WO2022032437A1 - 车载低压电池充电电路及电动汽车 - Google Patents

车载低压电池充电电路及电动汽车 Download PDF

Info

Publication number
WO2022032437A1
WO2022032437A1 PCT/CN2020/108236 CN2020108236W WO2022032437A1 WO 2022032437 A1 WO2022032437 A1 WO 2022032437A1 CN 2020108236 W CN2020108236 W CN 2020108236W WO 2022032437 A1 WO2022032437 A1 WO 2022032437A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
resistor
voltage
power
circuit
Prior art date
Application number
PCT/CN2020/108236
Other languages
English (en)
French (fr)
Inventor
刘鹏飞
胡定高
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to CN202080006693.9A priority Critical patent/CN113165524B/zh
Priority to PCT/CN2020/108236 priority patent/WO2022032437A1/zh
Publication of WO2022032437A1 publication Critical patent/WO2022032437A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/31Charging columns specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Definitions

  • the present application relates to the technical field of electric vehicle charging, and in particular, to a vehicle-mounted low-voltage battery charging circuit and an electric vehicle.
  • Embodiments of the present application provide a vehicle low-voltage battery charging circuit and an electric vehicle.
  • the CP signal sent by the charging pile controls the closing of the S2 switch through the low-voltage depletion control circuit, so that the low-voltage battery can be controlled by the power supply.
  • the circuit takes AC power from the charging pile for charging, which solves the problems of low charging efficiency and high labor cost or hardware cost when the low-voltage battery of the electric vehicle is depleted.
  • a first aspect of an embodiment of the present application provides a vehicle-mounted low-voltage battery charging circuit
  • the charging circuit includes: a CP power taking circuit, a low-voltage power deficit control circuit, a power deficit detection circuit, a low-voltage battery, a power supply control circuit, an S2 switch, and a charging pile ,in,
  • the first input end of the low-voltage power deficit control circuit is connected to the output end of the CP power taking circuit
  • the second input end of the low-voltage power deficit control circuit is connected to the output end of the power deficit detection circuit
  • the The output end of the low-voltage power loss control circuit is connected to the control end of the S2 switch
  • the input end of the CP power taking circuit is respectively connected to the charging pile and the input end of the S2 switch
  • the power loss detection circuit is connected to the input end of the S2 switch.
  • the input end is connected to the output end of the low-voltage battery, the input end of the low-voltage battery is connected to the output end of the power control circuit, the output end of the S2 switch is connected to the first input end of the power control circuit, the the second input end of the power control circuit is connected to the charging pile;
  • the low-voltage power deficit control circuit outputs a control command for controlling the closing or opening of the S2 switch.
  • the CP power taking circuit includes: a first diode, a first resistor, a second resistor, and a first capacitor, wherein,
  • One end of the first resistor is connected to the input port of the CP power taking circuit, the other end of the first resistor is connected to the anode end of the first diode, and the cathode of the first diode is connected It is connected to one end of the second resistor, the other end of the second resistor is respectively connected to one end of the first capacitor and the output end of the CP power taking circuit, and the other end of the first capacitor is grounded.
  • the power loss detection circuit includes: a second diode, a third resistor, a fourth resistor and a fifth resistor, wherein,
  • the anode of the second diode is connected to the input port of the power loss detection circuit, the cathode of the second diode is connected to one end of the third resistor, and the other end of the third resistor is connected to One end of the fourth resistor is connected, the other end of the fourth resistor, one end of the fifth resistor and the output port of the power loss detection circuit are connected, and the other end of the fifth resistor is grounded.
  • the low-voltage power deficit control circuit includes: a sixth resistor, a seventh resistor, an eighth resistor, a ninth resistor, a tenth resistor, a third diode, a second capacitor, a third capacitor, and op amp, where,
  • the anode of the third diode is respectively connected to the AVCC end of the operational amplifier, one end of the ninth resistor, and the first input port of the low voltage deficit control circuit, and the third diode has an anode.
  • the cathode is connected to one end of the eighth resistor, the other end of the ninth resistor is respectively connected to the non-inverting input end of the operational amplifier, one end of the tenth resistor and one end of the third capacitor, the The other end of the eighth resistor is respectively connected to the inverting input end of the operational amplifier and the second input end port of the low-voltage power deficit control circuit, the other end of the tenth resistor is grounded, and the other end of the third capacitor is connected to the ground.
  • the output end of the operational amplifier is connected to one end of the seventh resistor, the other end of the seventh resistor is connected to one end of the sixth resistor, and the other end of the sixth resistor is respectively connected to the One end of the second capacitor is connected to the output port of the low-voltage deficit control circuit, the other end of the second capacitor is grounded, and the negative power supply terminal of the operational amplifier is grounded.
  • the low-voltage power-loss control circuit includes: a microcontroller, a sixth resistor, a third diode, a fourth diode, a second capacitor, a third capacitor, a first power supply circuit, and a second power supply circuit, where,
  • One end of the first power supply circuit is respectively connected to the anode of the third diode, one end of the third capacitor and the other end of the first capacitor, and the other end of the first power supply circuit is connected to the
  • the first input port of the low voltage power deficit control circuit is connected to the port, and the other end of the third capacitor is respectively connected to the VCC interface of the microcontroller, the cathode of the third diode and the cathode of the fourth diode.
  • one end of the second power supply circuit is connected to the anode of the fourth diode, the other end of the second power supply circuit is connected to one end of the fourth resistor, and the input interface of the microcontroller is connected to the low voltage
  • the second input port of the power deficit control circuit is connected to the port, the output interface of the single-chip microcomputer is connected to one end of the sixth resistor, and the other end of the sixth resistor is respectively connected to one end of the second capacitor and the low voltage deficit.
  • the output port of the electric control circuit is connected to the port, the other end of the second capacitor is grounded, and the GND end of the single-chip microcomputer is grounded.
  • the first single-chip power supply circuit and the second single-chip power supply circuit include a 3.3V to 5V power supply circuit.
  • the output of the control command by the low-voltage power deficit control circuit for controlling the closing or opening of the S2 switch specifically includes:
  • the low-voltage power deficit control circuit samples the output voltage of the low-voltage battery in real time through the power-loss detection circuit, and if the output voltage of the low-voltage battery is lower than the reference voltage, the low-voltage power deficit control circuit is based on the first input.
  • the input voltage of the second input terminal and the input voltage of the second input terminal output a high level or a low level to the S2 switch, and the S2 switch is closed or opened according to the received level.
  • the power control circuit includes an OBC and a DC/DC converter, wherein the OBC includes an inrush current limiting circuit, a resonance rectification circuit, and a power factor correction circuit.
  • connection mode of the OBC and the DC/DC converter includes an integrated type and an independent type.
  • a second aspect of the embodiments of the present application provides an electric vehicle, including the vehicle-mounted low-voltage battery charging circuit of the first aspect.
  • FIG. 1 is a schematic diagram of a detection circuit system in the prior art
  • FIG. 2 is a schematic structural diagram of a vehicle-mounted low-voltage battery charging circuit provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a CP power taking circuit provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a power loss detection circuit provided by an embodiment of the present application.
  • 5A is a schematic structural diagram of a low-voltage power deficit control circuit provided by an embodiment of the present application.
  • 5B is a schematic structural diagram of another low-voltage power deficit control circuit provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a power supply control circuit provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another power supply control circuit provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another vehicle-mounted low-voltage battery charging circuit provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a detection circuit in the prior art.
  • the S1 switch switches from the 12V connection state to the Pulse Width Modulation (PWM) state, the power supply control device sends out a PWM signal, and the power supply control device passes the measurement
  • PWM Pulse Width Modulation
  • the vehicle control device judges whether the vehicle plug and the vehicle socket are completely connected through the resistance value between detection point 3 and PE, and by measuring the detection point
