WO2022028327A1 - 用于无线通信的电子设备、方法和存储介质 - Google Patents

用于无线通信的电子设备、方法和存储介质 Download PDF

Info

Publication number
WO2022028327A1
WO2022028327A1 PCT/CN2021/109664 CN2021109664W WO2022028327A1 WO 2022028327 A1 WO2022028327 A1 WO 2022028327A1 CN 2021109664 W CN2021109664 W CN 2021109664W WO 2022028327 A1 WO2022028327 A1 WO 2022028327A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
time
terminal device
frequency resources
base station
Prior art date
Application number
PCT/CN2021/109664
Other languages
English (en)
French (fr)
Inventor
侯延昭
陶小峰
文阳
王成瑞
王晓雪
刘敏
孙晨
Original Assignee
索尼集团公司
侯延昭
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 侯延昭 filed Critical 索尼集团公司
Priority to CN202180058983.2A priority Critical patent/CN116326139A/zh
Priority to US18/017,676 priority patent/US20230300798A1/en
Publication of WO2022028327A1 publication Critical patent/WO2022028327A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/543Allocation or scheduling criteria for wireless resources based on quality criteria based on requested quality, e.g. QoS

Definitions

  • the present disclosure relates generally to devices and methods for wireless communications, and in particular to resource allocation and management techniques for sidelink (SL) communications.
  • SL sidelink
  • Direct link communication has been introduced in wireless communication systems that have been or are under development such as Long Term Evolution (LTE) of the Third Generation Partnership Project (3GPP) and New Radio (NR).
  • LTE Long Term Evolution
  • NR New Radio
  • D2D Device-to-Device
  • M2M Machine-to-Machine
  • V2V Vehicle-to-Vehicle
  • V2X Vehicle-to-Everything
  • a first aspect of the present disclosure relates to an electronic device for a first terminal device, the electronic device including a processing circuit.
  • the processing circuit is configured to search for time-frequency resources through at least two allocation modes to obtain a candidate resource set, select a time-frequency resource from the candidate resource set, and notify the second terminal device of the selected time-frequency resource for use in pass-through
  • the link conducts communication to the second terminal device.
  • the processing circuit is also configured to send resource selection information to the base station, the resource selection information indicating whether a particular resource is selected.
  • a second aspect of the present disclosure relates to an electronic device for a base station, the electronic device including a processing circuit.
  • the processing circuit is configured to receive a resource scheduling request message from the first terminal device, the resource scheduling request message requesting time-frequency resources for through-link communication by the first terminal device to the second terminal device.
  • the processing circuit is further configured to allocate time-frequency resources to the first terminal device through the first allocation mode, send a resource grant message to the first terminal device, and receive resource selection information from the first terminal device, the resource selection information indicating the first terminal device Whether the time-frequency resource corresponding to an allocation mode is selected by the first terminal device.
  • a third aspect of the present disclosure relates to a method for wireless communication.
  • the method includes, by the first terminal device, searching for time-frequency resources through at least two allocation modes to obtain a candidate resource set, selecting the time-frequency resources from the candidate resource set, and notifying the second terminal device of the selected time-frequency resources for use in A cut-through link communication is made to the second terminal device.
  • the method also includes sending, by the first terminal device, resource selection information to the base station, the resource selection information indicating whether a specific resource is selected.
  • a fourth aspect of the present disclosure relates to a method for wireless communication.
  • the method includes receiving, by the base station, a resource scheduling request message from the first terminal device, the resource scheduling request message requesting time-frequency resources for through-link communication by the first terminal device to the second terminal device.
  • the method further includes allocating, by the base station, time-frequency resources to the first terminal device through the first allocation mode, sending a resource grant message to the first terminal device, and receiving resource selection information from the first terminal device, the resource selection information indicating the first terminal device Whether the time-frequency resource corresponding to the allocation mode is selected by the first terminal device.
  • a fifth aspect of the present disclosure relates to a computer-readable storage medium having one or more instructions stored thereon.
  • the one or more instructions when executed by one or more processors of the electronic device, cause the electronic device to perform methods according to various embodiments of the present disclosure.
  • a sixth aspect of the present disclosure relates to an apparatus for wireless communication including means or units for performing operations of various methods according to embodiments of the present disclosure.
  • FIG. 1 illustrates an exemplary wireless communication system in which cut-through-link communication may occur in accordance with embodiments of the present disclosure.
  • FIG. 2A illustrates an exemplary electronic device for a terminal device according to an embodiment of the present disclosure.
  • 2B illustrates an exemplary electronic device for a base station according to an embodiment of the present disclosure.
  • FIG. 3 illustrates an exemplary signaling flow for configuring and selecting time-frequency resources through various allocation modes, according to an embodiment of the present disclosure.
  • FIG. 4 illustrates an example operation of the second allocation mode according to an embodiment of the present disclosure.
  • FIG. 5 illustrates an example operation of a third allocation mode according to an embodiment of the present disclosure.
  • FIG. 6 shows a schematic diagram of selecting time-frequency resources according to an embodiment of the present disclosure.
  • FIG. 7 shows an exemplary signaling flow for selecting time-frequency resources through two allocation modes according to an embodiment of the present disclosure.
  • FIG. 8 illustrates another exemplary signaling flow for selecting time-frequency resources through two allocation modes according to an embodiment of the present disclosure.
  • FIGS 9A and 9B illustrate schematic diagrams of resource pools for various allocation modes according to an embodiment of the present disclosure.
  • FIG. 10 illustrates an example format of an indicator for indicating time-frequency resources according to an embodiment of the present disclosure.
  • FIG 11 illustrates an example method for wireless communication according to an embodiment of the present disclosure.
  • FIG 12 illustrates another example method for wireless communication in accordance with embodiments of the present disclosure.
  • FIG. 13 is a block diagram of an example structure of a personal computer as an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • FIG. 14 is a block diagram showing a first example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • 15 is a block diagram showing a second example of a schematic configuration of a gNB to which the techniques of the present disclosure may be applied.
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone to which the technology of the present disclosure can be applied.
  • 17 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • the wireless communication system 100 includes a base station 110 and terminal devices 120-1 and 120-2.
  • terminal devices may also be collectively referred to as terminal devices 120 .
  • the base station 110 and the terminal device 120-1 may be configured to be coupled to each other through a wireless link.
  • the base station 110 and the terminal device 120 - 1 may perform signaling and data transmission via the downlink 155 and the uplink 165 .
  • Terminal device 120-1 and terminal device 120-2 may be configured to be coupled to each other through a wireless link.
  • the terminal device 120 - 1 may perform signaling and data transmission to the terminal device 120 - 2 via the pass-through link 175 .
  • the end device 120-1 may autonomously initiate transmissions to the end device 120-2, or may relay transmissions from the base station 110 to the end device 120-2.
  • Cut-through link 175 may support transmission from end device 120-1 to end device 120-2.
  • the terminal device 120-1 and the terminal device 120-2 may be referred to as a transmitting terminal device and a receiving terminal device, respectively.
  • an uplink and downlink may also be set between the base station 110 and the terminal device 120-2, so as to facilitate signaling and data transmission between the two.
  • the terminal device 120-2 may be located outside the coverage area of the base station 110 (not shown), communicating with the terminal device 120-1 only via the pass-through link 175.
  • Base station 110 may be configured to communicate with a network (e.g., a cellular service provider's core network, a telecommunications network such as a public switched telephone network (PSTN), and/or the Internet). Thus, the base station 110 may facilitate communication between the terminal devices 120 or between the terminal devices 120 and the network.
  • a network e.g., a cellular service provider's core network, a telecommunications network such as a public switched telephone network (PSTN), and/or the Internet.
  • PSTN public switched telephone network
  • a base station has the full breadth of its usual meaning and includes at least a wireless communication station that facilitates communication as part of a wireless communication system or radio system.
  • Examples of base stations may include, but are not limited to: at least one of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system; a radio network controller (RNC) and at least one of a Node B in a WCDMA system One; eNBs in LTE and LTE-Advanced systems; access points (APs) in WLAN, WiMAX systems; and corresponding network nodes in communication systems to be or under development (eg, in 5G New Radio (NR) systems gNB, eLTEeNB, etc.).
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • eNBs in LTE and LTE-Advanced systems
  • APs access points
  • WLAN WiMAX
  • corresponding network nodes in communication systems to be or under development
  • a terminal has the full breadth of its usual meaning, for example, a terminal may be a mobile station (Mobile Station, MS), a user equipment (User Equipment, UE), and so on.
  • a terminal may be implemented as a device such as a mobile phone, handheld device, media player, computer, laptop or tablet, or virtually any type of wireless device.
  • terminals may communicate using a variety of wireless communication technologies.
  • a terminal may be configured to communicate using two or more of GSM, UMTS, CDMA2000, LTE, LTE-Advanced, NR, WiMAX, WLAN, Bluetooth, and the like.
  • the terminal may also be configured to communicate using only one wireless communication technology.
  • FIG. 1 illustrates only one of a variety of arrangements for a wireless communication system; embodiments of the present disclosure may be implemented in any suitable arrangement as desired.
  • time-frequency resource allocation may be performed by a base station or other scheduling device, or resources may be sensed and selected by a transmitting terminal device.
  • time-frequency resources can be allocated for the direct link communication through various modes to form a candidate resource set.
  • the sending terminal device may select resources from the set of candidate resources for through-link communication.
  • the sending terminal device may make the selection based on the attributes of the time-frequency resources in the candidate resource set and/or the QoS requirements of the direct link communication.
  • the selected time-frequency resources are not limited to resources allocated through a certain allocation mode, but may include resources allocated through one or more allocation modes that can better meet QoS requirements. In the resource allocation and selection scheme according to the present disclosure, it is easier to achieve high reliability and low delay of through-link communication, which is beneficial for URLLC services.
  • FIG. 2A illustrates an exemplary electronic device for use with a terminal device, according to an embodiment.
  • the electronic device 200 shown in FIG. 2A may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 200 may include a resource obtaining unit 202 , a resource selecting unit 204 and a transceiving unit 206 .
  • the electronic device 200 may be implemented as the terminal device 120 in FIG. 1 or a portion thereof.
  • Various operations described below in conjunction with the terminal device may be implemented by the units 202 to 206 of the electronic device 200 or other possible units.
  • the electronic device 200 may be used to transmit a terminal device (eg, 120-1).
  • the electronic device 200 supports multiple resource allocation modes and may obtain time-frequency resources through the multiple allocation modes for communication to the receiving terminal device 120-2 via the pass-through link 175.
  • the resource obtaining unit 202 of the electronic device 200 may be configured to search for time-frequency resources through at least two allocation modes to obtain a candidate resource set.
  • the candidate resource set may include time-frequency resources found through various allocation modes.
  • the resource selection unit 204 of the electronic device 200 may be configured to select a time-frequency resource from the set of candidate resources for direct link communication to the second terminal device.
  • the selected time-frequency resources may include time-frequency resources obtained through a first allocation mode (also referred to as corresponding to the first allocation mode) and/or obtained through a second allocation mode (also referred to as corresponding to the second allocation mode) The time-frequency resources corresponding to the allocation mode).
  • the transceiving unit 206 of the electronic device 200 may be configured to notify the receiving terminal device (eg, 120-2) of the selected time-frequency resource for receiving the cut-through link communication from the transmitting terminal device.
  • the transceiver unit 206 may also be configured to send resource selection information to the base station (eg, 110 ), the resource selection information indicating a resource selection situation, such as whether a specific resource is selected.
  • the electronic device 200 may be used to receive a terminal device (eg, 120-2).
  • the transceiving unit 206 may be configured to receive the time-frequency resource information selected by the other terminal device from the other terminal device, so as to receive the direct link communication from the other terminal device.
  • FIG. 2B shows an exemplary electronic device for a base station according to an embodiment.
  • the electronic device 250 shown in FIG. 2B may include various units to implement various embodiments according to the present disclosure.
  • the electronic device 250 may include a resource management unit 252 and a transceiving unit 254 .
  • electronic device 250 may be implemented as base station 110 in FIG. 1 or a portion thereof, or may be implemented as a device (eg, a base station controller) or the device for controlling base station 110 or otherwise associated with base station 110 a part of.
  • the various operations described below in connection with the base station may be implemented by units 252 and 254 of electronic device 250 or other possible units.
  • the resource management unit 252 of the electronic device 250 may be configured to receive a resource scheduling request message from the transmitting terminal device 120-1, the resource scheduling request message requesting frequency resources for direct link communication by the transmitting terminal device 120-1 to the receiving terminal device 120-2.
  • the resource management unit 252 may also be configured to allocate time-frequency resources to the transmitting terminal device 120-1 through the first allocation mode.
  • the first allocation mode may include an allocation mode in which the base station grants time-frequency resources to the terminal device, for example, based on a resource scheduling request of the terminal device.
  • the transceiving unit 254 of the electronic device 250 may be configured to send a resource authorization message to the sending terminal device 120-1.
  • the transceiver unit 254 may also be configured to receive resource selection information from the transmitting terminal device 120-1, where the resource selection information may indicate whether the time-frequency resource corresponding to the first allocation mode is selected for use by the transmitting terminal device 120-1.
  • the time-frequency resources that are not selected for use may be allocated separately by the resource management unit 252 .
  • electronic devices 200 and 250 may be implemented at the chip level, or may be implemented at the device level by including other components, such as radio components shown in phantom in the figures.
  • each electronic device can work as a communication device in the form of a complete machine.
  • each of the above-mentioned units may be implemented as independent physical entities, or may also be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • Processing circuitry may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of separate processor cores, entire processor cores, separate processors, such as field programmable gate arrays (FPGAs) programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the 3 illustrates an exemplary signaling flow for configuring and selecting time-frequency resources through various allocation modes, according to an embodiment.
  • the selected time-frequency resources are used for communication between terminal devices via the cut-through link.
  • the signaling process can be performed by the base station 110 and the terminal device 120 .
  • the base station 110 sends a message to the sending terminal device through radio resource control (Radio Resource Control, RRC) signaling (for example, RRC reconfiguration information).
  • RRC Radio Resource Control
  • 120-1 sends parameter configuration information of different resource allocation modes.
  • the parameter configuration information may include resource pool information corresponding to different allocation modes preconfigured by the base station 110 and initialization information of the direct link communication (eg, the frequency of the direct link communication, Pcell information, etc.).
  • the base station 110 may send parameter configuration information of multiple allocation modes to the first terminal device through a broadcast message (eg, in SIB21 of the NR system). For example, at least part of the resource pool information corresponding to the multiple allocation modes and the initialization information of the direct link communication may be sent through a broadcast message.
  • the terminal device 120-1 searches for time-frequency resources through the multiple allocation modes to obtain a candidate resource set, where the candidate resource set may include the search results obtained through the multiple allocation modes time-frequency resources.
  • the terminal device 120-1 further selects time-frequency resources from the set of candidate resources for direct link communication to the receiving terminal device 120-2. Since the candidate resource set includes the time-frequency resources found through various allocation modes, the terminal device 120-1 can select the time-frequency resources that better meet the QoS requirements of the direct link.
  • the selected time-frequency resources may include time-frequency resources corresponding to the first allocation pattern and/or time-frequency resources corresponding to the second allocation pattern.
  • terminal device 120-1 After selecting the time-frequency resource, terminal device 120-1 notifies terminal device 120-2 of the selected time-frequency resource for direct link communication to terminal device 120-2. For example, the selected time-frequency resource may be notified to the terminal device 120-2 by transmitting specific time-frequency resource information or index through the through link control information.
  • terminal device 120-1 also transmits resource selection information to base station 110, the resource selection information indicating resource selection conditions, such as whether a particular resource is selected.
  • terminal device 120-1 communicates to terminal device 120-2 via the cut-through link over the selected time-frequency resource.
  • communication can be performed through a Physical Sidelink Share Channel (PSSCH).
  • PSSCH Physical Sidelink Share Channel
  • the present disclosure relates to various resource allocation modes for cut-through link communications.
  • the first allocation mode may include scheduling by the base station and granting time-frequency resources to the transmitting terminal device. For example, scheduling may be based on sending end-device resource scheduling requests.
  • the second allocation mode may include sensing and searching for time-frequency resources by the transmitting terminal device.
  • FIG. 4 illustrates an example operation of the second distribution mode according to an embodiment.
  • operations 400 include, at 402, establishing a resource window.
  • the resource window may be a time window of a certain duration.
  • Operations 400 include, at 404, resource awareness in a resource window.
  • the terminal device can sense the preconfigured frequency resources. For example, the terminal device may obtain preconfigured frequency resources based on the parameter configuration information of the resource allocation mode from the base station.
  • the purpose of resource awareness is to obtain the time-frequency resources that can be used by the transmitting terminal device.
  • Resource awareness can be done in any way.
  • the transmitting terminal device may receive and decode through link control information (eg, SCI (Sidelink Control Information) in the NR system).
  • link control information eg, SCI (Sidelink Control Information) in the NR system.
  • the transmitting terminal device can exclude the time-frequency resources that have been explicitly allocated in the SCI.
  • the transmitting terminal device may measure the preconfigured frequency resources in the frequency domain within the resource window (for example, measure RSRP, RSRQ, SNR, SNIR, etc.). Therefore, the transmitting terminal device can exclude frequency resources whose measurement value is greater than the preset threshold.
  • the sending terminal device can obtain a set of available time-frequency resources.
  • the transmitting terminal device may filter the desired time-frequency resource from the set of time-frequency resources.
  • the screening may be a random selection or a selection based on frequency domain measurements.
  • the transmitting terminal device can select time-frequency resources from preconfigured resources instead of scheduling resources exclusively by other devices. Therefore, the transmitting terminal device can quickly obtain time-frequency resources. In the case that the channel busyness is low, the success rate of the transmitting terminal device to obtain the time-frequency resource quickly will be very high.
  • the second allocation mode can be beneficial to reduce the delay of the direct link communication and improve the reliability, which is advantageous for, for example, Ultra-Reliable and Low Latency Communication (URLLC) services.
  • URLLC Ultra-Reliable and Low Latency Communication
  • the third allocation mode may include requesting time-frequency resources from the resource scheduling device by the transmitting terminal device and allocating time-frequency resources to the transmitting terminal device by the resource scheduling device.
  • the resource scheduling device may be another entity other than the base station, which is configured to allocate time-frequency resources for direct link communication to terminal devices in the cluster.
