WO2022083505A1 - 电子设备和通信方法 - Google Patents

电子设备和通信方法 Download PDF

Info

Publication number
WO2022083505A1
WO2022083505A1 PCT/CN2021/123973 CN2021123973W WO2022083505A1 WO 2022083505 A1 WO2022083505 A1 WO 2022083505A1 CN 2021123973 W CN2021123973 W CN 2021123973W WO 2022083505 A1 WO2022083505 A1 WO 2022083505A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource usage
link resource
direct
resources
cellular link
Prior art date
Application number
PCT/CN2021/123973
Other languages
English (en)
French (fr)
Inventor
孙晨
崔焘
Original Assignee
索尼集团公司
孙晨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 孙晨 filed Critical 索尼集团公司
Priority to US18/245,365 priority Critical patent/US20240032081A1/en
Publication of WO2022083505A1 publication Critical patent/WO2022083505A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present disclosure relates to the field of communications, and more particularly, to the allocation of cellular link resources and direct link resources.
  • a terminal device (sometimes also referred to as user equipment, UE) can perform data interaction with a server through a base station, thereby realizing a mobile networking function.
  • the communication link between the terminal device and the base station is called a cellular link (also sometimes referred to as uulink hereinafter), including cellular uplink and cellular downlink.
  • a direct link (called sidelink or PC5 in the 3GPP standard) can be used for data exchange.
  • Sidelink has certain advantages over other directly connected networks (eg Wi-Fi, Bluetooth). For example, compared to Wi-Fi networks that do not guarantee communication quality, sidelink direct links can ensure stable communication quality. In addition, sidelink can provide higher speed and longer distance communication than Bluetooth. Therefore, in the scenario of direct-connected communication that needs to ensure communication quality and communication speed, sidelink is a better choice.
  • directly connected networks eg Wi-Fi, Bluetooth
  • sidelink direct links can ensure stable communication quality.
  • sidelink can provide higher speed and longer distance communication than Bluetooth. Therefore, in the scenario of direct-connected communication that needs to ensure communication quality and communication speed, sidelink is a better choice.
  • sidelinks use uplink resources. That is, sidelinks can only communicate in uplink resources within the cell range served by the base station.
  • the uplink of uulink also uses uplink resources. Therefore, if the base station allocates a large amount of uplink resources to the UE in the cell for uulink uplink communication, it cannot guarantee that there are enough resources between the UE and the UE to realize the sidelink communication.
  • the total amount of uplink resources and downlink resources is limited. If the base station allocates a large number of downlink resources to UEs in the cell for uulink downlink communication, the uplink resources may be insufficient, so that sufficient resources between UE and UE for sidelink communication cannot be guaranteed.
  • the present disclosure provides a coordination mechanism between sidelink resources and uulink resources, which can reasonably allocate sidelink resources and uulink resources to UEs according to UE's usage requirements for sidelink resources and uulink resources.
  • an electronic device for a terminal device side may include a processing circuit, and the processing circuit may be configured to: provide the base station with the direct link resource usage requirement and the cellular link resource usage requirement of the terminal device via the cellular link, so that the base station Direct link resources and cellular link resources are allocated to the terminal device according to the direct link resource usage requirement and the cellular link resource usage requirement of the terminal device.
  • an electronic device for a base station side may include a processing circuit, and the processing circuit may be configured to obtain, via the cellular link, the direct link resource usage requirement and the cellular link resource usage requirement of the terminal device.
  • the processing circuit may also be configured to allocate direct link resources and cellular link resources to the terminal device according to the direct link resource usage requirements and the cellular link resource usage requirements.
  • a communication method may include: the terminal device provides the base station with the direct link resource usage requirement of the terminal device and the cellular link resource usage requirement to the base station via the cellular link, so that the base station can use the direct link of the terminal device according to the direct link resource usage requirement of the terminal device.
  • the terminal device is allocated direct link resources and cellular link resources.
  • a communication method may include: the base station obtains the direct link resource usage requirement and the cellular link resource usage requirement of the terminal device via the cellular link.
  • the communication method may further include: the base station allocates the direct link resource and the cellular link resource to the terminal device according to the direct link resource usage requirement and the cellular link resource usage requirement.
  • a computer-readable storage medium including executable instructions that, when executed by an information processing apparatus, cause the information processing apparatus to perform the communication method according to the present disclosure.
  • the UE's usage requirements for sidelink resources and uulink resources can be comprehensively considered, and sidelink resources and uulink resources can be reasonably allocated to the UE.
  • FIG. 1 is a schematic diagram illustrating uulink and sidelink communication in a wireless communication system
  • FIG. 2 is a block diagram illustrating an exemplary configuration of an electronic device for a terminal device side according to an embodiment of the present disclosure
  • FIG. 3 is an exemplary flowchart illustrating a communication method for a terminal device side according to an embodiment of the present disclosure
  • FIG. 4 is a block diagram illustrating an exemplary configuration of an electronic device for a base station side according to an embodiment of the present disclosure
  • FIG. 5 is an exemplary flowchart illustrating a communication method for a base station side according to an embodiment of the present disclosure
  • FIG. 6 shows an exemplary signaling diagram of interaction between a directly connected communication device group and a base station according to an embodiment of the present disclosure
  • FIG. 7 is a block diagram showing a first example of a schematic configuration of a gNB according to an embodiment of the present disclosure
  • FIG. 8 is a block diagram showing a second example of a schematic configuration of a gNB according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram showing an example of a schematic configuration of a smartphone according to an embodiment of the present disclosure.
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a car navigation apparatus according to an embodiment of the present disclosure.
  • Figure 1 shows a schematic diagram of uulink and sidelink communication in wireless communication.
  • UE 102 and UE 104 play an interactive game through a cloud game platform.
  • the game data is stored on the cloud game server (not shown), and the UE 102 and the UE 104 respectively communicate with the base station 100 through a cellular link (uuilnk), thereby performing data interaction with the cloud game server via the base station 100.
  • the UE 102 and the UE 104 respectively send game control data to the cloud game server via the base station 100 through the uulink uplink.
  • the cloud game server sends the game content updated by the UE 102 and the UE 104 to the UE 102 and the UE 104 respectively through the uulink downlink.
  • game interaction information eg, user movement information
  • sidelink e.g, user movement information
  • FIG. 1 illustrates a situation where UE 102 and UE 104 are controlled by the same base station 100. It should be understood that UE 102 and UE 104 may also be controlled by different base stations, respectively, and communicate with different base stations via cellular links.
  • sidelinks use uplink resources. That is, the sidelink between UE 102 and UE 104 can only communicate in uplink resources within the range of the cell served by base station 100.
  • the uplink of the uulink between the UE 102/104 and the base station 100 also uses uplink resources. Therefore, if the base station allocates a large amount of uplink resources to the UEs in the cell for uulink uplink communication (for example, the UEs 102/104 participating in the game need to upload a large amount of game data to the game server, or the uplink of other UEs in the cell If the communication demand is large), there is no guarantee that there are sufficient resources between the UE and the UE to implement sidelink communication.