  • the CP signal duty cycle of 2 confirms the maximum power supply current of the current power supply equipment.
  • the vehicle control device controls the S2 switch to close, and the vehicle starts to charge through the charging pile.
  • the vehicle control device cannot determine whether the connector is connected correctly, and thus cannot control the closing of the S2 switch to charge the low-voltage battery.
  • the vehicle-mounted low-voltage battery charging circuit includes: a CP power taking circuit, a low-voltage power deficit control circuit, a power deficit detection circuit, a low-voltage battery, a power supply control circuit, and an S2 switch.
  • the first input end of the low-voltage power deficit control circuit is connected to the output end of the CP power taking circuit, and the second input end of the low-voltage power deficit control circuit is connected to the output end of the power deficit detection circuit connection, the output end of the low-voltage deficit control circuit is connected to the control end of the S2 switch, the input end of the CP power taking circuit is respectively connected to the charging pile and the input end of the S2 switch, the deficit
  • the input end of the electrical detection circuit is connected to the output end of the low-voltage battery, the input end of the low-voltage battery is connected to the output end of the power supply control circuit, and the output end of the S2 switch is connected to the first input end of the power supply control circuit connected, and the second input end of the power control circuit is connected to the charging pile.
  • the CP signal sent by the charging pile controls the closing of the S2 switch through the low-voltage power deficit control circuit, so that the low-voltage battery can obtain AC power from the charging pile through the power control circuit for charging, thus solving the problem of charging when the current low-voltage battery of electric vehicles is short of power.
  • FIG. 2 is a schematic structural diagram of an on-board low-voltage battery charging circuit provided by an embodiment of the present application.
  • the on-board low-voltage battery charging circuit includes: a CP power taking circuit 100, a low-voltage power deficit control circuit 200, and a power deficit detection circuit 300, low-voltage battery 400, power control circuit 500, S2 switch 600 and charging pile 700; wherein,
  • the first input terminal of the low voltage power loss control circuit 200 is connected to the output terminal of the CP power taking circuit 100 , and the second input terminal of the low voltage power loss control circuit 200 is connected to the output terminal of the power loss detection circuit 300
  • the output terminal of the low-voltage power deficit control circuit 200 is connected to the control terminal of the S2 switch 600 , and the input terminal of the CP power taking circuit 100 is respectively connected to the charging pile 700 and the input terminal of the S2 switch 600 connection, the input end of the power loss detection circuit 300 is connected to the output end of the low voltage battery 400, the input end of the low voltage battery 400 is connected to the output end of the power control circuit 500, and the output end of the S2 switch 600
  • the terminal is connected to the first input terminal of the power control circuit 500, and the second input terminal of the power control circuit 500 is connected to the charging pile 700;
  • the low-voltage power deficit control circuit 200 outputs a control command for controlling the closing or opening of the S2 switch 600 .
  • the S2 switch 600 may be a control switch.
  • the S2 switch 600 When the control terminal of the S2 switch 600 receives a high level, the S2 switch 600 is in a closed state, and when the control terminal of the S2 switch 600 receives a low level, the S2 switch 600 is disconnected.
  • the charging pile 700 can provide alternating current of 220V.
  • the charging pile 700 after the charging pile 700 is connected to the vehicle, it will send a CP signal to feedback the current maximum output current provided by the charging pile 700.
  • the CP signal may be a PWM signal with an amplitude of 9V and a frequency of 1KHz.
  • the duty cycle of the CP signal can set the maximum output current of the charging pile.
  • the CP power taking circuit 100 includes: a first diode D1 , a first resistor R1 , a second resistor R2 , and a first capacitor C1 . in,
  • One end of the first resistor R1 is connected to the input port of the CP power taking circuit 100, the other end of the first resistor R1 is connected to the anode end of the first diode D1, and the first two
  • the cathode of the pole tube D1 is connected to one end of the second resistor R2, and the other end of the second resistor R2 is connected to one end of the first capacitor C1 and the output end of the CP power taking circuit 100, respectively.
  • the other end of the first capacitor C1 is grounded.
  • the above-mentioned first diode D1 may be a rectifier diode.
  • the power loss detection circuit 300 includes: a second diode D2 , a third resistor R3 , a fourth resistor R4 and a fifth resistor R5 . in,
  • the anode of the second diode D2 is connected to the input port of the power loss detection circuit 300, the cathode of the second diode D2 is connected to one end of the third resistor R3, and the third resistor The other end of R3 is connected to one end of the fourth resistor R4, the other end of the fourth resistor R4, one end of the fifth resistor R5 and the output port of the power loss detection circuit 300 are connected, the first The other end of the five resistor R5 is grounded.
  • the second diode D2 may be a rectifier diode
  • the resistance values of the third resistor R3 and the fourth resistor R4 may be equal
  • the resistance value of the fifth resistor R5 may be the same as the resistance value of the third and fourth resistors R3 and the third resistor R3. The sum of the resistance values of the four resistors R4.
  • the low-voltage power deficit control circuit 200 includes: a sixth resistor R6, a seventh resistor R7, an eighth resistor R8, a ninth resistor R9, a tenth resistor R10, a third resistor Diode D3, second capacitor C2, third capacitor C3 and operational amplifier U1A. in,
  • the anode of the third diode D3 is respectively connected to the AVCC end of the operational amplifier U1A, one end of the ninth resistor R9 and the first input port of the low voltage deficit control circuit 200, the third The cathode of the diode D3 is connected to one end of the eighth resistor R8, and the other end of the ninth resistor R9 is respectively connected to the non-inverting input end of the operational amplifier U1A, one end of the tenth resistor R10 and the One end of the third capacitor C3 is connected, and the other end of the eighth resistor R8 is connected to the inverting input end of the operational amplifier U1A and the second input end port of the low voltage deficit control circuit 200 respectively.
  • the other end of the resistor R10 is grounded, the other end of the third capacitor C3 is grounded, the output end of the operational amplifier U1A is connected to one end of the seventh resistor R7, and the other end of the seventh resistor R7 is connected to the first end of the seventh resistor R7.
  • One end of the six resistors R6 is connected, the other end of the sixth resistor R6 is respectively connected to one end of the second capacitor C2 and the output port of the low voltage deficit control circuit 200, and the other end of the second capacitor C2 Ground, the negative power supply terminal of the operational amplifier U1A is grounded.
  • the other end of the seventh resistor R7 is connected to one end of the sixth resistor R6 and the S2_COM signal, and the S2_COM signal is used by the vehicle control device to close or open the S2 switch 600 after detecting the CP signal. control signal.
  • the output control signal when the vehicle control device detects that the voltage of the low-voltage battery 400 is lower than 12V, the output control signal may be a high-level signal. When the vehicle control device detects that the voltage of the low-voltage battery 400 is higher than or equal to 12V , the output control signal may be a low level signal.
  • the third diode D3 may be a rectifier diode
  • the resistance value of the sixth resistor R6 may be equal to the resistance value of the seventh resistor R7
  • the resistance value of the ninth resistor R9 may be the same as the resistance value of the tenth resistor R10. value is equal.
  • the low-voltage power deficit control circuit 200 includes: a microcontroller, a sixth resistor R6, a third diode D3, a fourth diode D4, a second capacitor C2, The third capacitor C3, the first power supply circuit and the second power supply circuit.
  • One end of the first power supply circuit is respectively connected to the anode of the third diode D3, one end of the third capacitor C3 and the other end of the first capacitor C1, and the other end of the first power supply circuit It is connected to the first input port of the low-voltage power deficit control circuit 200, and the other end of the third capacitor C3 is respectively connected to the VCC interface of the microcontroller, the cathode of the third diode D3, and the fourth The cathode of the diode D4 is connected, one end of the second power supply circuit is connected to the anode of the fourth diode D4, and the other end of the second power supply circuit is connected to one end of the fourth resistor R4, so
  • the input port of the microcontroller is connected to the second input port of the low-voltage power loss control circuit 200, the output port of the microcontroller is connected to one end of the sixth resistor R6, and the other end of the sixth resistor R6 is respectively It is connected to one end of the second capacitor C2 and the output port of the low
