WO2022032572A1 - 一种半导体发光元件和发光装置 - Google Patents

一种半导体发光元件和发光装置 Download PDF

Info

Publication number
WO2022032572A1
WO2022032572A1 PCT/CN2020/108900 CN2020108900W WO2022032572A1 WO 2022032572 A1 WO2022032572 A1 WO 2022032572A1 CN 2020108900 W CN2020108900 W CN 2020108900W WO 2022032572 A1 WO2022032572 A1 WO 2022032572A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
refractive index
emitting
semiconductor light
Prior art date
Application number
PCT/CN2020/108900
Other languages
English (en)
French (fr)
Inventor
王庆
马全扬
陈大钟
陈功
洪灵愿
彭康伟
林素慧
Original Assignee
厦门三安光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 厦门三安光电有限公司 filed Critical 厦门三安光电有限公司
Priority to PCT/CN2020/108900 priority Critical patent/WO2022032572A1/zh
Priority to CN202080005587.9A priority patent/CN112789737B/zh
Publication of WO2022032572A1 publication Critical patent/WO2022032572A1/zh
Priority to US18/164,232 priority patent/US20230178689A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials

Definitions

  • the present invention relates to the field of semiconductor light-emitting, in particular to a semiconductor light-emitting element.
  • LEDs Semiconductor light-emitting elements
  • LEDs are commonly used light-emitting devices that emit energy through the recombination of electrons and holes, and are widely used in the field of lighting.
  • Light-emitting diodes can efficiently convert electrical energy into light energy, and have a wide range of uses in modern society, such as lighting, flat panel displays, medical devices, etc.
  • Traditional light-emitting diodes include front-chip, flip-chip, and vertical structures.
  • the front-loading and vertical stacking depend on the surface of the semiconductor light-emitting sequence layer to provide the light-emitting surface, and the flip-chip relies on the surface of the substrate side to provide the light-emitting surface.
  • Both the positive and vertical semiconductor light-emitting sequence layers are provided with P electrodes and N electrodes, and the surface of the semiconductor light-emitting sequence layer around the electrodes is covered by an insulating light-transmitting layer. After the light radiated from the semiconductor light-emitting sequence layer reaches its surface, it needs to be The semiconductor light-emitting element is radiated through the insulating light-transmitting layer.
  • the light transmittance of the insulating light-transmitting layer affects the light efficiency of the semiconductor light-emitting element.
  • the light-emitting element is sealed by silica gel or epoxy resin to form a package, it is also necessary to consider the influence of the interface between the insulating light-transmitting layer and the silica gel or epoxy resin on light extraction.
  • the existing front-mounted or vertical LED light-transmitting structure is a single-layer SiO 2 film.
  • This conventional SiO 2 layer can only play the role of preventing the exposed light-emitting layer on the side of the core particle, but it does not help the transmission of the front light inside the LED.
  • this conventional SiO 2 protective layer structure limits the further improvement of LED light efficiency.
  • the object of the present invention is to provide a semiconductor light-emitting element, which improves the insulating light-transmitting layer of the semiconductor light-emitting element, so as to improve the LED light efficiency, and improve the VF4 under low current (the voltage value under 1 microampere current) .
  • a semiconductor light-emitting element includes: a semiconductor light-emitting sequence layer, wherein the semiconductor light-emitting sequence layer includes a light-emitting layer;
  • the insulating light-transmitting layer is located on the light-emitting surface of the semiconductor light-emitting sequence layer, wherein the insulating light-transmitting layer at least includes a bottom layer, a first layer located on the bottom layer, and a second layer located on the first layer.
  • the refractive index layer is lower than the refractive index layer of the semiconductor light-emitting sequence layer; it is characterized in that: the insulating light-transmitting layer includes a bottom layer and a gradient refractive index layer on the bottom layer, the refractive index of the bottom layer is lower than the refractive index of the gradient refractive index layer, and the refractive index gradient layer is Composed of at least two layers, the graded index layer has a gradually decreasing index of refraction away from the bottom layer.
  • a semiconductor light-emitting element includes: a semiconductor light-emitting sequence layer, the semiconductor light-emitting sequence layer including a light-emitting layer;
  • the insulating light-transmitting layer is located on the light-emitting surface of the semiconductor light-emitting sequence layer; it is characterized in that: the insulating light-transmitting layer includes a bottom layer and a refractive index gradient layer on the bottom layer, the bottom layer is a nitrogen-free layer, and the refractive index gradient layer is composed of at least two layers , the refractive index of the graded refractive index layer gradually decreases along the direction away from the bottom layer, and the graded refractive index layer includes a first layer, the first layer is in contact with the bottom layer, and the first layer is a nitride layer.
  • the present invention also provides a light-emitting device, which includes a semiconductor light-emitting element and a sealing resin, and the semiconductor light-emitting element is encapsulated by the sealing resin;
  • the semiconductor light-emitting element includes: a semiconductor light-emitting sequence layer, and the semiconductor light-emitting sequence layer includes a light-emitting layer ;
  • the insulating light-transmitting layer is located on the light-emitting surface of the semiconductor light-emitting sequence layer; it is characterized in that: the insulating light-transmitting layer includes a bottom layer and a refractive index gradient layer on the bottom layer, the refractive index gradient layer is composed of at least two layers, and the bottom layer is between the semiconductor light-emitting sequence layer. Between the layer and the graded refractive index layer, the refractive index of the bottom layer is lower than that of the graded refractive index layer, and the refractive index of the graded refractive index layer gradually decreases with the direction away from the bottom layer.
  • 1 and 2 are a schematic plan view and a side view of the front-mounted light-emitting diode according to the first embodiment.
  • FIG. 3 is a schematic view of the stacking structure of the insulating light-transmitting layer and the transparent conductive layer of the front-mounted light-emitting diode according to the first embodiment.
  • FIG. 4 is the package body of the first embodiment.
  • 100 substrate; 101: semiconductor light emitting sequence layer; 102: first conductivity type semiconductor layer; 103: light emitting layer; 104: second conductivity type semiconductor layer; 105: first electrode; 106: second electrode; wire electrode; 1062: extension bar; 107: transparent conductive layer; 108: current blocking layer; 109: insulating light-transmitting layer; 1090: bottom layer of insulating light-transmitting layer; 1091: first layer of graded refractive index layer; The second layer of the rate gradient layer; 300: package substrate; 301, 302: electrode connection area; 303: light emitting diode mounting area; 304: sealing resin.
  • FIGS. 1 to 2 provide schematic structural diagrams of the light emitting diode in this embodiment.
  • the light emitting diode includes a substrate 100 , a semiconductor light-emitting sequence layer 101 , a transparent conductive layer 107 , and a first electrode 105 and the second electrode 106 .
  • the body of the substrate 100 is transparent, such as sapphire, glass or other transparent materials, and the substrate 100 includes a first surface and a second surface.
  • the first surface of the substrate 100 may include a substrate pattern, a semiconductor light-emitting sequence layer is stacked on the first surface of the substrate 100, and the semiconductor light-emitting sequence layer at least includes a first conductivity type semiconductor layer 102, a light emitting layer 103, a second conductivity type
  • the semiconductor layer 104 wherein the first conductivity type and the second conductivity type are one of N and P types, respectively.
  • the semiconductor light-emitting sequence layer may be grown on the substrate 100 by MOCVD, or the semiconductor light-emitting sequence layer may be transferred to the transparent substrate 100 by a transfer process.
  • the light-emitting layer 103 may include multiple quantum wells and multiple quantum barriers stacked alternately.
  • the main function of the quantum wells is to enable electrons and holes to recombine and emit light.
  • the material of the quantum wells may be indium gallium nitride (InGaN);
  • the function is to confine electrons and holes in the quantum well to recombine light, and the material of the quantum barrier can be gallium nitride.
  • the main function of the N-type semiconductor layer is to provide electrons for compound light emission, and the material of the N-type semiconductor layer can be N-type doped gallium nitride.
  • the main function of the P-type semiconductor layer is to provide holes for compound light emission, and the material of the P-type semiconductor layer can be P-type doped gallium nitride.
  • the semiconductor light emitting sequence layer includes the surface of the second conductive type semiconductor layer 104 and the sidewalls around the semiconductor light emitting sequence layer, and the light from the electro-radiation of the light emitting layer can pass through the surface of the second conductive type semiconductor layer 104 and the surface of the semiconductor light emitting sequence layer.
  • the semiconductor light-emitting sequence layer is radiated from the side wall, thereby realizing the output of light radiation to the outside.
  • the second conductive type semiconductor layer 104 is provided with a recess extending to the first conductive type semiconductor layer 102 , and the bottom of the recess exposes the first conductive type semiconductor layer 102 .
  • the first electrode 105 is disposed on the first conductive type semiconductor layer 102 at the bottom of the recess, the transparent conductive layer 107 and the second electrode 106 are disposed on the second conductive type semiconductor layer 104, and the transparent conductive layer 107 and the second electrode 105 are located on the second conductive type semiconductor layer 104.