  • the total amount of uplink resources and downlink resources is limited, if the base station 100 allocates a large amount of downlink resources to the UE 102/104 for uulink downlink communication (for example, participating in a game If the UE 102/104 needs to download a large amount of game update data from the cloud game server), the uplink resources may be insufficient, and there is no guarantee that there are sufficient resources between the UE and the UE for sidelink communication.
  • FIG. 2 shows an exemplary configuration block diagram of an electronic device 2000 for a terminal device side according to an embodiment of the present disclosure.
  • the electronic device 2000 may be used, for example, for the UE 102 or the UE 104 shown in FIG. 1 .
  • electronic device 2000 may include processing circuitry 2010 .
  • the processing circuit 2010 of the electronic device 2000 provides various functions of the electronic device 2000 .
  • the processing circuit 2010 of the electronic device 2000 may be configured to perform a communication method for the electronic device 2000 on the terminal device side.
  • Processing circuitry 2010 may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of separate processor cores, entire processor cores, separate processors, such as field programmable gate arrays (FPGAs) programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the processing circuit 2010 may include a demand providing unit 2020 configured to perform step S3010 in the communication method 3000 for the electronic device 2000 on the terminal device side shown in FIG. 3 described later.
  • the electronic device 2000 may also include a memory (not shown).
  • the memory of the electronic device 2000 may store information generated by the processing circuit 2010 as well as programs and data for the operation of the electronic device 2010 .
  • the memory may be volatile memory and/or non-volatile memory.
  • memory may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • the electronic device 2000 may be implemented at the chip level, or may also be implemented at the device level by including other external components.
  • the electronic device 2000 may be implemented as a terminal device as a complete machine, and may also include one or more antennas.
  • FIG. 3 shows an exemplary flowchart of a communication method 3000 for a terminal device side according to an embodiment of the present disclosure. This communication method can be used, for example, in the electronic device 2000 shown in FIG. 2 .
  • step S3010 the requirement providing unit 2020 of the terminal equipment provides the base station with the direct link resource usage requirement and the cellular link resource usage requirement of the terminal device via the cellular link, so that the The base station allocates direct link resources and cellular link resources to the terminal device according to the direct link resource usage requirement and the cellular link resource usage requirement of the terminal device.
  • the direct link resources and the cellular link resources are allocated to the UE, so that more reasonable resources can be implemented for the UE. distribute.
  • the direct link resource usage requirement of the UE may be determined by at least one of a channel busy ratio (Channel Busy Ratio, CBR) and a buffer status report (Busy Status Report, BSR) related to the direct link one to indicate.
  • CBR Channel Busy Ratio
  • BSR Busy Status Report
  • the CBR can indicate the busy state of the current channel
  • the BSR can indicate the amount of buffered data that the current UE needs to upload. Both of these two indicators can be used to indicate the direct link resource usage requirement of the UE.
  • the UE 102 may report its own CBR and/or BSR related to the sidelink to the base station 100 for the base station 100 to perform resource allocation.
  • the UE's cellular link resource usage requirement is indicated by the cellular link related buffer status report BSR.
  • the UE 102 may report its own BSR related to the uulink to the base station 100 for the base station 100 to perform resource allocation.
  • the information indicating the UE's direct link resource usage requirement and cellular link resource usage requirement is not limited to the BSR and CBR described above, and any other information that can indicate the direct link resource usage requirement, cellular link resource usage requirement, and cellular link resource usage requirement can also be used. information on road resource usage requirements.
  • the UE may report to the base station information about transmission failure or when there is no available resource when transmission is required, so as to indicate the corresponding resource usage requirement.
  • FIG. 4 shows a block diagram of an exemplary configuration of an electronic device 4000 for a base station side according to an embodiment of the present disclosure.
  • the electronic device 4000 can be used for the base station 100 shown in FIG. 1 , for example.
  • electronic device 4000 may include processing circuitry 4010 .
  • the processing circuit 4010 of the electronic device 4000 provides various functions of the electronic device 4000 .
  • the processing circuit 4010 of the electronic device 4000 may be configured to perform a communication method for the electronic device 4000 on the base station side.
  • Processing circuitry 4010 may refer to various implementations of digital circuitry, analog circuitry, or mixed-signal (combination of analog and digital) circuitry that perform functions in a computing system.
  • Processing circuitry may include, for example, circuits such as integrated circuits (ICs), application specific integrated circuits (ASICs), portions or circuits of separate processor cores, entire processor cores, separate processors, such as field programmable gate arrays (FPGAs) programmable hardware devices, and/or systems including multiple processors.
  • ICs integrated circuits
  • ASICs application specific integrated circuits
  • FPGAs field programmable gate arrays
  • the processing circuit 4010 may include a demand acquisition unit 4020 and a resource management unit 4030, which are respectively configured to perform step S5010 in the communication method 5000 for the electronic device 4000 on the base station side shown in FIG. 5 described later. and S5020.
  • the electronic device 4000 may also include a memory (not shown).
  • the memory of the electronic device 4000 may store information generated by the processing circuit 4010 as well as programs and data for the operation of the electronic device 4010 .
  • the memory may be volatile memory and/or non-volatile memory.
  • memory may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • the electronic device 4000 may be implemented at the chip level, or may also be implemented at the device level by including other external components.
  • the electronic device 4000 may be implemented as a terminal device as a complete machine, and may also include one or more antennas.
  • each of the above-mentioned units is only logical modules divided according to the specific functions implemented by them, and are not used to limit the specific implementation manner.
  • each of the above-mentioned units may be implemented as independent physical entities, or may also be implemented by a single entity (eg, a processor (CPU or DSP, etc.), an integrated circuit, etc.).
  • FIG. 5 shows an exemplary flowchart of a communication method 5000 for a base station side according to an embodiment of the present disclosure. This communication method can be used, for example, in the electronic device 4000 shown in FIG. 4 .
  • step S5010 the requirement obtaining unit 4020 of the base station obtains the direct link resource usage requirement and the cellular link resource usage requirement of the terminal device via the cellular link.
  • step S5020 the resource management unit 4030 of the base station allocates direct link resources and cellular link resources to the terminal device according to the direct link resource usage requirements and the cellular link resource usage requirements.
  • the resource management unit 4030 may be implemented by a scheduler (scheduler) of the 3GPP protocol stack MAC. In other embodiments, the resource management unit 4030 may be implemented at the RRC layer, where the RRC layer is responsible for RRC management of the SPS period, and the configuration of uplink and downlink resources is managed through RRC. In still other embodiments, the resource management unit 4030 may also be a device existing in the application media control unit, and according to the actual application data request, the RRC or MAC scheduler reasonably configures the uplink and downlink resources.
  • the direct link resources and the cellular link resources are allocated to the UE, so that more reasonable resources can be implemented for the UE. distribute.
  • the resource management unit 4030 of the base station can adjust the proportion of the direct link resources in the uplink resources according to the direct link resource usage requirements and the cellular link resource usage requirements of the UE. , allocate direct link resources and cellular link resources to the UE.
  • the UE 102 and the UE 104 play an interactive game through the cloud game platform shown in FIG. 1, when there are many interactions between the UE 102 and the UE 104, more sidelink resources are required. At this time, if the UE 102 sends less game manipulation data to the game server via the base station 100, less uulink uplink resources are used. In this case, according to the sidelink resource usage requirement provided by the UE 102 to the base station 100 (for example, indicated by the BSR/CBR of the sidelink) and the uulink resource usage requirement (for example, indicated by the BSR of the uulink), it can be known that the UE 102 needs more sidelinks resources, and less uulink uplink resources are required.