  • control terminal of the single-chip microcomputer is also connected with the S2_COM signal
  • the S2_COM signal is a control signal used by the vehicle control device to close the S2 switch 600 after detecting the CP signal
  • the S2_COM signal is the vehicle control device detecting the CP signal.
  • the output control signal may be a high-level signal.
  • the output control signal may be a low level signal.
  • the single-chip microcomputer can directly output a high level; when the S2_COM signal is at a low level, the single-chip microcomputer can output a high level or a low level according to its VCC terminal voltage and input terminal voltage Give S2 switch 600.
  • both the third diode D3 and the fourth diode D4 may be rectifier diodes, and the capacity of the third capacitor C3 may be equal to the capacity of the first capacitor C1.
  • the above-mentioned single-chip microcomputer may include but is not limited to: MCS51 single-chip microcomputer, STC51 single-chip computer, and AVR single-chip computer.
  • the output of the control command by the low-voltage power deficit control circuit 200 to control the closing or opening of the S2 switch 600 may specifically include:
  • the low-voltage power deficit control circuit 200 samples the output voltage of the low-voltage battery 400 in real time through the power-loss detection circuit 300, and if the output voltage of the low-voltage battery 400 is lower than the reference voltage, the low-voltage power deficit control circuit 200 according to The input voltage of the first input terminal and the second input terminal outputs a high level or a low level to the S2 switch 600, and the S2 switch 600 is closed or opened according to the received level.
  • the output terminal of the low-voltage power deficit control circuit 200 can output a high level;
  • the output terminal of the low-voltage power deficit control circuit 200 may output a low level.
  • the S2 switch 600 when the control terminal of the S2 switch 600 receives a high level, the S2 switch 600 is in a closed state, and the charging circuit between the charging pile 700 and the low-voltage battery 400 is turned on; When the control terminal receives a low level, the S2 switch 600 is in an off state, and the charging circuit between the charging pile 700 and the low-voltage battery 400 is disconnected.
  • the S2 switch 600 includes but is not limited to: a relay KA, a field effect transistor MOSFET, a bipolar transistor and a semiconductor diode.
  • the first power supply circuit and the second power supply circuit may include a 3.3V to 5V power supply circuit.
  • the first power supply circuit and the second power supply circuit may include, but are not limited to, a DC/DC boost converter circuit, a MC33466-50JT1 boost converter circuit, and a MC33466-50LT1 boost converter circuit.
  • the reference voltage may be 6V.
  • the power control circuit 500 may include an OBC 510 and a DC/DC converter 520 .
  • the OBC 510 includes an inrush current limit 511 , a resonance rectification 512 and a power factor correction 513 .
  • the inrush current limiter 511 , the resonance rectifier 512 , the power factor correction 513 and the DC/DC converter 520 are connected in sequence, and the first input end of the power control circuit 500 is connected to the DC/DC converter 520, the second input terminal of the power control circuit 500 is connected to the inrush current limiter 511, the power control circuit 500 takes 220V alternating current from the charging pile 700 through the second input terminal, and makes the DC current through the first input terminal.
  • the /DC converter works, so that the 220V alternating current is output through the DC/DC converter to output high-voltage direct current and low-voltage direct current.
  • connection mode of the OBC 510 and the DC/DC converter 520 includes an integrated type and an independent type.
  • the OBC510 and the DC/DC converter 520 may be arranged in a separate manner, that is, the OBC510 and the DC/DC converter 520 may be integrated and located together in the power supply control circuit;
  • the OBC510 and the DC/DC converter 520 can also be arranged independently, that is, the OBC510 and the DC/DC converter 520 can be located in the power control circuit independently of each other, and the OBC510 and the DC/DC converter 520 are connected by wires .
  • the integration manner in which the OBC 510 and the DC/DC converter 520 are integrated into one body may include a magnetic integration manner and a board integration manner.
  • the magnetic integration method can be that the OBC510 connects the high-voltage output and the low-voltage output of the DC/DC converter 520 through a transformer, thereby simultaneously outputting high-voltage direct current and low-voltage direct current;
  • the board integration method can be that the OBC510 is connected to the DC/DC converter 520 through a transformer.
  • the high-voltage output of the DC/DC converter 520 is connected to the low-voltage output of the DC/DC converter 520 through the transformer, so that the low-voltage DC is output after the high-voltage DC is output, as shown in Figure 7, which is a board integrated Schematic diagram of the structure of the power control circuit of the mode.
  • FIG. 8 is a schematic diagram of another vehicle-mounted low-voltage battery charging circuit provided by an embodiment of the present application.
  • the vehicle low-voltage battery charging circuit includes: a CP power taking circuit 100, a low-voltage power deficit control circuit 200, a power deficit detection circuit 300, a low-voltage battery 400, a power control circuit 500, an S2 switch 600 and a charging pile 700, wherein:
  • the S2 switch 600 includes a first diode D1, a first resistor R1 and a first transistor Q1;
  • the low-voltage power-loss control circuit 200 includes a fourth resistor R4, a second capacitor C2, and a power-loss control module, and the power-loss control module outputs a control command for controlling the closing or opening of the S2 switch 600.
  • the power loss detection circuit 300 samples the voltage of the low-voltage battery 400 in real time, and when the output voltage of the low-voltage battery 400 is lower than the reference voltage, the low-voltage power loss control circuit 200 controls the power loss.
  • the input terminal voltage of the module is compared with the VCC terminal voltage and then outputs a high level or a low level to the S2 switch 600 .
  • the low voltage power deficit control circuit 200 when the voltage of the input terminal of the power deficit control module is higher than the voltage of the VCC terminal, the low voltage power deficit control circuit 200 outputs a low level to the S2 switch 600, and when the gate of the first transistor Q1 receives a low level, the first transistor There is no current between the source and drain of Q1. At this time, the first transistor Q1 is in the off state, and the S2 switch 600 is in the off state.
  • the low voltage power loss control circuit 200 When the voltage of the input terminal of the power loss control module is lower than the voltage of the VCC terminal, the low voltage power loss control circuit 200 outputs a high level to the S2 switch 600.
  • the gate of the first transistor Q1 When the gate of the first transistor Q1 receives a high level, there is a current between the source and the drain of the first transistor Q1, and the first transistor Q1 is in an on state at this time.
  • the S2 switch 600 is in a closed state, and the charging circuit between the charging pile 700 and the low-voltage battery 400 is turned on.
  • the control terminal of the power loss control module is connected to the S2_COM signal, and the S2_COM signal is a control signal used by the vehicle control device to close or open the S2 switch 600 after detecting the CP signal.
  • the control signal When the vehicle control device detects that the voltage of the low-voltage battery 400 is lower than 12V, the control signal outputs a high level signal; when the vehicle control device detects that the voltage of the low-voltage battery 400 is higher than or equal to 12V, the control signal outputs a low level signal level signal; when the S2_COM signal is at a high level, the power loss control module directly outputs a high level, and when the S2_COM signal is at a low level, the power loss control module outputs a high level by comparing the voltages of the VCC terminal and the input terminal or low level.
  • the power control circuit 500 includes an OBC and a DC/DC converter.
  • the integration of the OBC and the DC/DC converter circuit may be magnetic integration or board integration.
  • the OBC and DC/DC converters in FIG. 8 The device adopts the magnetic integration method.
  • the power loss control module 200 may include, but is not limited to, an operational amplifier or an MSC51 microcontroller.
  • the reference voltage may be 6V.
  • the S2 switch 600 includes but is not limited to: a relay KA, a field effect transistor MOSFET, a bipolar transistor and a semiconductor diode.
  • the low-voltage battery 400 can obtain the AC power from the charging pile 700 through the power control circuit 500 for charging, which solves the problem of the current situation.
  • the charging efficiency is low, and the labor cost or hardware cost is high.
  • an electric vehicle including the vehicle-mounted low-voltage battery charging circuit described in the above embodiments.
  • the disclosed vehicle low-voltage battery charging circuit may be implemented in other ways.
  • the embodiments of the vehicle-mounted low-voltage battery charging circuit described above are only illustrative, and for example, the components in the above circuit can also use other components with the same function.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of circuits or components, and may be in electrical or other forms.
  • each circuit in each embodiment of the present application may be integrated in one circuit board, or each circuit may exist independently, or two or more circuits may be integrated in one circuit board.