  • the conductive type semiconductor light-emitting sequence layer has a second electrode 106 on the surface, and the insulating light-transmitting layer 109 covers the surface of the transparent conductive layer 107, the inner sidewall of the recess, and the sidewall around the semiconductor light-emitting sequence layer.
  • the main function of the transparent conductive layer 107 is to form a good ohmic contact with the surface of the second conductive type semiconductor layer 104 and improve the lateral expansion capability of the current to expand the area where the current acts.
  • the thickness of the transparent conductive layer 107 is 20nm ⁇ 200nm; The rate is 1.9 ⁇ 2.1.
  • the material of the transparent conductive layer 107 can be indium tin oxide (ITO), zinc oxide (ZnO) or GTO (ITO doped aluminum-silver alloy), which has good conductivity and transmittance and low manufacturing cost.
  • the coverage area ratio of the transparent conductive layer 107 on the surface of the second conductive type semiconductor layer is at least 80% or more, and a better coverage area ratio is at least 90% or more.
  • the transparent conductive layer 107 can be formed by a coating process, and can also be formed by an etching process to form different patterns as required. And after coating, high temperature annealing treatment is performed to achieve good ohmic contact between the transparent conductive layer 106 and the second conductive type semiconductor layer 104 .
  • the main functions of the first electrode 105 and the second electrode 106 are to provide an external power supply connection and inject current into the semiconductor light-emitting element from the external power supply.
  • the first electrode and the second electrode 106 may include a plurality of metal layers stacked in sequence.
  • the material of the layers may sequentially include an ohmic contact layer (such as Cr), a reflective layer (such as Al), a barrier layer (at least one of Ti, Pt, Cr), and a wiring layer (such as at least one of Au, Al, or Cu) ).
  • the main function of the ohmic contact layer is to achieve ohmic contact and adhesion between the metal and the semiconductor layer, and the thickness is thin;
  • the middle reflective layer mainly reflects the light emitted by the light-emitting diode and improves the light-emitting efficiency of the light-emitting diode;
  • the middle barrier layer blocks the aluminum Diffusion and buffering of wire bonding stress;
  • the top wire bonding layer is mainly used for external wire bonding.
  • a local current blocking layer for example, made of a transparent insulating material, such as silicon oxide, may be further included to locally block current from the first electrode 105 and the second conductive type semiconductor layer.
  • a longitudinal current transfer is formed between the second electrode 106 and the second conductive type semiconductor layer.
  • the shape of the current blocking layer can be a ring, a square or a circle, one or more pieces, and the design is selected according to the needs of local blocking of the current.
  • the first electrode 105 and the second electrode 106 may also include electrode pads for wire bonding and at least one electrode wire. Each electrode wire is respectively connected to the electrode pad and extends outward from the electrode pad.
  • the electrode of the second electrode 106 The lines are formed on the transparent conductive layer 107 and are in direct contact with the transparent conductive layer 107 to facilitate the lateral expansion of the current, so that the current can be injected into all areas in the second conductive type semiconductor layer as much as possible, thereby improving the luminous efficiency of the light emitting diode.
  • the insulating light-transmitting layer 109 can be used as the outermost layer of the semiconductor light-emitting element, and is located on the light-emitting surface of the semiconductor light-emitting sequence layer, specifically on the inner sidewall around the depression around the first electrode, and on the surface of the transparent conductive layer around the second electrode. upper and peripheral sidewalls of the semiconductor light-emitting sequence layer.
  • the refractive index of the insulating light-transmitting layer 109 is lower than the refractive index of the transparent conductive layer and the semiconductor light-emitting sequence layer, which can promote the light emitted from the semiconductor light-emitting sequence layer to pass through the transparent conductive layer or the peripheral sidewall of the semiconductor light-emitting sequence layer.
  • the insulating light-transmitting layer reduces the reflection ratio, thereby improving the light extraction efficiency.
  • the insulating light-transmitting layer 109 can also perform water vapor isolation protection and insulation protection on the sidewalls of the semiconductor light-emitting sequence layer and the transparent conductive layer 107 around the electrodes.
  • the present invention optimizes the design of the insulating light-transmitting layer, so that the insulating light-transmitting layer 109 at least includes multiple layers of graded refractive index layers to form a refractive index
  • the multi-layer gradually decreasing from the inside to the outside can reduce the refractive index difference between different layers, improve the light transmission ratio, and reduce the reflection ratio.
  • the graded refractive index layer includes at least a first layer and a second layer, wherein the first layer 1091 has a higher refractive index than the second layer 1092 and is closer to the sidewall of the transparent conductive layer or the semiconductor light-emitting sequence layer, the graded refractive index layer
  • the second layer serves as the outermost layer of the graded index layer.
  • the difference between the refractive index of the first layer 1091 of the graded refractive index layer and the refractive index of the transparent conductive layer is not higher than 0.3, more preferably 1.8-1.95.
  • the refractive index of the second layer 1092 of the graded index layer is lower than that of the first layer 1091 of the graded index layer. Since the second layer is the outermost layer, it is necessary to consider the refractive index of the medium in which the insulating light-transmitting layer is in contact with the outside world.
  • the semiconductor light-emitting element is usually encapsulated by a sealing resin.
  • the refractive index is higher than that of the sealing resin, for example, the refractive index is at least 1.6. More preferably, the refractive index difference between the second layer of the graded refractive index layer and the sealing resin is not higher than 0.3, for example, the refractive index is between 1.6 and 1.75.
  • the graded refractive index layer between the first layer 1091 and the second layer 1092 may further include other refractive index transition layers, and the refractive index of the other refractive index transition layers is between the refractive indices of the first layer 1091 and the second layer 1092 between.
  • the graded refractive index layer is selected from insulating light-transmitting materials formed of inorganic compounds, for example, the first layer 1091 is a nitrogen-containing layer, such as an oxynitride or nitride or oxide layer, and the second layer 1092 of the graded layer is an oxynitride layer. material or oxide layer.
  • the material of the first layer 1091 of the graded layer of the insulating light-transmitting layer 109 is silicon nitride and zirconium oxide
  • the material of the second layer 1092 of the graded layer is silicon oxynitride or aluminum oxide.
  • At least one layer of the insulating gradient layer can be fabricated by PECVD and ALD technology.
  • the thickness of the first layer 1091 of the gradient layer of the insulating light-transmitting layer 109 is 10-300 nm
  • the thickness of the second layer 1092 of the gradient layer of the insulating light-transmitting layer 109 is 10-300 nm.
  • the graded refractive index layer is composed of only two layers, the first layer 1091 and the second layer 1092 are silicon nitride and silicon oxide respectively, and the first layer and the second layer can adopt the same process PECVD.
  • the gas sources of silicon nitride are ammonia, silane and nitrogen.
  • the gas source of silicon oxynitride is silane, ammonia, nitrous oxide and nitrogen, or the first layer is obtained by PECVD, and the second layer is formed by ALD.
  • the insulating light-transmitting layer is attached on the transparent conductive layer to form a multilayer in which the refractive index gradually decreases from the transparent conductive layer to the outermost layer of the insulating light-transmitting layer, which is beneficial to improve the extraction of light.
  • the insulating light-transmitting layer further includes a bottom layer 1090 and a bottom layer 1090 Between the graded refractive index layer and the transparent conductive layer and the first layer 1091 of the graded refractive index layer, preventing the first layer 1091 from directly attaching to the transparent conductive layer, resulting in the transparent conductive layer being the first layer of the PECVD graded refractive index layer During the manufacturing process, a product that absorbs light on the surface is formed, the light transmission efficiency is reduced, and at the same time, the reduction of the LED switching voltage VF4 is avoided.
  • the bottom layer 1090 is a non-nitrogen-containing compound.
  • the bottom layer 1091 is an oxide, such as silicon oxide. More preferably, the bottom layer 1091 can be fabricated by the same process as that of the graded index layer.
  • the refractive index of the bottom layer 1090 is silicon oxide
  • the refractive index of the bottom layer will be lower than that of the graded refractive index layer, and the refractive index of silicon oxide is lower than 1.5, which is about 1.48.
  • the preferred underlayer 1090 has a thickness of at least 10 nm, but not more than 80 nm. Exceeding this thickness, a large difference in refractive index between the bottom layer 1090 and the transparent conductive layer or the semiconductor light-emitting sequence layer will lead to weakened light transmission, increased reflectivity, and reduced light extraction efficiency.