  • the resource management unit 4030 of the base station 100 can increase the proportion of the sidelink resources in the uplink resources, thereby allocating more sidelink resources to the UE 102.
  • the uulink uplink resources are reduced in the uplink resources, thereby allocating fewer uulink resources to the UE 102. In this way, sidelink and uulink resources can be reasonably allocated to the UE according to the needs of the UE.
  • the resource management unit 4030 of the base station may adjust the ratio of uplink resources to downlink resources according to the UE's direct link resource usage requirements and cellular link resource usage requirements, and according to the adjusted According to the matching ratio, direct link resources and cellular link resources are allocated to the UE.
  • the UE 102 and the UE 104 play an interactive game through the cloud game platform as an example, when there are many interactions between the UE 102 and the UE 104, more sidelink resources are required.
  • the UE 102 sends more game control data to the game server via the base station 100, more uulink uplink resources are required.
  • the sidelink resource usage requirement provided by the UE 102 to the base station 100 for example, indicated by the BSR/CBR of the sidelink
  • the uulink resource usage requirement for example, indicated by the BSR of the uulink
  • the resource management unit 4030 of the base station 100 can increase the ratio of uplink resources to downlink resources, thereby increasing the total amount of uplink resources, so that more sidelink resources and uulink resources can be allocated to the UE 102 . In this way, sidelink and uulink resources can be reasonably allocated to the UE according to the needs of the UE.
  • each UE eg, UE 102 and UE 104
  • the base station eg, base station 100
  • the base station allocates sidelink resources to each UE separately.
  • multiple UEs that communicate with each other via the direct link may form a direct communication device group, and the leading UE in the direct communication device group may acquire the sidelink and uulink resource usage requirements of other UEs, and unify them to the base station report.
  • the base station allocates a sidelink resource pool to the directly connected communication device group according to the sidelink and uulink resource usage requirements of the directly connected communication device group.
  • Each UE in the directly connected communication device group autonomously selects resources in the resource pool for sidelink communication.
  • FIG. 6 shows an exemplary signaling diagram for the interaction between a directly connected communication device group and a base station according to an embodiment of the present disclosure.
  • UE-1 to UE-5 communicate with each other via a direct link to form a directly connected communication device group, wherein UE-1 is the dominant UE and communicates with the base station via a cellular link.
  • UE-1 which is the dominant UE, can obtain the direct link resource usage requirements and the cellular link resource usage requirements of other UEs via the direct link.
  • This step can be implemented, for example, through steps S6000 and S6010 shown in FIG. 6 .
  • UE-1 sends measurement requests to other UEs (ie, UE-2 to UE-5), respectively, for measuring the resource usage requirements of uulink and sidelink of other UEs.
  • the resource usage requirement of the uulink may be indicated by, for example, the BSR related to the uulink
  • the resource usage requirement of the sidelink may be indicated by, for example, the BSR and/or CBR related to the sidelink.
  • step S6010 UE-1 receives measurement responses from UE-2 to UE-5, respectively, to obtain the resource usage requirements of uulink and sidelink of UE-2 to UE-5.
  • UE-1 determines resource usage information of the directly connected communication device group according to its own resource usage requirements and resource usage requirements obtained from other UEs.
  • the resource usage information may include, for example, the uulink and sidelink resource usage requirements of the directly connected communication device group.
  • UE-1 may determine the maximum sidelink resource usage requirement of each UE in the directly connected communication device group as the sidelink resource usage requirement of the directly connected communication device group. For example, in the case of using the BSR to indicate the sidelink resource usage requirement, UE-1 may select the largest BSR from the respective sidelink BSRs of each UE (ie, UE-1 to UE-5) to indicate the largest sidelink resource usage requirements, and report it to the base station as the sidelink resource usage requirements of the directly connected communication device group. In addition, similar processing can also be performed in the case of using CBR to indicate the sidelink resource usage requirement.
  • UE-1 may also determine the average sidelink resource usage requirement of each UE in the directly connected communication device group as the sidelink resource usage requirement of the directly connected communication device group. For example, in the case of using the BSR to indicate the sidelink resource usage requirement, UE-1 may average the sidelink BSRs of each UE (ie, UE-1 to UE-5), and use the average sidelink BSR to indicate the number of directly connected communication device groups. The sidelink resource usage requirements are reported to the base station. In addition, similar processing can also be performed in the case of using CBR to indicate the sidelink resource usage requirement.
  • UE-1 may determine the sum of the uulink resource usage requirements of the UEs in the directly connected communication device group (ie, UE-1 to UE-5) as the uulink resource usage requirement of the directly connected communication device group. For example, in the case of using the BSR to indicate the uulink resource usage requirement, UE-1 can sum up the buffered data amounts indicated by the uulink BSRs of each UE (ie, UE-1 to UE-5), as a directly connected communication device The uulink BSR of the group is reported to the base station.
  • step S6030 UE-1 sends resource usage information to the base station via the cellular link, so as to provide the base station with the uulink and sidelink resource usage requirements of the directly connected communication device group.
  • steps S6020 and S6030 describe the situation in which the UE-1, which is the leading UE, determines the resource usage requirement of the directly connected communication device group and reports it to the base station.
  • the determination process may also be implemented at the base station side. For example, UE-1 collects the uulink and sidelink resource usage requirements of each UE and reports them directly to the base station, and the base station determines the uulink and sidelink resource usage requirements of the directly connected communication device group according to these resource usage requirements.
  • step S6040 the base station performs resource coordination according to the received resource usage information.
  • the base station may allocate a direct link resource pool to the directly connected communication device group according to the uulink and sidelink resource usage requirements of the directly connected communication device group. Specifically, the base station may, according to the above resource usage requirements, determine whether the uplink resource time slot allocation is too small or the available resources in the sidelink resource pool are insufficient, so as to perform reasonable resource allocation according to the specific situation.
  • the base station can dynamically adjust the size of the direct link resource pool, thereby allocating a larger direct link resource pool to the directly connected communication device group. At this time, the resources used for the uulink uplink will be reduced accordingly.
  • the base station may adjust the ratio of uplink resources to downlink resources so that the ratio of uplink resources increases. After adjusting the ratio, the available uplink resources become more, which can meet the usage requirements of sidelink resources and uulink uplink resources.
  • the base station may allocate cellular downlink multicast resources to the directly connected communication device group according to the direct link resource usage requirement and the cellular link resource usage requirement of the directly connected communication device group.
  • UE-2 uploads the game interaction data to the cloud game server through the uulink uplink.
  • the uploading of the game interaction data will cause the game content to be updated.
  • the update of the game data needs to be sent to all UE-1 to UE-5 through the uulink downlink to ensure that each UE gets the update of the game data in time. That is to say, even if only one UE performs uplink data upload, all UEs in the directly connected communication device group may generate downlink resource usage requirements.
  • the base station may uniformly allocate uulink downlink multicast resources to the directly connected communication device group according to the uulink and sidelink resource usage requirements of the directly connected communication device group. For example, each UE in the directly connected communication device group uses the multicast resource to download game data, thereby ensuring that each UE obtains data update in time.