Abstract

一种车载低压电池充电电路及电动汽车,所述充电电路包括:CP取电电路(100)、低压亏电控制电路(200)、亏电检测电路(300)、低压电池(400)、电源控制电路(500)、S2开关(600)和充电桩(700);所述低压亏电控制电路(200)的第一输入端与所述CP取电电路(100)的输出端连接,所述低压亏电控制电路(200)的第二输入端与所述亏电检测电路(300)的输出端连接,所述低压亏电控制电路(200)的输出端与所述S2开关(600)的控制端连接。在车辆低压电池(400)亏电时,能够通过低压亏电控制电路(200)输出控制指令控制S2开关(600)的闭合或断开,使得低压电池(400)通过电源控制电路(500)从充电桩(700)取交流电进行充电。解决了目前电动汽车低压电池亏电时充电的工作效率低、人力成本或硬件成本高的问题。

Description

车载低压电池充电电路及电动汽车 技术领域
本申请涉及电动汽车充电技术领域,尤其涉及车载低压电池充电电路及电动汽车。
背景技术
随着汽车的广泛应用带来的能源消耗和环境污染问题,电动汽车受到越来越多的关注。现有电动汽车的控制原理大多为整车控制器和电池管理系统(Battery Management System,BMS)都接低压电池作为常电,目前针对国标对车辆充电系统的规定及要求,市面上检测装置放置在BMS内,由BMS判定CC、CP信号来确定连接器是否连接正确以及控制S2开关的闭合。但当低压电池出现自放电或者用电设备长时间工作而未充电等情况时,会造成低压电池亏电,从而导致无法整车启动电动汽车,并且BMS也无法通过闭合S2开关来通过车载充电机(On Board Charger,OBC)给低压电池充电。
目前解决低压电池亏电的问题一般是采用更换低压电池或者通过他车OBC的给低压电池充电。但是更换低压电池需要到专门更换低压电池的地方进行更换,其过程耗时且成本高,而通过他车的OBC给低压电池充电需要使用电瓶搭电线等外部工具,其操作步骤繁杂,都严重影响了用户的体验感。
申请内容
本申请实施例提供一种车载低压电池充电电路及电动汽车,其在车辆低压电池亏电时通过充电桩发出的CP信号通过低压亏电控制电路控制S2开关的闭合,使得低压电池能够通过电源控制电路从充电桩取交流电进行充电,解决目前电动汽车低压电池亏电时充电的工作效率低,人力成本或硬件成本高的问题。
本申请实施例第一方面提供一种车载低压电池充电电路,所述充电电路包括:CP取电电路、低压亏电控制电路、亏电检测电路、低压电池、电源控制电路、S2开关和充电桩,其中,
所述低压亏电控制电路的第一输入端与所述CP取电电路的输出端连接,所述低压亏电控制电路的第二输入端与所述亏电检测电路的输出端连接,所述低压亏电控制电路的输出 端与所述S2开关的控制端连接,所述CP取电电路的输入端分别与所述充电桩以及所述S2开关的输入端连接,所述亏电检测电路的输入端与所述低压电池的输出端连接,所述低压电池的输入端与所述电源控制电路的输出端连接,所述S2开关的输出端与电源控制电路的第一输入端连接,所述电源控制电路的第二输入端与所述充电桩连接;
所述低压亏电控制电路输出控制指令用于控制S2开关的闭合或断开。
在一个可能的示例中,所述CP取电电路包括:第一二极管、第一电阻、第二电阻、和第一电容,其中,
所述第一电阻的一端与所述CP取电电路的输入端端口连接,所述第一电阻的另一端与所述第一二极管的阳极端连接,所述第一二极管的阴极与所述第二电阻的一端连接,所述第二电阻的另一端分别与所述第一电容的一端以及所述CP取电电路的输出端连接,所述第一电容的另一端接地。
在一个可能的示例中,所述亏电检测电路包括:第二二极管、第三电阻、第四电阻和第五电阻,其中,
所述第二二极管的阳极与所述亏电检测电路的输入端端口连接,所述第二二极管的阴极与所述第三电阻的一端连接,所述第三电阻的另一端与所述第四电阻的一端连接,所述第四电阻的另一端、所述第五电阻的一端以及所述亏电检测电路的输出端端口连接,所述第五电阻的另一端接地。
在一个可能的示例中,所述低压亏电控制电路包括:第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第三二极管、第二电容、第三电容和运算放大器,其中,
所述第三二极管的阳极分别与所述运算放大器的AVCC端、所述第九电阻的一端以及所述低压亏电控制电路的第一输入端端口连接,所述第三二极管的阴极与所述第八电阻的一端连接,所述第九电阻的另一端分别与所述运算放大器的正相输入端、所述第十电阻的一端以及所述第三电容的一端连接,所述第八电阻的另一端分别与所述运算放大器的反相输入端以及所述低压亏电控制电路的第二输入端端口连接,所述第十电阻的另一端接地,所述第三电容的另一端接地,所述运算放大器的输出端与所述第七电阻的一端连接,所述第七电阻的另一端与所述第六电阻的一端连接,所述第六电阻的另一端分别与所述第二电容的一端以及所述低压亏电控制电路的输出端端口连接,所述第二电容的另一端接地,所述运算放大器的负电源端接地。
在另一个可能的示例中,所述低压亏电控制电路包括:单片机、第六电阻、第三二极管、第四二极管、第二电容、第三电容、第一供电电路和第二供电电路,其中,
所述第一供电电路的一端分别与所述第三二极管的阳极、所述第三电容的一端以及所述第一电容的另一端连接,所述第一供电电路的另一端与所述低压亏电控制电路的第一输入端端口连接,所述第三电容的另一端分别与所述单片机的VCC接口、所述第三二极管的阴极以及所述第四二极管的阴极连接,所述第二供电电路的一端与所述第四二极管的阳极连接,所述第二供电电路的另一端与所述第四电阻的一端连接,所述单片机的输入接口与所述低压亏电控制电路的第二输入端端口连接,所述单片机的输出接口与所述第六电阻的一端连接,所述第六电阻的另一端分别与所述第二电容的一端以及所述低压亏电控制电路的输出端端口连接,所述第二电容的另一端接地,所述单片机的GND端接地。
在一个可能的示例中,所述第一单片机供电电路和所述第二单片机供电电路包括3.3V转5V的供电电路。
在一个可能的示例中,所述低压亏电控制电路输出控制指令用于控制S2开关的闭合或断开具体包括:
所述低压亏电控制电路通过所述亏电检测电路对低压电池的输出电压进行实时采样,若所述低压电池的输出电压低于基准电压,所述低压亏电控制电路根据所述第一输入端的输入电压与第二输入端的输入电压,输出高电平或低电平给所述S2开关,所述S2开关根据接收到的电平进行闭合或断开。
在一个可能的示例中,所述电源控制电路包括OBC和DC/DC变换器,其中,所述OBC包括冲击电流限制电路、共振整流电路以及功率因素校正电路。
在一个可能的示例中,所述OBC和DC/DC变换器的连接方式包括集成式和独立式。
本申请实施例第二方面提供一种电动汽车,包括上述第一方面的车载低压电池充电电路。
可以看出,在本申请实施例所描述的车载低压电池充电电路及电动汽车,在车载低压电池亏电时,可以连接外部的充电桩,通过充电桩发出的CP信号通过低压亏电控制电路控制S2开关的闭合,使得低压电池能够通过电源控制电路从充电桩中获取交流电进行充电。解决了目前电动汽车低压电池亏电时充电的工作效率低,人力成本或硬件成本高的问题。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术中的检测电路系统的原理图;