  • the insulating light-transmitting layer 109 of the present invention covers the transparent conductive layer 107 and the sidewall of the semiconductor light-emitting sequence layer.
  • the refractive index is lower than the refractive index of the transparent conductive layer 107, which can effectively prevent the light emitted by the active layer from being directly incident from the semiconductor layer to the existing commonly used silicon dioxide layer (the refractive index is about 1.44).
  • the large change reduces the proportion of the light emitted by the active layer that is reflected at the interface between the insulating light-transmitting layer 109 and the light-emitting surface of the semiconductor light-emitting sequence layer, thereby reducing the loss of light in the transmission path and improving the light-emitting diode.
  • the insulating light-transmitting layer of the present invention further includes a bottom layer, which can effectively protect the transparent conductive layer and prevent the refractive index
  • the raw materials used in the production process of the graded layer damage the surface of the transparent conductive layer, and the light transmittance decreases.
  • the bottom layer is a nitrogen-free layer, such as silicon oxide. The thickness is preferably not higher than 80nm.
  • This embodiment provides a method for manufacturing a light emitting diode that is installed in front, which is suitable for manufacturing the light emitting diode shown in FIGS. 1 to 2 .
  • the production method includes:
  • Step 1 an N-type semiconductor layer, an active layer and a P-type semiconductor layer are sequentially formed on the substrate.
  • the substrate is sapphire.
  • an N-type semiconductor layer, an active layer and a P-type semiconductor layer can be grown sequentially on the substrate by using a metal organic compound chemical vapor deposition (MOCVD) technique.
  • MOCVD metal organic compound chemical vapor deposition
  • a buffer layer such as gallium nitride, may also be included before the N-type semiconductor layer is grown on the substrate.
  • Step 2 forming a recess extending to the N-type semiconductor layer on the P-type semiconductor layer.
  • the bottom of the recess is an N-type semiconductor layer.
  • the recesses may be formed by a photomask patterning process combined with a dry etching process.
  • Step 3 forming a transparent conductive layer on the P-type semiconductor layer.
  • a transparent conductive layer can be formed on the P-type semiconductor layer and in the recess by a magnetron sputtering technology, and then the transparent conductive layer on the bottom and sidewalls of the recess is removed by a mask patterning process combined with a dry etching process.
  • the obtained transparent conductive layer has a relatively high density, and the current spreading effect of the transparent conductive layer is good, and the forward voltage of the light emitting diode is low.
  • the method before forming the transparent conductive layer, the method further includes forming a current blocking layer on the P-type semiconductor layer or on the N-type semiconductor layer.
  • Step 4 Disposing a P-type electrode on the P-type semiconductor layer, and disposing an N-type electrode on the N-type semiconductor layer in the groove.
  • the N-type electrode and the P-type electrode include electrode pads and electrode lines, respectively.
  • the N-type electrode is formed either partially in contact with the current blocking layer and partially in contact with the N-type semiconductor layer, or in complete contact with the N-type semiconductor layer.
  • the P-type semiconductor layer is formed to partially contact the P-type semiconductor layer, partially contact the current blocking layer, and partially contact the transparent conductive layer.
  • Step 5 An insulating light-transmitting layer is formed on the N electrode in the recess, the inner sidewall of the recess, the transparent conductive layer and the outer sidewall of the semiconductor layer, but at least part of the pads of the N electrode and the P electrode are exposed through a mask combined with an etching process top.
  • the insulating light-transmitting layer includes a bottom layer, a first graded layer and a second graded layer.
  • the bottom layer is made of silicon oxide
  • the first layer of the gradient layer is made of silicon nitride
  • the second layer of the gradient layer is made of aluminum oxide.
  • the bottom layer, the first graded layer and the second graded layer can be fabricated by plasma enhanced chemical vapor deposition (PECVD) or ALD process.
  • the gas sources of silicon oxide are silane, nitrous oxide and nitrogen.
  • the gas sources for silicon nitride are ammonia, silane and nitrogen.
  • Alumina is deposited using the IBAD method, and the raw material used is alumina. Alumina can also be prepared using ALD, using trimethylaluminum, water or ozone.
  • the thickness of the bottom layer 1090 is 1 ⁇ 80 nm.
  • the thickness of the first layer 1091 is 10-300 nm, and the thickness of the second layer 1092 is 10-300 nm.
  • the manufacturing method may further include: thinning the substrate; forming a reflective layer on the second surface of the substrate, the surface on which the reflective layer is arranged on the substrate is opposite to the surface on which the semiconductor light-emitting sequence layer is arranged on the substrate; At least two mutually independent light emitting diodes are obtained.
  • This embodiment also provides a package body formed by sealing the aforementioned light emitting diode. As shown in Figure 4,
  • the package body includes a package substrate 300 , a light emitting diode, and a sealing resin 304 .
  • the packaging substrate 300 includes a light-emitting diode mounting area 303 and two-electrode connection areas 301 and 302 of the light-emitting diode.
  • the packaging substrate 300 may be a flat substrate or a cup-shaped substrate.
  • the sealing resin 304 covers the light-emitting surface of the light-emitting diode, and the sealing resin 304 is in contact with the insulating light-transmitting layer.
  • the refractive index of the sealing resin 304 is lower than the outermost layer of the insulating light-transmitting layer 109 of the light-emitting diode.
  • the refractive index of the semiconductor light-emitting sequence layer can be prevented from changing greatly when the light emitted by the semiconductor light-emitting sequence layer is emitted from the insulating light-transmitting layer to the surface of the sealing resin, which can further improve the light-emitting efficiency of the light-emitting diode and avoid the photon loss Generates heat, thereby preventing the temperature increase from affecting the service life of the light-emitting diode.
  • the refractive index of the sealing resin 304 ranges from 1.4 to 1.55, and is preferably a silicone resin.
  • the light-emitting diode produced by the production method provided in the embodiment of the present invention is tested for luminous efficiency and VF4 value, and compared with the traditional light-emitting diode.
  • the brightness and VF4 value of the light-emitting diode with single-layer silicon oxide as the insulating light-transmitting layer are compared and converted.
  • the light-emitting diodes are basically the same.
  • the insulating light-transmitting layers of the light-emitting diodes of Example 1 listed in Table 1 are three layers, the bottom layer is silicon oxide, the first layer is silicon nitride, and the second layer is aluminum oxide.
  • Traditional light-emitting diodes The insulating light-transmitting layer is silicon oxide, and the brightness of the light-emitting diode of this embodiment and the conventional light-emitting diode after being sealed with silicone resin is tested respectively.
  • the light-emitting diode of this embodiment has a brightness improvement of 0.9% before sealing, and a brightness improvement of 3.1% after being sealed with silicone resin.
  • the light directly enters the air after being emitted from the insulating light-transmitting layer. Due to the large difference in refractive index between the air and the insulating light-transmitting layer, the light is partially reflected before entering the air. Light loss, resulting in an insignificant increase in the brightness of the final LED.
  • the sealing resin acts as a transition layer of refractive index, which improves the direct output of light, while reducing The reflection ratio is improved, and the final light output effect is improved. And the VF4 value has been improved.
  • This embodiment provides another light emitting diode.
  • the difference from the first embodiment is that the insulating gradient layer only includes the first layer 1091 and the second layer 1092, and the design of the bottom layer 1090 is eliminated.
  • Table 1 the brightness of the light-emitting diode is reduced by 9.54% compared with the traditional light-emitting diode, and the brightness after being sealed with silicone resin is reduced by 4.04%.
  • VF4 will be reduced by 0.170V, it can be seen that the bottom layer 1090 effectively improves the light transmittance of the transparent conductive layer 107, improves the brightness of the final light-emitting diode, and at the same time greatly improves VF4.
  • the insulating light-transmitting layer only includes the second layer 1092, and the design of the bottom layer 1090 and the first layer 1091 of the graded layer is cancelled, and the second layer 1092 of the graded layer is aluminum oxide.
  • Table 1 the brightness of the LED is reduced by 0.03%, and the brightness after being sealed with silicone resin is increased by 0.43%.
  • the present invention can encapsulate the semiconductor light-emitting element by encapsulating the sealing resin, for example, make it into a package.
  • the sealing resin By improving the insulating light-transmitting layer of the semiconductor light-emitting element, the light efficiency of the package using the sealing resin can be improved. And improve VF4 under small current, improve reliability.
  • the package of the present invention can be further made into a light-emitting device, such as a white light lighting device, a backlight display device, an RGB display device, a car lamp, a flash lamp, a projection lamp, a stage lamp, an ultraviolet sterilization or a filament lamp, and the like.
  • a light-emitting device such as a white light lighting device, a backlight display device, an RGB display device, a car lamp, a flash lamp, a projection lamp, a stage lamp, an ultraviolet sterilization or a filament lamp, and the like.