  • the cloud game server can also estimate the uulink downlink multicast resource requirements of the directly connected communication device group according to the game interaction data uploaded by the directly connected communication device group, and notify the base station.
  • the base station allocates uulink downlink multicast resources to the directly connected communication device group according to the uulink downlink multicast resource requirements.
  • the base station sends a resource update to UE-1, which is the dominant UE.
  • the base station may send the sidelink resource pool and/or the uulink downlink multicast resource allocated for the directly connected communication device to UE-1.
  • UE-1 sends the resource update to other UEs respectively.
  • UE-1 may send sidelink resource pools and/or uulink downlink multicast resources to other UEs, respectively. Therefore, each UE can perform corresponding sidelink communication and uulink communication in the updated sidelink resource pool and/or uulink downlink multicast resource.
  • the base station may also directly send the resource update to each UE respectively.
  • UE-1 which is the master UE, to transmit resource updates to other UEs in step S6060.
  • the communication and resource allocation scheme between the directly connected communication device group and the base station is described above with reference to FIG. 6 .
  • this scheme only the master UE communicates with the base station via uulink, without each UE needing to communicate with the base station separately. Therefore, only the leading UE needs to maintain the link state with the base station, and other UEs can be in the unlinked state, thereby reducing the complexity of resource allocation by the base station and reducing system overhead. In this way, especially when the number of UEs in the directly connected communication device group is relatively large, the complexity and system overhead of resource allocation can be significantly reduced.
  • the dominant UE in the directly connected communication device group may also acquire location information of each UE.
  • This step can also be implemented by, for example, steps S6000 and S6010 shown in FIG. 6 , wherein the measurement request in step S6000 includes a measurement request for the location information of other UEs, and the measurement in step S6010 correspondingly includes the respective location information.
  • step S6020 UE-1 determines the maximum distance between terminal devices in the directly connected communication device group according to the location information of each UE.
  • the maximum distance may be included in the resource usage information of the directly connected communication device group and sent to the base station in step S6030.
  • step S6040 the base station performs resource coordination according to the received maximum distance, and determines the spatial usage range of the direct link resource pool allocated for the directly connected communication device group and the minimum direct link of the directly connected communication device group. at least one of the communication transmit power.
  • the maximum distance between the UEs may be used to determine the spatial usage range of the directly connected resource pool. In this way, each UE is located within the usage range, so that it can be ensured that each UE can use the same sidelink resource pool.
  • the maximum distance between UEs may also be used to determine the minimum direct communication transmit power of the directly connected communication device group.
  • the transmission power capable of guaranteeing the transmission of the maximum distance may be determined as the minimum direct connection communication transmission power. In this way, the transmission power of each UE in the directly connected communication group can be saved while ensuring the quality of transmission.
  • step S6050 the base station sends a resource update (for example, the spatial usage range of the direct link resource pool and/or the minimum direct link of the direct link communication device group) to UE-1.
  • a resource update for example, the spatial usage range of the direct link resource pool and/or the minimum direct link of the direct link communication device group
  • step S6060 UE-1 sends the resource update to other UEs.
  • the resource coordination between uulink and sidelink cannot be achieved. For example, if there are a lot of UEs in the cell that need uulink downlink resources, or UEs in the game need to download a lot of data, the uplink resources may be insufficient, resulting in insufficient sidelink resources.
  • the application media distribution mode of the UE can be adjusted by setting an application media control unit on the UE side or the base station side.
  • the application media control unit may be set on the UE side, and adjust the application layer media distribution mode of the UE according to the UE's sidelink and uulink resource usage requirements. For example, in the case that a large number of uulink downlink resources are required in the cell and sufficient sidelink resources cannot be ensured, the application layer media distribution method of the UE can be adjusted so that the interaction between UEs is more realized through uulink. The network side implements more rendering, thereby reducing the use of sidelink resources. On the contrary, when the uulink downlink resource requirement in the cell is less and more sidelink resources can be guaranteed, the media distribution method of the application layer of the UE can be adjusted so that the interaction between the UEs is more realized through the sidelink. And achieve more local rendering on the UE side.
  • the application media control unit may also be set on the base station side, and according to the sidelink and uulink resource usage requirements provided by the UE to the base station, provide the UE with media distribution control instructions for adjusting the UE's application layer media distribution method.
  • the application media control unit can also adjust the media distribution mode of the game server accordingly to meet the resource usage requirements of uulink and sidelink.
  • the content distribution of the application can be adjusted according to the network performance through the application layer, thereby improving the user experience.
  • the base station adjusts the allocation of direct link resources and cellular link resources for the UE according to the interference with neighboring base stations. As a result, the situation of interference between adjacent cells can be reduced.
  • the base station may interact with neighboring base stations for UE location information.
  • the UE location information may, for example, indicate the geographic location of a single UE served by the base station or the geographic location of a group of directly connected communication devices formed by multiple UEs.
  • the base station can determine the interference with the adjacent base station at the position indicated by the UE's position information by interacting with the UE's position information of the adjacent base station, and adjust the direct link resources and cellular link resources for the UE accordingly. (for example, the proportion of sidelinks in uplink resources, and the ratio of uplink resources and downlink resources) to reduce interference between adjacent cells.
  • the base station may perform information interaction and coordination with the adjacent base station through the Xn interface. In some embodiments, if the base station and the adjacent base station are both LTE base stations, the base station may perform information interaction and coordination with the adjacent base station through the X2 interface. It should be understood that when the base station is an NR base station and the adjacent base station is an LTE base station (and vice versa), the base station can also perform information exchange and coordination with the adjacent base station. In some embodiments, the base station can also control the beamforming direction (for the millimeter wave band) to spatially reduce the resource interference problem of adjacent cells.
  • the allocation of direct link resources and cellular link resources for the UE can be adjusted through information exchange and coordination with adjacent cells, thereby reducing interference between adjacent cells.
  • a base station may be implemented as any type of evolved Node B (eNB) or gNodeB (gNB) in next generation radio access technologies, such as macro eNB/gNB and small eNB/gNB.
  • eNB evolved Node B
  • gNB gNodeB
  • a small eNB/gNB may be an eNB/gNB that covers cells smaller than a macro cell, such as pico eNB/gNB, micro eNB/gNB and home (femto) eNB/gNB.
  • the base station may be implemented as any other type of base station, such as one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, which may be a radio network control in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • RRHs remote radio heads
  • various types of terminals to be described below can each operate as a base station by temporarily or semi-persistently performing a base station function.
  • the terminal device may be implemented as a mobile terminal such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera or a vehicle-mounted terminal such as a car navigation device ).
  • the terminal device may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single die) mounted on each of the above-mentioned terminals.
  • gNB 800 includes one or more antennas 810 and base station equipment 820.
  • the base station apparatus 820 and each antenna 810 may be connected to each other via an RF cable.
  • Each of the antennas 810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 820 to transmit and receive wireless signals.
  • gNB 800 may include multiple antennas 810.
  • multiple antennas 810 may be compatible with multiple frequency bands used by gNB 800.
  • the base station apparatus 820 includes a controller 821 , a memory 822 , a network interface 823 , and a wireless communication interface 825 .
