WO2022030522A1 - トリアルキルアミンの精製方法、トリアルキルアミンの製造方法及び組成物 - Google Patents

トリアルキルアミンの精製方法、トリアルキルアミンの製造方法及び組成物 Download PDF

Info

Publication number
WO2022030522A1
WO2022030522A1 PCT/JP2021/028882 JP2021028882W WO2022030522A1 WO 2022030522 A1 WO2022030522 A1 WO 2022030522A1 JP 2021028882 W JP2021028882 W JP 2021028882W WO 2022030522 A1 WO2022030522 A1 WO 2022030522A1
Authority
WO
WIPO (PCT)
Prior art keywords
trialkylamine
crude
zeolite
purifying
area
Prior art date
Application number
PCT/JP2021/028882
Other languages
English (en)
French (fr)
Inventor
涼介 澤村
啓之 大森
亜紀応 菊池
直史 玉井
敬寿 谷口
章史 八尾
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2022541581A priority Critical patent/JPWO2022030522A1/ja
Priority to CN202180048843.7A priority patent/CN115803313A/zh
Priority to KR1020237007750A priority patent/KR20230044525A/ko
Publication of WO2022030522A1 publication Critical patent/WO2022030522A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/84Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/04Mono-, di- or tri-methylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/05Mono-, di- or tri-ethylamine