图2是本申请实施例提供的一种车载低压电池充电电路的结构示意图;
图3是本申请实施例提供的一种CP取电电路的结构示意图;
图4是本申请实施例提供的一种亏电检测电路的结构示意图;
图5A是本申请实施例提供的一种低压亏电控制电路的结构示意图;
图5B是本申请实施例提供的另一种低压亏电控制电路的结构示意图;
图6是本申请实施例提供的一种电源控制电路的结构示意图;
图7是本申请实施例提供的另一种电源控制电路的结构示意图;
图8是本申请实施例提供的另一种车载低压电池充电电路的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、产品或设备固有的其他步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了更好的说明本申请实施例,首先对现有技术中检测电路进行介绍。请参阅图1,图 1为现有技术中的检测电路的原理图。如图1所示,当车辆连接充电桩且供电设备无故障时,S1开关从12V连接状态切换至脉冲宽度调制(Pulse Width Modulation,PWM)状态,供电控制装置发出PWM信号,供电控制装置通过测量检测点1或检测点4的电压来判断供电插头和供电插座是否完全连接,车辆控制装置通过检测点3与PE之间的电阻值来判断车辆插头与车辆插座是否完全连接,以及通过测量检测点2的CP信号占空比确认当前供电设备的最大供电电流,当确认充电装置完全连接后,车辆控制装置控制S2开关闭合,车辆开始通过充电桩进行充电。在上述检测电路中,当低压电池亏电时,车辆控制装置无法确定连接器是否连接正确,从而无法控制S2开关的闭合来对低压电池进行充电。
针对上述问题,本申请实施例提出一种车载低压电池充电电路,该车载低压电池充电电路包括:CP取电电路、低压亏电控制电路、亏电检测电路、低压电池、电源控制电路、S2开关和充电桩;所述低压亏电控制电路的第一输入端与所述CP取电电路的输出端连接,所述低压亏电控制电路的第二输入端与所述亏电检测电路的输出端连接,所述低压亏电控制电路的输出端与所述S2开关的控制端连接,所述CP取电电路的输入端分别与所述充电桩以及所述S2开关的输入端连接,所述亏电检测电路的输入端与所述低压电池的输出端连接,所述低压电池的输入端与所述电源控制电路的输出端连接,所述S2开关的输出端与电源控制电路的第一输入端连接,所述电源控制电路的第二输入端与所述充电桩连接。通过充电桩发出的CP信号通过所述低压亏电控制电路控制S2开关的闭合,使得低压电池能够通过电源控制电路从充电桩中获取交流电进行充电,从而解决了目前电动汽车低压电池亏电时充电的工作效率低,人力成本或硬件成本高的问题。
下面结合附图对本申请实施例进行介绍,附图中相交导线的交叉处有圆点表示导线相接,交叉处无圆点表示导线不相接。
请参阅图2,图2是本申请实施例提供的一种车载低压电池充电电路的结构示意图,该车载低压电池充电电路包括:CP取电电路100、低压亏电控制电路200、亏电检测电路300、低压电池400、电源控制电路500、S2开关600和充电桩700;其中,
所述低压亏电控制电路200的第一输入端与所述CP取电电路100的输出端连接,所述低压亏电控制电路200的第二输入端与所述亏电检测电路300的输出端连接,所述低压亏电控制电路200的输出端与所述S2开关600的控制端连接,所述CP取电电路100的输入端分别与所述充电桩700以及所述S2开关600的输入端连接,所述亏电检测电路300的输入端与所述低 压电池400的输出端连接,所述低压电池400的输入端与所述电源控制电路500的输出端连接,所述S2开关600的输出端与电源控制电路500的第一输入端连接,所述电源控制电路500的第二输入端与所述充电桩700连接;
所述低压亏电控制电路200输出控制指令用于控制S2开关600的闭合或断开。
可选的,所述S2开关600可以为控制开关,当S2开关600的控制端接收到高电平时,S2开关600处于闭合状态,当S2开关600的控制端接收到低电平时,S2开关600处于断开状态。
其中,所述充电桩700可以提供220V的交流电。
需要说明的是,所述充电桩700在与车辆连接后,会发送CP信号来反馈当前所述充电桩700提供的最大输出电流,所述CP信号可以是幅值9V、频率1KHz的PWM信号,所述CP信号的占空比可以设置充电桩的最大输出电流。
在一个可能的示例中,如图3所示,所述CP取电电路100包括:第一二极管D1、第一电阻R1、第二电阻R2、和第一电容C1。其中,
所述第一电阻R1的一端与所述CP取电电路100的输入端端口连接,所述第一电阻R1的另一端与所述第一二极管D1的阳极端连接,所述第一二极管D1的阴极与所述第二电阻R2的一端连接,所述第二电阻R2的另一端分别与所述第一电容C1的一端以及所述CP取电电路100的输出端连接,所述第一电容C1的另一端接地。
可选的,上述第一二极管D1可以是整流二极管。
在一个可能的示例中,如图4所示,所述亏电检测电路300包括:第二二极管D2、第三电阻R3、第四电阻R4和第五电阻R5。其中,
所述第二二极管D2的阳极与所述亏电检测电路300的输入端端口连接,所述第二二极管D2的阴极与所述第三电阻R3的一端连接,所述第三电阻R3的另一端与所述第四电阻R4的一端连接,所述第四电阻R4的另一端、所述第五电阻R5的一端以及所述亏电检测电路300的输出端端口连接,所述第五电阻R5的另一端接地。
可选的,上述第二二极管D2可以是整流二极管,第三电阻R3与第四电阻R4的阻值可以相等,第五电阻R5的阻值大小可以是第三四电阻R3阻值与第四电阻R4阻值之和。
在一个可能的示例中,如图5A所示,所述低压亏电控制电路200包括:第六电阻R6、第七电阻R7、第八电阻R8、第九电阻R9、第十电阻R10、第三二极管D3、第二电容C2、第三电容C3和运算放大器U1A。其中,
所述第三二极管D3的阳极分别与所述运算放大器U1A的AVCC端、所述第九电阻R9的一端以及所述低压亏电控制电路200的第一输入端端口连接,所述第三二极管D3的阴极与所述第八电阻R8的一端连接,所述第九电阻R9的另一端分别与所述运算放大器U1A的正相输入端、所述第十电阻R10的一端以及所述第三电容C3的一端连接,所述第八电阻R8的另一端分别与所述运算放大器U1A的反相输入端以及所述低压亏电控制电路200的第二输入端端口连接,所述第十电阻R10的另一端接地,所述第三电容C3的另一端接地,所述运算放大器U1A的输出端与所述第七电阻R7的一端连接,所述第七电阻R7的另一端与所述第六电阻R6的一端连接,所述第六电阻R6的另一端分别与所述第二电容C2的一端以及所述低压亏电控制电路200的输出端端口连接,所述第二电容C2的另一端接地,所述运算放大器U1A的负电源端接地。
其中,所述第七电阻R7的另一端与所述第六电阻R6的一端以及S2_COM信号连接,所述S2_COM信号是车辆控制装置在检测到CP信号后用来使S2开关600闭合或断开的控制信号。
可选的,当车辆控制装置检测到低压电池400的电压低于12V时,输出的所述控制信号可以是高电平信号,当车辆控制装置检测到低压电池400的电压高于或等于12V时,输出的所述控制信号可以是低电平信号。