  • the base station can pre-allocate the resource pool to the resource scheduling device, so that the resource scheduling device can further allocate the resource to the terminal device.
  • FIG. 5 illustrates an example operation of a third allocation mode according to an embodiment.
  • operations 500 include, at 501, the resource scheduling device sending a resource pool scheduling request message to base station 110 to request base station 110 to allocate a resource pool for further allocation by the resource scheduling device to terminal devices in the cluster for through link communication.
  • the base station authorizes a resource pool to a resource scheduling device based on the resource request, and the resource scheduling device receives a resource pool grant message from the base station 110 .
  • terminal device 120-1 may, as a member of the cluster, send a scheduling request to a resource scheduling device to request resources for through-link communication.
  • the resource scheduling device may select time-frequency resources from the resource pool to grant to terminal device 120-1.
  • the scheduling request may include parameter configuration information for the third allocation mode pre-configured by the base station to the terminal device 120-1, or the resource scheduling device may know the parameter configuration information in advance, so that the resource scheduling device may configure the parameter configuration based on the parameter
  • the information allocates time-frequency resources for the terminal device 120-1.
  • the allocated time-frequency resources may be used by end device 120-1 for direct link communication with end device 120-2.
  • the resource scheduling device may be any device other than the base station, for example, may be one of the terminal devices in the cluster. Compared with the base station, the resource scheduling device can be closer to the cluster of terminal devices, so it can better perceive the resource usage in the local area, which is beneficial to multicast communication.
  • the resource scheduling device can sense the usage of resources in the cluster by referring to the resource sensing operation 404 described in FIG. 4 , or can collect the sensing results of each terminal device to analyze the resource usage, so as to allocate appropriate Time-frequency resources are given to terminal equipment. Therefore, compared with the first allocation mode, the third allocation mode can better reduce the delay of the direct link communication and improve the reliability, so as to meet, for example, the QoS requirements of the URLLC service.
  • the transmitting terminal device can search for time-frequency resources through at least two allocation modes.
  • the at least two distribution modes may include a first distribution mode, a second distribution mode, and/or other possible distribution modes.
  • the sending terminal device may send a resource scheduling request message to the base station and receive a resource grant message from the base station.
  • the transmitting terminal device can sense and search for time-frequency resources.
  • the candidate resource set includes at least time-frequency resources corresponding to the first and second allocation patterns.
  • the at least two distribution modes may include a first distribution mode, a third distribution mode, and/or other possible distribution modes.
  • the sending terminal device may send a resource scheduling request message to the base station and receive a resource grant message from the base station.
  • the sending terminal device may send a resource scheduling request message to the cluster scheduling device, and receive a resource grant message from the cluster scheduling device.
  • the candidate resource set includes at least time-frequency resources corresponding to the first and third allocation patterns.
  • the at least two distribution modes may include a second distribution mode, a third distribution mode, and/or other possible distribution modes.
  • the transmitting terminal device can sense and search for time-frequency resources.
  • the sending terminal device may send a resource scheduling request message to the cluster scheduling device, and receive a resource grant message from the cluster scheduling device. Accordingly, the candidate resource set includes at least time-frequency resources corresponding to the second and third allocation patterns.
  • the sending terminal device may select the time-frequency resource based on the QoS requirement of the direct link communication and the attributes of the time-frequency resource in the candidate resource set.
  • time-frequency resources corresponding to a single one or more than one allocation mode may be selected.
  • FIG. 6 shows a schematic diagram of selecting time-frequency resources according to an embodiment.
  • FIG. 6 shows a candidate resource set including time-frequency resources corresponding to two allocation modes (ie, mode 1 and mode 2). It can be similarly understood that the candidate resource set includes time-frequency resources corresponding to more allocation modes.
  • Time-frequency resources corresponding to different allocation modes in the candidate resource set may have different attributes. As shown in FIG. 6 , the time-frequency resources corresponding to the mode 1 are later in time than the time-frequency resources corresponding to the mode 2, for example, two OFDM symbols later.
  • the time-frequency resources corresponding to mode 1 eg, 2 subcarrier widths
  • the time-frequency resources corresponding to mode 1 are more than those corresponding to mode 2 (eg, 1 subcarrier width) in the frequency domain.
  • the time-frequency resources corresponding to mode 1 are discrete in the time domain, and the time-frequency resources corresponding to mode 2 are continuous in the time domain.
  • the time-frequency resources corresponding to mode 1 may perform better than the time-frequency resources corresponding to mode 2, or vice versa;
  • Direct link communication may have different QoS requirements.
  • URLLC service expects low latency and high reliability, and other services may expect resources with wider frequency domain or continuous resources in time domain.
  • the sending terminal device can select matching time-frequency resources for different services.
  • time-frequency resources may be selected based on the order of resources in the time domain. Since the resource corresponding to mode 2 is ahead in the time domain, the resource can be selected for the URLLC service to reduce the latency. For example, time-frequency resources may be selected based on resource performance. A resource with better performance (eg, less interference) can be selected from the overall resources corresponding to Mode 1 and Mode 2, and the resource can be selected for the URLLC service to improve reliability.
  • Mode 1 or Mode 2 may correspond to any of the above first to third allocation modes.
  • the candidate resource set including the time-frequency resources corresponding to different allocation modes provides flexibility for the sending terminal equipment to select the resources for the direct link communication, and the sending terminal equipment can more easily select the time-frequency resources matching the service QoS requirements.
  • Figure 6 shows only one example of resource selection. It can be understood that the relative performance of resources allocated by different modes is uncertain. However, the transmitting terminal device may select an appropriate resource (which may be allocated through one or more modes) from the set of candidate resources for direct link communication.
  • the technical solution according to the present disclosure has more obvious advantages, such as supporting URLLC services in a wider range of scenarios.
  • Figure 7 illustrates an exemplary signaling flow for selecting time-frequency resources through two allocation modes, according to an embodiment.
  • the selected time-frequency resources are used for direct link communication between terminal devices.
  • the two distribution modes correspond to the first distribution mode and the second distribution mode, respectively.
  • the signaling process can be performed by the base station 110 and the terminal device 120 .
  • the base station 110 sends parameter configuration information of different resource allocation modes to the terminal device 120 through RRC signaling. Based on such parameter configuration information, the terminal device 120 can obtain and select time-frequency resources for direct link communication. As shown in FIG. 7 , based on the requirement of direct link communication to the terminal device 120 - 2 , the terminal device 120 - 1 sends a resource scheduling request message to the base station 110 at 702 on the one hand, and performs resource sensing at 704 on the other hand. In response to receiving the resource scheduling request message from terminal device 120-1, at 706, base station 110 may select a time-frequency resource from the resource pool to grant to terminal device 120-1.
  • resource sensing may include terminal device 120-1 sensing preconfigured frequency resources in a resource window.
  • the terminal device 120-1 can exclude time-frequency resources that have been explicitly allocated in the SCI, and/or frequency resources whose measurements indicate that they have been used. Since the terminal device 120-1 can also obtain time-frequency resources through resource sensing, it can send a resource scheduling request message to the base station 110 in a manner lower than the actual requirement of the direct link communication. In some embodiments, this approach may facilitate the base station 110 to determine the time-frequency resources to be granted to the terminal device 120-1 more quickly or with a higher success rate.
  • terminal device 120-1 obtains a set of candidate resources including the time-frequency resources found by the first and second allocation modes.
  • the terminal device 120-1 further selects time-frequency resources from the set of candidate resources for direct link communication to the receiving terminal device 120-2. Since the candidate resource set includes time-frequency resources found through various allocation modes, the terminal device 120-1 can select time-frequency resources that better meet the QoS requirements of the direct link, as described with reference to FIG. 6 .
  • terminal device 120-1 after selecting the time-frequency resource, notifies terminal device 120-2 of the selected time-frequency resource for direct link communication to terminal device 120-2.
  • the selected time-frequency resource may be notified to the terminal device 120-2 by transmitting specific time-frequency resource information or index through the through link control information.
  • terminal device 120-1 also transmits resource selection information to base station 110, the resource selection information indicating resource selection conditions, such as whether a particular resource is selected.
  • terminal device 120-1 communicates to terminal device 120-2 via the cut-through link over the selected time-frequency resource.
  • Figure 8 illustrates another exemplary signaling flow for selecting time-frequency resources through two allocation modes, according to an embodiment.
  • the selected time-frequency resources are used for direct link communication between terminal devices.
  • the two distribution modes correspond to the first distribution mode and the third distribution mode, respectively.
  • the signaling process may be performed by the base station 110, the terminal device 120, and the resource scheduling device.
  • the terminal device 120 - 1 sends a resource scheduling request message to the base station 110 at 802 on the one hand, and sends a resource scheduling request message to the resource scheduling device at 804 on the other hand.
  • base station 110 may select a time-frequency resource from the resource pool to grant to terminal device 120-1.
  • the resource scheduling device may select time-frequency resources from the resource pool to grant to terminal device 120-1.
  • the terminal device 120-1 can obtain time-frequency resources from multiple sources, it can send a resource scheduling request message to the base station 110 or the resource scheduling device in a manner lower than the actual requirement of the direct link communication. In some embodiments, this approach may facilitate the base station 110 or the resource scheduling device to determine the time-frequency resources to be granted to the terminal device 120-1 more quickly or with a higher success rate.
  • terminal device 120-1 obtains a set of candidate resources including the time-frequency resources found through the first and third allocation modes.
  • the terminal device 120-1 further selects time-frequency resources from the set of candidate resources for direct link communication to the receiving terminal device 120-2. Since the candidate resource set includes time-frequency resources found through various allocation modes, the terminal device 120-1 can select time-frequency resources that better meet the QoS requirements of the direct link, as described with reference to FIG. 6 .
  • terminal device 120-1 After selecting the time-frequency resource, terminal device 120-1 notifies terminal device 120-2 of the selected time-frequency resource for direct link communication to terminal device 120-2. At 814, terminal device 120-1 also transmits resource selection information to base station 110, the resource selection information indicating resource selection conditions, such as whether a particular resource is selected.
  • terminal device 120-1 communicates to terminal device 120-2 via the cut-through link over the selected time-frequency resource.
  • FIG. 9A and 9B illustrate schematic diagrams of resource pools for various allocation modes, according to an embodiment.
  • different resource allocation patterns may correspond to different resource pools. Taking two allocation modes as an example, resource pool A may correspond to the first allocation mode, and resource pool B may correspond to the second or third allocation mode. Similarly, three separate resource pools can be configured for the three allocation modes. Two separate resource pools can be configured for the three allocation modes, eg the second and third allocation modes can correspond to a single resource pool.
  • different resource allocation patterns may correspond to the same resource pool.
  • the resource pool C may correspond to a combination of at least two allocation patterns among the first to third allocation patterns.
  • the resource pool represents a set of specific time-frequency resources, but does not form any limitation on the resources in the time domain or frequency domain.
  • the resources in a single resource pool may be continuous or discrete in the time or frequency domain.
  • resources in a single resource pool may correspond to a single or multiple bandwidth parts (Bandwidth Part, BWP), and resources in multiple resource pools may correspond to the same or different BWPs.
  • BWP Bandwidth Part
  • Transmitting and receiving terminal devices 120 may report device capabilities to base station 110 to activate resources in multiple resource pools or multiple BWPs.
  • one or more resource pools are in the same BWP, activate the BWP and one or more resource pools in the BWP; if one or more resource pools are in multiple BWPs, activate the multiple BWPs and BWPs. the corresponding resource pool.
  • the transmitting terminal device can transmit specific time-frequency resource information or index through the direct link control information (such as SCI in the NR system) to send the information to the receiving terminal.
  • the terminal device notifies the selected time-frequency resource.
  • the SCI can be transmitted through the Physical Sidelink Control Channel (PSCCH).
  • the resource location can be directly indicated by the time-frequency resource field in the SCI.
  • a resource pool index field for example, called ResourceIndex (as shown in Table 1), may be added to the SCI to indicate a specific resource pool.
  • the specific location of the time-frequency resource in the specific resource pool can be indicated by the time-frequency resource field in the SCI.
  • the time-frequency resource used for the direct link communication can also be uniquely indicated by the resource pool index field and the time-frequency resource field.
  • the base station 110 may pre-configure the correspondence between multiple resource pools and index values for the terminal device 120 through RRC signaling.
  • the transmitting terminal device may transmit resource selection information through a Physical Uplink Control Channel (PUCCH) to notify the base station of the selected time-frequency resources.
  • resource selection information can be carried through UCI (Uplink Control Information).
  • UCI Uplink Control Information
  • the resource selection information may indicate to the base station resource selection for direct link communication.
  • the resource selection information may indicate whether the time-frequency resource corresponding to the first allocation mode (allocated by the base station) is selected, or may also indicate the selected specific time-frequency resource among the time-frequency resources corresponding to any allocation mode.
  • whether the time-frequency resource corresponding to the first allocation mode is selected may be indicated by the first indicator on the PUCCH channel.
  • the first indicator may have only 1 bit. Specifically, a value of 0 for the indicator may indicate that the time-frequency resource is not selected, and a value of 1 for the indicator may indicate that the time-frequency resource is selected.
  • the existing UCI field may be used to carry the 1-bit indicator. Existing UCI fields include, for example, ACK/NACK fields for HARQ feedback.
  • only the first indicator with a value of 0 may be sent; when the time-frequency resource corresponding to the first allocation mode is selected, the first indicator is not sent.
  • only the first indicator with a value of 1 may be sent; if the time-frequency resource corresponding to the first allocation mode is not selected, the first indicator is not sent.
  • the base station can perform further resource scheduling based on the resource selection information. For example, the base station may release time-frequency resources that have been allocated to the transmitting terminal device but not selected, in order to avoid resource conflicts in further resource scheduling.
  • the selected specific time-frequency resource among the time-frequency resources corresponding to any allocation mode may be indicated by the second indicator on the PUCCH channel.
  • the second indicator may correspond to multiple bits.
  • the specific time-frequency resources can be described from the frequency domain and the time domain using a corresponding number of bits.
  • the corresponding number of bits can be related to the following factors, that is, the number of sub-channels of the through link and the maximum number of resources reserved for the through link. .
  • a corresponding index value may be configured for specific time-frequency resources in advance, for example, through RRC signaling.
  • specific time-frequency resources may be described using an index value.
  • 10 illustrates an example format of a second indicator for indicating time-frequency resources, according to an embodiment.
  • the parameter Indicates the number of direct link sub-channels
  • the parameter sl-MaxNumPerReserve indicates the maximum number of resources reserved for the direct link.
  • the above parameters can be configured through higher layer signaling (eg RRC signaling).
  • the second indicator can be helpful for the base station to learn the detailed information of resource selection, so as to release the unselected time-frequency resources and avoid resource conflict in further resource scheduling.
  • the method 1100 may be performed by the sending end device 120-1 for direct link communication to the receiving end device 120-2.
  • the method 1000 may include searching for time-frequency resources through at least two allocation modes to obtain a set of candidate resources (block 1105), and selecting a time-frequency resource from the set of candidate resources (block 1110).
  • the method may also include informing receiving terminal device 120-2 of the selected time-frequency resource for direct link communication to receiving terminal device 120-2 (block 1115).
  • the method may also include sending resource selection information to base station 110, the resource selection information may indicate resource selection conditions, such as whether a particular resource is selected (block 1120).
  • searching for time-frequency resources through at least two allocation modes includes: for the first allocation mode, sending a resource scheduling request message to the base station 110 and receiving a resource grant message from the base station 110; for the second allocation mode, sensing and receiving Find time-frequency resources.
  • the candidate resource set may include time-frequency resources corresponding to the first and second allocation patterns.
  • sensing and finding time-frequency resources includes sensing resources in a resource window, and screening desired resources based on the sensing results.
  • searching for time-frequency resources through at least two allocation modes includes: for the first allocation mode, sending a resource scheduling request message to the base station 110 and receiving a resource grant message from the base station 110; for the third allocation mode, sending a resource scheduling request message to the cluster
  • the scheduling device sends a resource scheduling request message and receives a resource grant message from the cluster scheduling device.
  • the candidate resource set may include time-frequency resources corresponding to the first and third allocation patterns.
  • the sending terminal device 120-1 is used as a resource scheduling device, and the method 1100 further includes sending a resource pool scheduling request message to the base station 110, and receiving a resource pool grant message from the base station 110;
  • the resource scheduling request message of the device selects time-frequency resources from the resource pool to authorize a specific terminal device.
  • selecting the time-frequency resource includes selecting the time-frequency resource based on the QoS requirement of the direct link communication and the attribute of the time-frequency resource in the candidate resource set, wherein a single one or more than one allocation mode corresponds to Time-frequency resources are selected.
  • the resource selection information indicates to the base station 110 whether the time-frequency resource corresponding to the first allocation mode is selected.
  • the resource selection information further indicates to the base station 110 the selected time-frequency resource among the time-frequency resources corresponding to the second or third allocation mode.
  • the method 1100 further includes receiving parameter configurations for at least two allocation modes from the base station via RRC signaling.
  • the method 1100 further includes receiving, from another terminal device, time-frequency resource information selected by the other terminal device for receiving a cut-through link communication from the other terminal device.
  • the method 1100 further includes informing the terminal device 120-2 of the selected time-frequency resource by transmitting specific time-frequency resource information or index through the through link control information.
  • the method 1200 may be performed by the base station 110 to allocate time-frequency resources to terminal devices 120 in direct link communication. As shown in FIG. 12, the method 1200 may include receiving a resource scheduling request message from a sending terminal device 120-1, the resource scheduling request message requesting time-frequency resources for progress by the sending terminal device 120-1 to the receiving terminal device 120 -2 for pass-through link communication. The method 1200 may further include allocating time-frequency resources to the sending terminal device 120-1 by using the first allocation mode, and sending a resource grant message to the sending terminal device 120-1. The method 1200 may further include receiving resource selection information from the transmitting terminal device 120-1, the resource selection information indicating whether the time-frequency resource corresponding to the first allocation mode is selected by the transmitting terminal device 120-1.