Definitions

  • the present disclosure discloses a method for purifying trialkylamine using zeolite, a method and composition for producing trialkylamine, particularly a method for purifying triethylamine, a method for producing triethylamine, a composition containing triethylamine, and a method for purifying trimethylamine.
  • the present invention relates to a method for producing trimethylamine and a composition containing trimethylamine.
  • Diethylamine and the like may be contained as impurities in the crude product of triethylamine, which is one of the organic amines.
  • the raw materials used are highly pure, and as a method for purifying triethylamine, impurities are amidated with an amidating agent such as acetyl chloride and converted into a compound that can be easily removed.
  • an amidating agent such as acetyl chloride
  • Patent Document 1 requires a plurality of operations and steps of amidating impurities, extracting them, and then rectifying them, and is a simpler triethylamine without using an additive such as an amidating agent. Purification method is required.
  • the crude body of trimethylamine which is another example of the organic amine, may contain dimethylamine of about 1000 volume ppm as an impurity. Since trimethylamine and dimethylamine have similar vapor pressures and azeotrope, the concentration of dimethylamine can only be reduced to about 400 to 500 by volume ppm by distillation.
  • Patent Document 2 discloses a purification apparatus for removing low boiling point impurities contained in monomethylamine by using a synthetic zeolite having pores having an average diameter of 0.3 nm or 0.4 nm. Examples of low boiling point impurities to be removed include hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide and methane. Further, Patent Document 2 discloses that a synthetic zeolite having pores having an average diameter of 0.5 nm is used to adsorb water and hydrocarbons.
  • Patent Document 3 discloses a method for purifying trimethylamine, which uses a 3A or 4A zeolite to remove water and ammonia in a trimethylamine-containing gas, and uses a 5A zeolite to remove monomethylamine and nitrogen.
  • Patent Document 3 discloses a method for removing monomethylamine using synthetic zeolite, it is described that diethylamine, ethylpropylamine, ethylisopropylamine, and dimethylamine are removed using synthetic zeolite. Therefore, it is not known so far that diethylamine, ethylpropylamine, ethylisopropylamine, and dimethylamine are removed.
  • a crude trialkylamine containing at least one selected from the group consisting of diethylamine, ethylpropylamine and ethylisopropylamine as an impurity is contacted with the zeolite.
  • the crude trialkylamine is characterized in that the concentration of at least one selected from the group consisting of diethylamine, ethylpropylamine and ethylisopropylamine is reduced as compared with that before contact with the zeolite.
  • diethylamine, ethylpropylamine and ethylisopropylamine are removed by a simple operation without requiring a complicated step using additives to obtain trialkylamine.
  • the purity can be increased.
  • a crude trialkylamine containing at least dimethylamine as an impurity is brought into contact with a zeolite having pores having a diameter of 0.2 to 0.6 nm, and the crude trialkylamine is contained. It is characterized in that the dimethylamine concentration of the above-mentioned dimethylamine is reduced as compared with that before the contact with the zeolite.
  • dimethylamine can be removed and the purity of the trialkylamine can be increased by a simple operation without requiring a complicated step using an additive. ..
  • the method for producing a trialkylamine of the present disclosure is characterized by performing a step of synthesizing a crude trialkylamine and a step of purifying the crude trialkylamine using the above purification method. According to the method for producing a trialkylamine of the present disclosure, a highly pure trialkylamine can be produced by a simple operation.
  • the first composition of the present disclosure is characterized by containing 99.9 GC area% or more of trialkylamine, 1 GC area ppm or more and 150 GC area ppm or less of diethylamine.
  • the second composition of the present disclosure is characterized by containing 99.9 GC area% or more of trialkylamine, 1 GC area ppm or more and 150 GC area ppm or less of ethylpropylamine.
  • the third composition of the present disclosure is characterized by containing 99.9 GC area% or more of trialkylamine, 1 GC area ppm or more and 20 GC area ppm or less of ethyl isopropylamine.
  • the GC area% and the GC area ppm are values indicating the ratio of the area of the quantitative target component to the total area of the peaks obtained by the GC (gas chromatograph).
  • the fourth composition of the present disclosure is characterized by containing 99.9% by weight or more of trialkylamine, 50% by volume or more of dimethylamine, and 400% by volume or less of dimethylamine.
  • the fifth composition of the present disclosure is characterized by containing 99.9% by weight or more of trialkylamine and 10% by volume or less of dimethylamine.
  • the first to fifth compositions of the present disclosure can also be used in a pharmaceutical manufacturing process or a semiconductor manufacturing process in which high purity of raw materials is required.
  • impurities in crude trialkylamines can be removed and the concentration of trialkylamines can be increased by a simple operation without using additives, which can be used in pharmaceutical manufacturing processes and semiconductor manufacturing processes. It is possible to supply an extremely high-purity trialkylamine that can also be used.
  • a crude trialkylamine containing at least one selected from the group consisting of diethylamine, ethylpropylamine and ethylisopropylamine as an impurity is brought into contact with the zeolite to bring the crude trialkylamine into contact with the zeolite. It is characterized in that the concentration of at least one selected from the group consisting of diethylamine, ethylpropylamine and ethylisopropylamine in the alkylamine is reduced as compared with that before the zeolite contact.
  • Zeolites used in the purification method of the present disclosure are crystalline aluminosilicates, also called molecular sieves, and are classified into synthetic zeolites, artificial zeolites, and natural zeolites.
  • any of synthetic zeolite, artificial zeolite, and natural zeolite can be used, but it is preferable to use synthetic zeolite having high purity.
  • the zeolite is preferably a zeolite having pores having a diameter of 0.2 to 1.2 nm or a diameter of 3 to 12 ⁇ . If the diameter of the pores of the zeolite is outside the above range, the effect of reducing impurities in crude triethylamine may be reduced.
  • 3A type, 4A type, 5A type or 13X type synthetic zeolite is suitable as the synthetic zeolite having pores with a diameter of 0.2 to 1.2 nm.
  • "A" in 3A type, 4A type or 5A type synthetic zeolite means ⁇ (angstrom).
  • the pores of the 13X-type synthetic zeolite are 1.0 nm in diameter or 10 ⁇ in diameter.
  • the 3A type synthetic zeolite has a pore diameter of 0.3 nm and can pass molecules up to a diameter of 0.3 nm.
  • the pore diameter of 4A type synthetic zeolite is 0.35 nm, but at normal operating temperature, molecules up to 0.4 nm in diameter can pass through due to the expansion and contraction and kinetic energy of the molecules entering the cavity. ..
  • the pore diameter of the 5A type synthetic zeolite is 0.42 nm, but for the same reason, molecules having a diameter of up to 0.5 nm can pass through.
  • the 13X type synthetic zeolite has a pore diameter of 1.0 nm and can pass molecules up to a diameter of 1.0 nm.
  • the range of the diameter (adsorption diameter) of the molecules that can pass through the synthetic zeolite of 3A type, 4A type, 5A type or 13X type will be specified below. 3A type 0.3nm or less 4A type 0.4nm or less 5A type 0.5nm or less 13X type 1.0nm or less
  • 3A-type, 4A-type, 5A-type, and 13X-type synthetic zeolites include Molecular Sheave 3A, Molecular Sheave 4A, and Molecular Sheave 5A manufactured by Union Showa.
  • Molecular Sieves 13X; Molecular Sieves 3A, Molecular Sieves 4A, Molecular Sieves 5A, Molecular Sieves 13X and the like manufactured by Fujifilm Wako Pure Chemical Industries, Ltd. can be used.
  • a zeolite having pores having a diameter of 0.8 to 1.2 nm is more preferable, and a zeolite having pores having a diameter of 0.9 to 1.1 nm is further preferable.
  • the diameter of the pores of the zeolite is 0.8 to 1.2 nm, the effect of reducing diethylamine, ethylpropylamine, and ethylisopropylamine in the crude trialkylamine is high.
  • 13X type synthetic zeolite is particularly preferable.
  • the shape of the zeolite used in the purification method of the present disclosure is not particularly limited and may be in the form of beads, pellets, powder or the like, but beads or pellets are preferable because they are easy to use in a chemical industry plant.
  • the purchased zeolite can be used as it is, but it is preferable to dry the zeolite before contacting it with the crude trialkylamine.
  • the drying conditions are preferably 100 ° C. or higher for 1 hour or longer, and more preferably 100 to 150 ° C. for 1 to 2 hours.
  • the method of bringing the crude trialkylamine into contact with the zeolite is not particularly limited, and a method of adding the zeolite to a container or the like for storing the crude trialkylamine and leaving it to stand (immersion method), or a method of filling the column or a packed tower with the zeolite. Examples thereof include a method (column method) in which a crude trialkylamine is circulated through a column or a packed column and brought into contact with zeolite. In the purification method of the present disclosure, the dipping method is preferable because it is simple.
  • Examples of the trialkylamine include amines in which three alkyl groups are alkyl groups having 1 to 4 carbon atoms.
  • Examples of the alkyl group having 1 to 4 carbon atoms in the trialkylamine include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, an isobutyl group and a t-butyl group.
  • the three alkyl groups of the trialkylamine may be different groups or the same group, but it is preferable that they are all the same group.
  • Examples of the trialkylamine include trimethylamine, triethylamine, trin-propylamine, triisopropylamine, tributylamine, triisobutylamine and trit-butylamine.
  • the conditions for bringing the crude trialkylamine into contact with the zeolite are not particularly limited, and are, for example, 0 to 80 ° C. and 30 seconds to 24 hours.
  • the crude trialkylamine is crude triethylamine, it is preferably 10 ° C. or higher and 40 ° C. or lower.
  • Crude triethylamine is a liquid at normal temperature and pressure, and it is more preferable to bring the crude triethylamine in a liquid state into contact with zeolite under the conditions of 10 ° C. or higher and 40 ° C. or lower.
  • the first method for purifying trialkylamine of the present disclosure is suitable for purifying triethylamine.
  • Crude triethylamine which is one of the objects to be purified by the purification method of the present disclosure, is triethylamine containing at least one of diethylamine, ethylpropylamine and ethylisopropylamine as an impurity.
  • the crude triethylamine may be obtained by synthesizing triethylamine by a conventionally known method, or may be purchased, and the method of obtaining the crude triethylamine is not particularly limited.
  • Examples of the method for synthesizing triethylamine include an acetaldehyde method in which acetaldehyde, ammonia and hydrogen are reacted using a catalyst, an ethyl alcohol method in which ethyl alcohol is used instead of the acetaldehyde, and the like.
  • the crude trialkylamine may contain impurities other than diethylamine, ethylpropylamine and ethylisopropylamine, and other impurities include monoethylamine, acetaldehyde, ethyl alcohol, hydrogen, oxygen, nitrogen and carbon monoxide. , Carbon dioxide, methane, ammonia, water and the like.
  • the crude trialkylamine preferably contains 99GC area% or more of trialkylamine, and more preferably 99.5GC area% or more.
  • the crude trialkylamine preferably contains at least diethylamine as an impurity and contains diethylamine in an area of more than 150 GC area ppm. More preferably, it exceeds 150 GC area ppm and 250 GC area ppm or less.
  • the crude trialkylamine preferably contains ethylpropylamine in excess of 150 GC area ppm or ethylisopropylamine in excess of 20 GC area ppm.
  • ethylpropylamine is contained in an amount of more than 150 GC area ppm and 250 GC area ppm or less, and ethylisopropylamine is contained in an amount of more than 20 GC area ppm and 30 GC area ppm or less. If the concentration of diethylamine, the concentration of ethylpropylamine, or the concentration of ethylisopropylamine in the crude trialkylamine is larger than the above values, these impurities should be removed by a method such as distillation before treatment by the purification method of the present disclosure. It is conceivable to remove it.
  • the crude trialkylamine can be brought into contact with the zeolite, and the concentration of at least one of diethylamine, ethylpropylamine and ethylisopropylamine contained in the crude trialkylamine can be reduced as compared with that before the zeolite contact.
  • the preferable concentration of each component after contact with zeolite is as follows.
  • the purity of the trialkylamine is preferably 99.9 GC area% or more, and more preferably 99.95 GC area% or more.
  • Diethylamine in the trialkylamine is preferably 150 GC area ppm or less, and more preferably 100 GC area ppm or less.
  • the ethylpropylamine in the trialkylamine is preferably 150 GC area ppm or less, and more preferably 100 GC area ppm or less.
  • the ethylisopropylamine in the trialkylamine is preferably 20GC area ppm or less, and more preferably 15GC area ppm or less.
  • the purification method of the present disclosure can also reduce the concentration of impurities other than diethylamine, ethylpropylamine and ethylisopropylamine.
  • a crude trialkylamine containing at least dimethylamine as an impurity is brought into contact with a zeolite having pores having a diameter of 0.2 to 0.6 nm, and the crude trialkylamine is contained. It is characterized in that the dimethylamine concentration of the above-mentioned dimethylamine is reduced as compared with that before the contact with the zeolite.
  • the second method for purifying trimethylamine it is necessary to use a zeolite having pores having a diameter of 0.2 to 0.6 nm as the zeolite.
