件,其特征在于,所述热电偶组件包括多个依次连接的所述热电偶单元;
    多个所述第一金属电极与多个所述第二金属电极首尾相连且交替设置。
  13. 如权利要求10所述的热电偶组件,其特征在于,所述基材呈板状,所述热电偶单元与所述热电偶冷端补偿电路设置于所述基材的同一侧。
  14. 如权利要求10所述的热电偶组件,其特征在于,所述热电偶组件还包括隔热层;
    所述隔热层覆盖所述热电偶单元和所述热电偶冷端补偿电路远离所述基材的一侧。
  15. 一种温度传感器,其特征在于,包括量测单元、如权利要求10-14任意一项所述的热电偶组件,以及桥路电源;
    所述量测单元的一端电连接所述第二定额电阻与所述第三定额电阻之间,另一端电连接所述第二金属电极;
    所述量测单元用于感应所述第一金属电极与所述第二金属电极之间的电势差,并依据所述电势差获得检测温度;
    所述桥路电源包括正极和负极,所述正极通过导线电连接于所述第一定额电阻与所述第二定额电阻之间,所述负极通过导线电连接于所述第三定额电阻与所述热敏电阻之间。
PCT/CN2020/108948 2020-08-13 2020-08-13 热电偶冷端补偿电路、热电偶组件及温度传感器 WO2022032580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108948 WO2022032580A1 (zh) 2020-08-13 2020-08-13 热电偶冷端补偿电路、热电偶组件及温度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108948 WO2022032580A1 (zh) 2020-08-13 2020-08-13 热电偶冷端补偿电路、热电偶组件及温度传感器

Publications (1)

Publication Number Publication Date
WO2022032580A1 true WO2022032580A1 (zh) 2022-02-17

Family

ID=80246802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108948 WO2022032580A1 (zh) 2020-08-13 2020-08-13 热电偶冷端补偿电路、热电偶组件及温度传感器

Country Status (1)

Country Link
WO (1) WO2022032580A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628236A (zh) * 2015-12-20 2016-06-01 苏州长风航空电子有限公司 一种热电偶温度信号的采集方法
RU2623196C1 (ru) * 2016-05-31 2017-06-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Устройство для измерения температуры
CN207649802U (zh) * 2017-12-22 2018-07-24 北京中航兴盛测控技术有限公司 弹性体应变薄膜电阻
CN207649782U (zh) * 2017-11-18 2018-07-24 武汉三江航天远方科技有限公司 新型船用柴油-lng双燃料发动机排气温度测量装置
CN109459954A (zh) * 2018-11-16 2019-03-12 南京理工大学 一种仿形诱饵红外辐射特性控制方法及装置
CN109752676A (zh) * 2019-01-10 2019-05-14 东南大学 一种改进惠斯通电桥式薄膜磁阻传感器
CN109945993A (zh) * 2019-04-12 2019-06-28 中国计量大学 一种具有负极共用特征的自标定薄膜热电偶阵列
CN110031085A (zh) * 2019-04-19 2019-07-19 大连理工大学 一种基于惠斯通全桥原理的结构损伤识别传感器及结构损伤识别方法
CN111024269A (zh) * 2019-12-25 2020-04-17 中国计量大学 一种测量沿壁面热流的平面型热流传感器及其标定方法
CN212007576U (zh) * 2020-05-26 2020-11-24 南昌欧菲显示科技有限公司 热电偶冷端补偿电桥、热电偶组件及温度传感器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628236A (zh) * 2015-12-20 2016-06-01 苏州长风航空电子有限公司 一种热电偶温度信号的采集方法
RU2623196C1 (ru) * 2016-05-31 2017-06-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный университет имени Г.Р. Державина" Устройство для измерения температуры
CN207649782U (zh) * 2017-11-18 2018-07-24 武汉三江航天远方科技有限公司 新型船用柴油-lng双燃料发动机排气温度测量装置
CN207649802U (zh) * 2017-12-22 2018-07-24 北京中航兴盛测控技术有限公司 弹性体应变薄膜电阻
CN109459954A (zh) * 2018-11-16 2019-03-12 南京理工大学 一种仿形诱饵红外辐射特性控制方法及装置
CN109752676A (zh) * 2019-01-10 2019-05-14 东南大学 一种改进惠斯通电桥式薄膜磁阻传感器
CN109945993A (zh) * 2019-04-12 2019-06-28 中国计量大学 一种具有负极共用特征的自标定薄膜热电偶阵列
CN110031085A (zh) * 2019-04-19 2019-07-19 大连理工大学 一种基于惠斯通全桥原理的结构损伤识别传感器及结构损伤识别方法
CN111024269A (zh) * 2019-12-25 2020-04-17 中国计量大学 一种测量沿壁面热流的平面型热流传感器及其标定方法
CN212007576U (zh) * 2020-05-26 2020-11-24 南昌欧菲显示科技有限公司 热电偶冷端补偿电桥、热电偶组件及温度传感器

Similar Documents

Publication Publication Date Title
US8461825B2 (en) Current measurement apparatus with shunt resistor and heat sink
WO2022032580A1 (zh) 热电偶冷端补偿电路、热电偶组件及温度传感器
CN212007576U (zh) 热电偶冷端补偿电桥、热电偶组件及温度传感器
CN108351260A (zh) 温度传感器
CN105606331A (zh) 一种具有柔性基底的薄膜铂电阻热流传感器及其制作方法
CN112082666A (zh) 热电偶冷端补偿电路、热电偶组件及温度传感器
JP2764517B2 (ja) チップ抵抗器、ならびに、これを用いる電流検出回路および電流検出方法
CN111795757A (zh) 热电偶冷端补偿电桥、热电偶组件及温度传感器
CN213366295U (zh) 双余度铂薄膜热敏电阻器
WO2021237602A1 (zh) 薄膜式热电偶、温度传感器及智能穿戴设备
WO1999008494A1 (en) Temperature measuring type outside connecting mechanism for printed wiring board
JP7385909B2 (ja) 温度計測装置及び温度記録装置
JP2008157892A (ja) 電流検出器、電流検出用具及び電流検出方法
JP2000046608A (ja) 流量センサー
JP7321524B2 (ja) 基準接点補償器および温度計測装置
CN112097941A (zh) 热压组件、热压传感器及电子装置
WO2024084763A1 (ja) 温度センサーおよび電流検出装置
CN212519573U (zh) 集成电路、测温装置和电子设备
JP2001057255A (ja) 端子盤
CN112798129B (zh) 一种测温装置
US20230296418A1 (en) Flow sensor element
JP6831965B1 (ja) 温度センサ
CN214845452U (zh) 一种电阻器件
US11971760B2 (en) Printed circuits with embedded resistive thermal devices
JP7386184B2 (ja) 高周波および高電力薄膜部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949079

Country of ref document: EP

Kind code of ref document: A1