WO2022030325A1 - 検査装置、検査方法およびピストンの製造方法 - Google Patents

検査装置、検査方法およびピストンの製造方法 Download PDF

Info

Publication number
WO2022030325A1
WO2022030325A1 PCT/JP2021/027882 JP2021027882W WO2022030325A1 WO 2022030325 A1 WO2022030325 A1 WO 2022030325A1 JP 2021027882 W JP2021027882 W JP 2021027882W WO 2022030325 A1 WO2022030325 A1 WO 2022030325A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspected
central axis
piston
images
inspection
Prior art date
Application number
PCT/JP2021/027882
Other languages
English (en)
French (fr)
Inventor
武寿 市原
英明 小野塚
貴正 今泉
裕之 林
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to CN202180057783.5A priority Critical patent/CN116137893A/zh
Publication of WO2022030325A1 publication Critical patent/WO2022030325A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/952Inspecting the exterior surface of cylindrical bodies or wires
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8812Diffuse illumination, e.g. "sky"
    • G01N2021/8816Diffuse illumination, e.g. "sky" by using multiple sources, e.g. LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8812Diffuse illumination, e.g. "sky"
    • G01N2021/8819Diffuse illumination, e.g. "sky" by using retroreflecting screen
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • G01N2021/8887Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges based on image processing techniques