  • the diameter of the pores of the zeolite is less than 0.2 nm or exceeds 0.6 nm, the effect of reducing the dimethylamine concentration in the crude trialkylamine becomes small.
  • the synthetic zeolite having pores having a diameter of 0.2 to 0.6 nm 3A type, 4A type or 5A type synthetic zeolite is suitable.
  • the purchased zeolite can be used as it is, but it is preferable to dry the zeolite before contacting it with the crude trialkylamine.
  • the drying conditions are preferably 1 kPa or less, 150 ° C. or higher for 30 minutes or longer, and more preferably 1 kPa or lower, 150 to 200 ° C., 30 to 60 minutes.
  • the method of contacting the crude trialkylamine with the zeolite is not particularly limited, but the column method is preferable because it has a high effect of removing dimethylamine which is an impurity and can be purified in a short time.
  • the static method is used, such as performing the static method before performing the column method, reducing the concentration of dimethylamine to a certain level, and then performing the column method. It can also be performed in combination with the column method.
  • the temperature and pressure conditions for flowing and contacting the crude trimethylamine with the zeolite are preferably 20 to 30 ° C. and atmospheric pressure or higher.
  • the pressure condition is more preferably 150 to 200 kPa.
  • the time for the crude trimethylamine to be in circulation contact with the zeolite is preferably 50 to 200 seconds. If it is less than 50 seconds, dimethylamine may not be sufficiently removed. On the other hand, the effect of removing dimethylamine may not be improved even if the product is contacted for distribution for more than 200 seconds.
  • the time for the crude trimethylamine to be in circulation contact with the zeolite is more preferably 100 to 150 seconds.
  • the second method for purifying trialkylamines disclosed in the present disclosure is suitable for purifying trimethylamine.
  • a preferred embodiment is to bring the crude trimethylamine in a gaseous state into flow contact with the zeolite at 20 to 30 ° C. and above atmospheric pressure for 100 seconds or longer.
  • the linear velocity of the crude trimethylamine is preferably 0.001 to 0.1 m / sec. More preferably, it is 0.01 to 0.1 m / sec.
  • Crude trimethylamine which is one of the objects to be purified by the purification method of the present disclosure, is trimethylamine containing at least dimethylamine as an impurity.
  • the crude trimethylamine may be obtained by synthesizing trimethylamine by a conventionally known method (for example, the method described in JP-A-58-049340), or may be purchased.
  • the acquisition method is not particularly limited.
  • the crude trialkylamine preferably contains 98% by weight of trialkylamine, more preferably 99% by weight or more, and further preferably 99.9% by weight or more.
  • the concentration of dimethylamine in the crude trialkylamine is preferably 500 to 1500 parts by volume ppm. If the concentration of dimethylamine in the crude trialkylamine is greater than the above value, the dimethylamine may be removed by a method such as distillation before treatment by the purification method of the present disclosure, or the above-mentioned standing still. It is conceivable to combine the method and the column method.
  • Dimethylamine in crude trialkylamines is unstable and its concentration in the gas phase is not stable.
  • the crude trialkylamine purified by the purification method of the present disclosure may be a liquid or a gas, but when the crude trialkylamine is a crude trimethylamine, a gas is preferable because purification can be performed at normal temperature and pressure.
  • the concentration of dimethylamine in the crude trialkylamine it is preferable to reduce the concentration of dimethylamine in the crude trialkylamine to 400% by volume or less. More preferably, it is 300 volume ppm or less.
  • the lower limit of the dimethylamine concentration in the trialkylamine obtained by purification by the purification method of the present disclosure is, for example, 50% by volume ppm or 90% by volume ppm.
  • the lower limit of the dimethylamine concentration in the trialkylamine is, for example, an amount exceeding 0 volume ppm.
  • the above-mentioned highly pure trialkylamine can be obtained.
  • Such a highly pure trialkylamine is suitably used for applications such as dry etching of silicon oxide.
  • the present disclosure also comprises a step of synthesizing a crude trialkylamine and a step of purifying the crude trialkylamine using the above-mentioned first method for purifying a trialkylamine and the above-mentioned method for purifying a second trialkylamine. It is a method for producing a trialkylamine, which comprises performing. In the step of purifying the crude trialkylamine, both the first method for purifying the trialkylamine and the second method for purifying the trialkylamine may be performed.
  • the step of synthesizing the crude trialkylamine can be performed by the above-mentioned method for purifying the first trialkylamine, the above-mentioned method for purifying the second trialkylamine, and the like, but is not limited to these methods.
  • the step of purifying the crude trialkylamine can be carried out in the same manner as described above for the method for purifying the first trialkylamine and the method for purifying the second trialkylamine, using the materials, operations and procedures described above.
  • the concentration of at least one of dimethylamine, diethylamine, ethylpropylamine and ethylisopropylamine may be reduced as compared with the crude trialkylamine before contact with zeolite, and each component is required.
  • the concentration of is as described above for the above purification method.
  • the first composition of the present disclosure is a composition characterized by containing 99.9 GC area% or more of trialkylamine, 1 GC area ppm or more and 150 GC area ppm or less of diethylamine.
  • the content of diethylamine in the composition is preferably 1 GC area ppm or more and 100 GC area ppm or less.
  • the second composition of the present disclosure is a composition characterized by containing 99.9 GC area% or more of trialkylamine, 1 GC area ppm or more and 150 GC area ppm or less of ethylpropylamine.
  • the content of ethylpropylamine in the composition is preferably 1 GC area ppm or more and 100 GC area ppm or less.
  • the third composition of the present disclosure is a composition characterized by containing 99.9 GC area% or more of trialkylamine, 1 GC area ppm or more and 20 GC area ppm or less of ethyl isopropylamine.
  • the content of ethylisopropylamine in the composition is preferably 1 GC area ppm or more and 15 GC area ppm or less.
  • the fourth composition of the present disclosure is a composition characterized by containing 99.9% by weight or more of trialkylamine, 50% by volume or more of dimethylamine, and 400% by volume or less of dimethylamine.
  • the fourth composition preferably has a dimethylamine content of 90% by volume or more and 300% by volume or less.
  • the fifth composition of the present disclosure is a composition characterized by containing 99.9% by weight or more of trialkylamine and 10% by volume or less of dimethylamine.
  • the content of dimethylamine in the composition is preferably more than 0 volume ppm and 10 volume ppm or less.
  • the molecular sieves 3A, 4A, 5A and 13X used in the examples correspond to 3A-type, 4A-type, 5A-type or 13X-type synthetic zeolites, respectively.
  • the crude triethylamine used in this example was synthesized with reference to the conventional production method.
  • the purity of triethylamine in the crude triethylamine obtained by the synthesis was 99.89GC area%.
  • the crude triethylamine contained diethylamine 155.9 GC area ppm, ethyl propylamine 179.3 GC area ppm, and ethyl isopropylamine 20.8 GC area ppm as impurities.
  • the concentrations of triethylamine and impurities were analyzed using a gas chromatograph analyzer under the following conditions.
  • the relative retention time of triethylamine is 1.00
  • the total area of the gas chromatography chart of the components having a relative retention time of 1.85 or less is 100 GC area%, and the GC area% concentration or the GC area ppm concentration of each component is set. I asked.
  • the relative retention times of diethylamine, ethylpropylamine, and ethylisopropylamine are 0.69 for diethylamine, 0.95 for ethylpropylamine, and 0.84 for ethylisopropylamine, respectively.
  • Example 1 Add 10 mL of crude triethylamine in a glass container and add 5 g of molecular sieve 3A (pore diameter 0.3 nm, manufactured by Union Showa) dried by heating at 120 ° C for 1 hour in a drying oven. Then, it was immersed in crude triethylamine and allowed to stand for 1 minute. Then, the concentrations of triethylamine and impurities obtained by the immersion treatment were analyzed by a gas chromatograph analyzer. The results are shown in Table 1.
  • molecular sieve 3A pore diameter 0.3 nm, manufactured by Union Showa
  • Example 2 The immersion treatment was carried out in the same manner as in Example 1 except that the molecular sheave 3A was changed to the molecular sheave 4A (pore diameter 0.35 nm, manufactured by Union Showa Co., Ltd.), and the concentrations of triethylamine and impurities were analyzed. The results are shown in Table 1.
  • Example 3 The immersion treatment was carried out in the same manner as in Example 1 except that the molecular sheave 3A was changed to the molecular sheave 5A (pore diameter 0.42 nm, manufactured by Union Showa Co., Ltd.), and the concentrations of triethylamine and impurities were analyzed. The results are shown in Table 1.
  • Example 4 The immersion treatment was carried out in the same manner as in Example 1 except that the molecular sheave 3A was changed to the molecular sheave 13X (pore diameter 1.0 nm, manufactured by Wako Pure Chemical Industries, Ltd.), and the concentrations of triethylamine and impurities were analyzed. The results are shown in Table 1.
  • Example 4 the concentration of triethylamine after the dipping treatment was higher than that in Comparative Example 1 in which the dipping treatment was not used, and diethylamine, ethylpropylamine and ethylisopropyl were higher. The concentration of amine was low.
  • Example 4 in which the molecular sieve 13X was used as the zeolite, the concentrations of diethylamine and ethylpropylamine were reduced to less than half and the concentrations of ethylisopropylamine were reduced by 30% or more as compared with Comparative Example 1.
  • the crude trimethylamine used in this example was synthesized with reference to the conventional production method.
  • the trimethylamine contained 500 to 2000 parts by volume of dimethylamine and 100 to 1000 parts by volume of water in the gas phase as impurities.
  • the impurity concentration was analyzed by a gas chromatograph analyzer (GC-2014, manufactured by Shimadzu Corporation, detector: FID).
  • Example 5 One filling tower with a diameter of 10.6 mm and a length of 0.1 m was filled with Molecular Sheave 3A (pore diameter 0.3 nm, manufactured by Union Showa Co., Ltd.) as zeolite, and dried at 150 ° C. for 30 minutes under reduced pressure conditions. , Crude trimethylamine was circulated at a linear velocity of 0.02 m / sec (contact time with zeolite for 5 seconds), and trimethylamine was collected from the outlet of the packing column to analyze the dimethylamine concentration. The results are shown in Table 2.
  • Example 6 Crude trimethylamine was circulated (contact time with zeolite for 50 seconds) in the same manner as in Example 5 except that the length of the filling column was changed to 1 m, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 7 Crude trimethylamine was circulated (contact time with zeolite for 100 seconds) in the same manner as in Example 6 except that the number of filling towers was changed to 2, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 8 Crude trimethylamine was circulated (contact time with zeolite for 150 seconds) in the same manner as in Example 6 except that the number of filling towers was changed to 3, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 9 Crude trimethylamine was circulated (contact time with zeolite for 5 seconds) and the dimethylamine concentration was analyzed in the same manner as in Example 5 except that the zeolite was changed to molecular sieve 4A (pore diameter 0.35 nm, manufactured by Union Showa Co., Ltd.). .. The results are shown in Table 2.
  • Example 10 Crude trimethylamine was circulated (contact time with zeolite for 50 seconds) in the same manner as in Example 9 except that the length of the filling column was changed to 1 m, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 11 Crude trimethylamine was circulated (contact time with zeolite for 100 seconds) in the same manner as in Example 10 except that the number of filling towers was changed to 2, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 12 Crude trimethylamine was circulated (contact time with zeolite for 150 seconds) in the same manner as in Example 10 except that the number of filling towers was changed to 3, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 13 Crude trimethylamine was circulated (contact time with zeolite for 5 seconds) and the dimethylamine concentration was analyzed in the same manner as in Example 5 except that the zeolite was changed to molecular sieve 5A (pore diameter 0.42 nm, manufactured by Union Showa Co., Ltd.). .. The results are shown in Table 2.
  • Example 14 Crude trimethylamine was circulated (contact time with zeolite for 50 seconds) in the same manner as in Example 13 except that the length of the filling column was changed to 1 m, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 15 Crude trimethylamine was circulated (contact time with zeolite for 100 seconds) in the same manner as in Example 14 except that the number of filling towers was changed to 2, and the dimethylamine concentration was analyzed. The results are shown in Table 2.
  • Example 16 Crude trimethylamine was circulated (contact time with zeolite for 150 seconds) in the same manner as in Example 14 except that the number of filling towers was changed to 3, and the dimethylamine concentration was analyzed. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本開示は、粗トリアルキルアミン中のジメチルアミン、ジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミンの濃度を低減させる新規な方法を提供することを目的とする。 本開示は、ジメチルアミン、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つを不純物として含む粗トリアルキルアミンをゼオライトに接触させ、上記粗トリアルキルアミン中のジメチルアミン、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つの濃度を上記ゼオライト接触前よりも低減させることを特徴とするトリアルキルアミンの精製方法である。