  • the resource selection information further indicates a time-frequency resource selected by the terminal device 120-1 from time-frequency resources corresponding to at least another allocation mode.
  • the method 1200 further comprises sending the parameter configuration of the first allocation mode and at least another allocation mode to the terminal device 120-1 via RRC signaling.
  • the method 1200 further includes performing further resource allocation based on the resource selection information, such as releasing authorized but unselected time-frequency resources.
  • machine-executable instructions in a machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be apparent to those skilled in the art, and thus the description will not be repeated.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • the above-described series of processes and devices may also be implemented by software and/or firmware.
  • FIG. 13 is a block diagram showing an example structure of a personal computer as an information processing apparatus that can be employed in an embodiment of the present disclosure.
  • the personal computer may correspond to the above-described exemplary terminal device according to the present disclosure.
  • a central processing unit (CPU) 1301 executes various processes according to a program stored in a read only memory (ROM) 1302 or a program loaded from a storage section 1308 to a random access memory (RAM) 1303 .
  • ROM read only memory
  • RAM random access memory
  • data required when the CPU 1301 executes various processes and the like is also stored as necessary.
  • the CPU 1301, the ROM 1302, and the RAM 1303 are connected to each other via a bus 1304.
  • Input/output interface 1305 is also connected to bus 1304 .
  • the following components are connected to the input/output interface 1305: an input section 1306, including a keyboard, a mouse, etc.; an output section 1307, including a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), etc., and a speaker, etc.; a storage section 1308 , including a hard disk, etc.; and a communication section 1309, including a network interface card such as a LAN card, a modem, and the like.
  • the communication section 1309 performs communication processing via a network such as the Internet.
  • a driver 1310 is also connected to the input/output interface 1305 as required.
  • a removable medium 1311 such as a magnetic disk, an optical disk, a magneto-optical disk, a semiconductor memory, etc. is mounted on the drive 1310 as needed, so that a computer program read therefrom is installed into the storage section 1308 as needed.
  • a program constituting the software is installed from a network such as the Internet or a storage medium such as the removable medium 1311 .
  • such a storage medium is not limited to the removable medium 1311 shown in FIG. 13 in which the program is stored and distributed separately from the device to provide the program to the user.
  • the removable medium 1311 include magnetic disks (including floppy disks (registered trademark)), optical disks (including compact disk read only memory (CD-ROM) and digital versatile disks (DVD)), magneto-optical disks (including minidiscs (MD) (registered trademark) )) and semiconductor memory.
  • the storage medium may be the ROM 1302, a hard disk contained in the storage section 1308, or the like, in which programs are stored and distributed to users together with the devices containing them.
  • the base stations mentioned in this disclosure may be implemented as any type of evolved Node Bs (gNBs), such as macro gNBs and small gNBs.
  • gNBs evolved Node Bs
  • Small gNBs may be gNBs covering cells smaller than macro cells, such as pico gNBs, micro gNBs, and home (femto) gNBs.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • BTS Base Transceiver Station
  • the base station may include: a main body (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (Remote Radio Heads, RRHs) disposed at a place different from the main body.
  • a main body also referred to as a base station device
  • RRHs Remote Radio Heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal devices referred to in this disclosure may be implemented as mobile terminals such as smartphones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongles type mobile routers and digital cameras) or in-vehicle terminals (such as car navigation equipment).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • the schematic configuration of the gNB is described below with reference to FIGS. 14 and 15 .
  • gNB 1400 includes multiple antennas 1410 and base station equipment 1420.
  • the base station apparatus 1420 and each antenna 1410 may be connected to each other via an RF cable.
  • the gNB 1400 (or the base station device 1420) here may correspond to the above-mentioned electronic devices 300A, 1300A and/or 1500B.
  • Each of the antennas 1410 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used for the base station apparatus 1420 to transmit and receive wireless signals.
  • gNB 1400 may include multiple antennas 1410.
  • multiple antennas 1410 may be compatible with multiple frequency bands used by gNB 1400.
  • the base station apparatus 1420 includes a controller 1421 , a memory 1422 , a network interface 1423 , and a wireless communication interface 1425 .
  • the controller 1421 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1420 .
  • the controller 1421 generates data packets from the data in the signal processed by the wireless communication interface 1425, and communicates the generated packets via the network interface 1423.
  • the controller 1421 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 1421 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 1422 includes RAM and ROM, and stores programs executed by the controller 1421 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1423 is a communication interface for connecting the base station apparatus 1420 to the core network 1424 .
  • the controller 1421 may communicate with core network nodes or further gNBs via the network interface 1423 .
  • gNB 1400 and core network nodes or other gNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1423 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1423 is a wireless communication interface, the network interface 1423 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1425 .
  • Wireless communication interface 1425 supports any cellular communication scheme, such as Long Term Evolution (LTE), LTE-Advanced and NR, and provides wireless connectivity to terminals located in the cell of gNB 1400 via antenna 1410.
  • the wireless communication interface 1425 may generally include, for example, a baseband (BB) processor 1426 and RF circuitry 1427 .
  • the BB processor 1426 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • L1 Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the BB processor 1426 may have some or all of the above-described logical functions.
  • the BB processor 1426 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1426 to change.
  • the module may be a card or blade that is inserted into a slot of the base station device 1420. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1427 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1410 .
  • FIG. 14 shows an example in which one RF circuit 1427 is connected to one antenna 1410 , the present disclosure is not limited to this illustration, but one RF circuit 1427 may connect a plurality of antennas 1410 at the same time.
  • the wireless communication interface 1425 may include multiple BB processors 1426 .
  • multiple BB processors 1426 may be compatible with multiple frequency bands used by gNB 1400.
  • the wireless communication interface 1425 may include a plurality of RF circuits 1427 .
  • multiple RF circuits 1427 may be compatible with multiple antenna elements.
  • FIG. 14 shows an example in which the wireless communication interface 1425 includes multiple BB processors 1426 and multiple RF circuits 1427 , the wireless communication interface 1425 may also include a single BB processor 1426 or a single RF circuit 1427 .
  • gNB 15 is a block diagram illustrating a second example of a schematic configuration of a gNB to which the techniques of this disclosure may be applied.
  • gNB 1530 includes multiple antennas 1540, base station equipment 1550 and RRH 1560.
  • the RRH 1560 and each antenna 1540 may be connected to each other via an RF cable.
  • the base station apparatus 1550 and the RRH 1560 may be connected to each other via a high-speed line such as an optical fiber cable.
  • the gNB 1530 (or the base station device 1550) here may correspond to the above-mentioned electronic devices 300A, 1300A and/or 1500B.
  • Each of the antennas 1540 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1560 to transmit and receive wireless signals.
  • gNB 1530 may include multiple antennas 1540.
  • multiple antennas 1540 may be compatible with multiple frequency bands used by gNB 1530.
  • the base station apparatus 1550 includes a controller 1551 , a memory 1552 , a network interface 1553 , a wireless communication interface 1555 , and a connection interface 1557 .
  • the controller 1551 , the memory 1552 and the network interface 1553 are the same as the controller 1421 , the memory 1422 and the network interface 1423 described with reference to FIG. 14 .
  • Wireless communication interface 1555 supports any cellular communication scheme (such as LTE, LTE-Advanced and NR) and provides wireless communication via RRH 1560 and antenna 1540 to terminals located in a sector corresponding to RRH 1560.
  • Wireless communication interface 1555 may generally include, for example, BB processor 1556 .
  • the BB processor 1556 is the same as the BB processor 1426 described with reference to FIG. 14, except that the BB processor 1556 is connected to the RF circuit 1564 of the RRH 1560 via the connection interface 1557.
  • the wireless communication interface 1555 may include multiple BB processors 1556 .
  • multiple BB processors 1556 may be compatible with multiple frequency bands used by gNB 1530.
  • FIG. 15 shows an example in which the wireless communication interface 1555 includes multiple BB processors 1556
  • the wireless communication interface 1555 may also include a single BB processor 1556 .
  • connection interface 1557 is an interface for connecting the base station apparatus 1550 (the wireless communication interface 1555 ) to the RRH 1560.
  • the connection interface 1557 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1550 (the wireless communication interface 1555) to the RRH 1560.
  • RRH 1560 includes connection interface 1561 and wireless communication interface 1563.
  • connection interface 1561 is an interface for connecting the RRH 1560 (the wireless communication interface 1563 ) to the base station apparatus 1550.
  • the connection interface 1561 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1563 transmits and receives wireless signals via the antenna 1540 .
  • Wireless communication interface 1563 may typically include RF circuitry 1564, for example.
  • RF circuitry 1564 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1540 .
  • FIG. 15 shows an example in which one RF circuit 1564 is connected to one antenna 1540 , the present disclosure is not limited to this illustration, but one RF circuit 1564 may connect multiple antennas 1540 at the same time.
  • the wireless communication interface 1563 may include a plurality of RF circuits 1564 .
  • multiple RF circuits 1564 may support multiple antenna elements.
  • FIG. 15 shows an example in which the wireless communication interface 1563 includes multiple RF circuits 1564 , the wireless communication interface 1563 may include a single RF circuit 1564 .
  • FIG. 16 is a block diagram showing an example of a schematic configuration of a smartphone 1600 to which the techniques of the present disclosure may be applied.
  • Smartphone 1600 includes processor 1601, memory 1602, storage device 1603, external connection interface 1604, camera device 1606, sensor 1607, microphone 1608, input device 1609, display device 1610, speaker 1611, wireless communication interface 1612, one or more Antenna switch 1615 , one or more antennas 1616 , bus 1617 , battery 1618 , and auxiliary controller 1619 .
  • the smart phone 1600 (or the processor 1601 ) here may correspond to the above-mentioned terminal device 300B and/or 1500A.
  • the processor 1601 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 1600 .
  • the memory 1602 includes RAM and ROM, and stores data and programs executed by the processor 1601 .
  • the storage device 1603 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1604 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 1600 .
  • USB Universal Serial Bus
  • the camera 1606 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1607 may include a set of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1608 converts the sound input to the smartphone 1600 into an audio signal.
  • the input device 1609 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect a touch on the screen of the display device 1610, and receives operations or information input from a user.
  • the display device 1610 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1600 .
  • the speaker 1611 converts the audio signal output from the smartphone 1600 into sound.
  • the wireless communication interface 1612 supports any cellular communication scheme such as LTE, LTE-Advanced and NR, and performs wireless communication.
  • Wireless communication interface 1612 may typically include, for example, BB processor 1613 and RF circuitry 1614.
  • the BB processor 1613 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1614 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1616 .
  • the wireless communication interface 1612 may be a chip module on which the BB processor 1613 and the RF circuit 1614 are integrated. As shown in FIG.
  • the wireless communication interface 1612 may include a plurality of BB processors 1613 and a plurality of RF circuits 1614 .
  • FIG. 16 shows an example in which the wireless communication interface 1612 includes multiple BB processors 1613 and multiple RF circuits 1614 , the wireless communication interface 1612 may include a single BB processor 1613 or a single RF circuit 1614 .
  • the wireless communication interface 1612 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1612 may include the BB processor 1613 and the RF circuit 1614 for each wireless communication scheme.
  • Each of the antenna switches 1615 switches the connection destination of the antenna 1616 among a plurality of circuits included in the wireless communication interface 1612 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 1616 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used by the wireless communication interface 1612 to transmit and receive wireless signals.
  • smartphone 1600 may include multiple antennas 1616 .
  • FIG. 16 shows an example in which the smartphone 1600 includes multiple antennas 1616
  • the smartphone 1600 may also include a single antenna 1616 .
  • the smartphone 1600 may include an antenna 1616 for each wireless communication scheme.
  • the antenna switch 1615 can be omitted from the configuration of the smartphone 1600 .
  • the bus 1617 connects the processor 1601, the memory 1602, the storage device 1603, the external connection interface 1604, the camera device 1606, the sensor 1607, the microphone 1608, the input device 1609, the display device 1610, the speaker 1611, the wireless communication interface 1612, and the auxiliary controller 1619 to each other connect.
  • the battery 1618 provides power to the various blocks of the smartphone 1600 shown in FIG. 16 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1619 operates the minimum necessary functions of the smartphone 1600, eg, in sleep mode.
  • FIG. 17 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 1720 to which the techniques of the present disclosure can be applied.
  • the car navigation device 1720 includes a processor 1721, a memory 1722, a global positioning system (GPS) module 1724, a sensor 1725, a data interface 1726, a content player 1727, a storage medium interface 1728, an input device 1729, a display device 1730, a speaker 1731, a wireless A communication interface 1733 , one or more antenna switches 1736 , one or more antennas 1737 , and a battery 1738 .
  • the car navigation device 1720 (or the processor 1721 ) here may correspond to the above-mentioned terminal device 300B and/or 1500A.
  • the processor 1721 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 1720 .
  • the memory 1722 includes RAM and ROM, and stores data and programs executed by the processor 1721 .
  • the GPS module 1724 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1720 using GPS signals received from GPS satellites.
  • Sensors 1725 may include a set of sensors, such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1726 is connected to, for example, the in-vehicle network 1741 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 1727 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 1728 .
  • the input device 1729 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1730, and receives operations or information input from a user.
  • the display device 1730 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 1731 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1733 supports any cellular communication scheme such as LTE, LTE-Advanced and NR, and performs wireless communication.
  • Wireless communication interface 1733 may generally include, for example, BB processor 1734 and RF circuitry 1735.
  • the BB processor 1734 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1735 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1737 .
  • the wireless communication interface 1733 can also be a chip module on which the BB processor 1734 and the RF circuit 1735 are integrated. As shown in FIG.
  • the wireless communication interface 1733 may include a plurality of BB processors 1734 and a plurality of RF circuits 1735 .
  • FIG. 17 shows an example in which the wireless communication interface 1733 includes multiple BB processors 1734 and multiple RF circuits 1735
  • the wireless communication interface 1733 may also include a single BB processor 1734 or a single RF circuit 1735 .
  • the wireless communication interface 1733 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1733 may include the BB processor 1734 and the RF circuit 1735 for each wireless communication scheme.
  • Each of the antenna switches 1736 switches the connection destination of the antenna 1737 among a plurality of circuits included in the wireless communication interface 1733, such as circuits for different wireless communication schemes.
  • Each of the antennas 1737 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1733 to transmit and receive wireless signals.
  • the car navigation device 1720 may include a plurality of antennas 1737 .
  • FIG. 17 shows an example in which the car navigation device 1720 includes a plurality of antennas 1737
  • the car navigation device 1720 may also include a single antenna 1737 .
  • the car navigation device 1720 may include an antenna 1737 for each wireless communication scheme.
  • the antenna switch 1736 may be omitted from the configuration of the car navigation apparatus 1720 .
  • the battery 1738 provides power to the various blocks of the car navigation device 1720 shown in FIG. 17 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 1738 accumulates power supplied from the vehicle.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 1740 that includes one or more blocks of a car navigation device 1720 , an in-vehicle network 1741 , and a vehicle module 1742 .
  • the vehicle module 1742 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1741 .
  • An electronic device for a first terminal device comprising a processing circuit configured to:
  • Resource selection information is sent to the base station, the resource selection information indicating whether a particular resource is selected.
  • searching for time-frequency resources through the at least two allocation modes comprises:
  • the candidate resource set includes time-frequency resources corresponding to the first and second allocation modes.
  • sensing and finding time-frequency resources comprises:
  • searching for time-frequency resources through the at least two allocation modes comprises:
  • a resource scheduling request message is sent to the cluster scheduling device, and a resource grant message is received from the cluster scheduling device,
  • the candidate resource set includes time-frequency resources corresponding to the first and third allocation modes.
  • a time-frequency resource is selected from the resource pool to be granted to the specific terminal device.
  • selecting time-frequency resources comprises:
  • the time-frequency resources are selected based on the QoS requirements of the direct link communication and the attributes of the time-frequency resources in the candidate resource set, wherein the time-frequency resources corresponding to a single one or more than one allocation mode are selected.
  • the resource selection information further indicates to the base station the selected time-frequency resource among the time-frequency resources corresponding to the second or third allocation mode.
  • processing circuit is further configured to receive parameter configurations of the at least two allocation modes from the base station through radio resource control RRC signaling.
  • processing circuit is further configured to: receive from the second terminal device time-frequency resource information selected by the second terminal device, for receiving the cut-through link from the second terminal device communication.
  • processing circuit further configured to:
  • the selected time-frequency resource is notified to the second terminal device by transmitting specific time-frequency resource information or index through the through link control information.
  • An electronic device for a base station comprising a processing circuit configured to:
  • the resource scheduling request message requesting time-frequency resources for direct link communication by the first terminal device to the second terminal device;
  • Resource selection information from the first terminal device is received, where the resource selection information indicates whether the time-frequency resource corresponding to the first allocation mode is selected by the first terminal device.
  • resource selection information further indicates a time-frequency resource selected by the first terminal device from time-frequency resources corresponding to at least another allocation mode.
  • processing circuit is further configured to send parameter configurations of the first allocation mode and the at least another allocation mode to the first terminal device through radio resource control RRC signaling.
  • a method for wireless communication comprising:
  • the first terminal device By the first terminal device:
  • Resource selection information is sent to the base station, the resource selection information indicating whether a particular resource is selected.
  • the candidate resource set includes time-frequency resources corresponding to the first and second allocation modes.
  • finding time-frequency resources through the at least two allocation modes comprises:
  • a resource scheduling request message is sent to the cluster scheduling device, and a resource grant message is received from the cluster scheduling device,
  • the candidate resource set includes time-frequency resources corresponding to the first and third allocation modes.
  • a method for wireless communication comprising:
  • the resource scheduling request message requesting time-frequency resources for direct link communication by the first terminal device to the second terminal device;
  • Resource selection information from the first terminal device is received, where the resource selection information indicates whether the time-frequency resource corresponding to the first allocation mode is selected by the first terminal device.
  • a computer-readable storage medium having stored thereon one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform any of the items 15 to 18. one of the methods described.
  • An apparatus for wireless communication comprising means for performing the operations of the method of any of clauses 15 to 18.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用于无线通信系统的电子设备、方法和存储介质。描述了针对直通链路通信的资源分配和管理的各种实施例。在一个实施例中,用于第一终端设备的电子设备包括处理电路,该处理电路被配置为通过至少两种分配模式查找时频资源以获得候选资源集合,从该候选资源集合中选择时频资源,向第二终端设备通知所选择的时频资源,用于进行到第二终端设备的直通链路通信。该处理电路还被配置为向基站发送资源选择信息,该资源选择信息指示特定资源是否被选择。