Definitions

  • the present invention relates to an inspection device, an inspection method, and a piston manufacturing method.
  • Patent Document 1 describes an inspection device that inspects the outer peripheral surface of an object to be inspected having a cylindrical or columnar main body.
  • the object to be inspected is rotated, the bright field area, the dark field area, and the boundary area between the bright field area and the dark field area are photographed. The site is detected.
  • One of the objects of the present invention is to provide an inspection device, an inspection method, and a piston manufacturing method capable of improving the discrimination accuracy between surface defects and luminance unevenness and improving productivity for inspection of an inspected object.
  • the inspection device according to the embodiment of the present invention changes the relative posture of the surface of the inspected object with respect to the image pickup unit that images the surface of the inspected object in a state where the surface of the inspected object is irradiated with light. A plurality of surface images are imaged, and defects on the surface of the object to be inspected and uneven brightness are discriminated based on changes in the plurality of surface images.
  • the accuracy of distinguishing between surface defects and uneven brightness can be improved, and the productivity for inspection of the inspected object can be improved.
  • FIG. 1 is a diagram showing a manufacturing process of a piston of an internal combustion engine.
  • the piston manufacturing process includes a casting process, a processing process, a surface treatment process, an assembly process, and a final visual inspection process.
  • the piston material is cast. Heat treatment is performed after casting.
  • the processing process after heat treatment, the piston material is machined by a lathe or the like.
  • the surface treatment process the surface of the piston is coated.
  • the assembly process the piston ring is mounted in the ring groove of the processed finished product of the piston.
  • the image sensor is used to detect the final defect of the piston.
  • an appearance inspection step (second step) is performed between the surface treatment step (first step) and the assembly step (third step).
  • defects scratches, dents, etc.
  • FIG. 2 is a schematic view of the inspection device 1 used in the visual inspection process.
  • the inspection device 1 includes a robot 2, a camera (imaging unit) 3, a lighting device (illumination unit) 4, an image processing device 5, and a control device (attitude control unit) 6.
  • the robot 2 is an articulated robot and has a hand (holding portion) 8 for holding a piston material to be inspected or a processed finished product (hereinafter, simply referred to as a main body portion) 7 of the piston.
  • the camera 3 is supported with the lens facing downward in the vertical direction.
  • the lighting device 4 irradiates the crown surface 7a of the main body 7 with light, and has a dome 9 and a ring lighting 10.
  • the dome 9 houses the main body 7 and the ring lighting 10.
  • the dome 9 reflects and diffuses the emitted light of the ring illumination 10.
  • the dome 9 is located vertically below the camera 3 and is fixed integrally with the camera.
  • the camera 3 captures the crown surface 7a of the main body 7 from the opening provided at the upper end of the dome 9.
  • the ring lighting 10 is an annular LED lighting arranged so as to surround the main body 7.
  • the ring illumination 10 is rotatably supported around the central axis of the camera 3 with respect to the camera 3 and the dome 9 by a support device (not shown).
  • the image processing device 5 extracts a defect candidate portion from the surface image of the main body 7 captured by the camera 3, and performs image processing to generate, for example, an 8-bit (256 gradations) gray scale image from the defect candidate portion. conduct.
  • the control device 6 outputs a command to the robot 2 for changing the relative viewing angle (posture angle) of the crown surface 7a of the main body 7 with respect to the camera 3. Further, the control device 6 outputs a command to the camera 3 for photographing the crown surface 7a. Further, the control device 6 outputs a command for changing the rotation position to the support device of the ring illumination 10.
  • the control device 6 determines the presence or absence of defects (scratches, dents) on the crown surface 7a based on changes in the luminance distribution in a plurality of grayscale images captured at different viewing angles. Specifically, if a certain or more brightness difference is observed in all viewing angles, it is determined as “defective”, and if no more than a certain brightness difference is observed in at least two viewing angles, "defect” is observed. None "is determined. Luminance distribution images are acquired in both bright and dark fields. The image processing device 5 can switch the defect candidate portion to either the bright field or the dark field by changing the rotation position of the ring illumination 10.
  • FIG. 3 is an explanatory diagram of an inspection method by the inspection device 1.
  • the central axis ( ⁇ optical axis) of the camera 3 is the first central axis L1
  • the central axis of the main body 7 is the second central axis L1
  • the central axis of the ring illumination 10 is the third central axis L3.
  • the central axis of the dome 9 coincides with the first central axis L1.
  • the second central axis L2 is inclined by the first inclination angle ⁇ with respect to the first central axis L1.
  • the first tilt angle ⁇ corresponds to the viewing angle of the crown surface 7a with respect to the camera 3.
  • the third central axis L3 is inclined by the second inclination angle ⁇ ( ⁇ ⁇ ) with respect to the first central axis L1.
  • FIG. 4 is a flowchart showing the flow of the inspection method by the control device 6.
  • step S1 the crown surface 7a is imaged in the bright field and the dark field while switching the viewing angle (first tilt angle) ⁇ (imaging step).
  • the viewing angle ⁇ is, for example, three types of 0 °, 20 °, and 35 °.
  • step S2 the brightness distribution of each captured image is corrected.
  • the luminance difference of at least one of the luminance distribution characteristics of the light-field and dark-field grayscale images exceeds the threshold value, it is determined that there is an abnormality, and if it is below the threshold value, it is determined that there is an abnormality.
  • Judge that there is no abnormality When a defect portion is present on the crown surface 7a, a certain or more luminance difference occurs in the luminance distribution characteristics. In the bright field, the luminance of the defective portion is lower than the luminance of the other normal portions. On the other hand, in the dark field, the luminance of the defective portion is higher than the luminance of the other normal portions. Therefore, the presence or absence of defects in the crown surface 7a can be determined by observing the luminance difference in the luminance distribution characteristics.
  • the method for determining the presence or absence of an abnormality is the same as in step S3.
  • step S6 it is determined that the crown surface 7a has a defect (identification step).
  • step S7 it is determined that there is no defect in the crown surface 7a (identification step).
  • FIG. 5 is a diagram showing a surface image in a bright field and a central luminance distribution characteristic for each viewing angle when the crown surface 7a has a dent.
  • the flow proceeds in the order of S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ S5 ⁇ S6, and the brightness difference exceeding the threshold value appears in the brightness distribution characteristics at all viewing angles. Is determined to have a defect in the crown surface 7a.
  • FIG. 6 is a diagram showing the surface image in the bright field and the central brightness distribution characteristic for each viewing angle when the crown surface 7a has uneven brightness (hot water wrinkles).