Description

トリアルキルアミンの精製方法、トリアルキルアミンの製造方法及び組成物
本開示は、ゼオライトを用いたトリアルキルアミンの精製方法、トリアルキルアミンの製造方法及び組成物、特にトリエチルアミンの精製方法、トリエチルアミンの製造方法、及びトリエチルアミンを含む組成物、並びに、トリメチルアミンの精製方法、トリメチルアミンの製造方法、及びトリメチルアミンを含む組成物に関する。
有機アミンの1つであるトリエチルアミンの粗体中には、不純物としてジエチルアミン等が含まれていることがある。医薬品製造工程や半導体デバイス製造工程では、使用する原料の純度が高いことが好ましく、トリエチルアミンを精製する方法として、塩化アセチル等のアミド化剤を用いて不純物をアミド化して除去容易な化合物へ変換し、アミド化物を温水で抽出したあと精留する方法が報告されている(例えば、特許文献1)。
特許文献1に開示の方法では、不純物をアミド化して抽出してから精留するという複数の操作、工程が必要であり、アミド化剤のような添加物を使用することなく、より簡便なトリエチルアミンの精製方法が求められている。
また有機アミンの別の一例であるトリメチルアミンの粗体中には、不純物として1000体積ppm程度のジメチルアミンが含まれていることがある。トリメチルアミンとジメチルアミンは蒸気圧が近く、共沸となるため、蒸留ではジメチルアミンの濃度を400~500体積ppm程度までしか低減することができない。
近年、有機アミンの粗体中に含まれる不純物を除去する方法として、合成ゼオライトを用いる方法が提案されている。
特許文献2では、平均直径が0.3nm又は0.4nmの細孔を有する合成ゼオライトを用いて、モノメチルアミンに含まれる低沸点不純物を除去する精製装置が開示されている。除去する低沸点不純物としては、水素、酸素、窒素、一酸化炭素、二酸化炭素及びメタンが挙げられている。更に特許文献2では、平均直径が0.5nmの細孔を有する合成ゼオライトを用いて、水分及び炭化水素を吸着することが開示されている。
特許文献3では、3A又は4Aのゼオライトを用いてトリメチルアミン含有ガス中の水及びアンモニアを除去し、5Aのゼオライトを用いてモノメチルアミン及び窒素を除去する、トリメチルアミンの精製方法が開示されている。
特公昭53-015045号公報(特許第934266号公報) 特開2016-150926号公報(特許第6441116号公報) 米国特許第8,664,446号明細書
しかしながら、特許文献3では、合成ゼオライトを用いてモノメチルアミンを除去する方法が開示されているが、合成ゼオライトを用いてジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミン、ジメチルアミンが除去されることは記載されておらず、従って、ジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミン、ジメチルアミンが除去されることはこれまで知られていない。
本開示は、上記課題に鑑み、粗トリアルキルアミン中のジメチルアミン、ジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミンの濃度を低減させる新規な方法を提供することを目的とする。
本発明者らは、鋭意検討の結果、不純物を含む粗トリアルキルアミンをゼオライトに接触させることにより、粗トリアルキルアミン中のジメチルアミン、ジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミンの濃度を低減することができることを見出し、本開示を完成させるに至った。
具体的には、本開示の第1のトリアルキルアミンの精製方法は、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つを不純物として含む粗トリアルキルアミンをゼオライトに接触させ、上記粗トリアルキルアミン中のジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つの濃度を上記ゼオライト接触前よりも低減させることを特徴とする。
本開示の第1のトリアルキルアミンの精製方法によれば、添加物を使用した煩雑な工程を必要とせず、簡便な操作でジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンを除去してトリアルキルアミンの純度を高くすることができる。
本開示の第2のトリアルキルアミンの精製方法は、少なくともジメチルアミンを不純物として含む粗トリアルキルアミンを直径0.2~0.6nmの細孔を有するゼオライトに接触させ、上記粗トリアルキルアミン中のジメチルアミン濃度を上記ゼオライト接触前よりも低減させることを特徴とする。
本開示の第2のトリアルキルアミンの精製方法によれば、添加物を使用した煩雑な工程を必要とせず、簡便な操作でジメチルアミンを除去してトリアルキルアミンの純度を高くすることができる。
本開示のトリアルキルアミンの製造方法は、粗トリアルキルアミンを合成する工程と、上記の精製方法を用いて上記粗トリアルキルアミンを精製する工程とを行うことを特徴とする。
本開示のトリアルキルアミンの製造方法によれば、簡便な操作で純度が高いトリアルキルアミンを製造することができる。
本開示の第1の組成物は、トリアルキルアミンを99.9GC面積%以上、ジエチルアミンを1GC面積ppm以上、150GC面積ppm以下含むことを特徴とする。
本開示の第2の組成物は、トリアルキルアミンを99.9GC面積%以上、エチルプロピルアミンを1GC面積ppm以上、150GC面積ppm以下含むことを特徴とする。
本開示の第3の組成物は、トリアルキルアミンを99.9GC面積%以上、エチルイソプロピルアミンを1GC面積ppm以上、20GC面積ppm以下含むことを特徴とする。
なお、GC面積%、GC面積ppmとは、GC(ガスクロマトグラフ)によって得られたピークの合計面積のうち、定量目的成分の面積の割合を表示した値である。
本開示の第4の組成物は、トリアルキルアミンを99.9重量%以上、ジメチルアミンを50体積ppm以上、400体積ppm以下含むことを特徴とする。
本開示の第5の組成物は、トリアルキルアミンを99.9重量%以上、ジメチルアミンを10体積ppm以下含むことを特徴とする。
本開示の第1~第5の組成物であれば、原料の純度が高いことが要求される医薬品製造工程や半導体製造工程においても使用することが可能である。
本開示のトリアルキルアミンの精製方法により、添加剤を用いず簡便な操作で粗トリアルキルアミン中の不純物を除去してトリアルキルアミンの濃度を高めることができ、医薬品製造工程や半導体製造工程においても使用することが可能な、極めて純度が高いトリアルキルアミンを供給することができる。
以下、本開示について詳細に説明するが、以下に記載する構成要件の説明は本開示の実施形態の一例であり、これらの具体的内容に限定はされない。その要旨の範囲内で種々変形して実施することができる。
<第1のトリアルキルアミンの精製方法>
本開示の第1のトリアルキルアミンの精製方法は、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つを不純物として含む粗トリアルキルアミンをゼオライトに接触させ、上記粗トリアルキルアミン中のジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つの濃度を上記ゼオライト接触前よりも低減させることを特徴とする。
本開示の精製方法で用いるゼオライトは、モレキュラーシーブ(分子篩)とも呼ばれる結晶性アルミノケイ酸塩であり、合成ゼオライト、人工ゼオライト、天然ゼオライトに分類される。本開示の精製方法においては、合成ゼオライト、人工ゼオライト、天然ゼオライトのいずれも用い得るが、純度が高い合成ゼオライトを用いることが好ましい。
本開示において、上記ゼオライトとしては、直径0.2~1.2nm、又は、直径3~12Åの細孔を有するゼオライトが好ましい。ゼオライトの細孔の直径が上記の範囲外であると、粗トリエチルアミン中の不純物を低減する効果が小さくなる場合がある。
直径0.2~1.2nmの細孔を有する合成ゼオライトとしては、3A型、4A型、5A型又は13X型の合成ゼオライトが好適である。なお、3A型、4A型又は5A型の合成ゼオライトにおける「A」とは、Å(オングストローム)のことを表す。13X型の合成ゼオライトの細孔は、直径1.0nm又は10Åである。
3A型の合成ゼオライトは、細孔径が0.3nmであり、直径が0.3nmまでの分子を通過させることができる。4A型の合成ゼオライトの細孔径は0.35nmであるが、通常の操作温度において、空洞内に入ってくる分子の伸縮と運動エネルギーのため、直径0.4nmまでの分子を通過させることができる。また、5A型の合成ゼオライトについても、その細孔径は0.42nmであるが、同様の理由により、直径が0.5nmまでの分子を通過させることができる。また、13X型の合成ゼオライトは、その細孔径は1.0nmであり、直径1.0nmまでの分子を通過させることができる。
ここで、3A型、4A型、5A型又は13X型の合成ゼオライトの、通過できる分子の直径(吸着口径)の範囲を以下、明記する。
3A型  0.3nm以下
4A型  0.4nm以下
5A型  0.5nm以下
13X型 1.0nm以下
3A型、4A型、5A型、13X型の合成ゼオライトとしては、具体的には、ユニオン昭和社製のモレキュラーシーブ3A、モレキュラーシーブ4A、モレキュラーシーブ5A、
モレキュラーシーブ13X;富士フイルム和光純薬社製のモレキュラーシーブス3A、モレキュラーシーブス4A、モレキュラーシーブス5A、モレキュラーシーブス13X等を用い得る。
本開示において、ゼオライトとしては、直径0.8~1.2nmの細孔を有するゼオライトがより好ましく、直径0.9~1.1nmの細孔を有するゼオライトが更に好ましい。
ゼオライトの細孔の直径が0.8~1.2nmであると、粗トリアルキルアミン中のジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミンを低減する効果が高い。本開示において、ゼオライトとしては、13X型の合成ゼオライトが特に好ましい。
本開示の精製方法で用いるゼオライトの形状は特に限定されず、ビーズ状、ペレット状、パウダー状等のいずれでもよいが、ビーズ状、ペレット状のものが化学工業プラントで用い易く好ましい。
本開示の精製方法で用いるゼオライトは、購入したものをそのまま用いることもできるが、粗トリアルキルアミンを接触させる前に乾燥させることが好ましい。乾燥条件としては、100℃以上で1時間以上が好ましく、100~150℃で1~2時間がより好ましい。
粗トリアルキルアミンをゼオライトに接触させる方法は特に限定されず、粗トリアルキルアミンを貯留する容器等にゼオライトを添加して放置する方法(浸漬法)、ゼオライトをカラムや充填塔等に充填し、粗トリアルキルアミンをカラムや充填塔に流通させてゼオライトに流通接触させる方法(カラム法)等が挙げられる。本開示の精製方法においては、簡便であることから浸漬法が好ましい。