Description

用于无线通信的电子设备、方法和存储介质
本申请要求申请号为202010769120.3、申请日为2020年8月3日、题为“用于无线通信的电子设备、方法和存储介质”的中国申请的优先权,该中国申请的公开内容通过引用整体并入于此。
技术领域
本公开一般地涉及用于无线通信的设备和方法,并且具体地涉及针对直通链路(Sidelink,SL)通信的资源分配和管理技术。
背景技术
无线通信技术的发展和应用前所未有地满足了人们的语音和数据通信需求。为了丰富无线通信应用场景,不同层面的技术不断被引用无线通信系统中。在第三代合作伙伴计划(Third Generation Partnership Project,3GPP)的长期演进(Long Term Evolution,LTE)以及新无线电(New Radio,NR)等已经或正在开发的无线通信系统中引入了直通链路通信,以期支持设备到设备(Device-to-Device,D2D)通信、机器到机器(Machine-to-Machine,M2M)通信、车辆到车辆(Vehicle-to-Vehicle,V2V)通信以及车辆到一切(Vehicle-to-Everything,V2X)通信。
需要特定的时频资源以进行终端设备之间的直通链路通信。因此,针对直通链路通信的资源分配和管理方案是期望的,以便保证直通链路通信的性能。
发明内容
本公开的第一方面涉及用于第一终端设备的电子设备,该电子设备包括处理电路。该处理电路被配置为通过至少两种分配模式查找时频资源以获得候选资源集合,从该候选资源集合中选择时频资源,向第二终端设备通知所选择的时频资源,用于经由直通链路进行到第二终端设备的通信。该处理电路还被配置为向基站发送资源选择信息,该资 源选择信息指示特定资源是否被选择。
本公开的第二方面涉及用于基站的电子设备,该电子设备包括处理电路。该处理电路被配置为接收来自第一终端设备的资源调度请求消息,该资源调度请求消息请求时频资源以用于由第一终端设备进行到第二终端设备的直通链路通信。该处理电路还被配置为通过第一分配模式向第一终端设备分配时频资源,向第一终端设备发送资源授权消息,以及接收来自第一终端设备的资源选择信息,该资源选择信息指示第一分配模式所对应的时频资源是否被第一终端设备选择。
本公开的第三方面涉及用于无线通信的方法。该方法包括由第一终端设备通过至少两种分配模式查找时频资源以获得候选资源集合,从该候选资源集合中选择时频资源,向第二终端设备通知所选择的时频资源,用于进行到第二终端设备的直通链路通信。该方法还包括由第一终端设备向基站发送资源选择信息,该资源选择信息指示特定资源是否被选择。
本公开的第四方面涉及用于无线通信的方法。该方法包括由基站接收来自第一终端设备的资源调度请求消息,该资源调度请求消息请求时频资源以用于由第一终端设备进行到第二终端设备的直通链路通信。该方法还包括由基站通过第一分配模式向第一终端设备分配时频资源,向第一终端设备发送资源授权消息,以及接收来自第一终端设备的资源选择信息,该资源选择信息指示第一分配模式所对应的时频资源是否被第一终端设备选择。
本公开的第五方面涉及存储有一个或多个指令的计算机可读存储介质。在一个或多个实施例中,该一个或多个指令可以在由电子设备的一个或多个处理器执行时,使电子设备执行根据本公开的各种实施例的方法。
本公开的第六方面涉及用于无线通信的装置,包括用于执行根据本公开实施例的各方法的操作的部件或单元。
提供上述概述是为了总结一些示例性的实施例,以提供对本文所描述的主题的各方面的基本理解。因此,上述特征仅仅是例子并且不应该被解释为以任何方式缩小本文所描述的主题的范围或精神。本文所描述的主题的其他特征、方面和优点将从以下结合附图描述的具体实施方式而变得明晰。
附图说明
当结合附图考虑实施例的以下具体描述时,可以获得对本公开内容更好的理解。在各附图中使用了相同或相似的附图标记来表示相同或者相似的部件。各附图连同下面的具体描述一起包含在本说明书中并形成说明书的一部分,用来例示说明本公开的实施例和解释本公开的原理和优点。其中:
图1示出了根据本公开实施例的可以发生直通链路通信的示例性无线通信系统。
图2A示出了根据本公开实施例的用于终端设备的示例性电子设备。
图2B示出了根据本公开实施例的用于基站的示例性电子设备。
图3示出了根据本公开实施例的用于通过多种分配模式配置和选择时频资源的示例性信令流程。
图4示出了根据本公开实施例的第二分配模式的示例操作。
图5示出了根据本公开实施例的第三分配模式的示例操作。
图6示出了根据本公开实施例的选择时频资源的示意图。
图7示出了根据本公开实施例的用于通过两种分配模式选择时频资源的一个示例性信令流程。
图8示出了根据本公开实施例的用于通过两种分配模式选择时频资源的另一个示例性信令流程。
图9A和图9B示出了根据本公开实施例的用于多种分配模式的资源池示意图。
图10示出了根据本公开实施例的用于指示时频资源的指示符的示例格式。
图11示出了根据本公开实施例的用于无线通信的示例方法。
图12示出了根据本公开实施例的用于无线通信的另一示例方法。
图13是作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。
图14是示出可以应用本公开的技术的gNB的示意性配置的第一示例的框图。
图15是示出可以应用本公开的技术的gNB的示意性配置的第二示例的框图。
图16是示出可以应用本公开的技术的智能电话的示意性配置的示例的框图。
图17是示出可以应用本公开的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为例子示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
以下描述根据本公开的设备和方法等各方面的代表性应用。这些例子的描述仅是为了增加上下文并帮助理解所描述的实施例。因此,对本领域技术人员而言明晰的是,以下所描述的实施例可以在没有具体细节当中的一些或全部的情况下被实施。在其他情况下,众所周知的过程步骤没有详细描述,以避免不必要地模糊所描述的实施例。其他应用也是可能的,本公开的方案并不限制于这些示例。
图1示出了根据实施例的可以发生直通链路通信的示例性无线通信系统。如图1所示,无线通信系统100包括基站110以及终端设备120-1和120-2。在本公开中,也可以将终端设备统称为终端设备120。基站110和终端设备120-1可以被配置为通过无线链路彼此耦接。具体地,基站110和终端设备120-1可以经由下行链路155和上行链路165进行信令和数据传输。终端设备120-1和终端设备120-2可以被配置为通过无线链路彼此耦接。具体地,终端设备120-1可以经由直通链路175向终端设备120-2进行信令和数据传输。经由直通链路175,终端设备120-1可以自主发起到终端设备120-2的传输,或者可以将来自基站110的传输中继到终端设备120-2。直通链路175可以支持从终端设备120-1到终端设备120-2的传输。在该意义上,终端设备120-1和终端设备120-2可以分别称为发送终端设备和接收终端设备。
可选地,基站110和终端设备120-2之间也可以设置有上下行链路(如图1中虚线所示),以便于在二者之间进行信令和数据传输。可选地,终端设备120-2可以位于基站110的覆盖范围之外(未示出),仅经由直通链路175与终端设备120-1通信。
基站110可以被配置为与网络(例如,蜂窝服务提供方的核心网、诸如公共交换 电话网(PSTN)的电信网络和/或互联网)进行通信。由此,基站110可以便于终端设备120之间或者终端设备120与网络之间通信。
在本文中,基站具有其通常含义的全部广度,并且至少包括作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的示例可以包括但不限于:GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的至少一者;WCDMA系统中的无线电网络控制器(RNC)和Node B中的至少一者;LTE和LTE-Advanced系统中的eNB;WLAN、WiMAX系统中的接入点(AP);以及将要或正在开发的通信系统中对应的网络节点(例如5G New Radio(NR)系统中的gNB,eLTEeNB等)。本文中基站的部分功能也可以实现为在D2D、M2M、V2V和V2X通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
在本文中,终端具有其通常含义的全部广度,例如终端可以为移动站(Mobile Station,MS)、用户设备(User Equipment,UE)等。终端可以实现为诸如移动电话、手持式设备、媒体播放器、计算机、膝上型电脑或平板电脑的设备或者几乎任何类型的无线设备。在一些情况下,终端可以使用多种无线通信技术进行通信。例如,终端可以被配置为使用GSM、UMTS、CDMA2000、LTE、LTE-Advanced、NR、WiMAX、WLAN、蓝牙等中的两者或更多者进行通信。在一些情况下,终端也可以被配置为仅使用一种无线通信技术进行通信。
图1中基站和终端设备的数量仅为示例。根据需要,无线通信系统100可以包括更多的基站以及更多的终端设备。应理解,图1仅示出无线通信系统的多种布置中的一种;可以根据需要在任何适当的布置中实现本公开的实施例。
存在多种资源分配模式,用于针对直通链路通信进行时频资源分配。例如,可以由基站或其他调度设备进行资源分配,或者可以由发送终端设备感测并选择资源。在本公开中,可以通过多种模式为直通链路通信分配时频资源,形成候选资源集合。发送终端设备可以从该候选资源集合中选择资源用于直通链路通信。例如,发送终端设备可以基于候选资源集合中时频资源的属性和/或直通链路通信的QoS需求进行选择。所选择的时频资源不限于通过某一种分配模式分配的资源,而是可以包括通过一种或多种分配模式分配的能够更好地满足QoS需求的资源。在根据本公开的资源分配和选择方案中,更容易实现直通链路通信的高可靠性和低延迟,对于URLLC业务是有利的。
图2A示出了根据实施例的用于终端设备的示例性电子设备。图2A所示的电子设备200可以包括各种单元以实现根据本公开的各种实施例。电子设备200可以包括资源获得单元202、资源选择单元204和收发单元206。在不同实施方式中,电子设备200可以实现为图1中的终端设备120或其一部分。以下结合终端设备描述的各种操作可以由电子设备200的单元202至206或者其他可能的单元实现。
参照图1中的无线通信系统100的上下文,电子设备200可以用于发送终端设备(例如120-1)。在实施例中,电子设备200支持多种资源分配模式,并且可以通过多种分配模式获得时频资源以用于经由直通链路175到接收终端设备120-2的通信。具体地,电子设备200的资源获得单元202可以被配置为通过至少两种分配模式查找时频资源以获得候选资源集合。该候选资源集合可以包括通过多种分配模式查找到的时频资源。
电子设备200的资源选择单元204可以被配置为从候选资源集合中选择时频资源,用于进行到第二终端设备的直通链路通信。在实施例中,所选择的时频资源可以包括通过第一分配模式获得(也称为与第一分配模式对应)的时频资源和/或通过第二分配模式获得(也称为与第二分配模式对应)的时频资源。
电子设备200的收发单元206可以被配置为向接收终端设备(例如120-2)通知所选择的时频资源,用于接收来自发送终端设备的直通链路通信。收发单元206还可以被配置为向基站(例如110)发送资源选择信息,该资源选择信息指示资源选择情况,例如特定资源是否被选择。
另选地或附加地,电子设备200可以用于接收终端设备(例如120-2)。相应地,收发单元206可以被配置为从另一终端设备接收该另一终端设备所选择的时频资源信息,用于接收来自该另一终端设备的直通链路通信。
图2B示出了根据实施例的用于基站的示例性电子设备。图2B所示的电子设备250可以包括各种单元以实现根据本公开的各种实施例。电子设备250可以包括资源管理单元252和收发单元254。在不同实施方式中,电子设备250可以实现为图1中的基站110或其一部分,或者可以实现为用于控制基站110或以其他方式与基站110相关的设备(例如基站控制器)或该设备的一部分。以下结合基站描述的各种操作可以由电子设备250的单元252和254或者其他可能的单元实现。
参照图1中的无线通信系统100的上下文,在实施例中,电子设备250的资源管理单元252可以被配置为接收来自发送终端设备120-1的资源调度请求消息,该资源调度请求消息请求时频资源以用于发送终端设备120-1进行到接收终端设备120-2的直通链路通信。资源管理单元252还可以被配置为通过第一分配模式向发送终端设备120-1分配时频资源。第一分配模式可以包括基站向终端设备授权时频资源的分配模式,例如基于终端设备的资源调度请求。
在实施例中,电子设备250的收发单元254可以被配置为向发送终端设备120-1发送资源授权消息。收发单元254还可以被配置为接收来自发送终端设备120-1的资源选择信息,该资源选择信息可以指示第一分配模式所对应的时频资源是否被发送终端设备120-1选择使用。未被选择使用的时频资源可以由资源管理单元252另行分配。
在实施例中,电子设备200和250可以以芯片级来实现,或者可以通过包括其他部件(例如图中以虚线示出的无线电部件)以设备级来实现。例如,各电子设备可以作为整机形式的通信设备工作。
应注意,上述各个单元仅是根据其所实现的具体功能划分的逻辑模块,而不是用于限制具体的实现方式,例如可以以软件、硬件或者软硬件结合的方式来实现。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。处理电路可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
以上参考图2A至图2B描述了根据实施例的示例性电子设备和一般性操作。以下将进一步描述这些操作的细节。
图3示出了根据实施例的用于通过多种分配模式配置和选择时频资源的示例性信令流程。所选择的时频资源用于终端设备之间经由直通链路的通信。可以由基站110、终端设备120执行该信令流程。
如图3所示,在发送终端设备120-1与基站110建立连接后,在302处,基站110 通过无线电资源控制(Radio Resource Control,RRC)信令(例如RRC重配置信息)向发送终端设备120-1发送不同资源分配模式的参数配置信息。例如,参数配置信息可以包括基站110预先配置的不同分配模式所对应的资源池信息以及直通链路通信的初始化信息(例如,直通链路通信的频率、Pcell信息等)。在一个实施例中,基站110可以通过广播消息(例如在NR系统的SIB21中)向第一终端设备发送多种分配模式的参数配置信息。例如,可以通过广播消息发送多种分配模式所对应的资源池信息和直通链路通信的初始化信息中的至少部分信息。
在304处,在接收到多种分配模式的参数配置信息后,终端设备120-1通过多种分配模式查找时频资源以获得候选资源集合,该候选资源集合可以包括通过多种分配模式查找到的时频资源。终端设备120-1进一步从候选资源集合中选择时频资源,用于进行到接收终端设备120-2的直通链路通信。由于候选资源集合包括通过多种分配模式查找到的时频资源,终端设备120-1可以选择更好地满足直通链路的QoS需求的时频资源。所选择的时频资源可以包括与第一分配模式对应的时频资源和/或与第二分配模式对应的时频资源。
在306处,在选择了时频资源后,终端设备120-1向终端设备120-2通知所选择的时频资源,用于进行到终端设备120-2的直通链路通信。例如,可以通过直通链路控制信息传送具体时频资源信息或索引来向终端设备120-2通知所选择的时频资源。在308处,终端设备120-1还向基站110发送资源选择信息,该资源选择信息指示资源选择情况,例如特定资源是否被选择。
在310处,终端设备120-1通过所选择的时频资源经由直通链路进行到终端设备120-2的通信。例如,在NR系统中,可以通过物理直通链路共享信道(PysicalSidelink Share Channel,PSSCH)进行通信。
通过多种分配模式获得候选资源集合
本公开涉及针对直通链路通信的多种资源分配模式。第一分配模式可以包括由基站调度并向发送终端设备授权时频资源。例如,调度可以基于发送终端设备的资源调度请求。
第二分配模式可以包括由发送终端设备感知并查找时频资源。图4示出了根据实 施例的第二分配模式的示例操作。如图4所示,操作400包括在402处确立资源窗。该资源窗可以为一定持续时间的时间窗。操作400包括在404处在资源窗中进行资源感知。终端设备可以对预先配置的频率资源进行感知。例如,终端设备可以基于来自基站的该资源分配模式的参数配置信息来获得预先配置的频率资源。
资源感知的目的在于获得发送终端设备可以使用的时频资源。可以通过任何方式进行资源感知。例如,发送终端设备可以接收直通链路控制信息(例如NR系统中的SCI(Sidelink Control Information))并对其解码。由此,发送终端设备可以排除在SCI中已明确分配了的时频资源。又例如,发送终端设备可以在资源窗内对预先配置的频率资源在频域进行测量(例如测量RSRP、RSRQ、SNR、SNIR等)。由此,发送终端设备可以排除测量值大于预先设定的阈值的频率资源。
基于404处的资源感知结果,发送终端设备可以获得可使用的时频资源集合。在406处,发送终端设备可以从该时频资源集合中筛选期望的时频资源。例如,该筛选可以是随机选择或者是基于频域测量值的选择。
在第二分配模式下,发送终端设备可以从预先配置的资源中选择时频资源,替代由其他设备专门调度资源。因此,发送终端设备可以快速地获得时频资源。在信道忙碌程度较低的情况,发送终端设备快速地获得时频资源的成功率会很高。在一定程度上,第二分配模式可以有利于减小直通链路通信的时延以及提高可靠性,对于例如高可靠和低延迟通信(Ultra-Reliable and Low Latency Communication,URLLC)业务是有利的。
第三分配模式可以包括由发送终端设备向资源调度设备请求时频资源以及由资源调度设备向发送终端设备分配时频资源。资源调度设备可以是基站之外的另一实体,其被配置为向集群中的终端设备分配用于直通链路通信的时频资源。基站可以预先分配资源池给资源调度设备,以便该资源调度设备进一步向终端设备分配。
图5示出了根据实施例的第三分配模式的示例操作。如图5所示,操作500包括在501处资源调度设备向基站110发送资源池调度请求消息,以请求基站110分配资源池供资源调度设备进一步分配给集群中的终端设备进行直通链路通信。在503处,基站基于资源请求向资源调度设备授权资源池,资源调度设备从基站110接收资源池授权消息。在505处,终端设备120-1可以作为集群的成员,向资源调度设备发送调度请求, 以请求进行直通链路通信的资源。在507处,响应于接收到来自终端设备120-1的资源调度请求消息,资源调度设备可以从资源池中选择时频资源以授权给终端设备120-1。在实施例中,调度请求可以包括基站预先配置给终端设备120-1的针对第三分配模式的参数配置信息,或者资源调度设备可以预先知晓该参数配置信息,使得资源调度设备可以基于该参数配置信息为终端设备120-1分配时频资源。在509处,所分配的时频资源可以由终端设备120-1用于与终端设备120-2的直通链路通信。
在实施例中,资源调度设备可以是基站之外的任何设备,例如可以是集群中的终端设备之一。相比与基站,资源调度设备可以更加靠近终端设备的集群,因此能够更好的感知局部区域的资源使用情况,有利于组播通信。例如,资源调度设备可以通过参照图4中描述的资源感知操作404感知集群中资源的使用情况,或者可以收集各终端设备的感知结果分析资源使用情况,从而能够以较低的时延分配适当的时频资源给终端设备。因此,相比于第一分配模式,第三分配模式可以更好地降低直通链路通信的时延并提高可靠性,满足例如URLLC业务的QoS需求。
时频资源选择
在本公开中,发送终端设备可以通过至少两种分配模式查找时频资源。所述至少两种分配模式可以包括第一分配模式、第二分配模式和/或其他可能的分配模式。对于第一分配模式,发送终端设备可以向基站发送资源调度请求消息,并从基站接收资源授权消息。对于第二分配模式,发送终端设备可以感知并查找时频资源。相应地,候选资源集合至少包括与第一和第二分配模式所对应的时频资源。