  • the flow proceeds in the order of S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ S7.
  • the brightness difference is below the threshold. Therefore, in step S7, it is determined that there is no defect in the crown surface 7a.
  • the defect of the crown surface 7a is determined based on the change in the luminance distribution of the plurality of surface images captured by changing the viewing angle of the crown surface 7a of the main body 7 with respect to the camera 3. Distinguish from uneven brightness.
  • the crown surface 7a has a defect such as a dent, a luminance difference of a predetermined value or more always appears in the luminance distribution characteristic of the surface image regardless of the viewing angle ⁇ .
  • the first embodiment surface images of a bright field and a dark field are imaged, and defects in the crown surface 7a and uneven brightness are identified based on changes in the respective brightness distributions.
  • the shape and range of the defective part can be clearly reproduced, but it is difficult to clearly reproduce the defective part having a small size such as a fine scratch.
  • the dark field it is possible to clearly reproduce a defect portion having a small size such as a fine scratch among the defect portions, but it is difficult to clearly reproduce a defect portion having a large size.
  • the central axis of the camera 3 and the dome 9 is the first central axis L1
  • the central axis of the main body 7 is the second central axis L2
  • the central axis of the ring illumination 10 is the third central axis L3
  • the hand 8 is the first.
  • the third central axis L3 is tilted at the two tilt angles ⁇ , and the ring illumination 10 is rotated around the first central axis L1 to acquire surface images of a bright field and a dark field.
  • the third central axis L3 of the ring illumination 10 is tilted with respect to the second central axis L2 of the main body 7, by rotating the ring illumination 10 around the first central axis L1, the bright field and the dark field can be obtained.
  • a surface image can be acquired.
  • the surface is caused by acquiring a surface image in a state where the camera 3 and the main body 7 vibrate relatively due to mechanical vibration. You can avoid blurring of the image.
  • the control device 6 changes the viewing angle ⁇ of the crown surface 7a of the main body 7 with respect to the camera 3 by varying the hand 8 with respect to the fixed camera 3.
  • the method for manufacturing a piston according to the first embodiment is a surface treatment step of preparing a piston and a visual inspection step of inspecting the crown surface 7a of the piston prepared in the surface treatment step, and the crown surface 7a is irradiated with light.
  • the imaging step of capturing a plurality of surface images by changing the relative posture of the crown surface 7a with respect to the camera 3 for imaging the crown surface 7a, and the defect of the crown surface 7a based on the change of the plurality of surface images.
  • an appearance inspection step having an identification step for discriminating between the above and the brightness unevenness, and an assembly step for processing the piston inspected in the appearance inspection step as a post-process.
  • the specific configuration of the present invention is not limited to the configurations of the embodiments, and there are design changes and the like within a range that does not deviate from the gist of the invention. Is also included in the present invention.
  • the visual inspection step may be performed after the casting step or the processing step.
  • the appearance inspection step is performed after the casting step
  • the casting step is the first step
  • the processing step is the third step.
  • the processing step is the first step and the surface treatment step is the third step.
  • the inspection device and the inspection method of the present invention can be applied to the inspection device and the inspection method for discriminating between defects other than the crown surface of the piston and uneven brightness as the surface of the object to be inspected, and have the same function and effect as those of the embodiment. ..
  • the inspection device is, in one embodiment, an inspection device for inspecting the surface of the object to be inspected, and includes a holding unit for holding the object to be inspected, a lighting unit for irradiating the surface of the object to be inspected with light, and an inspection device.
  • An image pickup unit that images the surface of the object to be inspected, a posture control unit that changes the relative posture of the surface of the object to be inspected with respect to the image pickup unit, and a plurality of images taken by changing the relative posture. It is provided with an identification unit for discriminating between defects on the surface of the object to be inspected and uneven brightness based on changes in the surface image.
  • the change in the plurality of surface images is a change in the luminance distribution corresponding to the posture angles indicating the plurality of relative postures
  • the identification unit changes the luminance distribution. Based on this, defects on the surface of the object to be inspected and uneven brightness are identified.
  • the plurality of surface images have a bright field image in which the specularly reflected light from the illumination unit is normal and a dark field image in which the scattered light from the illumination unit is normal. Includes images and.
  • the object to be inspected has a cylindrical or columnar main body portion
  • the illumination portion includes a dome accommodating the object to be inspected and the dome. It has a ring-shaped ring illumination housed and arranged so as to surround the object to be inspected, the central axis of the imaging unit and the dome is the first central axis, and the central axis of the main body is the first.
  • the holding portion is in a state where the second central axis is tilted with respect to the first central axis by a predetermined first inclination angle.
  • the ring illumination is arranged so that the third central axis is tilted with respect to the first central axis at a second tilt angle different from the first tilt angle. By rotating the ring illumination around the first central axis, the bright field image and the dark field image are acquired.
  • the attitude control unit displaces the holding unit with respect to the fixed image pickup unit so that the surface of the object to be inspected is relative to the image pickup unit. Change your posture.
  • the inspected object is a piston of an internal combustion engine, and the surface of the inspected object is a crown surface of the piston.
  • the inspection method is, in a certain aspect, an inspection method for inspecting the surface of the object to be inspected, in which the surface of the object to be inspected is irradiated with light and the surface of the object to be inspected is irradiated with light.
  • the surface of the inspected object is based on the imaging step of taking an image of a plurality of surface images by changing the relative posture of the surface of the inspected object with respect to the image pickup unit to be imaged and the change of the plurality of surface images. It is provided with an identification step for identifying defects and uneven brightness.
  • the method for manufacturing a piston is a first step of preparing a piston and a second step of inspecting the surface of the piston prepared in the first step, and the method of manufacturing the piston is performed on the surface of the piston.
  • a second step having an identification step for identifying defects on the surface of the piston and uneven brightness, and a third step of acquiring the piston inspected in the second step as a post-step. To prepare for.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
  • Inspection equipment 1 Inspection equipment 2 robot 3 Camera (imaging unit) 4 Lighting device (lighting unit) 5 Image processing equipment 6 Control device (attitude control unit) 7 Main body 7a Crown surface 8 hands (holding part) 9 dome 10 ring lighting