可选的,上述第三二极管D3可以是整流二极管,第六电阻R6的阻值大小与第七电阻R7的阻值可以相等,第九电阻R9的阻值可以与第十电阻R10的阻值相等。
在另一个可能的示例中,如图5B所示,所述低压亏电控制电路200包括:单片机、第六电阻R6、第三二极管D3、第四二极管D4、第二电容C2、第三电容C3、第一供电电路和第二供电电路。其中,
所述第一供电电路的一端分别与所述第三二极管D3的阳极、所述第三电容C3的一端以及所述第一电容C1的另一端连接,所述第一供电电路的另一端与所述低压亏电控制电路200的第一输入端端口连接,所述第三电容C3的另一端分别与所述单片机的VCC接口、所述第三二极管D3的阴极以及所述第四二极管D4的阴极连接,所述第二供电电路的一端与所述第四二极管D4的阳极连接,所述第二供电电路的另一端与所述第四电阻R4的一端连接,所述单片机的输入端接口与所述低压亏电控制电路200的第二输入端端口连接,所述单片机的输出接口与所述第六电阻R6的一端连接,所述第六电阻R6的另一端分别与所述第二电容C2 的一端以及所述低压亏电控制电路200的输出端端口连接,所述第二电容C2的另一端接地,所述单片机的GND端接地。
其中,所述单片机的控制端还与S2_COM信号连接,所述S2_COM信号是车辆控制装置在检测到CP信号后用来使S2开关600闭合的控制信号,所述S2_COM信号是车辆控制装置在检测到CP信号后用来使S2开关600闭合或断开的控制信号。
可选的,当车辆控制装置检测到低压电池400的电压低于12V时,输出的所述控制信号可以是高电平信号,当车辆控制装置检测到低压电池400的电压高于或等于12V时,输出的所述控制信号可以是低电平信号。具体地,当S2_COM信号为高电平时,所述单片机可以直接输出高电平;当S2_COM信号为低电平时,所述单片机可以根据其VCC端电压和输入端电压输出高电平或低电平给S2开关600。
可选的,上述第三二极管D3和第四二极管D4均可以是整流二极管,上述第三电容C3的容量可以与第一电容C1的容量相等。
其中,上述单片机可以包括但不限于:MCS51单片机、STC51单片机和AVR单片机。
在一个可能的实施例中,所述低压亏电控制电路200输出控制指令用于控制S2开关600的闭合或断开具体可以包括:
所述低压亏电控制电路200通过所述亏电检测电路300对低压电池400的输出电压进行实时采样,若所述低压电池400的输出电压低于基准电压,所述低压亏电控制电路200根据所述其第一输入端和第二输入端的输入电压,输出高电平或低电平给所述S2开关600,所述S2开关600根据接收到的电平进行闭合或断开。
具体地,当所述低压亏电控制电路200的第一输入端电压比第二输入端电压高时,所述低压亏电控制电路200的输出端可以输出高电平;当所述低压亏电控制电路200的第一输入端电压比第二输入端电压低时,所述低压亏电控制电路200的输出端可以输出低电平。
进一步地,所述S2开关600的控制端接收到高电平时,S2开关600处于闭合状态,则所述充电桩700和所述低压电池400之间的充电电路导通;所述S2开关600的控制端接收到低电平时,所述S2开关600处于断开状态,则所述充电桩700和所述低压电池400之间的充电电路断开。
其中,S2开关600包括但不限于:继电器KA、场效应晶体管MOSFET、双极性三极管和半导体二极管。
可选的,所述第一供电电路和所述第二供电电路可以包括3.3V转5V的供电电路。
其中,所述第一供电电路和所述第二供电电路可以包括但不限于:DC/DC升压变换器电路、MC33466-50JT1升压变换器电路和MC33466-50LT1升压变换器电路。
其中,所述基准电压可以为6V。
在一个可能的示例中,如图6所示,所述电源控制电路500可以包括OBC510和DC/DC变换器520,所述OBC510包括冲击电流限制511、共振整流512以及功率因素校正513。
其中,所述冲击电流限制511、所述共振整流512、所述功率因素校正513以及DC/DC变换器520依次连接,所述电源控制电路500的第一输入端连接所述DC/DC变换器520,所述电源控制电路500的第二输入端连接所述冲击电流限制511,所述电源控制电路500通过第二输入端从所述充电桩700取220V的交流电,通过第一输入端使DC/DC变换器工作,从而将220V的交流电通过DC/DC变换器输出高压直流电和低压直流电。
在一个可能的实施例中,所述OBC510和DC/DC变换器520的连接方式包括集成式和独立式。
具体地,在上述电源控制电路中,所述OBC510和DC/DC变换器520可以采用分立布置方式,即OBC510和DC/DC变换器520可以集成于一体,共同位于所述电源控制电路中;所述OBC510和DC/DC变换器520也可以采用独立布置方式,即OBC510和DC/DC变换器520可以相互独立位于所述电源控制电路中,且OBC510与DC/DC变换器520之间通过电线连接。
进一步地,OBC510和DC/DC变换器520集成于一体的集成方式可以包括磁集成方式和板集成方式。
具体地,磁集成方式可以是OBC510通过一个变压器连接DC/DC变换器520的高压输出和低压输出,从而同时输出高压直流电和低压直流电;板集成方式可以是OBC510通过变压器连接DC/DC变换器520的高压输出,再由DC/DC变换器520的高压输出通过变压器连接DC/DC变换器520的低压输出,从而在输出高压直流电后再输出低压直流电,如图7所示,图7为板集成方式的电源控制电路的结构示意图。
请参阅图8,图8是本申请实施例提供的另一种车载低压电池充电电路的示意图。该车载低压电池充电电路包括:CP取电电路100、低压亏电控制电路200、亏电检测电路300、低压电池400、电源控制电路500、S2开关600和充电桩700,其中:
所述S2开关600包括第一二极管D1、第一电阻R1和第一晶体管Q1;
所述低压亏电控制电路200包括第四电阻R4、第二电容C2和亏电控制模块,所述亏电控制模块输出控制指令用于控制S2开关600的闭合或断开。
可选的,所述亏电检测电路300对低压电池400的电压进行实时采样,当所述低压电池400的输出电压低于基准电压时,所述低压亏电控制电路200将所述亏电控制模块的输入端电压与VCC端电压进行比较后输出高电平或低电平给S2开关600。
具体地,当亏电控制模块的输入端电压高于VCC端电压时,低压亏电控制电路200输出低电平给S2开关600,第一晶体管Q1的栅极接收到低电平时,第一晶体管Q1的源极与漏极之间没有电流,此时第一晶体管Q1处于截止状态,S2开关600处于断开状态,当亏电控制模块输入端电压低于VCC端电压时,低压亏电控制电路200输出高电平给S2开关600,当第一晶体管Q1的栅极接收到高电平时,第一晶体管Q1的源极与漏极之间有电流,此时第一晶体管Q1处于导通状态,S2开关600处于闭合状态,充电桩700和低压电池400之间的充电电路导通。
可选的,所述亏电控制模块的控制端与S2_COM信号连接,所述S2_COM信号是车辆控制装置在检测到CP信号后用来使S2开关600闭合或断开的控制信号。当车辆控制装置检测到低压电池400的电压低于12V时,所述控制信号输出高电平信号;当车辆控制装置检测到低压电池400的电压高于或等于12V时,所述控制信号输出低电平信号;当S2_COM信号为高电平时,所述亏电控制模块直接输出高电平,当S2_COM信号为低电平时,所述亏电控制模块通过比较VCC端和输入端的电压输出高电平或低电平。