Abstract

一种半导体发光元件,其包括:半导体发光序列层,半导体发光序列层包括发光层;绝缘透光层,位于半导体发光序列层的出光面上;其特征在于:绝缘透光层包括底层和底层上的折射率渐变层,折射率渐变层由至少两层组成,底层介于半导体发光序列层和折射率渐变层之间,底层的折射率低于折射率渐变层的折射率,折射率渐变层的折射率随着远离底层的方向逐渐降低。

Description

一种半导体发光元件和发光装置 技术领域
本发明涉及半导体发光领域,具体为一种半导体发光元件。
背景技术
半导体发光元件,又称发光二极管(LED),是一种常用的发光器件,通过电子与空穴复合释放能量发光,它在照明领域应用广泛。发光二极管可高效地将电能转化为光能,在现代社会具有广泛的用途,如照明、平板显示、医疗器件等。
传统的发光二极管包括正装、倒装以及垂直结构。其中正装和垂直都依赖于半导体发光序列层的表面提供出光面,倒装依赖于衬底一侧表面提供出光面。正装和垂直的半导体发光序列层的表面都会设置P电极和N电极,并且电极周围的半导体发光序列层表面被绝缘透光层包覆住,半导体发光序列层内部辐射的光到达其表面后,需要穿过绝缘透光层以辐射出半导体发光元件。其中绝缘透光层的透光率影响半导体发光元件的光效。并且发光元件如果通过硅胶或者环氧树脂进行密封形成封装体,则还需要考虑绝缘透光层与硅胶、环氧树脂之间的界面对光取出的影响。
现有正装或者垂直LED透光结构为单层的SiO 2膜,这种常规的SiO 2层只会起到防止芯粒侧面裸露发光层的作用,但是对于发光二极管内部正面光的透射无任何帮助,这种常规的SiO 2保护层结构限制了LED光效的进一步的提升。
技术解决方案
本发明的目的在于提供一种半导体发光体元件,其针对半导体发光元件的绝缘透光层进行改进,以提高LED光效,并且改善小电流下的VF4(为1微安电流下的电压值)。
根据本发明的第一个方面,一种半导体发光元件,包括:半导体发光序列层,半导体发光序列层包括发光层;
绝缘透光层,位于半导体发光序列层的出光面上,其中所述绝缘透光层至少包括底层、位于底层之上的第一层和位于第一层上的第二层,绝缘透光层的折射率低于半导体发光序列层的折射率层;其特征在于:绝缘透光层包括底层和底层上的折射率渐变层,底层的折射率低于折射率渐变层的折射率,折射率渐变层由至少两层组成,折射率渐变层的折射率随着远离底层的方向逐渐降低。
根据本发明的第二个方面,一种半导体发光元件,其包括:半导体发光序列层,半导体发光序列层包括发光层;
绝缘透光层,位于半导体发光序列层的出光面上;其特征在于:绝缘透光层包括底层和底层上的折射率渐变层,底层为不含氮层,折射率渐变层由至少两层组成,折射率渐变层的折射率随着远离底层的方向逐渐降低,并且折射率渐变层包括第一层,第一层与底层接触,第一层为氮化物层。
本发明同时提供一种发光装置,其包括半导体发光元件和密封树脂,半导体发光元件的周围被密封树脂包封;所述半导体发光元件,其包括:半导体发光序列层,半导体发光序列层包括发光层;
绝缘透光层,位于半导体发光序列层的出光面上;其特征在于:绝缘透光层包括底层和底层上的折射率渐变层,折射率渐变层由至少两层组成,底层介于半导体发光序列层和折射率渐变层之间,底层的折射率低于折射率渐变层的折射率,折射率渐变层的折射率随着远离底层的方向逐渐降低。
有益效果
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图1~2是实施例一的正装发光二极管的平面结构示意图和侧面结构示意图。
附图3是实施例一的正装发光二极管的绝缘透光层和透明导电层的堆叠结构示意图。
附图4是实施例一的封装体。
附图标记:
100:衬底;101:半导体发光序列层;102:第一导电型半导体层;103:发光层;104:第二导电型半导体层;105:第一电极;106:第二电极;1061:打线电极;1062:扩展条;107:透明导电层;108:电流阻挡层;109:绝缘透光层;1090:绝缘透光层的底层;1091:折射率渐变层的第一层;1092:折射率渐变层的第二层;300:封装基板;301、302:电极连接区域;303:发光二极管安装区域;304:密封树脂。
本发明的实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一
本实施例提供了一种正装型发光二极管,图1~2为本实施例提供发光二极管的结构示意图,该发光二极管包括衬底100和半导体发光序列层101、透明导电层107、第一电极105和第二电极106。
其中衬底100本体为透明的,例如为蓝宝石、玻璃或者其它的透明材料,衬底100包括第一表面和第二表面。衬底100的第一表面可以包括衬底图形,衬底100的第一表面上堆叠有半导体发光序列层,半导体发光序列层至少包括第一导电类型半导体层102、发光层103、第二导电类型半导体层104,其中第一导电类型和第二导电类型分别为N和P型中的一种。其中半导体发光序列层可以是通过MOCVD生长的方式形成在衬底100上,也可以是通过转移工艺将半导体发光序列层转移至透明衬底100上。
发光层103可以包括交替层叠的多个量子阱和多个量子垒,量子阱的主要作用是使电子和空穴能够复合发光,量子阱的材料可以采用铟镓氮(InGaN);量子垒的主要作用是将电子和空穴限制在量子阱内复合发光,量子垒的材料可以采用氮化镓。N型半导体层的主要作用是为复合发光提供电子,N型半导体层的材料可以采用N型掺杂的氮化镓。P型半导体层的主要作用是为复合发光提供空穴,P型半导体层的材料可以采用P型掺杂的氮化镓。
半导体发光序列层包括第二导电类型半导体层104的表面以及半导体发光序列层周围的侧壁,来自发光层电致辐射的光可以穿过第二导电类型半导体层104的表面以及半导体发光序列层的侧壁辐射出半导体发光序列层,从而实现向外输出光辐射。