  • the controller 821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 820 .
  • the controller 821 generates data packets from data in the signal processed by the wireless communication interface 825 and communicates the generated packets via the network interface 823 .
  • the controller 821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control and scheduling. This control may be performed in conjunction with nearby gNBs, eNBs or core network nodes (eg Access and Mobility Management Function AMF (Access and Mobility Management Function)).
  • the memory 822 includes RAM and ROM, and stores programs executed by the controller 821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 823 is a communication interface for connecting the base station apparatus 820 to the core network 824 .
  • the controller 821 may communicate via the network interface 823 with core network nodes or further gNBs/eNBs.
  • gNB 800 and core network nodes or other gNBs/eNBs may be connected to each other through logical interfaces such as N2 interface to AMF and Xn interface to gNB.
  • the network interface 823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 823 is a wireless communication interface, the network interface 823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 825 .
  • Wireless communication interface 825 supports any cellular communication scheme (such as LTE, LTE-Advanced, NR (New Radio)) and provides wireless connectivity to terminals located in the cell of gNB 800 via antenna 810.
  • the wireless communication interface 825 may generally include, for example, a baseband (BB) processor 826 and RF circuitry 827 .
  • the BB processor 826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 826 may have some or all of the above-described logical functions.
  • the BB processor 826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 826 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 820 .
  • the module can also be a chip mounted on a card or blade.
  • the RF circuit 827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 810 .
  • the wireless communication interface 825 may include multiple BB processors 826 .
  • multiple BB processors 826 may be compatible with multiple frequency bands used by gNB 800.
  • the wireless communication interface 825 may include a plurality of RF circuits 827 .
  • multiple RF circuits 827 may be compatible with multiple antenna elements.
  • FIG. 7 shows an example in which the wireless communication interface 825 includes multiple BB processors 826 and multiple RF circuits 827 , the wireless communication interface 825 may also include a single BB processor 826 or a single RF circuit 827 .
  • gNB 830 includes one or more antennas 840, base station equipment 850, and RRH 860.
  • the RRH 860 and each antenna 840 may be connected to each other via RF cables.
  • the base station apparatus 850 and the RRH 860 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 840 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 860 to transmit and receive wireless signals.
  • gNB 830 may include multiple antennas 840.
  • multiple antennas 840 may be compatible with multiple frequency bands used by gNB 830.
  • the base station apparatus 850 includes a controller 851, a memory 852, a network interface 853, a wireless communication interface 855, and a connection interface 857.
  • the controller 851 , the memory 852 and the network interface 853 are the same as the controller 821 , the memory 822 and the network interface 823 described with reference to FIG. 7 .
  • Wireless communication interface 855 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 860 and antenna 840 to terminals located in a sector corresponding to RRH 860.
  • Wireless communication interface 855 may generally include, for example, BB processor 856 .
  • the BB processor 856 is the same as the BB processor 826 described with reference to FIG. 7, except that the BB processor 856 is connected to the RF circuit 864 of the RRH 860 via the connection interface 857.
  • the wireless communication interface 855 may include multiple BB processors 856 .
  • multiple BB processors 856 may be compatible with multiple frequency bands used by gNB 830.
  • FIG. 8 shows an example in which the wireless communication interface 855 includes multiple BB processors 856
  • the wireless communication interface 855 may also include a single BB processor 856 .
  • connection interface 857 is an interface for connecting the base station apparatus 850 (the wireless communication interface 855 ) to the RRH 860.
  • the connection interface 857 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station apparatus 850 (the wireless communication interface 855) to the RRH 860.
  • RRH 860 includes connection interface 861 and wireless communication interface 863.
  • connection interface 861 is an interface for connecting the RRH 860 (the wireless communication interface 863 ) to the base station apparatus 850.
  • the connection interface 861 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 863 transmits and receives wireless signals via the antenna 840 .
  • Wireless communication interface 863 may typically include RF circuitry 864, for example.
  • RF circuitry 864 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 840 .
  • the wireless communication interface 863 may include a plurality of RF circuits 864 .
  • multiple RF circuits 864 may support multiple antenna elements.
  • FIG. 8 shows an example in which the wireless communication interface 863 includes multiple RF circuits 864
  • the wireless communication interface 863 may include a single RF circuit 864 .
  • gNB 800 and gNB 830 shown in FIGS. 7 and 8 one or more components included in processing circuit 4010 described with reference to FIG. 4 may be implemented in wireless communication interface 912. Alternatively, at least some of these components may also be implemented by the controller 821 and the controller 851 .
  • FIG. 9 is a block diagram showing an example of a schematic configuration of a smartphone 900 to which the techniques of the present disclosure can be applied.
  • Smartphone 900 includes processor 901, memory 902, storage device 903, external connection interface 904, camera device 906, sensor 907, microphone 908, input device 909, display device 910, speaker 911, wireless communication interface 912, one or more Antenna switch 915 , one or more antennas 916 , bus 917 , battery 918 , and auxiliary controller 919 .
  • the processor 901 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 900 .
  • the memory 902 includes RAM and ROM, and stores data and programs executed by the processor 901 .
  • the storage device 903 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 904 is an interface for connecting an external device such as a memory card and a Universal Serial Bus (USB) device to the smartphone 900 .
  • USB Universal Serial Bus
  • the camera 906 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 907 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 908 converts the sound input to the smartphone 900 into an audio signal.
  • the input device 909 includes, for example, a touch sensor, a keypad, a keyboard, a button, or a switch configured to detect a touch on the screen of the display device 910, and receives operations or information input from a user.
  • the display device 910 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 900 .
  • the speaker 911 converts the audio signal output from the smartphone 900 into sound.
  • the wireless communication interface 912 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 912 may typically include, for example, BB processor 913 and RF circuitry 914 .
  • the BB processor 913 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs various types of signal processing for wireless communication.
  • the RF circuit 914 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 916 .
  • the wireless communication interface 912 may be a chip module on which the BB processor 913 and the RF circuit 914 are integrated. As shown in FIG.
  • the wireless communication interface 912 may include multiple BB processors 913 and multiple RF circuits 914 .
  • FIG. 9 shows an example in which the wireless communication interface 912 includes multiple BB processors 913 and multiple RF circuits 914 , the wireless communication interface 912 may also include a single BB processor 913 or a single RF circuit 914 .
  • the wireless communication interface 912 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 912 may include the BB processor 913 and the RF circuit 914 for each wireless communication scheme.
  • Each of the antenna switches 915 switches the connection destination of the antenna 916 among a plurality of circuits included in the wireless communication interface 912 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 916 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 912 to transmit and receive wireless signals.
  • smartphone 900 may include multiple antennas 916 .
  • FIG. 9 shows an example in which smartphone 900 includes multiple antennas 916
  • smartphone 900 may include a single antenna 916 as well.
  • the smartphone 900 may include an antenna 916 for each wireless communication scheme.
  • the antenna switch 915 can be omitted from the configuration of the smartphone 900.
  • the bus 917 connects the processor 901, the memory 902, the storage device 903, the external connection interface 904, the camera device 906, the sensor 907, the microphone 908, the input device 909, the display device 910, the speaker 911, the wireless communication interface 912, and the auxiliary controller 919 to each other connect.