所述至少两种分配模式可以包括第一分配模式、第三分配模式和/或其他可能的分配模式。对于第一分配模式,发送终端设备可以向基站发送资源调度请求消息,并从基站接收资源授权消息。对于第三分配模式,发送终端设备可以向集群调度设备发送资源调度请求消息,并从集群调度设备接收资源授权消息。相应地,候选资源集合至少包括与第一和第三分配模式所对应的时频资源。
所述至少两种分配模式可以包括第二分配模式、第三分配模式和/或其他可能的分配模式。对于第二分配模式,发送终端设备可以感知并查找时频资源。对于第三分配模式,发送终端设备可以向集群调度设备发送资源调度请求消息,并从集群调度设备接收资源授权消息。相应地,候选资源集合至少包括与第二和第三分配模式所对应的时频资 源。
在获得候选资源集合后,发送终端设备可以基于直通链路通信的QoS需求和候选资源集合中的时频资源的属性来选择时频资源。在实施例中,可能有单个一种或多于一种分配模式所对应的时频资源被选择。
图6示出了根据实施例的选择时频资源的示意图。图6示出了包括两种分配模式(即模式1和模式2)所对应的时频资源的候选资源集合。可以类似地理解候选资源集合包括更多种分配模式所对应的时频资源的情况。
候选资源集合中不同分配模式所对应的时频资源可以具有不同的属性。如图6所示,模式1所对应的时频资源在时间上晚于模式2所对应的时频资源,例如晚2个OFDM符号。模式1所对应的时频资源(例如2个子载波宽度)在频域上多于模式2所对应的时频资源(例如1个子载波宽度)。模式1所对应的时频资源在时域是离散的,模式2所对应的时频资源在时域是连续的。模式1所对应的时频资源可能性能优于模式2所对应的时频资源,或者相反;或者模式1所对应的时频资源有一部分性能优于模式2所对应的时频资源。
直通链路通信可以具有不同的QoS需求,例如URLLC业务期望低时延和高可靠性,其他业务可能期望频域较宽的资源或时域连续的资源。相应地,发送终端设备可以为不同的业务选择匹配的时频资源。
例如,可以基于资源在时域的先后选择时频资源。由于模式2所对应的资源在时域上靠前,该资源可以被选择用于URLLC业务以减小等待时延。例如,可以基于资源性能选择时频资源。可以从模式1和模式2所对应的整体资源中选择性能较好的资源(例如干扰较小),该资源可以被选择用于URLLC业务以提高可靠性。
可以理解,模式1或模式2可以对应于以上第一至第三分配模式中的任何一种。包括不同分配模式所对应的时频资源的候选资源集合为发送终端设备选择直通链路通信的资源提供了灵活性,发送终端设备更容易选择出与业务QoS需求匹配的时频资源。图6仅示出资源选择的一个示例。可以理解,不同模式所分配的资源的相对性能具有不确定性。然而,发送终端设备可以从候选资源集合中选择合适的资源(可以是通过一种或多种模式分配的)进行直通链路通信。
在根据本公开的资源分配和选择方案中,更容易实现直通链路通信的高可靠性和低延迟,对于URLLC业务是有利的。在例如信道状态忙碌或者存在较大信道干扰的情况下,相比于通过单个模式进行资源分配,根据本公开的技术方案优势更加明显,例如有利于在更广泛的场景下支持URLLC业务。
图7示出了根据实施例的用于通过两种分配模式选择时频资源的一个示例性信令流程。所选择的时频资源用于终端设备之间的直通链路通信。这两种分配模式分别对应于第一分配模式和第二分配模式。可以由基站110、终端设备120执行该信令流程。
如参照图3所描述的,在终端设备120与基站110建立连接后,基站110通过RRC信令向终端设备120发送不同资源分配模式的参数配置信息。基于这样的参数配置信息,终端设备120可以获得并选择用于直通链路通信的时频资源。如图7所示,基于到终端设备120-2的直通链路通信的需求,终端设备120-1一方面在702处向基站110发送资源调度请求消息,另一方面在704处进行资源感知。响应于接收到来自终端设备120-1的资源调度请求消息,在706处,基站110可以从资源池中选择时频资源以授权给终端设备120-1。在704处,资源感知可以包括终端设备120-1在资源窗中对预先配置的频率资源进行感知。通过资源感知,终端设备120-1可以排除在SCI中已明确分配了的时频资源,以及/或者排除测量值表明已被使用的频率资源。由于终端设备120-1可以还通过资源感知获得时频资源,因此可以以低于直通链路通信实际需求的方式向基站110发送资源调度请求消息。在一些实施例中,这种方式可能有利于基站110更快地或者以更高的成功率确定要授权给终端设备120-1的时频资源。
在708处,终端设备120-1获得候选资源集合,该候选资源集合包括通过第一和第二分配模式查找到的时频资源。终端设备120-1进一步从候选资源集合中选择时频资源,用于进行到接收终端设备120-2的直通链路通信。由于候选资源集合包括通过多种分配模式查找到的时频资源,终端设备120-1可以选择更好地满足直通链路的QoS需求的时频资源,如参照图6所描述的。
在710处,在选择了时频资源后,终端设备120-1向终端设备120-2通知所选择的时频资源,用于进行到终端设备120-2的直通链路通信。例如,可以通过直通链路控制信息传送具体时频资源信息或索引来向终端设备120-2通知所选择的时频资源。在712处,终端设备120-1还向基站110发送资源选择信息,该资源选择信息指示资源选 择情况,例如特定资源是否被选择。
在714处,终端设备120-1通过所选择的时频资源经由直通链路进行到终端设备120-2的通信。
图8示出了根据实施例的用于通过两种分配模式选择时频资源的另一个示例性信令流程。所选择的时频资源用于终端设备之间的直通链路通信。这两种分配模式分别对应于第一分配模式和第三分配模式。可以由基站110、终端设备120以及资源调度设备执行该信令流程。
如图8所示,基于到终端设备120-2的直通链路通信的需求,终端设备120-1一方面在802处向基站110发送资源调度请求消息,另一方面在804处向资源调度设备发送资源调度请求消息。响应于接收到来自终端设备120-1的资源调度请求消息,在806处,基站110可以从资源池中选择时频资源以授权给终端设备120-1。响应于接收到来自终端设备120-1的资源调度请求消息,在808处,资源调度设备可以从资源池中选择时频资源以授权给终端设备120-1。由于终端设备120-1可以从多个来源获得时频资源,因此可以以低于直通链路通信实际需求的方式向基站110或者资源调度设备发送资源调度请求消息。在一些实施例中,这种方式可能有利于基站110或者资源调度设备更快地或者以更高的成功率确定要授权给终端设备120-1的时频资源。
在810处,终端设备120-1获得候选资源集合,该候选资源集合包括通过第一和第三分配模式查找到的时频资源。终端设备120-1进一步从候选资源集合中选择时频资源,用于进行到接收终端设备120-2的直通链路通信。由于候选资源集合包括通过多种分配模式查找到的时频资源,终端设备120-1可以选择更好地满足直通链路的QoS需求的时频资源,如参照图6所描述的。
在812处,在选择了时频资源后,终端设备120-1向终端设备120-2通知所选择的时频资源,用于进行到终端设备120-2的直通链路通信。在814处,终端设备120-1还向基站110发送资源选择信息,该资源选择信息指示资源选择情况,例如特定资源是否被选择。
在816处,终端设备120-1通过所选择的时频资源经由直通链路进行到终端设备120-2的通信。
图9A和图9B示出了根据实施例的用于多种分配模式的资源池示意图。在图9A的示例中,不同的资源分配模式可以对应于不同的资源池。以两种分配模式为例,资源池A可以对应于第一分配模式,资源池B可以对应于第二或第三分配模式。类似地,可以为三种分配模式配置三个单独的资源池。可以为三种分配模式配置两个单独的资源池,例如第二和第三分配模式可以对应于单个资源池。在图9B的示例中,不同的资源分配模式可以对应于相同的资源池。例如,资源池C可以对应于第一至第三分配模式中的至少两种分配模式的组合。
应理解,资源池表示特定时频资源的集合,但并不在时域或频域对资源形成任何限定。相反,单个资源池中的资源在时域或频域可以是连续或者离散的。以NR系统为例,单个资源池中的资源可以对应单个或多个带宽部分(Bandwidth Part,BWP),多个资源池中的资源可以对应相同或不同的BWP。发送和接收终端设备120可以向基站110报告设备能力来激活多个资源池或多个BWP中的资源。例如,如果一个或多个资源池在同一个BWP中,则激活该BWP和BWP中的一个或多个资源池;如果一个或多个资源池在多个BWP中,则激活这多个BWP和相应的资源池。
资源选择通知
在本公开中,在选择了用于直通链路通信的时频资源后,发送终端设备可以通过直通链路控制信息(例如NR系统中的SCI)传送具体时频资源信息或索引,来向接收终端设备通知所选择的时频资源。在NR系统中,可以通过物理直通控制信道(PysicalSidelinkControl Channel,PSCCH)来传输SCI。
在一个实施例中,可以通过SCI中的时频资源字段来直接指示资源位置。在另一个实施例中,可以在SCI中增加资源池索引字段,例如称为ResourceIndex(如表一所示),用于指示特定资源池。可以通过SCI中的时频资源字段来指示时频资源在该特定资源池中的具体位置。通过资源池索引字段和时频资源字段也可以唯一地指示用于直通链路通信的时频资源。
在后一方式中,在特定资源池中指示时频资源所需要的比特数小于前一方式中在整体资源中指示时频资源所需要的比特数。即,通过使用索引值指示资源池可以减少用于通知资源选择的信令开销。相应地,基站110可以通过RRC信令为终端设备120预先配置多个资源池与索引值的对应关系。
表一
Figure PCTCN2021109664-appb-000001
资源选择报告
在本公开中,在选择了用于直通链路通信的时频资源后,发送终端设备可以通过物理上行链路控制信道(PysicalUplink Control Channel,PUCCH)传送资源选择信息,来向基站通知所选择的时频资源。在NR系统中,可以通过UCI(Uplink Control Information)来携带资源选择信息。资源选择信息可以向基站指示用于直通链路通信的资源选择情况。例如,资源选择信息可以指示第一分配模式所对应的(基站所分配的)时频资源是否被选择,或者还可以指示任何分配模式所对应的时频资源中被选择的具体时频资源。
在一个实施例中,可以通过PUCCH信道上的第一指示符来指示第一分配模式所对应的时频资源是否被选择。第一指示符可以仅具有1个比特。具体地,该指示符取值为0可以指示时频资源未被选择,该指示符取值为1可以指示时频资源被选择。在一个实施例中,为了减少UCI开销,可以使用现有UCI字段来携带该1比特指示符。现有UCI字段包括例如用于HARQ反馈的ACK/NACK字段。
在一个实施例中,终端设备可能更容易选择第一分配模式对应的时频资源,例如由于第一分配模式所对应的时频资源具有较高的优先级。相应地,可以仅发送取值为0的第一指示符;在第一分配模式所对应的时频资源被选择的情况下,不发送第一指示符。在另一个实施例中,终端设备可能更容易选择其他分配模式对应的时频资源,例如由于第一分配模式所对应的时频资源具有较低的优先级。相应地,可以仅发送取值为1的第一指示符;在第一分配模式所对应的时频资源未被选择的情况下,不发送第一指示符。
一经获知基站所分配的资源是否被发送终端设备选择,基站可以基于资源选择信息来进行进一步的资源调度。例如,基站可以释放已分配给发送终端设备但未被选择的时频资源,以便在进一步的资源调度中避免资源冲突。
在一个实施例中,可以通过PUCCH信道上的第二指示符来指示任何分配模式所对 应的时频资源中被选择的具体时频资源。第二指示符可以对应多个比特。可以使用相应数量的比特分别从频域和时域对具体时频资源进行描述,比特的相应数量可以与以下因素有关,即直通链路子信道数量和可为直通链路预留资源的最大数量。当然,可以预先为具体时频资源配置相应的索引值,例如通过RRC信令。另选地,可以使用索引值对具体时频资源进行描述。图10示出了根据实施例的用于指示时频资源的第二指示符的示例格式。在图10中,参数
Figure PCTCN2021109664-appb-000002
表示直通链路子信道数量,参数sl-MaxNumPerReserve表示可为直通链路预留资源的最大数量。可以通过高层信令(例如RRC信令)配置上述参数。
第二指示符可以有利于基站获知资源选择的详细信息,以便释放未被选择的时频资源以及在进一步的资源调度中避免资源冲突。
图11示出了根据实施例的用于无线通信的示例方法。方法1100可以由发送终端设备120-1执行,以便进行到接收终端设备120-2的直通链路通信。如图11所示,该方法1000可以包括通过至少两种分配模式查找时频资源以获得候选资源集合(框1105),从候选资源集合中选择时频资源(框1110)。该方法还可以包括向接收终端设备120-2通知所选择的时频资源,用于进行到接收终端设备120-2的直通链路通信(框1115)。该方法还可以包括向基站110发送资源选择信息,该资源选择信息可以指示资源选择情况,例如特定资源是否被选择(框1120)。
在一个实施例中,通过至少两种分配模式查找时频资源包括:对于第一分配模式,向基站110发送资源调度请求消息,并从基站110接收资源授权消息;对于第二分配模式,感知并查找时频资源。候选资源集合可以包括与第一和第二分配模式所对应的时频资源。
在一个实施例中,对于第二分配模式,感知并查找时频资源包括在资源窗中感知资源,以及基于感知结果筛选期望的资源。
在一个实施例中,通过至少两种分配模式查找时频资源包括:对于第一分配模式,向基站110发送资源调度请求消息,并从基站110接收资源授权消息;对于第三分配模式,向集群调度设备发送资源调度请求消息,并从集群调度设备接收资源授权消息。候选资源集合可以包括与第一和第三分配模式所对应的时频资源。
在一个实施例中,发送终端设备120-1用作资源调度设备,并且方法1100还包括向基站110发送资源池调度请求消息,并从基站110接收资源池授权消息;响应于接收到来自特定终端设备的资源调度请求消息,从资源池中选择时频资源以授权给特定终端设备。
在一个实施例中,选择时频资源包括基于直通链路通信的QoS需求和候选资源集合中的时频资源的属性来选择时频资源,其中单个一种或多于一种分配模式所对应的时频资源被选择。
在一个实施例中,资源选择信息向基站110指示第一分配模式所对应的时频资源是否被选择。
在一个实施例中,资源选择信息还向基站110指示第二或第三分配模式所对应的时频资源中被选择的时频资源。
在一个实施例中,方法1100还包括通过RRC信令从基站接收至少两种分配模式的参数配置。
在一个实施例中,方法1100还包括从另一终端设备接收该另一终端设备所选择的时频资源信息,用于接收来自该另一终端设备的直通链路通信。
在一个实施例中,方法1100还包括通过直通链路控制信息传送具体时频资源信息或索引来向终端设备120-2通知所选择的时频资源。
图12示出了根据实施例的用于无线通信的另一示例方法。方法1200可以由基站110执行,以为进行直通链路通信的终端设备120分配时频资源。如图12所示,该方法1200可以包括接收来自发送终端设备120-1的资源调度请求消息,该资源调度请求消息请求时频资源以用于由发送终端设备120-1进行到接收终端设备120-2的直通链路通信。该方法1200还可以包括通过第一分配模式向发送终端设备120-1分配时频资源,向发送终端设备120-1发送资源授权消息。该方法1200还可以包括接收来自发送终端设备120-1的资源选择信息,该资源选择信息指示第一分配模式所对应的时频资源是否被发送终端设备120-1选择。
在一个实施例中,资源选择信息还指示终端设备120-1从至少另一分配模式所对应的时频资源中选择的时频资源。
在一个实施例中,方法1200还包括通过RRC信令向终端设备120-1发送第一分配模式和至少另一分配模式的参数配置。
在一个实施例中,方法1200还包括基于资源选择信息进行进一步的资源分配,例如释放已授权但未被选择的时频资源。
以上分别描述了根据本公开实施例的各示例性电子设备和方法。应当理解,这些电子设备的操作或功能可以相互组合,从而实现比所描述的更多或更少的操作或功能。各方法的操作步骤也可以以任何适当的顺序相互组合,从而类似地实现比所描述的更多或更少的操作。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,从存储介质或网络向具有专用硬件结构的计算机,例如图13所示的通用个人计算机1300安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等等。图13是示出作为本公开的实施例中可采用的信息处理设备的个人计算机的示例结构的框图。在一个例子中,该个人计算机可以对应于根据本公开的上述示例性终端设备。
在图13中,中央处理单元(CPU)1301根据只读存储器(ROM)1302中存储的程序或从存储部分1308加载到随机存取存储器(RAM)1303的程序执行各种处理。在RAM1303中,也根据需要存储当CPU 1301执行各种处理等时所需的数据。
CPU 1301、ROM 1302和RAM 1303经由总线1304彼此连接。输入/输出接口1305也连接到总线1304。
下述部件连接到输入/输出接口1305:输入部分1306,包括键盘、鼠标等;输出部分1307,包括显示器,比如阴极射线管(CRT)、液晶显示器(LCD)等,和扬声器等;存储部分1308,包括硬盘等;和通信部分1309,包括网络接口卡比如LAN卡、调制解 调器等。通信部分1309经由网络比如因特网执行通信处理。
根据需要,驱动器1310也连接到输入/输出接口1305。可拆卸介质1311比如磁盘、光盘、磁光盘、半导体存储器等等根据需要被安装在驱动器1310上,使得从中读出的计算机程序根据需要被安装到存储部分1308中。
在通过软件实现上述系列处理的情况下,从网络比如因特网或存储介质比如可拆卸介质1311安装构成软件的程序。
本领域技术人员应当理解,这种存储介质不局限于图13所示的其中存储有程序、与设备相分离地分发以向用户提供程序的可拆卸介质1311。可拆卸介质1311的例子包含磁盘(包含软盘(注册商标))、光盘(包含光盘只读存储器(CD-ROM)和数字通用盘(DVD))、磁光盘(包含迷你盘(MD)(注册商标))和半导体存储器。或者,存储介质可以是ROM 1302、存储部分1308中包含的硬盘等等,其中存有程序,并且与包含它们的设备一起被分发给用户。
本公开的技术能够应用于各种产品。例如,本公开中提到的基站可以被实现为任何类型的演进型节点B(gNB),诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制的无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备在一些示例中也称为用户设备,可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照图14至图17描述根据本公开的应用示例。
[关于基站的应用示例]
以下参照图14和图15描述了gNB的示意性配置。
第一应用示例
图14是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 1400包括多个天线1410以及基站设备1420。基站设备1420和每个天线1410可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 1400(或基站设备1420)可以对应于上述电子设备300A、1300A和/或1500B。
天线1410中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1420发送和接收无线信号。如图14所示,gNB 1400可以包括多个天线1410。例如,多个天线1410可以与gNB 1400使用的多个频段兼容。
基站设备1420包括控制器1421、存储器1422、网络接口1423以及无线通信接口1425。