第二导电类型半导体层104设有延伸至第一导电类型半导体层102的凹陷,凹陷的底部露出第一导电类型半导体层102。第一电极105设置在凹陷底部的第一导电类型半导体层102上,透明导电层107和第二电极106设置在第二导电类型半导体层104上,透明导电层107、第二电极105位于第二导电类型半导体发光序列层的表面上有和第二电极106,绝缘透光层109覆盖在透明导电层107的表面上、凹陷的内侧壁上、半导体发光序列层周围的侧壁之上。
透明导电层107的主要作用是与第二导电类型半导体层104的表面形成良好的欧姆接触和提高电流的横向扩展能力,扩大电流作用的区域,透明导电层107的的厚度为20nm~200nm;折射率为1.9~2.1。透明导电层107的材料可以采用氧化铟锡(ITO)或者氧化锌(ZnO)或者GTO(ITO掺杂铝银合金),导电性和透过率都很好,制作成本也低。透明导电层107在第二导电类型半导体层的表面的覆盖面积占比至少为80%以上,更佳的覆盖面积占比至少为90%以上。
所述透明导电层107可以通过镀膜工艺形成,且也可以根据需要通过蚀刻工艺以形成不同的图案。并且在镀膜后,进行高温退火处理以实现透明导电层106与第二导电类型半导体层104之间具有良好的欧姆接触。
第一电极105和第二电极106的主要作用是提供外部电源连接,并且从外部电源注入电流至半导体发光元件,第一电极和第二电极106可以包括依次层叠的多个金属层,多个金属层的材料可以依次包括欧姆接触层(如Cr)、反射层(如Al)、阻挡层(Ti、Pt、Cr的至少至一层)以及打线层(如Au、Al或者Cu的至少一种)。欧姆接触层的主要作用是实现金属和半导体层之间的欧姆接触和粘附、厚度薄;中间的反射层主要是反射发光二极管发出的光线,提高发光二极管的出光效率;中间的阻挡层阻挡铝的扩散以及缓冲打线应力;顶部的打线层的主要是用于外部打线。
第一电极105和/或第二电极106分别与第二导电类型半导体层之间还可以包括局部电流阻挡层,例如透明绝缘材料构成,例如氧化硅,用于局部阻挡电流从第一电极105和第二电极106与第二导电类型半导体层之间形成纵向的电流传输。电流阻挡层的形状可以是环形或者方形或者圆形,为一块或者多块,根据局部阻挡电流的需求而选择设计。
第一电极105和第二电极106也可以包括打线用的电极焊盘以及至少一个电极线,各个电极线分别与电极焊盘连接,并自电极焊盘向外延伸,第二电极106的电极线形成在透明导电层107上,与透明导电层107直接接触,以利于电流的横向扩展,使电流能够尽可能注入第二导电类型半导体层内的所有区域,提高发光二极管的发光效率。
绝缘透光层109可作为半导体发光元件的最外层,位于半导体发光序列层的出光面上,具体的位于第一电极周围的凹陷周围的内侧壁上、第二电极周围的透明导电层的表面上和半导体发光序列层的外围侧壁。绝缘透光层109的折射率低于透明导电层以及半导体发光序列层的折射率,可以促进从半导体发光序列层发出的光透过透明导电层或者半导体发光序列层的外围侧壁之后能尽量通过绝缘透光层,反射比例降低,由此提升出光效率。绝缘透光层109还可以对半导体发光序列层的侧壁以及电极周围的透明导电层107进行水汽隔离保护以及绝缘保护。
为了进一步的提升绝缘透光层对发光层辐射的光的透过率,本发明对该绝缘透光层进行优化设计,使绝缘透光层109至少包括多层的折射率渐变层,形成折射率由内至外逐渐减低的多层,可以降低不同层之间的折射率差异,提升透光比例,降低反射比例。
折射率渐变层至少包括第一层和第二层,其中第一层1091较第二层1092具有更高的折射率并且更接近透明导电层或者半导体发光序列层的侧壁,该折射率渐变层的第二层作为折射率渐变层的最外层。
较佳的,折射率渐变层第一层1091的折射率与透明导电层的折射率差异不高于0.3,更佳的位于1.8~1.95。折射率渐变层第二层1092的折射率低于折射率渐变层第一层1091的折射率。由于第二层作为最外层,需要考虑绝缘透光层与外界接触的介质的折射率,例如该半导体发光元件通常被密封树脂封装,因此更佳的所述折射率渐变层的第二层的折射率高于密封树脂,例如折射率至少1.6,更佳的,折射率渐变层的第二层与密封树脂之间的折射率差异不高于0.3,例如折射率位于1.6~1.75。
折射率渐变层第一层1091和第二层1092之间还可以包括其它的折射率过度层,该其它的折射率过度层的折射率介于第一层1091和第二层1092的折射率之间。
较佳的,折射率渐变层选择自无机化合物形成的绝缘透光材料,例如第一层1091为含氮层、例如氮氧化物或者氮化物或者氧化物层,渐变层第二层1092为氮氧化物或者氧化物层。在本实施例中,绝缘透光层109的渐变层第一层1091材料为氮化硅、氧化锆,渐变层第二层1092的材料为氮氧化硅或者氧化铝。可采用PECVD、ALD技术制作绝缘渐变层的至少之一层。
较佳的,所述的绝缘透光层109的渐变层第一层1091的厚度为10~300nm,所述的绝缘透光层109的渐变层第二层1092的厚度10~300nm。
较佳的作为一个实施例,其中折射率渐变层仅由两层组成,第一层1091和第二层1092分别使氮化硅和氧化硅,其中第一层和第二层可采用同一制程PECVD(等离子体增强化学气相沉积)获得。其中氮化硅的气源是氨气、硅烷和氮气。氮氧化硅的气源是硅烷、氨气、一氧化二氮和氮气,或者其中第一层采用PECVD获得,第二层采用ALD制作形成。
绝缘透光层附着在透明导电层上,形成了自透明导电层到绝缘透光层的最外层的折射率逐渐降低的多层,可有利于提升光的取出。作为一个更佳的实施例,由于透明导电层(特别的是ITO、GTO)性质活泼,表面容易因为酸碱性质的化合物发生化学反应,因此所述的绝缘透光层还包括底层1090,底层1090介于折射率渐变层与透明导电层和折射率渐变层的第一层1091之间,防止第一层1091直接附着在透明导电层上,导致透明导电层在PECVD折射率渐变层的第一层制程过程中形成表面吸光的产物,透光光效降低,且同时避免LED开关电压VF4的降低。例如,采用PECVD获得第一层和第二层的渐变层时,特别的是第一层1091为含氮层时,底层1090为非含氮化合物。例如,底层1091为氧化物,例如氧化硅。更佳的,底层1091可以采用与折射率渐变层相同的工艺制作。底层1090的折射率为氧化硅时,底层的折射率将低于折射率渐变层,氧化硅的折射率低于1.5,为1.48左右。对于低折射率的底层来说,较佳的底层1090的厚度至少为10nm,但是不超过80nm。超过这个厚度,底层1090与透明导电层或半导体发光序列层之间的较大折射率差异会导致光透射减弱,反射率上升,出光光效降低。