上記トリアルキルアミンとしては、3つのアルキル基が炭素数1~4のアルキル基であるアミンが挙げられる。トリアルキルアミンにおける炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、ブチル基、イソブチル基及びt-ブチル基が挙げられる。トリアルキルアミンの3つのアルキル基は、それぞれが異なる基であってもよいし、同じ基であってもよいが、全て同じ基であることが好ましい。
上記トリアルキルアミンとしては、トリメチルアミン、トリエチルアミン、トリn-プロピルアミン、トリイソプロピルアミン、トリブチルアミン、トリイソブチルアミン及びトリt-ブチルアミンが挙げられる。
粗トリアルキルアミンをゼオライトに接触させる条件は特に限定されず、例えば、0~80℃、30秒~24時間である。粗トリアルキルアミンが粗トリエチルアミンである場合、好ましくは、10℃以上40℃以下である。粗トリエチルアミンは常温常圧で液体であり、液体状態の粗トリエチルアミンを、10℃以上40℃以下の条件下で、ゼオライトに接触させることがより好ましい。
本開示の第1のトリアルキルアミンの精製方法は、トリエチルアミンの精製に好適である。本開示の精製方法で精製する対象の一つである粗トリエチルアミンは、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンの少なくとも1つを不純物として含むトリエチルアミンである。粗トリエチルアミンは、トリエチルアミンを従来公知の方法で合成して得られたものであってもよいし、購入したものであってもよく、入手方法は特に限定されない。トリエチルアミンを合成する方法としては、例えば、触媒を用いてアセトアルデヒド、アンモニア及び水素を反応させるアセトアルデヒド法、上記アセトアルデヒドの代わりにエチルアルコールを用いるエチルアルコール法等が挙げられる。
粗トリアルキルアミンは、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミン以外の他の不純物を含んでいてもよく、他の不純物としては、モノエチルアミン、アセトアルデヒド、エチルアルコール、水素、酸素、窒素、一酸化炭素、二酸化炭素、メタン、アンモニア、水等が挙げられる。
粗トリアルキルアミンは、トリアルキルアミンを99GC面積%以上含むことが好ましく、99.5GC面積%以上含むことがより好ましい。
粗トリアルキルアミンは、少なくともジエチルアミンを不純物として含み、ジエチルアミンを150GC面積ppmを超えて含むことが好ましい。より好ましくは、150GC面積ppmを超えて、250GC面積ppm以下である。
粗トリアルキルアミンは、エチルプロピルアミンを150GC面積ppmを超えて含むか、又は、エチルイソプロピルアミンを20GC面積ppmを超えて含むことが好ましい。より好ましくは、エチルプロピルアミンを150GC面積ppmを超えて、250GC面積ppm以下含み、エチルイソプロピルアミンを20GC面積ppmを超えて、30GC面積ppm以下含む。
粗トリアルキルアミン中のジエチルアミンの濃度、エチルプロピルアミンの濃度、エチルイソプロピルアミンの濃度が上記の値より大きい場合、本開示の精製方法で処理する前に蒸留等の方法を用いてこれらの不純物を除去しておくことが考えられる。
本開示の精製方法では、粗トリアルキルアミンをゼオライトに接触させ、粗トリアルキルアミンに含まれるジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンの少なくとも1つの濃度をゼオライト接触前よりも低減させることができる。
本開示の精製方法では、ゼオライト接触後の各成分の好ましい濃度は以下の通りである。
トリアルキルアミンの純度は、99.9GC面積%以上であることが好ましく、99.95GC面積%以上であることがより好ましい。
トリアルキルアミン中のジエチルアミンは、150GC面積ppm以下であることが好ましく、100GC面積ppm以下であることがより好ましい。
トリアルキルアミン中のエチルプロピルアミンは、150GC面積ppm以下であることが好ましく、100GC面積ppm以下であることがより好ましい。
トリアルキルアミン中のエチルイソプロピルアミンは、20GC面積ppm以下であることが好ましく、15GC面積ppm以下であることがより好ましい。
本開示の精製方法は、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミン以外の不純物の濃度を低減することも可能である。
<第2のトリアルキルアミンの精製方法>
以下では、第2のトリアルキルアミンの精製方法について詳細を説明する。ここでは第1のトリアルキルアミンの精製方法と異なる点のみを説明し、共通する内容については説明を省略する。
本開示の第2のトリアルキルアミンの精製方法は、少なくともジメチルアミンを不純物として含む粗トリアルキルアミンを直径0.2~0.6nmの細孔を有するゼオライトに接触させ、上記粗トリアルキルアミン中のジメチルアミン濃度を上記ゼオライト接触前よりも低減させることを特徴とする。
第2のトリメチルアミンの精製方法において、ゼオライトとしては、直径0.2~0.6nmの細孔を有するゼオライトを用いる必要がある。ゼオライトの細孔の直径が0.2nm未満であるか、0.6nmを超えると、粗トリアルキルアミン中のジメチルアミン濃度の低減効果が小さくなる。直径0.2~0.6nmの細孔を有する合成ゼオライトとしては、3A型、4A型又は5A型の合成ゼオライトが好適である。
本開示の精製方法で用いるゼオライトは、購入したものをそのまま用いることもできるが、粗トリアルキルアミンを接触させる前に乾燥させることが好ましい。乾燥条件としては、1kPa以下、150℃以上で30分以上が好ましく、1kPa以下、150~200℃、30~60分がより好ましい。
粗トリアルキルアミンをゼオライトに接触させる方法は特に限定されないが、不純物であるジメチルアミンを除去する効果が高いこと、短時間で精製が行える点でカラム法が好ましい。しかしながら、粗トリアルキルアミン中のジメチルアミンの濃度が高い場合は、カラム法を行う前に静置法を行い、ジメチルアミンの濃度を一定まで低減してからカラム法を行う等、静置法とカラム法とを組み合わせて行うこともできる。
特に粗トリアルキルアミンが粗トリメチルアミンである場合、粗トリメチルアミンをゼオライトに流通接触させる温度及び圧力条件は、20~30℃、大気圧以上が好ましい。圧力条件は、150~200kPaがより好ましい。粗トリメチルアミンをゼオライトに流通接触させる時間は、50~200秒が好ましい。50秒未満であると、ジメチルアミンが充分除去されない場合がある。一方、200秒を超えて流通接触させても、ジメチルアミンを除去する効果が上がらない場合がある。粗トリメチルアミンをゼオライトに流通接触させる時間は、100~150秒がより好ましい。本開示の第2のトリアルキルアミンの精製方法は、トリメチルアミンの精製に好適である。
第2のトリアルキルアミンの精製方法において、好ましい態様は、気体状態の粗トリメチルアミンを、20~30℃、大気圧以上の条件下で、ゼオライトに100秒以上流通接触させることである。
粗トリメチルアミンをゼオライトに流通接触させる場合、粗トリメチルアミンの線速度は、0.001~0.1m/secが好ましい。より好ましくは0.01~0.1m/secである。
本開示の精製方法で精製する対象の一つである粗トリメチルアミンは、少なくともジメチルアミンを不純物として含むトリメチルアミンである。粗トリメチルアミンは、トリメチルアミンを従来公知の方法(例えば、特開昭58-049340号公報に記載の方法等)で合成して得られたものであってもよいし、購入したものであってもよく、入手方法は特に限定されない。
第2の精製方法において、粗トリアルキルアミンは、トリアルキルアミンを98重量%含むことが好ましく、99重量%以上含むことがより好ましく、99.9重量%以上含むことが更に好ましい。
粗トリアルキルアミン中のジメチルアミンの濃度は、500~1500体積ppmが好ましい。粗トリアルキルアミン中のジメチルアミンの濃度が上記の値より大きい場合、本開示の精製方法で処理する前に蒸留等の方法を用いてジメチルアミンを除去しておくか、又は、上記の静置法とカラム法とを組み合わせて行うことが考えられる。
粗トリアルキルアミン中のジメチルアミンは不安定で、気相中の濃度は安定しない。
好ましい態様において、本開示の精製方法で精製する粗トリアルキルアミンは液体でも気体でもよいが、粗トリアルキルアミンが粗トリメチルアミンである場合、常温常圧で精製が行えることから気体が好ましい。
本開示の第2の精製方法では、粗トリアルキルアミン中のジメチルアミン濃度を400体積ppm以下に低減することが好ましい。より好ましくは300体積ppm以下である。本開示の精製方法で精製して得られたトリアルキルアミン中のジメチルアミン濃度の下限は、例えば50体積ppm、又は90体積ppmである。本開示の第2の精製方法に種々の精製方法、例えば公知の蒸留手段である、単蒸留、連続式蒸留、精密蒸留等を組み合わせることで、トリアルキルアミン中のジメチルアミン濃度を10体積ppm以下と、大幅に低減させることも可能である。なお、ジメチルアミン濃度を検出限界未満まで下げることも可能であり、その場合、トリアルキルアミン中のジメチルアミン濃度の下限は、例えば0体積ppmを超える量である。本開示の精製方法を用いれば、上述のような純度が高いトリアルキルアミンを得ることができる。このような純度が高いトリアルキルアミンは、シリコン酸化物のドライエッチング等の用途に好適に用いられる。
本開示はまた、粗トリアルキルアミンを合成する工程と、上記の第1のトリアルキルアミンの精製方法、第2のトリアルキルアミンの精製方法を用いて上記粗トリアルキルアミンを精製する工程とを行うことを特徴とするトリアルキルアミンの製造方法である。上記粗トリアルキルアミンを精製する工程では、第1のトリアルキルアミンの精製方法と第2のトリアルキルアミンの精製方法の両方を行ってもよい。
粗トリアルキルアミンを合成する工程は、上記の第1のトリアルキルアミンの精製方法、第2のトリアルキルアミンの精製方法について上述した方法等で行うことができるが、これらの方法に限定されない。
上記粗トリアルキルアミンを精製する工程は、上記の第1のトリアルキルアミンの精製方法、第2のトリアルキルアミンの精製方法について上述した材料、操作、手順で同様に行うことができる。
本開示の製造方法により得られるトリアルキルアミンは、ジメチルアミン、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンの少なくとも1つの濃度が、ゼオライト接触前の粗トリアルキルアミンより低減されていればよく、各成分の濃度は、上記の精製方法について上述したとおりである。
本開示の第1の組成物は、トリアルキルアミンを99.9GC面積%以上、ジエチルアミンを1GC面積ppm以上、150GC面積ppm以下含むことを特徴とする組成物である。上記第1の組成物は、組成物中のジエチルアミンの含有量が1GC面積ppm以上、100GC面積ppm以下であることが好ましい。