控制器1421可以为例如CPU或DSP,并且操作基站设备1420的较高层的各种功能。例如,控制器1421根据由无线通信接口1425处理的信号中的数据来生成数据分组,并经由网络接口1423来传递所生成的分组。控制器1421可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1421可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器1422包括RAM和ROM,并且存储由控制器1421执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1423为用于将基站设备1420连接至核心网1424的通信接口。控制器1421可以经由网络接口1423而与核心网节点或另外的gNB进行通信。在此情况下,gNB1400与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1423还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1423为无线通信接口,则与由无线通信接口1425使用的频段相比,网络接口1423可以使用较高频段用于无线通信。
无线通信接口1425支持任何蜂窝通信方案(诸如长期演进(LTE)、LTE-先进和NR),并且经由天线1410来提供到位于gNB 1400的小区中的终端的无线连接。无线通信接口1425通常可以包括例如基带(BB)处理器1426和RF电路1427。BB处理器1426 可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1421,BB处理器1426可以具有上述逻辑功能的一部分或全部。BB处理器1426可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1426的功能改变。该模块可以为插入到基站设备1420的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1427可以包括例如混频器、滤波器和放大器,并且经由天线1410来传送和接收无线信号。虽然图14示出一个RF电路1427与一根天线1410连接的示例,但是本公开并不限于该图示,而是一个RF电路1427可以同时连接多根天线1410。
如图14所示,无线通信接口1425可以包括多个BB处理器1426。例如,多个BB处理器1426可以与gNB 1400使用的多个频段兼容。如图14所示,无线通信接口1425可以包括多个RF电路1427。例如,多个RF电路1427可以与多个天线元件兼容。虽然图14示出其中无线通信接口1425包括多个BB处理器1426和多个RF电路1427的示例,但是无线通信接口1425也可以包括单个BB处理器1426或单个RF电路1427。
第二应用示例
图15是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 1530包括多个天线1540、基站设备1550和RRH 1560。RRH 1560和每个天线1540可以经由RF线缆而彼此连接。基站设备1550和RRH 1560可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 1530(或基站设备1550)可以对应于上述电子设备300A、1300A和/或1500B。
天线1540中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1560发送和接收无线信号。如图15所示,gNB 1530可以包括多个天线1540。例如,多个天线1540可以与gNB 1530使用的多个频段兼容。
基站设备1550包括控制器1551、存储器1552、网络接口1553、无线通信接口1555以及连接接口1557。控制器1551、存储器1552和网络接口1553与参照图14描述的控制器1421、存储器1422和网络接口1423相同。
无线通信接口1555支持任何蜂窝通信方案(诸如LTE、LTE-先进和NR),并且经由RRH 1560和天线1540来提供到位于与RRH 1560对应的扇区中的终端的无线通信。 无线通信接口1555通常可以包括例如BB处理器1556。除了BB处理器1556经由连接接口1557连接到RRH 1560的RF电路1564之外,BB处理器1556与参照图14描述的BB处理器1426相同。如图15所示,无线通信接口1555可以包括多个BB处理器1556。例如,多个BB处理器1556可以与gNB 1530使用的多个频段兼容。虽然图15示出其中无线通信接口1555包括多个BB处理器1556的示例,但是无线通信接口1555也可以包括单个BB处理器1556。
连接接口1557为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的接口。连接接口1557还可以为用于将基站设备1550(无线通信接口1555)连接至RRH 1560的上述高速线路中的通信的通信模块。
RRH 1560包括连接接口1561和无线通信接口1563。
连接接口1561为用于将RRH 1560(无线通信接口1563)连接至基站设备1550的接口。连接接口1561还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1563经由天线1540来传送和接收无线信号。无线通信接口1563通常可以包括例如RF电路1564。RF电路1564可以包括例如混频器、滤波器和放大器,并且经由天线1540来传送和接收无线信号。虽然图15示出一个RF电路1564与一根天线1540连接的示例,但是本公开并不限于该图示,而是一个RF电路1564可以同时连接多根天线1540。
如图15所示,无线通信接口1563可以包括多个RF电路1564。例如,多个RF电路1564可以支持多个天线元件。虽然图15示出其中无线通信接口1563包括多个RF电路1564的示例,但是无线通信接口1563也可以包括单个RF电路1564。
[关于用户设备的应用示例]
第一应用示例
图16是示出可以应用本公开内容的技术的智能电话1600的示意性配置的示例的框图。智能电话1600包括处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612、一个或多个天线开关1615、一个或多个天线1616、总线1617、电池1618以及辅助控制器1619。在一种实现方式中,此处的智能电话1600(或处理器1601)可以对应于上述终端设备300B和/或1500A。
处理器1601可以为例如CPU或片上系统(SoC),并且控制智能电话1600的应用层和另外层的功能。存储器1602包括RAM和ROM,并且存储数据和由处理器1601执行的程序。存储装置1603可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1604为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1600的接口。
摄像装置1606包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1607可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1608将输入到智能电话1600的声音转换为音频信号。输入装置1609包括例如被配置为检测显示装置1610的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1610包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1600的输出图像。扬声器1611将从智能电话1600输出的音频信号转换为声音。
无线通信接口1612支持任何蜂窝通信方案(诸如LTE、LTE-先进和NR),并且执行无线通信。无线通信接口1612通常可以包括例如BB处理器1613和RF电路1614。BB处理器1613可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1614可以包括例如混频器、滤波器和放大器,并且经由天线1616来传送和接收无线信号。无线通信接口1612可以为其上集成有BB处理器1613和RF电路1614的一个芯片模块。如图16所示,无线通信接口1612可以包括多个BB处理器1613和多个RF电路1614。虽然图16示出其中无线通信接口1612包括多个BB处理器1613和多个RF电路1614的示例,但是无线通信接口1612也可以包括单个BB处理器1613或单个RF电路1614。
此外,除了蜂窝通信方案之外,无线通信接口1612可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1612可以包括针对每种无线通信方案的BB处理器1613和RF电路1614。
天线开关1615中的每一个在包括在无线通信接口1612中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1616的连接目的地。
天线1616中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多 个天线元件),并且用于无线通信接口1612传送和接收无线信号。如图16所示,智能电话1600可以包括多个天线1616。虽然图16示出其中智能电话1600包括多个天线1616的示例,但是智能电话1600也可以包括单个天线1616。
此外,智能电话1600可以包括针对每种无线通信方案的天线1616。在此情况下,天线开关1615可以从智能电话1600的配置中省略。
总线1617将处理器1601、存储器1602、存储装置1603、外部连接接口1604、摄像装置1606、传感器1607、麦克风1608、输入装置1609、显示装置1610、扬声器1611、无线通信接口1612以及辅助控制器1619彼此连接。电池1618经由馈线向图16所示的智能电话1600的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1619例如在睡眠模式下操作智能电话1600的最小必需功能。
第二应用示例
图17是示出可以应用本公开内容的技术的汽车导航设备1720的示意性配置的示例的框图。汽车导航设备1720包括处理器1721、存储器1722、全球定位系统(GPS)模块1724、传感器1725、数据接口1726、内容播放器1727、存储介质接口1728、输入装置1729、显示装置1730、扬声器1731、无线通信接口1733、一个或多个天线开关1736、一个或多个天线1737以及电池1738。在一种实现方式中,此处的汽车导航设备1720(或处理器1721)可以对应于上述终端设备300B和/或1500A。
处理器1721可以为例如CPU或SoC,并且控制汽车导航设备1720的导航功能和另外的功能。存储器1722包括RAM和ROM,并且存储数据和由处理器1721执行的程序。
GPS模块1724使用从GPS卫星接收的GPS信号来测量汽车导航设备1720的位置(诸如纬度、经度和高度)。传感器1725可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1726经由未示出的终端而连接到例如车载网络1741,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1727再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口1728中。输入装置1729包括例如被配置为检测显示装置1730的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1730包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1731输出导航功能的声音或再现的内容。
无线通信接口1733支持任何蜂窝通信方案(诸如LTE、LTE-先进和NR),并且执行无线通信。无线通信接口1733通常可以包括例如BB处理器1734和RF电路1735。BB处理器1734可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1735可以包括例如混频器、滤波器和放大器,并且经由天线1737来传送和接收无线信号。无线通信接口1733还可以为其上集成有BB处理器1734和RF电路1735的一个芯片模块。如图17所示,无线通信接口1733可以包括多个BB处理器1734和多个RF电路1735。虽然图17示出其中无线通信接口1733包括多个BB处理器1734和多个RF电路1735的示例,但是无线通信接口1733也可以包括单个BB处理器1734或单个RF电路1735。
此外,除了蜂窝通信方案之外,无线通信接口1733可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1733可以包括BB处理器1734和RF电路1735。
天线开关1736中的每一个在包括在无线通信接口1733中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1737的连接目的地。
天线1737中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1733传送和接收无线信号。如图17所示,汽车导航设备1720可以包括多个天线1737。虽然图17示出其中汽车导航设备1720包括多个天线1737的示例,但是汽车导航设备1720也可以包括单个天线1737。
此外,汽车导航设备1720可以包括针对每种无线通信方案的天线1737。在此情况下,天线开关1736可以从汽车导航设备1720的配置中省略。
电池1738经由馈线向图17所示的汽车导航设备1720的各个块提供电力,馈线在图中被部分地示为虚线。电池1738累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备1720、车载网络1741以及车辆模块1742中的一个或多个块的车载系统(或车辆)1740。车辆模块1742生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1741。
本公开的方案可以以如下的示例方式实施。
1、一种用于第一终端设备的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
通过至少两种分配模式查找时频资源以获得候选资源集合;
从所述候选资源集合中选择时频资源;
向第二终端设备通知所选择的时频资源,用于进行到第二终端设备的直通链路通信;以及
向基站发送资源选择信息,所述资源选择信息指示特定资源是否被选择。
2、如条款1所述的电子设备,其中,通过所述至少两种分配模式查找时频资源包括:
对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
对于第二分配模式,感知并查找时频资源,
其中所述候选资源集合包括与第一和第二分配模式所对应的时频资源。
3、如条款2所述的电子设备,其中,对于第二分配模式,感知并查找时频资源包括:
在资源窗中感知资源,以及基于感知结果,筛选期望的资源。
4、如条款1所述的电子设备,其中,通过所述至少两种分配模式查找时频资源包括:
对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
对于第三分配模式,向集群调度设备发送资源调度请求消息,并从所述集群调度设备接收资源授权消息,
其中所述候选资源集合包括与第一和第三分配模式所对应的时频资源。
5、如条款4所述的电子设备,其中,第一终端设备用作所述资源调度设备,并且所述处理电路被配置为:
向基站发送资源池调度请求消息,并从基站接收资源池授权消息;以及
响应于接收到来自特定终端设备的资源调度请求消息,从所述资源池中选择时频资源以授权给所述特定终端设备。
6、如条款2或4所述的电子设备,其中,选择时频资源包括:
基于直通链路通信的QoS需求和所述候选资源集合中的时频资源的属性来选择时频资源,其中单个一种或多于一种分配模式所对应的时频资源被选择。
7、如条款6所述的电子设备,其中,所述资源选择信息向基站指示第一分配模式所对应的时频资源是否被选择。
8、如条款7所述的电子设备,其中,所述资源选择信息还向基站指示第二或第三分配模式所对应的时频资源中被选择的时频资源。
9、如条款1所述的电子设备,所述处理电路还被配置为:通过无线电资源控制RRC信令从基站接收所述至少两种分配模式的参数配置。
10、如条款1所述的电子设备,所述处理电路还被配置为:从第二终端设备接收第二终端设备所选择的时频资源信息,用于接收来自第二终端设备的直通链路通信。
11、如条款1所述的电子设备,所述处理电路还被配置为:
通过直通链路控制信息传送具体时频资源信息或索引来向第二终端设备通知所选择的时频资源。
12、一种用于基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
接收来自第一终端设备的资源调度请求消息,所述资源调度请求消息请求时频资源以用于由第一终端设备进行到第二终端设备的直通链路通信;
通过第一分配模式向第一终端设备分配时频资源;
向第一终端设备发送资源授权消息;以及
接收来自第一终端设备的资源选择信息,所述资源选择信息指示第一分配模式所对应的时频资源是否被第一终端设备选择。
13、如条款12所述的电子设备,其中,所述资源选择信息还指示第一终端设备从至少另一分配模式所对应的时频资源中选择的时频资源。
14、如条款12所述的电子设备,所述处理电路还被配置为:通过无线电资源控制RRC信令向第一终端设备发送第一分配模式和所述至少另一分配模式的参数配置。
15、一种用于无线通信的方法,包括:
由第一终端设备:
通过至少两种分配模式查找时频资源以获得候选资源集合;
从所述候选资源集合中选择时频资源;
向第二终端设备通知所选择的时频资源,用于进行到第二终端设备的直通链路通信;以及
向基站发送资源选择信息,所述资源选择信息指示特定资源是否被选择。
16、如条款15所述的方法,其中,通过所述至少两种分配模式查找时频资源包括:
对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
对于第二分配模式,感知并查找时频资源,
其中所述候选资源集合包括与第一和第二分配模式所对应的时频资源。
17、如条款15所述的电子设备,其中,通过所述至少两种分配模式查找时频资源包括:
对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
对于第三分配模式,向集群调度设备发送资源调度请求消息,并从所述集群调度设备接收资源授权消息,
其中所述候选资源集合包括与第一和第三分配模式所对应的时频资源。
18、一种用于无线通信的方法,包括:
由基站:
接收来自第一终端设备的资源调度请求消息,所述资源调度请求消息请求时频资源以用于由第一终端设备进行到第二终端设备的直通链路通信;
通过第一分配模式向第一终端设备分配时频资源;
向第一终端设备发送资源授权消息;以及
接收来自第一终端设备的资源选择信息,所述资源选择信息指示第一分配模式所对应的时频资源是否被第一终端设备选择。
19、一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理电路执行时使该电子设备执行如条款15至18中任一项所述的方法。
20、一种用于无线通信的装置,包括用于执行如条款15至18中任一项所述的方法的操作的单元。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
虽然已经详细说明了本公开及其优点,但是应当理解在不脱离由所附的权利要求所限定的本公开的精神和范围的情况下可以进行各种改变、替代和变换。而且,本公开实施例的术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (20)