本发明的绝缘透光层109覆盖在透明导电层107上以及半导体发光序列层的侧壁周围,一方面,其包括的折射率渐变层为折射率逐渐降低的多层薄膜,并且折射率渐变层的折射率低于透明导电层107的折射率,可有效避免有源层发出的光线从半导体层直接入射到现有的常见使用的二氧化硅层(折射率约为1.44)时折射率发生较大的变化,减小有源层发出的光线在绝缘透光层109与半导体发光序列层的出光面之间的界面上被反射的比例,从而减少光在传输路径上的损耗,提高发光二极管出光效率,同时避免由于光损耗而产生热量,进而避免温度升高,影响发光二极管的使用寿命。另外一个方面,为了保证绝缘透光层不会对透明导电层的透光性以及VF4产生影响,本发明绝缘透光层还包括一个底层,该底层能够对透明导电层进行有效保护,防止折射率渐变层的制作过程中使用的原料对透明导电层的表面进行破坏,透光率降低。该折射率渐变层的第一层为含氮层时,较佳的,底层为不含氮层,例如氧化硅,由于该底层的折射率与透明导电层的折射率差异较大,因此底层的厚度较佳的不高于80nm。
本实施例提供一种正装的发光二极管的制作方法,适用于制作图1~2所示的发光二极管。该制作方法包括:
步骤1:在衬底上依次形成N型半导体层、有源层和P型半导体层。衬底为蓝宝石。具体的可以采用金属有机化合物化学气相沉淀(MOCVD)技术在衬底上依次生长N型半导体层、有源层和P型半导体层。
衬底上生长N型半导体层之前,还可以包括缓冲层,例如氮化镓。
步骤2:在P型半导体层上形成延伸至N型半导体层的凹陷。凹陷的底部为N型半导体层。
可通过光罩图形工艺结合干法蚀刻工艺形成凹陷。
步骤3:在P型半导体层形成透明导电层。
可通过磁控溅射技术在P型半导体层上和凹陷内形成透明导电层,然后通过光罩图形工艺结合干法蚀刻工艺去除凹陷底部和侧壁上的透明导电层。
通过采用磁控溅射技术形成透明导电层,得到的透明导电层的致密度比较高,且透明导电层的电流扩展效果较好,发光二极管的正向电压较低。
可选的,在形成透明导电层之前还包括在P型半导体层上或者N型半导体层上形成电流阻挡层。
步骤4:在P型半导体层上设置P型电极,并在凹槽内的N型半导体层上设置N型电极。N型电极和P型电极分别包括电极焊盘和电极线。
N型电极要么形成为部分与电流阻挡层接触且部分与N型半导体层接触,要么完全与N型半导体层接触。P型半导体层形成为部分接触P型半导体层、部分接触电流阻挡层以及部分接触透明导电层。
步骤5:在凹陷内的N电极上以及凹陷内侧壁、透明导电层上和半导体层的外侧壁形成绝缘透光层,然而通过光罩结合蚀刻工艺使N电极和P电极的焊盘露出至少部分顶面。
在本实施例中,绝缘透光层包括底层、渐变层第一层和渐变层第二层。
底层采用氧化硅,渐变层第一层采用氮化硅,渐变层第二层采用氧化铝。可采用等离子体体增强化学气相沉积(PECVD)或者ALD工艺工艺制作底层、渐变层第一层和渐变层第二层。其中氧化硅的气源是硅烷、一氧化二氮和氮气。氮化硅的气源是氨气、硅烷和氮气。氧化铝使用IBAD的方式沉积,使用的原材料为氧化铝。还可以使用ALD制备氧化铝,使用三甲基铝、水或者臭氧。
底层1090的厚度为1~80nm。第一层1091的厚度为10~300nm,第二层1092的厚度为10~300nm。
该制作方法还可以包括:减薄衬底;在衬底的第二表面形成反射层,衬底设置反射层的表面与衬底设置半导体发光序列层的表面相反;最后对进行划片和裂片,得到至少两个相互独立的发光二极管。
本实施例同时提供一种将前面提及的发光二极管进行密封形成封装体。如图4所示,
所述封装体包括封装基板300、发光二极管和密封树脂304。
所述的封装基板300上包括发光二极管安装区域303和发光二极管的两电极连接区域301、302,所述的封装基板300可以是平面基板或者杯状的基板。
所述的密封树脂304覆盖住发光二极管的发光面,并且密封树脂304与绝缘透光层之间接触,密封树脂304的折射率低于所述的发光二极管的绝缘透光层109的最外层的折射率,由此可以避免半导体发光序列层射出的光线从绝缘透光层射出到密封树脂的表面时折射率发生较大的变化,可进一步提高发光二极管的出光效率,同时避免由于光子损耗而产生热量,进而避免温度升高影响发光二极管的使用寿命。
所述的密封树脂304的折射率范围为1.4~1.55,较佳的为有机硅树脂。
将本发明实施例提供的制作方法制作的发光二极管,进行发光效率以及VF4值测试,并与传统的发光二极管进行比较,表一中列举的亮度提升比例和VF4值提升值都是与传统的采用单层氧化硅作为绝缘透光层的发光二极管的亮度以及VF4值进行比较并换算获得的,本发明实施例的发光二极管作为实施例一,除了绝缘透光层不一样,其它的形成条件与传统的发光二极管基本相同,表一中列举的实施例一的发光二极管的绝缘透光层为三层,底层为氧化硅、第一层为氮化硅、第二层为氧化铝,传统的发光二极管的绝缘透光层为氧化硅,并且分别将本实施例的发光二极管与传统的发光二极管均采用有机硅树脂进行密封后的亮度进行测试。
如表一,相对于传统的发光二极管,本实施例的发光二极管在密封前亮度提升了0.9%,经过有机硅树脂密封后亮度提升了3.1%。对于未被密封树脂密封的发光二极管来说,光从绝缘透光层射出后直接进入空气,由于空气和绝缘透光层之间的折射率差异较大,导致光进入空气之前因为反射而有部分光损失,导致最终发光二极管的亮度提升不明显。然而当发光二极管被相较于绝缘透光层更低的密封树脂密封后,光从绝缘透光层进入密封树脂后再进入空气,密封树脂作为折射率过渡层,提升了光直接输出,而降低了反射比例,提升了最终的出光光效。并且VF4值有所提升。
表一
 