本開示の第2の組成物は、トリアルキルアミンを99.9GC面積%以上、エチルプロピルアミンを1GC面積ppm以上、150GC面積ppm以下含むことを特徴とする組成物である。上記第2の組成物は、組成物中のエチルプロピルアミンの含有量が1GC面積ppm以上、100GC面積ppm以下であることが好ましい。
本開示の第3の組成物は、トリアルキルアミンを99.9GC面積%以上、エチルイソプロピルアミンを1GC面積ppm以上、20GC面積ppm以下含むことを特徴とする組成物である。上記第3の組成物は、上記組成物中のエチルイソプロピルアミンの含有量が1GC面積ppm以上、15GC面積ppm以下であることが好ましい。
本開示の第4の組成物は、トリアルキルアミンを99.9重量%以上、ジメチルアミンを50体積ppm以上、400体積ppm以下含むことを特徴とする組成物である。上記第4の組成物は、上記組成物中のジメチルアミンの含有量が90体積ppm以上、300体積ppm以下であることが好ましい。
本開示の第5の組成物は、トリアルキルアミンを99.9重量%以上、ジメチルアミンを10体積ppm以下含むことを特徴とする組成物である。上記第5の組成物は、上記組成物中のジメチルアミンの含有量が0体積ppmを超え、10体積ppm以下であることが好ましい。
これら第1~第5の組成物は、上述したトリアルキルアミンの製造方法により得ることができる。
以下、本開示の実施形態をより具体的に開示した実施例を示す。なお、本開示はこれらの実施例のみに限定されるものではない。なお、実施例で用いたモレキュラーシーブ3A、4A、5A及び13Xは、それぞれ3A型、4A型、5A型又は13X型の合成ゼオライトに対応する。
(粗トリエチルアミンの精製)
本実施例で用いる粗トリエチルアミンは従来の製造方法を参考に合成した。合成により得られた粗トリエチルアミン中のトリエチルアミンの純度は、99.89GC面積%であった。また当該粗トリエチルアミンは、不純物として、ジエチルアミン155.9GC面積ppm、エチルプロピルアミン179.3GC面積ppm、エチルイソプロピルアミン20.8GC面積ppmを含んでいた。
トリエチルアミン及び不純物の濃度は、ガスクロマトグラフ分析装置を用いて下記の条件で分析した。トリエチルアミンの相対保持時間を1.00とした場合に、相対保持時間が1.85以下の成分のガスクロマトグラフィーチャート総面積を100GC面積%として、各成分のGC面積%濃度又はGC面積ppm濃度を求めた。ジエチルアミン、エチルプロピルアミン、エチルイソプロピルアミンの相対保持時間は、それぞれジエチルアミンが0.69、エチルプロピルアミンが0.95、エチルイソプロピルアミンが0.84である。
(ガスクロマトグラフィー分析条件)
測定試料:液体粗トリエチルアミン 1μL
装置:GC-2014(株式会社島津製作所製)
検出器:水素炎イオン化検出器(FID)
使用カラム:Inertcap for Amines 長さ60m×内径0.32mm(ジーエルサイエンス株式会社製)
分析条件:注入温度200℃、検出温度250℃
キャリアガス:ヘリウム
カラム流量:2.99mL/分
カラム温度:50℃で15分保持、200℃まで10℃/分で昇温、200℃で5分保持、250℃まで10℃/分で昇温、250℃で5分保持
[実施例1]
ガラス製容器内に粗トリエチルアミン10mLを入れ、乾燥炉内にて120℃で1時間加熱して乾燥させたモレキュラーシーブ3A(細孔径0.3nm、ユニオン昭和社製)5gをガラス製容器内に追加して粗トリエチルアミンに浸漬させ、1分間静置した。その後、浸漬処理して得られたトリエチルアミン及び不純物の濃度を、ガスクロマトグラフ分析装置で分析した。結果を表1に示す。
[実施例2]
モレキュラーシーブ3Aをモレキュラーシーブ4A(細孔径0.35nm、ユニオン昭和社製)に変更した以外は実施例1と同様に浸漬処理を行い、トリエチルアミン及び不純物の濃度を分析した。結果を表1に示す。
[実施例3]
モレキュラーシーブ3Aをモレキュラーシーブ5A(細孔径0.42nm、ユニオン昭和社製)に変更した以外は実施例1と同様に浸漬処理を行い、トリエチルアミン及び不純物の濃度を分析した。結果を表1に示す。
[実施例4]
モレキュラーシーブ3Aをモレキュラーシーブ13X(細孔径1.0nm、富士フイルム和光純薬社製)に変更した以外は実施例1と同様に浸漬処理を行い、トリエチルアミン及び不純物の濃度を分析した。結果を表1に示す。
[比較例1]
浸漬処理を行わず、粗トリエチルアミン及び不純物の濃度をガスクロマトグラフ分析装置で分析した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
表1の結果から明らかなように、実施例1~4では、浸漬処理を使用しなかった比較例1と比べて、浸漬処理後のトリエチルアミンの濃度が高くなり、ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンの濃度が低くなった。なお、ゼオライトとしてモレキュラーシーブ13Xを用いた実施例4では、比較例1と比べてジエチルアミン及びエチルプロピルアミンの濃度が半分以下となり、エチルイソプロピルアミンの濃度が30%以上低くなった。
(粗トリメチルアミンの精製)
本実施例で用いる粗トリメチルアミンは、従来の製造方法を参考に合成した。当該トリメチルアミンには、不純物として、気相にジメチルアミン500~2000体積ppm、水分100~1000体積ppmを含んでいた。不純物濃度は、ガスクロマトグラフ分析装置(GC-2014、株式会社島津製作所製、検出器:FID)で分析した。
[実施例5]
直径10.6mm、長さ0.1mの充填塔1本に、ゼオライトとしてモレキュラーシーブ3A(細孔径0.3nm、ユニオン昭和社製)を充填し、減圧条件、150℃で30分間乾燥させたのち、粗トリメチルアミンを線速度0.02m/secで流通させ(ゼオライトへの接触時間5秒)、充填塔出口からトリメチルアミンを捕集してジメチルアミン濃度を分析した。結果を表2に示す。
[実施例6]
充填塔の長さを1mに変更した以外は、実施例5と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間50秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例7]
充填塔の本数を2本に変更した以外は、実施例6と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間100秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例8]
充填塔の本数を3本に変更した以外は、実施例6と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間150秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例9]
ゼオライトをモレキュラーシーブ4A(細孔径0.35nm、ユニオン昭和社製)に変更した以外は、実施例5と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間5秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例10]
充填塔の長さを1mに変更した以外は、実施例9と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間50秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例11]
充填塔の本数を2本に変更した以外は、実施例10と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間100秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例12]
充填塔の本数を3本に変更した以外は、実施例10と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間150秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例13]
ゼオライトをモレキュラーシーブ5A(細孔径0.42nm、ユニオン昭和社製)に変更した以外は、実施例5と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間5秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例14]
充填塔の長さを1mに変更した以外は、実施例13と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間50秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例15]
充填塔の本数を2本に変更した以外は、実施例14と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間100秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[実施例16]
充填塔の本数を3本に変更した以外は、実施例14と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間150秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[比較例2]
充填塔にゼオライトを充填しなかった以外は、実施例5と同様に粗トリメチルアミンを流通させ、ジメチルアミン濃度を分析した。結果を表2に示す。
[比較例3]
ゼオライトをモレキュラーシーブ13X(細孔径1.0nm、ユニオン昭和社製)に変更した以外は、実施例5と同様に粗トリメチルアミンを流通させ(ゼオライトへの接触時間5秒)、ジメチルアミン濃度を分析した。結果を表2に示す。
[比較例4]
粗トリメチルアミンを、理論段数20段で全還流を72時間行った後、還流比200で塔頂部より仕込み量の30重量%のトリメチルアミンをパージし、液相のトリメチルアミン中のジメチルアミン濃度を分析した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
表2の結果から明らかなように、実施例5~16では、充填剤を使用しなかった比較例2と比べて、精製後のジメチルアミンの濃度が著しく低くなった。ゼオライトとの接触時間が50秒以上の実施例6~8、10~12、14~16では、蒸留を行った比較例4よりもジメチルアミン濃度が低くなった。なお、ゼオライトとの接触時間が100秒以上の実施例7~8、11~12、15~16では、比較例4と比べてジメチルアミン濃度が半分以下となった。ゼオライトとしてモレキュラーシーブ13Xを用いた比較例3では、充填剤を使用しなかった比較例2と比べてジメチルアミンの濃度がほとんど変わらなかった。