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

被検査物の表面に光が照射された状態で、被検査物の表面を撮像する撮像部に対する被検査物の表面の相対的な姿勢を変化させて複数の表面画像を撮像し、複数の表面画像の変化に基づいて被検査物の表面の欠陥と輝度ムラとを識別する。

Description

検査装置、検査方法およびピストンの製造方法
 本発明は、検査装置、検査方法およびピストンの製造方法に関する。
 特許文献1には、円筒状または円柱状の本体部を有する被検査物の外周面を検査する検査装置が記載されている。この検査装置では、被検査物を回転させ、明視野領域、暗視野領域および明視野領域と暗視野領域との境界領域を撮影し、撮影された画像に基づいて被検査物の外周面の欠陥部位を検出している。
特開2016-65782号公報
 しかしながら、上記従来技術にあっては、撮影した各画像内に輝度の低い部位や高い部位が存在した場合には、欠陥部位として検出している。このため、例えば、単に表面の輝度ムラであっても、明視野領域にて撮影した画像内に輝度が低い部位が存在した場合、欠陥として検出してしまう。これによって、再検査が必要になり、被検査物の外観検査における生産性が低下するおそれがあった。
 本発明の目的の一つは、表面の欠陥と輝度ムラとの識別精度を向上させ、被検査物の検査に対する生産性の向上が図れる検査装置、検査方法およびピストンの製造方法を提供することにある。
 本発明の一実施形態における検査装置は、被検査物の表面に光が照射された状態で、被検査物の表面を撮像する撮像部に対する被検査物の表面の相対的な姿勢を変化させて複数の表面画像を撮像し、複数の表面画像の変化に基づいて被検査物の表面の欠陥と輝度ムラとを識別する。
 本発明の一実施形態によれば、表面の欠陥と輝度ムラとの識別精度を向上させ、被検査物の検査に対する生産性の向上が図れる。
内燃機関のピストンの製造工程を示す図である。 外観検査工程に用いられる検査装置1の概略図である。 検査装置1による検査方法の説明図である。 制御装置6による検査方法の流れを示すフローチャートである。 冠面7aに打痕が有る場合の、明視野における表面画像と中央輝度分布特性とを視野角別に示した図である。 冠面7aに輝度ムラが有る場合の、明視野における表面画像と中央輝度分布特性とを視野角別に示した図である。
 〔実施形態1〕
 図1は、内燃機関のピストンの製造工程を示す図である。
 ピストンの製造工程は、鋳造工程、加工工程、表面処理工程、組立工程および最終外観検査工程を有する。鋳造工程では、ピストン素材を鋳造する。鋳造後は熱処理を行う。加工工程では、熱処理後、ピストン素材を旋盤等により機械加工する。表面処理工程では、ピストンの表面をコーティングする。組立工程では、ピストンの加工完成品のリング溝にピストンリングを装着する。最終外観検査工程では、画像センサによりピストンの最終的な欠陥検出を行う。また、表面処理工程(第1工程)と組立工程(第3工程)との間には、外観検査工程(第2工程)を行う。外観検査工程では、ピストンの加工完成品の冠面(表面)の欠陥(傷、打痕など)部位を検出する。
 図2は、外観検査工程に用いられる検査装置1の概略図である。
 検査装置1は、ロボット2、カメラ(撮像部)3、照明装置(照明部)4、画像処理装置5および制御装置(姿勢制御部)6を有する。ロボット2は、多関節ロボットであって、被検査物であるピストン素材またはピストンの加工完成品(以下、単に本体部と称す。)7を保持するハンド(保持部)8を有する。カメラ3は、レンズを鉛直方向下側に向けた状態で支持されている。照明装置4は、本体部7の冠面7aに光を照射するものであって、ドーム9およびリング照明10を有する。ドーム9は本体部7およびリング照明10を収容する。ドーム9は、リング照明10の出射光を反射、拡散する。ドーム9はカメラ3の鉛直方向下側に位置しカメラと一体に固定されている。カメラ3は、ドーム9の上端に設けられた開口から本体部7の冠面7aを撮像する。リング照明10は、本体部7を包囲するように配置された環状のLED照明である。リング照明10は、図外の支持装置により、カメラ3およびドーム9に対してカメラ3の中心軸周りに回転可能に支持されている。
 画像処理装置5は、カメラ3により撮像された本体部7の表面画像から、欠陥候補部分を抽出し、欠陥候補部分から、例えば8ビット(256階調)のグレースケール画像を生成する画像処理を行う。制御装置6は、ロボット2に対し、カメラ3に対する本体部7の冠面7aの相対的な視野角(姿勢角)を変化させるための指令を出力する。また、制御装置6は、カメラ3に対し、冠面7aを撮影するための指令を出力する。さらに、制御装置6は、リング照明10の支持装置に対し、回転位置を変化させるための指令を出力する。制御装置6は、視野角を異ならせて撮像した複数のグレースケール画像における輝度分布変化に基づき、冠面7aの欠陥(傷、打痕)の有無を判定する。具体的には、全ての視野角で一定以上の輝度差が認められた場合には「欠陥有り」と判定し、少なくとも2つの視野角で一定以上の輝度差が認められない場合には「欠陥無し」と判定する。輝度分布画像は、明視野および暗視野の両方で取得する。画像処理装置5は、リング照明10の回転位置を変化させることにより、欠陥候補部分を明視野または暗視野の一方に切り替え可能である。
 図3は、検査装置1による検査方法の説明図である。