可选的,所述电源控制电路500包括OBC和DC/DC变换器,所述OBC和DC/DC变换器电路的集成方式可以是磁集成或板集成,图8中的OBC和DC/DC变换器采用的是磁集成方式。
作为一种可能的实施方式,所述亏电控制模块200可以包括但不限于运算放大器或MSC51单片机。
作为一种可能的实施方式,所述基准电压可以是6V。
作为一种可能的实施方式,S2开关600包括但不限于:继电器KA、场效应晶体管MOSFET、双极性三极管和半导体二极管。
可以看出,本申请示例中,通过控制亏电控制模块的输出,进而控制S2开关600的闭合,从而使得低压电池400能够通过电源控制电路500从充电桩700中获取交流电进行充电,解决 了目前电动汽车低压电池亏电时充电的工作效率低,人力成本或硬件成本高的问题。
在本申请的另一实施例中提供一种电动汽车,包括上述实施例所描述的车载低压电池充电电路。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的车载低压电池充电电路,可通过其它的方式实现。例如,以上所描述的车载低压电池充电电路实施例仅仅是示意性的,例如上述电路中的元器件也可以采用其他相同功能的元器件。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,电路或元器件的间接耦合或通信连接,可以是电性或其它的形式。
另外,在本申请各个实施例中的各电路可以集成在一个电路板中,也可以是各个电路单独物存在,也可以两个或两个以上电路集成在一个电路板中。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种车载低压电池充电电路,其特征在于,所述充电电路包括:CP取电电路、低压亏电控制电路、亏电检测电路、低压电池、电源控制电路、S2开关和充电桩,其中,
    所述低压亏电控制电路的第一输入端与所述CP取电电路的输出端连接,所述低压亏电控制电路的第二输入端与所述亏电检测电路的输出端连接,所述低压亏电控制电路的输出端与所述S2开关的控制端连接,所述CP取电电路的输入端分别与所述充电桩以及所述S2开关的输入端连接,所述亏电检测电路的输入端与所述低压电池的输出端连接,所述低压电池的输入端与所述电源控制电路的输出端连接,所述S2开关的输出端与电源控制电路的第一输入端连接,所述电源控制电路的第二输入端与所述充电桩连接;
    所述低压亏电控制电路输出控制指令用于控制S2开关的闭合或断开。
  2. 根据权利要求1所述车载低压电池充电电路,其特征在于,所述CP取电电路包括第一二极管、第一电阻、第二电阻和第一电容,其中:
    所述第一电阻的一端与所述CP取电电路的输入端端口连接,所述第一电阻的另一端与所述第一二极管的阳极端连接,所述第一二极管的阴极与所述第二电阻的一端连接,所述第二电阻的另一端分别与所述第一电容的一端以及所述CP取电电路的输出端连接,所述第一电容的另一端接地。
  3. 根据权利要求1所述车载低压电池充电电路,其特征在于,所述亏电检测电路包括第二二极管、第三电阻、第四电阻和第五电阻,其中:
    所述第二二极管的阳极与所述亏电检测电路的输入端端口连接,所述第二二极管的阴极与所述第三电阻的一端连接,所述第三电阻的另一端与所述第四电阻的一端连接,所述第四电阻的另一端、所述第五电阻的一端以及所述亏电检测电路的输出端端口连接,所述第五电阻的另一端接地。
  4. 根据权利要求1所述车载低压电池充电电路,其特征在于,所述低压亏电控制电路包括:第六电阻、第七电阻、第八电阻、第九电阻、第十电阻、第三二极管、第二电容、第三电容和运算放大器,其中,
    所述第三二极管的阳极分别与所述运算放大器的AVCC端、所述第九电阻的一端以及所述低压亏电控制电路的第一输入端端口连接,所述第三二极管的阴极与所述第八电阻的一端连接,所述第九电阻的另一端分别与所述运算放大器的正相输入端、所述第十电阻的一 端以及所述第三电容的一端连接,所述第八电阻的另一端分别与所述运算放大器的反相输入端以及所述低压亏电控制电路的第二输入端端口连接,所述第十电阻的另一端接地,所述第三电容的另一端接地,所述运算放大器的输出端与所述第七电阻的一端连接,所述第七电阻的另一端与所述第六电阻的一端连接,所述第六电阻的另一端分别与所述第二电容的一端以及所述低压亏电控制电路的输出端端口连接,所述第二电容的另一端接地,所述运算放大器的负电源端接地。
  5. 根据权利要求1所述车载低压电池充电电路,其特征在于,所述低压亏电控制电路包括:单片机、第六电阻、第三二极管、第四二极管、第二电容、第三电容、第一供电电路和第二供电电路,其中,
    所述第一供电电路的一端分别与所述第三二极管的阳极、所述第三电容的一端以及所述第一电容的另一端连接,所述第一供电电路的另一端与所述低压亏电控制电路的第一输入端端口连接,所述第三电容的另一端分别与所述单片机的VCC接口、所述第三二极管的阴极以及所述第四二极管的阴极连接,所述第二供电电路的一端与所述第四二极管的阳极连接,所述第二供电电路的另一端与所述第四电阻的一端连接,所述单片机的输入接口与所述低压亏电控制电路的第二输入端端口连接,所述单片机的输出端接口与所述第六电阻的一端连接,所述第六电阻的另一端分别与所述第二电容的一端以及所述低压亏电控制电路的输出端端口连接,所述第二电容的另一端接地,所述单片机的GND端接地。
  6. 根据权利要求5所车载低压电池充电电路,其特征在于,所述第一供电电路和所述第二供电电路包括3.3V转5V的供电电路。
  7. 根据权利要求1所述车载低压电池充电电路,其特征在于,所述低压亏电控制电路输出控制指令用于控制S2开关的闭合或断开具体包括:
    所述低压亏电控制电路通过所述亏电检测电路对低压电池的输出电压进行实时采样,若所述低压电池的输出电压低于基准电压,所述低压亏电控制电路根据所述第一输入端的输入电压与第二输入端的输入电压,输出高电平或低电平给所述S2开关,所述S2开关根据接收到的电平进行闭合或断开。
  8. 根据权利要求1所述车载低压电池充电电路,其特征在于,所述电源控制电路包括OBC和DC/DC变换器,其中,所述OBC包括冲击电流限制、共振整流以及功率因素校正。
  9. 根据权利要求8所述车载低压电池充电电路,其特征在于,所述OBC和DC/DC变换 器的连接方式包括集成式和独立式。
  10. 一种电动汽车,其特征在于,包括权利要求1-9任一所述的车载低压电池充电电路。
PCT/CN2020/108236 2020-08-10 2020-08-10 车载低压电池充电电路及电动汽车 WO2022032437A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080006693.9A CN113165524B (zh) 2020-08-10 2020-08-10 车载低压电池充电电路及电动汽车
PCT/CN2020/108236 WO2022032437A1 (zh) 2020-08-10 2020-08-10 车载低压电池充电电路及电动汽车