Claims (29)

  1. ジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つを不純物として含む粗トリアルキルアミンをゼオライトに接触させ、前記粗トリアルキルアミン中のジエチルアミン、エチルプロピルアミン及びエチルイソプロピルアミンからなる群から選択される少なくとも一つの濃度を前記ゼオライト接触前よりも低減させることを特徴とするトリアルキルアミンの精製方法。
  2. 前記ゼオライト接触後のトリアルキルアミンの純度は、99.9GC面積%以上であることを特徴とする請求項1に記載のトリアルキルアミンの精製方法。
  3. 前記粗トリアルキルアミンは少なくともジエチルアミンを不純物として含み、
    前記ゼオライト接触後のトリアルキルアミン中の前記ジエチルアミンは、150GC面積ppm以下であることを特徴とする、請求項1又は2に記載のトリアルキルアミンの精製方法。
  4. 前記粗トリアルキルアミンは少なくともジエチルアミンを不純物として含み、
    前記ゼオライト接触後のトリアルキルアミン中の前記ジエチルアミンは、100GC面積ppm以下であることを特徴とする、請求項1~3のいずれか1項に記載のトリアルキルアミンの精製方法。
  5. 前記粗トリアルキルアミンはジエチルアミンを150GC面積ppmを超えて含むことを特徴とする請求項3又は4に記載のトリアルキルアミンの精製方法。
  6. 前記粗トリアルキルアミンの純度は、99GC面積%以上であることを特徴とする、請求項1~5のいずれか1項に記載のトリアルキルアミンの精製方法。
  7. 前記粗トリアルキルアミンは、エチルプロピルアミンを150GC面積ppmを超えて含むか、又は、エチルイソプロピルアミンを20GC面積ppmを超えて含むことを特徴とする、請求項1~6のいずれか1項に記載のトリアルキルアミンの精製方法。
  8. 前記粗トリアルキルアミンを接触させる前に、前記ゼオライトを100℃以上の条件下で1時間以上乾燥させることを特徴とする請求項1~7のいずれか1項に記載のトリアルキルアミンの精製方法。
  9. 前記トリアルキルアミンの3つのアルキル基が、全て同じ基であることを特徴とする請求項1~8のいずれか1項に記載のトリアルキルアミンの精製方法。
  10. 前記トリアルキルアミンが、トリエチルアミンであることを特徴とする請求項1~9のいずれか1項に記載のトリアルキルアミンの精製方法。
  11. 液体状態の前記粗トリエチルアミンを、10℃以上40℃以下の条件下で、前記ゼオライトに接触させることを特徴とする請求項10に記載のトリアルキルアミンの精製方法。
  12. 前記ゼオライトが、直径0.8~1.2nmの細孔を有するゼオライトであることを特徴とする請求項1~11のいずれか1項に記載のトリアルキルアミンの精製方法。
  13. 少なくともジメチルアミンを不純物として含む粗トリアルキルアミンを直径0.2~0.6nmの細孔を有するゼオライトに接触させ、前記粗トリアルキルアミン中のジメチルアミン濃度を前記ゼオライト接触前よりも低減させることを特徴とするトリアルキルアミンの精製方法。
  14. 前記粗トリアルキルアミン中のジメチルアミン濃度を400体積ppm以下に低減させることを特徴とする請求項13に記載のトリアルキルアミンの精製方法。
  15. 前記粗トリアルキルアミンを接触させる前に、前記ゼオライトを1kPa以下、150℃以上の条件で30分以上乾燥させることを特徴とする請求項13又は14に記載のトリアルキルアミンの精製方法。
  16. 前記トリアルキルアミンの3つのアルキル基が、全て同じ基であることを特徴とする請求項13~15のいずれか1項に記載のトリアルキルアミンの精製方法。
  17. 前記トリアルキルアミンがトリメチルアミンであることを特徴とする請求項13~16のいずれか1項に記載のトリアルキルアミンの精製方法。
  18. 気体状態の前記粗トリメチルアミンを、20~30℃、大気圧以上の条件下で、前記ゼオライトに100秒以上流通接触させることを特徴とする請求項17に記載のトリアルキルアミンの精製方法。
  19. ゼオライト接触前の前記粗トリアルキルアミン中のジメチルアミン濃度が500~1500体積ppmであることを特徴とする請求項13~18のいずれか1項に記載のトリアルキルアミンの精製方法。
  20. 粗トリアルキルアミンを合成する工程と、
    請求項1~19のいずれか1項に記載の精製方法を用いて前記粗トリアルキルアミンを精製する工程と、を行うことを特徴とするトリアルキルアミンの製造方法。
  21. トリアルキルアミンを99.9GC面積%以上、ジエチルアミンを1GC面積ppm以上、150GC面積ppm以下含むことを特徴とする組成物。
  22. トリアルキルアミンを99.9GC面積%以上、エチルプロピルアミンを1GC面積ppm以上、150GC面積ppm以下含むことを特徴とする組成物。
  23. トリアルキルアミンを99.9GC面積%以上、エチルイソプロピルアミンを1GC面積ppm以上、20GC面積ppm以下含むことを特徴とする組成物。
  24. 前記トリアルキルアミンの3つのアルキル基が、全て同じ基であることを特徴とする請求項21~23のいずれか1項に記載の組成物。
  25. 前記トリアルキルアミンが、トリエチルアミンであることを特徴とする請求項21~24のいずれか1項に記載の組成物。
  26. トリアルキルアミンを99.9重量%以上、ジメチルアミンを50体積ppm以上、400体積ppm以下含むことを特徴とする組成物。
  27. トリアルキルアミンを99.9重量%以上、ジメチルアミンを10体積ppm以下含むことを特徴とする組成物。
  28. 前記トリアルキルアミンの3つのアルキル基が、全て同じ基であることを特徴とする請求項26又は27に記載の組成物。
  29. 前記トリアルキルアミンが、トリメチルアミンであることを特徴とする請求項26~28のいずれか一項に記載の組成物。
PCT/JP2021/028882 2020-08-05 2021-08-04 トリアルキルアミンの精製方法、トリアルキルアミンの製造方法及び組成物 WO2022030522A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022541581A JPWO2022030522A1 (ja) 2020-08-05 2021-08-04
CN202180048843.7A CN115803313A (zh) 2020-08-05 2021-08-04 三烷基胺的纯化方法、三烷基胺的制造方法和组合物
KR1020237007750A KR20230044525A (ko) 2020-08-05 2021-08-04 트리알킬아민의 정제 방법, 트리알킬아민의 제조 방법 및 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020133282 2020-08-05
JP2020-133282 2020-08-05