 カメラ3の中心軸(≒光軸)を第1中心軸L1、本体部7の中心軸を第2中心軸L1、リング照明10の中心軸を第3中心軸L3とする。ドーム9の中心軸は第1中心軸L1と一致する。第2中心軸L2は、第1中心軸L1に対して第1傾斜角θだけ傾斜する。第1傾斜角θは、カメラ3に対する冠面7aの視野角に対応する。また、第3中心軸L3は、第1中心軸L1に対して第2傾斜角β(≠θ)だけ傾斜する。
 図4は、制御装置6による検査方法の流れを示すフローチャートである。
 ステップS1では、視野角(第1傾斜角)θを切り替えながら、明視野と暗視野で冠面7aを撮像する(撮像ステップ)。視野角θは、例えば0°、20°および35°の3種類とする。
 ステップS2では、撮像された各画像の輝度分布補正を行う。
 ステップS3では、視野角θ=0°における明視野および暗視野のグレースケール画像の輝度分布変化から、冠面7aに異常が有るかを判定し、YESの場合にはステップS4へ進み、NOの場合にはステップS6へ進む。このステップでは、明視野および暗視野のグレースケール画像の輝度分布特性の少なくとも一方の輝度差が、しきい値を超えている場合には異常有りと判定し、しきい値以下である場合には異常無しと判定する。冠面7aに欠陥部分が存在する場合、輝度分布特性には一定以上の輝度差が生じる。明視野において、欠陥部分の輝度は、他の正常部分の輝度よりも低くなる。一方、暗視野において、欠陥部分の輝度は、他の正常部分の輝度よりも高くなる。よって、輝度分布特性の輝度差を見ることで、冠面7aの欠陥の有無を判定できる。
 ステップS4では、視野角θ=20°における明視野および暗視野のグレースケール画像の輝度分布特性から、冠面7aに異常が有るかを判定し、YESの場合にはステップS5へ進み、NOの場合にはステップS6へ進む。異常の有無の判定方法はステップS3と同様である。
 ステップS5では、視野角θ=35°における明視野および暗視野のグレースケール画像の輝度分布特性から、冠面7aに異常が有るかを判定し、YESの場合にはステップS7へ進み、NOの場合にはステップS6へ進む。異常の有無の判定方法はステップS3と同様である。
 ステップS6では、冠面7aの欠陥有りと判定する(識別ステップ)。
 ステップS7では、冠面7aの欠陥無しと判定する(識別ステップ)。
 次に、実施形態1の作用効果を説明する。
 図5は、冠面7aに打痕が有る場合の、明視野における表面画像と中央輝度分布特性とを視野角別に示した図である。このケースでは、図4のフローチャートにおいて、S1→S2→S3→S4→S5→S6へと進む流れとなり、全ての視野角において、輝度分布特性にしきい値を超えた輝度差が現れるため、ステップS6において、冠面7aの欠陥有りと判定される。
 一方、図6は、冠面7aに輝度ムラ(湯じわ)がある場合の、明視野における表面画像と中央輝度分布特性とを視野角別に示した図である。このケースでは、図4のフローチャートにおいて、S1→S2→S3→S4→S7へと進む流れとなり、視野角θ=0°では異常と判定されるものの、視野角θ=20°では輝度分布特性の輝度差がしきい値以下となる。このため、ステップS7において、冠面7aの欠陥無しと判定される。
 以上のように、実施形態1の検査方法では、カメラ3に対する本体部7の冠面7aの視野角を変化させて撮像した複数の表面画像の輝度分布の変化に基づいて冠面7aの欠陥と輝度ムラとを識別する。冠面7aに打痕等の欠陥がある場合、視野角θにかかわらず表面画像の輝度分布特性には、常に所定以上の輝度差が現れる。一方、冠面7aに欠陥がなく、湯じわ等の輝度ムラがある場合、ある視野角では表面画像の輝度分布特性に所定以上の輝度差が現れるものの、異なる視野角では輝度分布特性の輝度差が所定未満となる。つまり、視野角の異なる表面画像の輝度分布の変化を見ることにより、冠面7aの欠陥と輝度ムラとの識別精度を向上させ、本体部7の検査に対する生産性の向上が図れる。
 実施形態1では、明視野と暗視野の表面画像を撮像し、それぞれの輝度分布の変化に基づいて冠面7aの欠陥と輝度ムラとを識別する。明視野では、欠陥部位の形状や範囲を明瞭に再現できるが、欠陥部位の中でも微細なキズなどサイズが小さい欠陥部位に関しては明瞭に再現することが難しい。一方、暗視野では、欠陥部位の中でも微細なキズなどサイズが小さい欠陥部位を明瞭に再現できるが、サイズが大きい欠陥部位に関しては明瞭に再現することが難しい。よって、明視野と暗視野の表面画像でそれぞれ輝度分布の変化を見ることにより、様々なサイズ、形、範囲を持つ欠陥部位を漏れなく検出でき、冠面7aの欠陥と輝度ムラとの識別精度を向上できる。
 カメラ3およびドーム9の中心軸を第1中心軸L1、本体部7の中心軸を第2中心軸L2、リング照明10の中心軸を第3中心軸L3としたとき、ハンド8は、第1中心軸L1に対して第2中心軸L2を所定の第1傾斜角(=視野角θ)で傾斜させた状態で本体部7を保持し、リング照明10は、第1傾斜角とは異なる第2傾斜角βで第3中心軸L3を傾斜させて配置されており、第1中心軸L1の周りでリング照明10を回転させることで明視野および暗視野の表面画像を取得する。リング照明10の第3中心軸L3が本体部7の第2中心軸L2に対して傾斜しているため、リング照明10を第1中心軸L1周りに回転させることにより、明視野および暗視野の表面画像を取得できる。このとき、カメラ3および本体部7は相対的に静止した状態であるため、機械振動に伴いカメラ3と本体部7とが相対的に振動した状態で表面画像を取得することに起因する、表面画像のボケを回避できる。
 制御装置6は、固定されたカメラ3に対してハンド8を可変させることで、カメラ3に対する本体部7の冠面7aの視野角θを変化させる。一般的に、ロボット2の作動は正確であるため、視野角θを簡単かつ正確に変更できる。