  • the battery 918 provides power to the various blocks of the smartphone 900 shown in FIG. 9 via feeders, which are shown in part as dashed lines in the figure.
  • the auxiliary controller 919 operates the minimum necessary functions of the smartphone 900, eg, in a sleep mode.
  • one or more components included in the processing circuit 2010 described with reference to FIG. 2 may be implemented in the wireless communication interface 912 .
  • at least some of these components may also be implemented by the processor 901 or the auxiliary controller 919 .
  • FIG. 10 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 920 to which the technology of the present disclosure can be applied.
  • the car navigation device 920 includes a processor 921, a memory 922, a global positioning system (GPS) module 924, a sensor 925, a data interface 926, a content player 927, a storage medium interface 928, an input device 929, a display device 930, a speaker 931, a wireless A communication interface 933 , one or more antenna switches 936 , one or more antennas 937 , and a battery 938 .
  • GPS global positioning system
  • the processor 921 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 920 .
  • the memory 922 includes RAM and ROM, and stores data and programs executed by the processor 921 .
  • the GPS module 924 measures the position (such as latitude, longitude, and altitude) of the car navigation device 920 using GPS signals received from GPS satellites.
  • Sensors 925 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 926 is connected to, for example, the in-vehicle network 941 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 927 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 928 .
  • the input device 929 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 930, and receives operations or information input from a user.
  • the display device 930 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 931 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 933 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 933 may typically include, for example, BB processor 934 and RF circuitry 935 .
  • the BB processor 934 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 935 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 937 .
  • the wireless communication interface 933 can also be a chip module on which the BB processor 934 and the RF circuit 935 are integrated. As shown in FIG.
  • the wireless communication interface 933 may include multiple BB processors 934 and multiple RF circuits 935 .
  • FIG. 10 shows an example in which the wireless communication interface 933 includes multiple BB processors 934 and multiple RF circuits 935 , the wireless communication interface 933 may also include a single BB processor 934 or a single RF circuit 935 .
  • the wireless communication interface 933 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 933 may include the BB processor 934 and the RF circuit 935 for each wireless communication scheme.
  • Each of the antenna switches 936 switches the connection destination of the antenna 937 among a plurality of circuits included in the wireless communication interface 933, such as circuits for different wireless communication schemes.
  • Each of the antennas 937 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 933 to transmit and receive wireless signals.
  • the car navigation device 920 may include a plurality of antennas 937 .
  • FIG. 10 shows an example in which the car navigation device 920 includes a plurality of antennas 937 , the car navigation device 920 may also include a single antenna 937 .
  • the car navigation device 920 may include an antenna 937 for each wireless communication scheme.
  • the antenna switch 936 may be omitted from the configuration of the car navigation apparatus 920 .
  • the battery 938 provides power to the various blocks of the car navigation device 920 shown in FIG. 10 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 938 accumulates power supplied from the vehicle.
  • one or more components included in the processing circuit 2010 described with reference to FIG. 2 may be implemented in the wireless communication interface 912 .
  • at least some of these components may also be implemented by the processor 921 .
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 940 that includes one or more blocks of a car navigation device 920 , an in-vehicle network 941 , and a vehicle module 942 .
  • the vehicle module 942 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 941 .
  • the present disclosure is embodied as a system, apparatus, method, or computer-readable storage medium (eg, a non-transitory storage medium) as a computer program product. Accordingly, the present disclosure may be implemented in various forms, such as an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, microprogram code, etc.), or both software and hardware, where Hereinafter will be referred to as a "circuit", “module” or “system”. Furthermore, the present disclosure may also be embodied in any tangible media form as a computer program product having computer-usable program code stored thereon.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of program code, which comprises one or more executable instructions for implementing the specified logical function(s).
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks illustrated in connection may, in fact, be executed concurrently, or in some cases may be executed in the reverse order illustrated, depending upon the functionality involved.
  • each block of the block diagrams and/or flowchart illustrations, and combinations of blocks in the block diagrams and/or flowchart illustrations can be implemented by special purpose hardware-based systems, or by combinations of special purpose hardware and computer instructions, to perform a specific function or operation.
  • An electronic device for a terminal device side comprising:
  • a processing circuit configured to:
  • the direct link resource usage requirement is indicated by at least one of a channel busy rate CBR and a buffer status report BSR related to the direct link.
  • the cellular link resource usage requirement is indicated by a buffer status report BSR related to the cellular link.
  • the direct link resource usage requirements and the cellular link resource usage requirements of the directly connected communication device group are allocated to the direct-connected communication device group with a direct-connected link resource pool.
  • the sum of the cellular link resource usage requirements of each terminal device in the directly connected communication device group is determined as the cellular link resource usage requirement of the directly connected communication device group.
  • the maximum distance is provided to the base station, so that the base station determines, according to the maximum distance, the spatial usage range and the direct link resource pool allocated for the directly connected communication device group. at least one of the minimum direct communication transmit powers of the connected communication device group.
  • An electronic device for a base station side comprising:
  • a processing circuit configured to:
  • Allocate direct link resources and cellular link resources to the terminal device according to the direct link resource usage requirements and the cellular link resource usage requirements.
  • the direct link resource usage requirement is indicated by at least one of a channel busy rate CBR and a buffer status report BSR related to the direct link.
  • the cellular link resource usage requirement is indicated by the cellular link related buffer status report BSR.
  • the direct link resource usage requirement and the cellular link resource usage requirement adjust the proportion of the direct link resource in the uplink resources, and allocate the direct link to the terminal device according to the adjusted ratio.
  • link resources as well as cellular link resources.
  • the ratio of uplink resources to downlink resources is adjusted, and according to the adjusted ratio, a direct link is allocated to the terminal device road resources and cellular link resources.
  • a direct link resource pool is allocated to the directly connected communication device group according to the direct link resource usage requirement and the cellular link resource usage requirement of the directly connected communication device group.
  • Cellular downlink multicast resources are allocated to the directly connected communication device group according to the direct link resource usage requirement and the cellular link resource usage requirement of the directly connected communication device group.
  • a media distribution control instruction for adjusting the application layer media distribution mode of the terminal device is provided to the terminal device.
  • the allocation of the direct link resources and the cellular link resources is adjusted according to the interference situation with the adjacent base stations.
  • a communication method comprising:
  • the terminal device provides the base station with the direct link resource usage requirements of the terminal device and the cellular link resource usage requirements to the base station via the cellular link, so that the base station can use the direct link resource usage requirements of the terminal device and all According to the usage requirements of the cellular link resources, direct link resources and cellular link resources are allocated to the terminal device.
  • a communication method comprising:
  • the base station obtains the direct link resource usage requirements and the cellular link resource usage requirements of the terminal device via the cellular link;
  • the base station allocates direct link resources and cellular link resources to the terminal device according to the direct link resource usage requirements and the cellular link resource usage requirements.
  • a computer-readable storage medium comprising executable instructions that, when executed by an information processing apparatus, cause the information processing apparatus to perform the communication method according to (18) or (19).