Figure 313015dest_path_image001
对比例一
本实施例提供另外一种发光二极管,与实施例一不同的是,绝缘渐变层仅包括第一层1091和第二层1092,取消了底层1090的设计。如表一所示,发光二极管的亮度相对于传统的发光二极管降低了9.54%,经过有机硅树脂密封后的亮度降低了4.04%。且VF4会降低0.170V,可见,底层1090有效改善了透明导电层107的透光性,提升了最终发光二极管的亮度且同时极大的提升了VF4。
对比例二
与实施例一不同的是,绝缘透光层仅包括第二层1092,取消了底层1090和渐变层第一层1091的设计,渐变层第二层1092是氧化铝。如表一所示,发光二极管的亮度降低了0.03%,经过有机硅树脂密封后的亮度提升了0.43%。
综上所述,本发明对半导体发光元件可通过包封密封树脂密封,例如制作成封装体,通过对半导体发光元件的绝缘透光层进行改进,可以提高采用密封树脂的封装体的光效,并且改善小电流下的VF4,提升可靠性。
本发明的封装体可以进一步做成发光装置,例如白光照明装置、背光显示装置、RGB显示装置、车灯、闪光灯、投影灯、舞台灯、紫外杀菌或者灯丝灯等。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (29)

  1. 一种半导体发光元件,其包括:半导体发光序列层,半导体发光序列层包括发光层;
    绝缘透光层,位于半导体发光序列层的出光面上;其特征在于:绝缘透光层包括底层和底层上的折射率渐变层,折射率渐变层由至少两层组成,底层介于半导体发光序列层和折射率渐变层之间,底层的折射率低于折射率渐变层的折射率,折射率渐变层的折射率随着远离底层的方向逐渐降低。
  2. 根据权利要求1所述的一种半导体发光元件,其特征在于:所述折射率渐变层的折射率为1.6以上。
  3. 根据权利要求1所述的一种半导体发光元件,其特征在于:半导体发光序列层的至少部分出光面与绝缘透光层之间还有透明导电层,其中透明导电层的折射率高于所述绝缘透光层的折射率。
  4. 根据权利要求1所述的一种半导体发光元件,其特征在于:所述的绝缘透光层的底层为不含氮层。
  5. 根据权利要求1所述的一种半导体发光元件,其特征在于:所述的绝缘透光层的底层具有低于1.5的折射率。
  6. 根据权利要求1所述的一种半导体发光元件,其特征在于:所述的绝缘透光层的底层的厚度为10~80nm。
  7. 根据权利要求1所述的一种半导体发光元件,其特征在于:所述的绝缘透光层包括与底层接触的第一层,第一层折射率位于1.8~1.95。
  8. 根据权利要求7所述的一种半导体发光元件,其特征在于:所述的折射率渐变层的第一层为含氮层。
  9. 根据权利要求7所述的一种半导体发光元件,其特征在于:所述的绝缘透光层的第一层为氮化硅或者氮氧化硅。
  10. 根据权利要求7所述的一种半导体发光元件,其特征在于:所述的绝缘透光层包括第二层,第二层为绝缘透光层的最外层,第二层的折射率位于 1.6~1.75。
  11. 根据权利要求10所述的一种半导体发光元件,其特征在于:所述的绝缘透光层的第二层为氮氧化硅或者氧化铝。
  12. 根据权利要求1所述的一种半导体发光元件,其特征在于:所述的绝缘透光层的第一层的厚度为10~300nm,所述的绝缘透光层的第二层的厚度为10~300nm。
  13. 根据权利要求12的一种半导体发光元件,其特征在于:所述的绝缘透光层仅包括第一层和第二层,第一层为氮化硅,第二层为氮氧化硅或者氧化铝。
  14. 根据权利要求1所述的一种半导体发光元件,其特征在于:所述的半导体发光序列层为Al xIn 1-xGaN,0≤x≤1。
  15. 一种半导体发光元件,其包括:半导体发光序列层,半导体发光序列层包括发光层;
    绝缘透光层,位于半导体发光序列层的出光面上;其特征在于:绝缘透光层包括底层和底层上的折射率渐变层,底层为不含氮层,折射率渐变层由至少两层组成,折射率渐变层的折射率随着远离底层的方向逐渐降低,并且折射率渐变层包括第一层,第一层与底层接触,第一层为氮化物层。
  16. 根据权利要求15所述的一种半导体发光元件,其特征在于:所述的底层与半导体发光序列层的出光面之间还有透明导电层。
  17. 根据权利要求15所述的一种半导体发光元件,其特征在于:所述的底层的厚度介于10~80nm。
  18. 一种发光装置,其包括半导体发光元件和密封树脂,半导体发光元件的周围被密封树脂包封;所述半导体发光元件包括:半导体发光序列层,半导体发光序列层包括发光层;
    绝缘透光层,位于半导体发光序列层的出光面上;其特征在于:绝缘透光层包括底层和底层上的折射率渐变层,折射率渐变层由至少两层组成,底层介于半导体发光序列层和折射率渐变层之间,底层的折射率低于折射率渐变层的折射率,折射率渐变层的折射率随着远离底层的方向逐渐降低。
  19. 根据权利要求18所述的一种半导体发光元件,其特征在于:半导体发光序列层的至少部分出光面与绝缘透光层之间还有透明导电层,其中透明导电层的折射率高于所述绝缘透光层的折射率。
  20. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层的底层具有低于1.5的折射率。
  21. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层包括与底层接触的第一层为含氮层。
  22. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层的底层为氧化硅。
  23. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层包括与底层接触的第一层,第一层折射率位于1.8~1.95。
  24. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层包括与底层接触的第一层之上的第二层,第二层的折射率位于1.6~1.75。
  25. 根据权利要23所述的一种发光装置,其特征在于:所述的绝缘透光层包括第一层之上的第二层,第二层为氮氧化硅或者氧化铝。
  26. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层的底层的厚度1~80nm。
  27. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层的第一层的厚度为10~300nm,所述的绝缘透光层的第二层的厚度为10~300nm。
  28. 根据权利要求18所述的一种发光装置,其特征在于:所述的半导体发光序列层由Al xIn 1-xGaN,0≤x≤1。
  29. 根据权利要求18所述的一种发光装置,其特征在于:所述的绝缘透光层的总厚度为20~680nm。
PCT/CN2020/108900 2020-08-13 2020-08-13 一种半导体发光元件和发光装置 WO2022032572A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/108900 WO2022032572A1 (zh) 2020-08-13 2020-08-13 一种半导体发光元件和发光装置
CN202080005587.9A CN112789737B (zh) 2020-08-13 2020-08-13 一种半导体发光元件和发光装置
US18/164,232 US20230178689A1 (en) 2020-08-13 2023-02-03 Semiconductor light-emitting device and light-emitting apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108900 WO2022032572A1 (zh) 2020-08-13 2020-08-13 一种半导体发光元件和发光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/164,232 Continuation-In-Part US20230178689A1 (en) 2020-08-13 2023-02-03 Semiconductor light-emitting device and light-emitting apparatus including the same