 実施形態1のピストンの製造方法は、ピストンを準備する表面処理工程と、表面処理工程にて準備されたピストンの冠面7aを検査する外観検査工程であって、冠面7aに光が照射された状態で、冠面7aを撮像するカメラ3に対する冠面7aの相対的な姿勢を変化させて複数の表面画像を撮像する撮像ステップと、複数の表面画像の変化に基づいて冠面7aの欠陥と輝度ムラとを識別する識別ステップと、を有する外観検査工程と、外観検査工程にて検査されたピストンを後工程として処理する組立工程と、を備える。これにより、冠面7aの欠陥と輝度ムラとの識別精度を向上させ、ピストンの検査に対する生産性の向上が図れる。
 〔他の実施形態〕
 以上、本発明を実施するための実施形態を説明したが、本発明の具体的な構成は実施形態の構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
 実施形態では、外観検査工程を表面処理工程後に行う例を示したが、外観検査工程は、鋳造工程後または加工工程後に行ってもよい。外観検査工程を鋳造工程後に行う場合は、鋳造工程が第1工程、加工工程が第3工程となる。外観検査工程を加工工程後に行う場合は、加工工程が第1工程、表面処理工程が第3工程となる。
 本発明の検査装置および検査方法は、被検査物の表面としてピストンの冠面以外の欠陥と輝度ムラとを識別する検査装置および検査方法に適用可能であり、実施形態と同様の作用効果を奏する。
 以上説明した実施形態から把握し得る技術的思想について、以下に記載する。
 検査装置は、その一つの態様において、被検査物の表面を検査する検査装置であって、前記被検査物を保持する保持部と、前記被検査物の表面に光を照射する照明部と、前記被検査物の表面を撮像する撮像部と、前記撮像部に対する前記被検査物の表面の相対的な姿勢を変化させる姿勢制御部と、前記相対的な姿勢を変化させて撮像された複数の表面画像の変化に基づいて、前記被検査物の表面の欠陥と輝度ムラとを識別する識別部と、を備える。
 より好ましい態様では、上記態様において、前記複数の表面画像の変化は、複数の前記相対的な姿勢を示す姿勢角に対応した輝度分布の変化であり、前記識別部は、前記輝度分布の変化に基づいて、前記被検査物の表面の欠陥と輝度ムラとを識別する。
 別の好ましい態様では、上記態様のいずれかにおいて、前記複数の表面画像は、前記照明部からの正反射光を正常とする明視野画像と、前記照明部からの散乱光を正常とする暗視野画像と、を含む。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記被検査物は、円筒状または円柱状の本体部を有し、前記照明部は、前記被検査物を収容するドームと、前記ドームに収容され、前記被検査物を包囲するように配置されたリング状のリング照明と、を有し、前記撮像部および前記ドームの中心軸を第1中心軸とし、前記本体部の中心軸を第2中心軸とし、前記リング照明の中心軸を第3中心軸としたとき、前記保持部は、前記第1中心軸に対して前記第2中心軸を所定の第1傾斜角で傾斜させた状態で前記被検査物を保持し、前記リング照明は、前記第1中心軸に対して、前記第1傾斜角とは異なる第2傾斜角で前記第3中心軸を傾斜させて配置されており、前記第1中心軸の周りで前記リング照明が回転されることで、前記明視野画像と前記暗視野画像が取得される。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記姿勢制御部は、固定された前記撮像部に対して前記保持部を変位させることで、前記撮像部に対する前記被検査物の表面の相対的な姿勢を変化させる。
 さらに別の好ましい態様では、上記態様のいずれかにおいて、前記被検査物は、内燃機関のピストンであり、前記被検査物の表面は、前記ピストンの冠面である。
 また、他の観点から、検査方法は、ある態様において、被検査物の表面を検査する検査方法であって、前記被検査物の表面に光が照射された状態で、前記被検査物の表面を撮像する撮像部に対する前記被検査物の表面の相対的な姿勢を変化させて、複数の表面画像を撮像する撮像ステップと、前記複数の表面画像の変化に基づいて、前記被検査物の表面の欠陥と輝度ムラとを識別する識別ステップと、を備える。
 さらに、他の観点から、ピストンの製造方法は、ピストンを準備する第1工程と、前記第1工程にて準備された前記ピストンの表面を検査する第2工程であって、前記ピストンの表面に光が照射された状態で、前記ピストンの表面を撮像する撮像部に対する前記ピストンの表面の相対的な姿勢を変化させて、複数の表面画像を撮像する撮像ステップと、前記複数の表面画像の変化に基づいて、前記ピストンの表面の欠陥と輝度ムラとを識別する識別ステップと、を有する第2工程と、前記第2工程にて検査された前記ピストンを後工程として取得する第3工程と、を備える。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 本願は、2020年8月3日付出願の日本国特許出願第2020-131675号に基づく優先権を主張する。2020年8月3日付出願の日本国特許出願第2020-131675号の明細書、特許請求の範囲、図面、および要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1 検査装置
2 ロボット
3 カメラ(撮像部)
4 照明装置(照明部)
5 画像処理装置
6 制御装置(姿勢制御部)
7 本体部
7a 冠面
8 ハンド(保持部)
9 ドーム
10 リング照明