Abstract

本公开涉及电子设备和通信方法。用于终端设备侧的电子设备包括处理电路,所述处理电路被配置为:经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。

Description

电子设备和通信方法
相关申请的交叉引用
本申请要求于2020年10月21日递交的中国专利申请No.202011133344.1的优先权,其全文通过引用并入于此。
技术领域
本公开涉及通信领域,更具体地,本公开涉及蜂窝链路资源和直连链路资源的分配。
背景技术
在无线通信系统中,终端设备(以下有时也称为用户设备,UE)可以通过基站与服务器进行数据交互,从而实现移动联网功能。终端设备与基站之间的通信链路称为蜂窝链路(以下有时也称为uulink),包括蜂窝上行链路和蜂窝下行链路。此外,在终端设备之间,可以使用直连链路(3GPP标准中称为sidelink或PC5)进行数据交换。
Sidelink与其它直接连接的网络(例如Wi-Fi、蓝牙)相比,具有一定的优势。例如,相比于Wi-Fi这样的不保证通信质量的网络,sidelink直连链路能够保证稳定的通信质量。另外,与蓝牙相比,sidelink能够提供更高速、更远距离的通信。因此,在需要确保通信质量和通信速度的直连通信的场景下,sidelink是一种较优的选择。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的一些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
目前,sidelink使用的是上行链路资源。也就是说,sidelink只能在基站服务的小区范围内的上行链路资源中进行通信。另外,uulink的上行链路使用的也是上行链路资源。因此,如果基站为小区内的UE分配了大量的上行链路资源来进行uulink上行通信,就不能保证UE和UE之间有足够的资源实现sidelink通信。此外,对于一个基站而言,上 行链路资源与下行链路资源的总量是有限的,如果基站为小区内的UE分配了大量的下行链路资源来进行uulink下行通信,则上行链路资源可能不足,从而不能保证UE和UE之间有足够的资源实现sidelink通信。
鉴于上述问题中的一个或多个,本公开提供了一种sidelink资源与uulink资源的协调机制,能够根据UE对于sidelink资源和uulink资源的使用需求,对UE合理分配sidelink资源和uulink资源。
根据本公开的一个方面,提供了一种用于终端设备侧的电子设备。该电子设备可以包括处理电路,所述处理电路可以被配置为:经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
根据本公开的另一方面,提供了一种用于基站侧的电子设备。该电子设备可以包括处理电路,所述处理电路可以被配置为:经由蜂窝链路,获取终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求。所述处理电路还可以被配置为根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
根据本公开的另一方面,提供了一种通信方法。该方法可以包括:终端设备经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
根据本公开的另一方面,提供了一种通信方法。该方法可以包括:基站经由蜂窝链路,获取终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求。该通信方法还可以包括:所述基站根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行指令,当所述可执行指令由信息处理装置执行时,使所述信息处理装置执行根据本公开的通信方法。
根据本公开的一个或多个实施例,综合考虑了UE对于sidelink资源和uulink资源的使用需求,能够对UE合理分配sidelink资源和uulink资源。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释 本公开的原理。
参照附图,根据下面的详细描述,可以更清楚地理解本公开,其中:
图1是示出无线通信系统中的uulink和sidelink通信的示意图;
图2是示出根据本公开的实施例的用于终端设备侧的电子设备的示例性配置框图;
图3是示出根据本公开的实施例的用于终端设备侧的通信方法的示例性流程图;
图4是示出根据本公开的实施例的用于基站侧的电子设备的示例性配置框图;
图5是示出根据本公开的实施例的用于基站侧的通信方法的示例性流程图;
图6示出了根据本公开的实施例的直连通信设备组与基站之间进行交互的示例性信令图;
图7是示出根据本公开的实施例的gNB的示意性配置的第一示例的框图;
图8是示出根据本公开的实施例的gNB的示意性配置的第二示例的框图;
图9是示出根据本公开的实施例的智能电话的示意性配置的示例的框图;以及
图10是示出根据本公开的实施例的汽车导航设备的示意性配置的示例的框图。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本公开的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
图1示出了无线通信中的uulink和sidelink通信的示意图。
假设UE 102与UE 104通过云游戏平台进行互动游戏的场景。游戏数据存放在云游戏服务器(未图示)上,UE 102和UE 104分别通过蜂窝链路(uuilnk)与基站100进行通信,从而经由基站100与云游戏服务器进行数据交互。例如,UE 102和UE 104分别通过uulink上行链路,经由基站100向云游戏服务器发送游戏操控数据。然后,云游戏服务器将UE 102和UE 104操控后更新的游戏内容通过uulink下行链路分别发送至UE 102和UE 104。此外,在UE 102和UE 104之间,通过直连链路(sidelink)来交互游戏互动信息(例如用户移动信息)。
图1例示了UE 102和UE 104由相同的基站100控制的情况。应当理解,UE 102和UE 104也可以分别由不同的基站控制,经由蜂窝链路分别与不同的基站进行通信。
目前,sidelink使用的是上行链路资源。也就是说,UE 102和UE 104之间的sidelink只能在基站100服务的小区范围内的上行链路资源中进行通信。另外,UE 102/104与基站100之间的uulink的上行链路使用的也是上行链路资源。因此,如果基站为小区内的UE分配了大量的上行链路资源来进行uulink上行通信(例如,参与游戏的UE 102/104需要向游戏服务器上传大量的游戏数据,或者小区内的其它UE的上行通信需求大),就不能保证UE和UE之间有足够的资源实现sidelink通信。此外,对于基站100而言,上行链路资源与下行链路资源的总量是有限的,如果基站100为UE 102/104分配了大量的下行链路资源来进行uulink下行通信(例如,参与游戏的UE 102/104需要从云游戏服务器下载大量的游戏更新数据),则上行链路资源可能不足,也不能保证UE和UE之间有足够的资源实现sidelink通信。
因此,需要sidelink资源与uulink资源的协调机制,综合考虑UE对于sidelink资源和uulink资源的使用需求,对UE合理分配sidelink资源和uulink资源。
下面参照图2~图6来说明根据本公开的sidelink资源和uulink资源协调分配方案。
图2示出根据本公开的实施例的用于终端设备侧的电子设备2000的示例性配置框图。电子设备2000例如可以用于图1所示的UE 102或UE 104。
在一些实施例中,电子设备2000可以包括处理电路2010。电子设备2000的处理电路2010提供电子设备2000的各种功能。在一些实施例中,电子设备2000的处理电路2010可以被配置为执行用于终端设备侧的电子设备2000的通信方法。
处理电路2010可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器 核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
在一些实施例中,处理电路2010可以包括需求提供单元2020,被配置为执行后述图3中所示的用于终端设备侧的电子设备2000的通信方法3000中的步骤S3010。