Publications (1)

Publication Number Publication Date
WO2022032572A1 true WO2022032572A1 (zh) 2022-02-17

Family

ID=75754047

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108900 WO2022032572A1 (zh) 2020-08-13 2020-08-13 一种半导体发光元件和发光装置

Country Status (3)

Country Link
US (1) US20230178689A1 (zh)
CN (1) CN112789737B (zh)
WO (1) WO2022032572A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814563A (zh) * 2009-02-20 2010-08-25 Lg伊诺特有限公司 发光器件、发光器件封装和包括其的照明系统
CN102881785A (zh) * 2012-09-24 2013-01-16 华灿光电股份有限公司 一种发光二极管芯片及其制作方法
CN104362240A (zh) * 2014-10-31 2015-02-18 广东德力光电有限公司 一种LED芯片的Al2O3/SiON钝化层结构及其生长方法
CN205595365U (zh) * 2016-04-06 2016-09-21 厦门乾照光电股份有限公司 一种具有表面增透层的氮化镓基发光二极管芯片
CN111509097A (zh) * 2020-06-30 2020-08-07 华引芯(武汉)科技有限公司 一种大功率半导体发光器件及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193975A (ja) * 2006-05-22 2009-08-27 Alps Electric Co Ltd 発光装置およびその製造方法
CN102244170B (zh) * 2011-06-15 2012-12-26 江苏晶瑞半导体有限公司 准光子晶体图形蓝宝石衬底及其制造方法、发光二极管及其制备方法
CN202839725U (zh) * 2012-08-03 2013-03-27 光达光电设备科技(嘉兴)有限公司 Led外延结构
CN104882523A (zh) * 2014-02-27 2015-09-02 山东浪潮华光光电子股份有限公司 一种钝化层折射率渐变的GaN基发光二极管芯片及其制备方法
CN108682727B (zh) * 2018-04-28 2020-12-08 华灿光电(浙江)有限公司 一种发光二极管芯片及其制作方法
CN211182233U (zh) * 2019-09-11 2020-08-04 北京中科优唯科技有限公司 一种紫外发光二极管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814563A (zh) * 2009-02-20 2010-08-25 Lg伊诺特有限公司 发光器件、发光器件封装和包括其的照明系统
CN102881785A (zh) * 2012-09-24 2013-01-16 华灿光电股份有限公司 一种发光二极管芯片及其制作方法
CN104362240A (zh) * 2014-10-31 2015-02-18 广东德力光电有限公司 一种LED芯片的Al2O3/SiON钝化层结构及其生长方法
CN205595365U (zh) * 2016-04-06 2016-09-21 厦门乾照光电股份有限公司 一种具有表面增透层的氮化镓基发光二极管芯片
CN111509097A (zh) * 2020-06-30 2020-08-07 华引芯(武汉)科技有限公司 一种大功率半导体发光器件及其制备方法

Also Published As

Publication number Publication date
CN112789737A (zh) 2021-05-11
US20230178689A1 (en) 2023-06-08
CN112789737B (zh) 2022-09-13

Similar Documents

Publication Publication Date Title
JP6674978B2 (ja) 発光ダイオードパッケージ
US8963183B2 (en) Light emitting diode having distributed Bragg reflector
KR101014102B1 (ko) 반도체 발광소자 및 그 제조방법
TWI446586B (zh) 發光裝置
KR101259969B1 (ko) 발광 장치
KR102607596B1 (ko) 반도체 발광소자 및 이를 이용한 반도체 발광소자 패키지
KR20090034590A (ko) 수직형 발광 소자
KR20190022326A (ko) 분포 브래그 반사기를 가지는 발광 다이오드
CN113903839A (zh) 一种发光二极管
WO2021119906A1 (zh) 一种发光二极管
KR20110075834A (ko) 발광소자, 발광소자의 제조방법 및 발광소자 패키지
TW202029529A (zh) 發光元件及其製造方法
KR20110053064A (ko) 분포 브래그 반사기를 갖는 발광 다이오드 칩 및 발광 다이오드 패키지
KR20110085961A (ko) 분포 브래그 반사기를 갖는 발광 다이오드 칩 및 발광 다이오드 패키지
JP5778466B2 (ja) 発光素子、発光素子パッケージ、及び照明システム
US20220158040A1 (en) Light-emitting diode
CN112789737B (zh) 一种半导体发光元件和发光装置
CN213242590U (zh) 一种半导体发光元件和发光装置
WO2023283913A1 (zh) 偏振元件、发光二极管以及发光装置
JP2019533908A (ja) 半導体素子およびこれを含む半導体素子パッケージ
TW201304189A (zh) 發光元件及其製作方法
US20230024758A1 (en) Light emitting device
KR101667817B1 (ko) 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
CN117133845A (zh) 发光元件及发光模块
CN116845161A (zh) 发光元件及发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20949071

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20949071

Country of ref document: EP

Kind code of ref document: A1