Claims (8)

  1.  被検査物の表面を検査する検査装置であって、
     前記被検査物を保持する保持部と、
     前記被検査物の表面に光を照射する照明部と、
     前記被検査物の表面を撮像する撮像部と、
     前記撮像部に対する前記被検査物の表面の相対的な姿勢を変化させる姿勢制御部と、
     前記相対的な姿勢を変化させて撮像された複数の表面画像の変化に基づいて、前記被検査物の表面の欠陥と輝度ムラとを識別する識別部と、
     を備える検査装置。
  2.  請求項1に記載の検査装置であって、
     前記複数の表面画像の変化は、複数の前記相対的な姿勢を示す姿勢角に対応した輝度分布の変化であり、
     前記識別部は、前記輝度分布の変化に基づいて、前記被検査物の表面の欠陥と輝度ムラとを識別する、
     検査装置。
  3.  請求項1に記載の検査装置であって、
     前記複数の表面画像は、前記照明部からの正反射光を正常とする明視野画像と、前記照明部からの散乱光を正常とする暗視野画像と、を含む、
     検査装置。
  4.  請求項3に記載の検査装置であって、
     前記被検査物は、円筒状または円柱状の本体部を有し、
     前記照明部は、
     前記被検査物を収容するドームと、
     前記ドームに収容され、前記被検査物を包囲するように配置されたリング状のリング照明と、
     を有し、
     前記撮像部および前記ドームの中心軸を第1中心軸とし、前記本体部の中心軸を第2中心軸とし、前記リング照明の中心軸を第3中心軸としたとき、
     前記保持部は、前記第1中心軸に対して前記第2中心軸を所定の第1傾斜角で傾斜させた状態で前記被検査物を保持し、
     前記リング照明は、前記第1中心軸に対して、前記第1傾斜角とは異なる第2傾斜角で前記第3中心軸を傾斜させて配置されており、
     前記第1中心軸の周りで前記リング照明が回転されることで、前記明視野画像と前記暗視野画像が取得される、
     検査装置。
  5.  請求項1に記載の検査装置であって、
     前記姿勢制御部は、固定された前記撮像部に対して前記保持部を変位させることで、前記撮像部に対する前記被検査物の表面の相対的な姿勢を変化させる、
     検査装置。
  6.  請求項1に記載の検査装置であって、
     前記被検査物は、内燃機関のピストンであり、前記被検査物の表面は、前記ピストンの冠面である、
     検査装置。
  7.  被検査物の表面を検査する検査方法であって、
     前記被検査物の表面に光が照射された状態で、前記被検査物の表面を撮像する撮像部に対する前記被検査物の表面の相対的な姿勢を変化させて、複数の表面画像を撮像する撮像ステップと、
     前記複数の表面画像の変化に基づいて、前記被検査物の表面の欠陥と輝度ムラとを識別する識別ステップと、
     を備える検査方法。
  8.  ピストンを準備する第1工程と、
     前記第1工程にて準備された前記ピストンの表面を検査する第2工程であって、
     前記ピストンの表面に光が照射された状態で、前記ピストンの表面を撮像する撮像部に対する前記ピストンの表面の相対的な姿勢を変化させて、複数の表面画像を撮像する撮像ステップと、
     前記複数の表面画像の変化に基づいて、前記ピストンの表面の欠陥と輝度ムラとを識別する識別ステップと、
     を有する第2工程と、
     前記第2工程にて検査された前記ピストンを後工程として取得する第3工程と、
     を備えるピストンの製造方法。
PCT/JP2021/027882 2020-08-03 2021-07-28 検査装置、検査方法およびピストンの製造方法 WO2022030325A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180057783.5A CN116137893A (zh) 2020-08-03 2021-07-28 检查装置、检查方法以及活塞的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-131675 2020-08-03
JP2020131675A JP2022028337A (ja) 2020-08-03 2020-08-03 検査装置、検査方法およびピストンの製造方法

Publications (1)

Publication Number Publication Date
WO2022030325A1 true WO2022030325A1 (ja) 2022-02-10

Family

ID=80117414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027882 WO2022030325A1 (ja) 2020-08-03 2021-07-28 検査装置、検査方法およびピストンの製造方法