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/108236 WO2022032437A1 (zh) 2020-08-10 2020-08-10 车载低压电池充电电路及电动汽车

Publications (1)

Publication Number Publication Date
WO2022032437A1 true WO2022032437A1 (zh) 2022-02-17

Family

ID=76881226

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108236 WO2022032437A1 (zh) 2020-08-10 2020-08-10 车载低压电池充电电路及电动汽车

Country Status (2)

Country Link
CN (1) CN113165524B (zh)
WO (1) WO2022032437A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116494814A (zh) * 2023-06-30 2023-07-28 四川金信石信息技术有限公司 一种有序充电转接集成装置及新能源汽车充电系统
CN116605047A (zh) * 2023-07-20 2023-08-18 中国重汽集团济南动力有限公司 一种蓄电池亏电提醒并辅助启动新能源车辆的装置及方法
CN116707103A (zh) * 2023-06-01 2023-09-05 屹晶微电子(台州)有限公司 充电器控制电路及方法
CN116826919A (zh) * 2023-07-05 2023-09-29 珠海科创储能科技有限公司 一种bms供电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299533A (zh) * 2011-06-09 2011-12-28 上海华普汽车有限公司 插电式混合动力汽车电池管理系统及其控制识别方法
CN104079040A (zh) * 2014-07-18 2014-10-01 厦门路迅电控有限公司 采血车及采血车载设备的供电装置及供电方式
CN105790337A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 车载充电系统及车辆
JP2018182864A (ja) * 2017-04-10 2018-11-15 株式会社デンソー 電力制御装置および電力制御方法
CN210212079U (zh) * 2019-03-27 2020-03-31 深圳欣锐科技股份有限公司 车载充电系统及车载充电机

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011130641A (ja) * 2009-12-21 2011-06-30 Autonetworks Technologies Ltd 車両用電源装置
CN203617746U (zh) * 2013-11-26 2014-05-28 比亚迪股份有限公司 一种电动车、充电装置及其充电控制引导电路
CN107472172A (zh) * 2017-06-27 2017-12-15 深圳市沃特玛电池有限公司 一种防止电动汽车启动电源亏电的控制系统及控制方法
CN207481819U (zh) * 2017-11-11 2018-06-12 河南森源重工有限公司 一种纯电动汽车低压蓄电池充电电路及车辆
CN109435711A (zh) * 2018-11-02 2019-03-08 浙江合众新能源汽车有限公司 一种新能源汽车低压蓄电池防亏电系统及方法
CN213072187U (zh) * 2020-08-10 2021-04-27 深圳欣锐科技股份有限公司 车载低压电池充电电路及电动汽车

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299533A (zh) * 2011-06-09 2011-12-28 上海华普汽车有限公司 插电式混合动力汽车电池管理系统及其控制识别方法
CN104079040A (zh) * 2014-07-18 2014-10-01 厦门路迅电控有限公司 采血车及采血车载设备的供电装置及供电方式
CN105790337A (zh) * 2014-12-25 2016-07-20 比亚迪股份有限公司 车载充电系统及车辆
JP2018182864A (ja) * 2017-04-10 2018-11-15 株式会社デンソー 電力制御装置および電力制御方法
CN210212079U (zh) * 2019-03-27 2020-03-31 深圳欣锐科技股份有限公司 车载充电系统及车载充电机

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707103A (zh) * 2023-06-01 2023-09-05 屹晶微电子(台州)有限公司 充电器控制电路及方法
CN116707103B (zh) * 2023-06-01 2024-03-15 屹晶微电子(台州)有限公司 充电器控制电路及方法
CN116494814A (zh) * 2023-06-30 2023-07-28 四川金信石信息技术有限公司 一种有序充电转接集成装置及新能源汽车充电系统
CN116494814B (zh) * 2023-06-30 2023-09-05 四川金信石信息技术有限公司 一种有序充电转接集成装置及新能源汽车充电系统
CN116826919A (zh) * 2023-07-05 2023-09-29 珠海科创储能科技有限公司 一种bms供电系统
CN116605047A (zh) * 2023-07-20 2023-08-18 中国重汽集团济南动力有限公司 一种蓄电池亏电提醒并辅助启动新能源车辆的装置及方法
CN116605047B (zh) * 2023-07-20 2023-10-10 中国重汽集团济南动力有限公司 一种蓄电池亏电提醒并辅助启动新能源车辆的装置及方法

Also Published As

Publication number Publication date
CN113165524A (zh) 2021-07-23
CN113165524B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2022032437A1 (zh) 车载低压电池充电电路及电动汽车
CN206217669U (zh) 一种电动汽车交直流充放电充电桩
US10720787B2 (en) Combined charger and power converter
CN103580216B (zh) 能够操作在不同配置中的电池充电系统和方法
CN106004489B (zh) 一种电动汽车用车载充电机、充电方法及电动汽车
CN102593881B (zh) 一种充电供电电路、方法及应用设备
CN104079272B (zh) 信号产生电路
CN205489660U (zh) 具有type-c接口及通用的usb/a型接口的移动电源
CN203896021U (zh) 一种交直流兼容型车载充电机前级电路和车载充电机
CN108556669B (zh) 一种车载充电器及其控制装置
CN210554268U (zh) 一种车载二合一充电机控制电路
CN203617746U (zh) 一种电动车、充电装置及其充电控制引导电路
CN101807805A (zh) 一种充电管理电路及电源适配装置
CN209842729U (zh) 共享电单车开锁电路及终端设备
WO2022032438A1 (zh) 用于给低压电池充电的电路、方法及系统
CN109428369B (zh) 电动汽车交流充电接口导引电路
CN111315612A (zh) 车载充电机休眠电路
CN213072187U (zh) 车载低压电池充电电路及电动汽车
CN206077035U (zh) 一种便携式交流充电桩控制电路
CN110450662A (zh) 一种通用性充电桩辅助电源识别及转换电路
CN210225036U (zh) 一种充电机
CN207518491U (zh) 一种智能车载双用逆变器
CN215835323U (zh) 一种车载直流变换器
CN113113944B (zh) 充电桩的充电电路结构
CN206195081U (zh) 一种主、副输出连锁控制功能插座

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948936

Country of ref document: EP

Kind code of ref document: A1