  1. 一种用于第一终端设备的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
    通过至少两种分配模式查找时频资源以获得候选资源集合;
    从所述候选资源集合中选择时频资源;
    向第二终端设备通知所选择的时频资源,用于进行到第二终端设备的直通链路通信;以及
    向基站发送资源选择信息,所述资源选择信息指示特定资源是否被选择。
  2. 如权利要求1所述的电子设备,其中,通过所述至少两种分配模式查找时频资源包括:
    对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
    对于第二分配模式,感知并查找时频资源,
    其中所述候选资源集合包括与第一和第二分配模式所对应的时频资源。
  3. 如权利要求2所述的电子设备,其中,对于第二分配模式,感知并查找时频资源包括:
    在资源窗中感知资源,以及基于感知结果,筛选期望的资源。
  4. 如权利要求1所述的电子设备,其中,通过所述至少两种分配模式查找时频资源包括:
    对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
    对于第三分配模式,向集群调度设备发送资源调度请求消息,并从所述集群调度设备接收资源授权消息,
    其中所述候选资源集合包括与第一和第三分配模式所对应的时频资源。
  5. 如权利要求4所述的电子设备,其中,第一终端设备用作所述资源调度设备,并且所述处理电路被配置为:
    向基站发送资源池调度请求消息,并从基站接收资源池授权消息;以及
    响应于接收到来自特定终端设备的资源调度请求消息,从所述资源池中选择时频资源以授权给所述特定终端设备。
  6. 如权利要求2或4所述的电子设备,其中,选择时频资源包括:
    基于直通链路通信的QoS需求和所述候选资源集合中的时频资源的属性来选择时频资源,其中单个一种或多于一种分配模式所对应的时频资源被选择。
  7. 如权利要求6所述的电子设备,其中,所述资源选择信息向基站指示第一分配模式所对应的时频资源是否被选择。
  8. 如权利要求7所述的电子设备,其中,所述资源选择信息还向基站指示第二或第三分配模式所对应的时频资源中被选择的时频资源。
  9. 如权利要求1所述的电子设备,所述处理电路还被配置为:通过无线电资源控制RRC信令从基站接收所述至少两种分配模式的参数配置。
  10. 如权利要求1所述的电子设备,所述处理电路还被配置为:从第二终端设备接收第二终端设备所选择的时频资源信息,用于接收来自第二终端设备的直通链路通信。
  11. 如权利要求1所述的电子设备,所述处理电路还被配置为:
    通过直通链路控制信息传送具体时频资源信息或索引来向第二终端设备通知所选择的时频资源。
  12. 一种用于基站的电子设备,所述电子设备包括处理电路,所述处理电路被配置为:
    接收来自第一终端设备的资源调度请求消息,所述资源调度请求消息请求时频资源以用于由第一终端设备进行到第二终端设备的直通链路通信;
    通过第一分配模式向第一终端设备分配时频资源;
    向第一终端设备发送资源授权消息;以及
    接收来自第一终端设备的资源选择信息,所述资源选择信息指示第一分配模式所对应的时频资源是否被第一终端设备选择。
  13. 如权利要求12所述的电子设备,其中,所述资源选择信息还指示第一终端设备从至少另一分配模式所对应的时频资源中选择的时频资源。
  14. 如权利要求12所述的电子设备,所述处理电路还被配置为:通过无线电资源控制RRC信令向第一终端设备发送第一分配模式和所述至少另一分配模式的参数配置。
  15. 一种用于无线通信的方法,包括:
    由第一终端设备:
    通过至少两种分配模式查找时频资源以获得候选资源集合;
    从所述候选资源集合中选择时频资源;
    向第二终端设备通知所选择的时频资源,用于进行到第二终端设备的直通链路通信;以及
    向基站发送资源选择信息,所述资源选择信息指示特定资源是否被选择。
  16. 如权利要求15所述的方法,其中,通过所述至少两种分配模式查找时频资源包括:
    对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
    对于第二分配模式,感知并查找时频资源,
    其中所述候选资源集合包括与第一和第二分配模式所对应的时频资源。
  17. 如权利要求15所述的电子设备,其中,通过所述至少两种分配模式查找时频资源包括:
    对于第一分配模式,向基站发送资源调度请求消息,并从基站接收资源授权消息;以及
    对于第三分配模式,向集群调度设备发送资源调度请求消息,并从所述集群调度设备接收资源授权消息,
    其中所述候选资源集合包括与第一和第三分配模式所对应的时频资源。
  18. 一种用于无线通信的方法,包括:
    由基站:
    接收来自第一终端设备的资源调度请求消息,所述资源调度请求消息请求时频资源以用于由第一终端设备进行到第二终端设备的直通链路通信;
    通过第一分配模式向第一终端设备分配时频资源;
    向第一终端设备发送资源授权消息;以及
    接收来自第一终端设备的资源选择信息,所述资源选择信息指示第一分配模式所对应的时频资源是否被第一终端设备选择。
  19. 一种存储有一个或多个指令的计算机可读存储介质,所述一个或多个指令在由电子设备的一个或多个处理电路执行时使该电子设备执行如权利要求15至18中任一项所述 的方法。
  20. 一种用于无线通信的装置,包括用于执行如权利要求15至18中任一项所述的方法的操作的单元。
PCT/CN2021/109664 2020-08-03 2021-07-30 用于无线通信的电子设备、方法和存储介质 WO2022028327A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180058983.2A CN116326139A (zh) 2020-08-03 2021-07-30 用于无线通信的电子设备、方法和存储介质
US18/017,676 US20230300798A1 (en) 2020-08-03 2021-07-30 Electronic device, method, and storage medium for wireless communication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010769120.3 2020-08-03
CN202010769120.3A CN114071474A (zh) 2020-08-03 2020-08-03 用于无线通信的电子设备、方法和存储介质