Country Status (3)

Country Link
JP (1) JP2022028337A (ja)
CN (1) CN116137893A (ja)
WO (1) WO2022030325A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026699A1 (ja) * 2021-08-27 2023-03-02 日立Astemo株式会社 外観検査装置および外観検査方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024000090A (ja) * 2022-06-20 2024-01-05 日立Astemo株式会社 欠陥検査装置および欠陥検査方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206335A (ja) * 1997-01-20 1998-08-07 Ricoh Co Ltd 表面欠陥検査装置及び検査方法
JP2014178243A (ja) * 2013-03-15 2014-09-25 Suzuki Motor Corp 曲面印刷・検査設備及び方法
JP2016188844A (ja) * 2015-03-30 2016-11-04 三菱重工業株式会社 一方向性凝固物の異結晶検査装置及び検査方法
JP2017040600A (ja) * 2015-08-21 2017-02-23 キヤノン株式会社 検査方法、検査装置、画像処理装置、プログラム及び記録媒体
US20200167905A1 (en) * 2018-11-27 2020-05-28 General Electric Company Fluorescent penetrant inspection system and method
CN111458340A (zh) * 2020-04-10 2020-07-28 广东荣旭智能技术有限公司 一种通用型单工站检测外观瑕疵的方法及其装置
JP2020201158A (ja) * 2019-06-11 2020-12-17 株式会社島津製作所 立体物の外観検査装置および立体物の外観検査方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403953B2 (ja) * 2014-01-16 2018-10-10 株式会社大協精工 注射器用ピストンの検査方法および検査装置
US11328380B2 (en) * 2018-10-27 2022-05-10 Gilbert Pinter Machine vision systems, illumination sources for use in machine vision systems, and components for use in the illumination sources

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10206335A (ja) * 1997-01-20 1998-08-07 Ricoh Co Ltd 表面欠陥検査装置及び検査方法
JP2014178243A (ja) * 2013-03-15 2014-09-25 Suzuki Motor Corp 曲面印刷・検査設備及び方法
JP2016188844A (ja) * 2015-03-30 2016-11-04 三菱重工業株式会社 一方向性凝固物の異結晶検査装置及び検査方法
JP2017040600A (ja) * 2015-08-21 2017-02-23 キヤノン株式会社 検査方法、検査装置、画像処理装置、プログラム及び記録媒体
US20200167905A1 (en) * 2018-11-27 2020-05-28 General Electric Company Fluorescent penetrant inspection system and method
JP2020201158A (ja) * 2019-06-11 2020-12-17 株式会社島津製作所 立体物の外観検査装置および立体物の外観検査方法
CN111458340A (zh) * 2020-04-10 2020-07-28 广东荣旭智能技术有限公司 一种通用型单工站检测外观瑕疵的方法及其装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023026699A1 (ja) * 2021-08-27 2023-03-02 日立Astemo株式会社 外観検査装置および外観検査方法

Also Published As

Publication number Publication date
CN116137893A (zh) 2023-05-19
JP2022028337A (ja) 2022-02-16

Similar Documents

Publication Publication Date Title
US5699152A (en) Electro-optical inspection system and method
KR100202215B1 (ko) 광학부품 특히 눈을 위한 광학부품의 검사방법 및 장치와 청정하고 투명한 검사 물체의 조명장치
JP5014003B2 (ja) 検査装置および方法
WO2022030325A1 (ja) 検査装置、検査方法およびピストンの製造方法
TWI648534B (zh) 磊晶晶圓之裏面檢查方法、磊晶晶圓裏面檢查裝置、磊晶成長裝置之升降銷管理方法以及磊晶晶圓之製造方法
US20170270651A1 (en) System and method for enhancing visual inspection of an object
JP2017120232A (ja) 検査装置
JP2018025439A (ja) 外観検査方法および外観検査装置
JP2006208259A (ja) 欠陥検査方法および欠陥検査装置
JP6512585B1 (ja) 部品外観自動検査装置
JP2011208941A (ja) 欠陥検査装置およびその方法
JP2009236648A (ja) 外観検査装置
JP6605772B1 (ja) 欠陥検査装置および欠陥検査方法
JP2009097977A (ja) 外観検査装置
JP2000131037A (ja) 物体形状検査装置
JP4184511B2 (ja) 金属試料表面の欠陥検査方法及び装置
JP2009236760A (ja) 画像検出装置および検査装置
JP7111370B2 (ja) 欠陥検査方法
JP2007271510A (ja) 外観検査方法及び外観検査装置
JP2000018927A (ja) 外観検査装置
CN210375628U (zh) 一种镜片检测系统
JP4269423B2 (ja) 表面検査装置及び表面検査方法
JP2014025884A (ja) 外観検査方法及び外観検査装置
JP6775787B2 (ja) 表面検査装置、表面検査方法、表面検査プログラムおよび記録媒体
JP4967132B2 (ja) 対象物表面の欠陥検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853746

Country of ref document: EP

Kind code of ref document: A1