Publications (1)

Publication Number Publication Date
WO2022030522A1 true WO2022030522A1 (ja) 2022-02-10

Family

ID=80117388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028882 WO2022030522A1 (ja) 2020-08-05 2021-08-04 トリアルキルアミンの精製方法、トリアルキルアミンの製造方法及び組成物

Country Status (5)

Country Link
JP (1) JPWO2022030522A1 (ja)
KR (1) KR20230044525A (ja)
CN (1) CN115803313A (ja)
TW (1) TW202219029A (ja)
WO (1) WO2022030522A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522681A (en) * 1978-08-04 1980-02-18 Huels Chemische Werke Ag Purification of tertiary amine
JP2006298820A (ja) * 2005-04-20 2006-11-02 Mitsubishi Rayon Co Ltd トリメチルアミンの製造方法
CN101130500A (zh) * 2007-09-14 2008-02-27 南京大学 一种分离、精制高纯度三甲胺的方法
US8664446B1 (en) * 2012-12-31 2014-03-04 American Air Liquide, Inc. Purification of trimethylamine
JP2016150926A (ja) * 2015-02-18 2016-08-22 住友精化株式会社 メチルアミン精製装置およびメチルアミン精製方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315045A (en) 1976-07-27 1978-02-10 Mitsubishi Electric Corp Multi-frequency common-use antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5522681A (en) * 1978-08-04 1980-02-18 Huels Chemische Werke Ag Purification of tertiary amine
JP2006298820A (ja) * 2005-04-20 2006-11-02 Mitsubishi Rayon Co Ltd トリメチルアミンの製造方法
CN101130500A (zh) * 2007-09-14 2008-02-27 南京大学 一种分离、精制高纯度三甲胺的方法
US8664446B1 (en) * 2012-12-31 2014-03-04 American Air Liquide, Inc. Purification of trimethylamine
JP2016150926A (ja) * 2015-02-18 2016-08-22 住友精化株式会社 メチルアミン精製装置およびメチルアミン精製方法

Also Published As

Publication number Publication date
CN115803313A (zh) 2023-03-14
JPWO2022030522A1 (ja) 2022-02-10
KR20230044525A (ko) 2023-04-04
TW202219029A (zh) 2022-05-16

Similar Documents

Publication Publication Date Title
Aziz et al. Quantification of chemisorption and physisorption of carbon dioxide on porous silica modified by propylamines: Effect of amine density
JP2001089131A (ja) 三塩化硼素の精製プロセス及び装置
BR112015020923B1 (pt) Material e adsorvente para purificação de uma corrente de alimentação fluida
TWI491558B (zh) Ammonia purification system and ammonia purification method
US7666379B2 (en) Process and apparatus for removing Bronsted acid impurities in binary halides
US5069690A (en) Process for kinetic gas-solid chromatographic separations
CN101189185A (zh) 三氟化氮的纯化
JP2003183021A (ja) アンモニアガスの連続精製方法および装置
US4874524A (en) Separation of adsorbed components by variable temperature desorption
JP2012214325A (ja) アンモニア精製システムおよびアンモニアの精製方法
WO2022030522A1 (ja) トリアルキルアミンの精製方法、トリアルキルアミンの製造方法及び組成物
JP5815968B2 (ja) アンモニア精製システムおよびアンモニアの精製方法
TWI537214B (zh) 藉由連續或半連續製程製造高純度鍺烷的方法
KR102084294B1 (ko) 질산 제조공정을 이용한 반도체용 고순도 일산화질소의 제조방법 및 제조장치
FR2470092A1 (fr) Procede pour la fabrication d'acide cyanhydrique
JP7421096B2 (ja) トリメチルアミンの精製方法
CN212024774U (zh) 一种制备4n纯度硫化氢气体的系统
JP5495642B2 (ja) 二フッ化カルボニルの精製方法
CN111333037B (zh) 一种制备高纯度硫化氢气体的系统及方法
WO2012132559A1 (ja) アンモニアの精製方法およびアンモニア精製システム
US11987553B2 (en) Methods for removal of sulfur dioxide (SO2) from trifluoroacetyl chloride (TFAC)
JP2007527304A (ja) アルコールの脱水のために用いられるモレキュラーシーブの製造
CN115805062B (zh) 双配体型Met-MIL-101物理吸附剂及其制备方法和应用
JP5701704B2 (ja) 液状炭化水素の水銀除去方法、及びその装置
KR102583047B1 (ko) 메탄 선택성 흡착제 및 이를 이용한 메탄의 선택적 분리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022541581

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18019682

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237007750

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853603

Country of ref document: EP

Kind code of ref document: A1