Publications (1)

Publication Number Publication Date
WO2022028327A1 true WO2022028327A1 (zh) 2022-02-10

Family

ID=80116974

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109664 WO2022028327A1 (zh) 2020-08-03 2021-07-30 用于无线通信的电子设备、方法和存储介质

Country Status (3)

Country Link
US (1) US20230300798A1 (zh)
CN (2) CN114071474A (zh)
WO (1) WO2022028327A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116308066A (zh) * 2023-05-10 2023-06-23 青岛创新奇智科技集团股份有限公司 基于物联网的仓储管理方法及装置
WO2023207874A1 (zh) * 2022-04-26 2023-11-02 中兴通讯股份有限公司 传输方法、终端设备、管理实体及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351858A (zh) * 2018-04-03 2019-10-18 Idac控股公司 网络调度ue传输与自主调度ue传输之间的资源池共享
US20200008176A1 (en) * 2018-06-27 2020-01-02 Qualcomm Incorporated Communication of sidelink transmission pattern to wireless wide area network (wwan)
CN110830952A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 车联网中直通链路的资源配置方法及装置
CN110958096A (zh) * 2018-09-27 2020-04-03 电信科学技术研究院有限公司 一种资源指示方法及终端
CN110972316A (zh) * 2018-09-28 2020-04-07 普天信息技术有限公司 一种v2x终端的传输资源调度方法
US20200128470A1 (en) * 2017-03-23 2020-04-23 Samsung Electronics Co., Ltd Method and device for changing wireless path in wireless communication system
CN111132296A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 一种数据传输、确定发送功率的方法及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200128470A1 (en) * 2017-03-23 2020-04-23 Samsung Electronics Co., Ltd Method and device for changing wireless path in wireless communication system
CN110351858A (zh) * 2018-04-03 2019-10-18 Idac控股公司 网络调度ue传输与自主调度ue传输之间的资源池共享
US20200008176A1 (en) * 2018-06-27 2020-01-02 Qualcomm Incorporated Communication of sidelink transmission pattern to wireless wide area network (wwan)
CN110830952A (zh) * 2018-08-10 2020-02-21 中兴通讯股份有限公司 车联网中直通链路的资源配置方法及装置
CN110958096A (zh) * 2018-09-27 2020-04-03 电信科学技术研究院有限公司 一种资源指示方法及终端
CN110972316A (zh) * 2018-09-28 2020-04-07 普天信息技术有限公司 一种v2x终端的传输资源调度方法
CN111132296A (zh) * 2018-11-01 2020-05-08 华为技术有限公司 一种数据传输、确定发送功率的方法及设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207874A1 (zh) * 2022-04-26 2023-11-02 中兴通讯股份有限公司 传输方法、终端设备、管理实体及存储介质
CN116308066A (zh) * 2023-05-10 2023-06-23 青岛创新奇智科技集团股份有限公司 基于物联网的仓储管理方法及装置
CN116308066B (zh) * 2023-05-10 2023-08-18 青岛创新奇智科技集团股份有限公司 基于物联网的仓储管理方法及装置

Also Published As

Publication number Publication date
CN116326139A (zh) 2023-06-23
US20230300798A1 (en) 2023-09-21
CN114071474A (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
US11206573B2 (en) Terminal apparatus, communication control method and communication control apparatus
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
WO2019138658A1 (ja) 端末装置、基地局装置及び方法
WO2017005164A1 (zh) 无线通信设备和无线通信方法
WO2018142784A1 (ja) リレー通信装置、基地局、方法及び記録媒体
WO2020182067A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN106303900B (zh) 无线通信设备和无线通信方法
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2020063525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN113170403B (zh) 电子装置、无线通信方法和计算机可读介质
TWI830778B (zh) 通訊裝置、通訊方法、及非暫時性電腦可讀取之儲存裝置
WO2022028327A1 (zh) 用于无线通信的电子设备、方法和存储介质
EP3654564B1 (en) Electronic device and wireless communication method
US20220094501A1 (en) Terminal device, base station device, method, and recording medium
CN112970214A (zh) 用于侧链路的反馈信令
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
US10820337B2 (en) Device in wireless communication system, and wireless communication method
WO2021027802A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
WO2020140836A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2016002332A1 (ja) 装置、方法及びプログラム
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022083505A1 (zh) 电子设备和通信方法
WO2022206575A1 (zh) 电子设备、无线通信方法和计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21853793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21853793

Country of ref document: EP

Kind code of ref document: A1