在一些实施例中,电子设备2000还可以包括存储器(未图示)。电子设备2000的存储器可以存储由处理电路2010产生的信息以及用于电子设备2010操作的程序和数据。存储器可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
另外,电子设备2000可以以芯片级来实现,或者也可以通过包括其它外部部件而以设备级来实现。在一些实施例中,电子设备2000可以作为整机而实现为终端设备,并且还可以包括一根或多根天线。
图3示出根据本公开的实施例的用于终端设备侧的通信方法3000的示例性流程图。该通信方法例如可以用于如图2所示的电子设备2000。
如图3所示,在步骤S3010中,终端设备的需求提供单元2020经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
根据本公开,在综合考虑了UE的直连链路资源使用需求以及蜂窝链路资源使用需求的基础上,对UE分配直连链路资源以及蜂窝链路资源,能够对UE进行更合理的资源分配。
在一些实施例中,UE的直连链路资源使用需求可以由与所述直连链路有关的信道繁忙率(Channel Busy Ratio,CBR)和缓冲状态报告(Busy Status Report,BSR)中的至少一个来指示。CBR可以指示当前信道繁忙的状态,BSR可以指示当前UE需要上传的缓冲数据量。这两个指标都可以用来指示UE的直连链路资源使用需求。例如,UE 102可以将自己的与sidelink有关的CBR和/或BSR上报给基站100,以供基站100进行资源分配。
在一些实施例中,UE的蜂窝链路资源使用需求由与蜂窝链路有关的缓冲状态报告BSR来指示。例如,UE 102可以将自己的与uulink有关的BSR上报给基站100,以供基站100进行资源分配。
应当理解,指示UE的直连链路资源使用需求和蜂窝链路资源使用需求的信息不限 于上文所描述的BSR、CBR,还可以使用其它任何能够表示直连链路资源使用需求、蜂窝链路资源使用需求的信息。例如,UE可以将传输失败的信息或者在需要传输时没有可用资源的情况上报给基站,用于指示相应的资源使用需求。
图4示出根据本公开的实施例的用于基站侧的电子设备4000的示例性配置框图。电子设备4000例如可以用于图1所示的基站100。
在一些实施例中,电子设备4000可以包括处理电路4010。电子设备4000的处理电路4010提供电子设备4000的各种功能。在一些实施例中,电子设备4000的处理电路4010可以被配置为执行用于基站侧的电子设备4000的通信方法。
处理电路4010可以指在计算系统中执行功能的数字电路系统、模拟电路系统或混合信号(模拟和数字的组合)电路系统的各种实现。处理电路可以包括例如诸如集成电路(IC)、专用集成电路(ASIC)这样的电路、单独处理器核心的部分或电路、整个处理器核心、单独的处理器、诸如现场可编程门阵列(FPGA)的可编程硬件设备、和/或包括多个处理器的系统。
在一些实施例中,处理电路4010可以包括需求获取单元4020以及资源管理单元4030,分别被配置为执行后述图5中所示的用于基站侧的电子设备4000的通信方法5000中的步骤S5010和S5020。
在一些实施例中,电子设备4000还可以包括存储器(未图示)。电子设备4000的存储器可以存储由处理电路4010产生的信息以及用于电子设备4010操作的程序和数据。存储器可以是易失性存储器和/或非易失性存储器。例如,存储器可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。
另外,电子设备4000可以以芯片级来实现,或者也可以通过包括其它外部部件而以设备级来实现。在一些实施例中,电子设备4000可以作为整机而实现为终端设备,并且还可以包括一根或多根天线。
应当理解,上述各个单元仅是根据其所实现的具体功能所划分的逻辑模块,而不是用于限制具体的实现方式。在实际实现时,上述各个单元可被实现为独立的物理实体,或者也可由单个实体(例如,处理器(CPU或DSP等)、集成电路等)来实现。
图5示出根据本公开的实施例的用于基站侧的通信方法5000的示例性流程图。该通信方法例如可以用于如图4所示的电子设备4000。
如图5所示,在步骤S5010中,基站的需求获取单元4020经由蜂窝链路,获取终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求。在步骤S5020中,基站的资源 管理单元4030根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
在一些实施例中,资源管理单元4030可以通过3GPP协议栈MAC的调度器(scheduler)来实现。在另一些实施例中,资源管理单元4030可以在RRC层实现,在RRC层负责RRC管理SPS周期,通过RRC来管理上下行资源的配置。在又一些实施例中,资源管理单元4030还可以是存在于应用媒体控制单元的装置,根据实际的应用数据请求,通过RRC或者MAC的调度器对上下行资源进行合理配置。
根据本公开,在综合考虑了UE的直连链路资源使用需求以及蜂窝链路资源使用需求的基础上,对UE分配直连链路资源以及蜂窝链路资源,能够对UE进行更合理的资源分配。
在一些实施例中,基站的资源管理单元4030可以根据UE的直连链路资源使用需求以及蜂窝链路资源使用需求,调整上行链路资源中直连链路资源所占的比例,根据调整后的所述比例,为UE分配直连链路资源以及蜂窝链路资源。
例如,在图1所示UE 102与UE 104通过云游戏平台进行互动游戏的场景中,当UE 102与UE 104之间的交互较多时,需要较多的sidelink资源。此时,如果UE 102经由基站100向游戏服务器发送的游戏操控数据较少,则使用uulink上行链路资源较少。在这种情况下,根据UE 102向基站100提供的sidelink资源使用需求(例如由sidelink的BSR/CBR指示)和uulink资源使用需求(例如由uulink的BSR指示)可知,UE 102需要较多的sidelink资源,而需要较少的uulink上行资源。因此,基站100的资源管理单元4030可以将上行链路资源中sidelink资源所占的比例增大,从而为UE 102分配更多的sidelink资源。相应地,上行链路资源中uulink上行资源减少,从而为UE 102分配更少的uulink资源。由此,能够根据UE的需求,为UE合理分配sidelink和uulink资源。
在一些实施例中,基站的资源管理单元4030可以根据UE的直连链路资源使用需求以及蜂窝链路资源使用需求,调整上行链路资源与下行链路资源的配比,根据调整后的所述配比,为UE分配直连链路资源以及蜂窝链路资源。
仍然以图1所示的UE 102与UE 104通过云游戏平台进行互动游戏的场景为例,当UE 102与UE 104之间的交互较多时,需要较多的sidelink资源。此时,如果UE 102经由基站100向游戏服务器发送的游戏操控数据也较多,则还需要较多的uulink上行资源。在这种情况下,根据UE 102向基站100提供的sidelink资源使用需求(例如由sidelink的BSR/CBR指示)和uulink资源使用需求(例如由uulink的BSR指示)可知,UE 102需要较多的sidelink资源,并且也需要较多的uulink上行资源。因此,基站100的资源管理单元4030可以将上行链路资源与下行链路资源的配比增大,从而增加上 行链路资源的总量,使得能够为UE 102分配更多的sidelink资源和uulink资源。由此,能够根据UE的需求,为UE合理分配sidelink和uulink资源。
在以上的实施例中,描述了每个UE(例如UE 102和UE 104)向基站(例如基站100)分别提供sidelink和uulink资源使用需求的情况。在该情况下,基站为每一个UE分别分配sidelink资源的情况。
在一些实施例中,经由直连链路相互通信的多个UE可以构成直连通信设备组,直连通信设备组中的主导UE可以获取其它UE的sidelink和uulink资源使用需求,并向基站统一上报。基站根据直连通信设备组的sidelink和uulink资源使用需求,为直连通信设备组分配sidelink资源池。直连通信设备组中的各UE在资源池内自主地选择资源进行sidelink通信。
以下,将参照图6具体描述直连通信设备组与基站之间的通信和资源分配方案。
图6示出了根据本公开的实施例的直连通信设备组与基站之间进行交互的示例性信令图。UE-1至UE-5经由直连链路相互通信,构成直连通信设备组,其中UE-1为主导UE,经由蜂窝链路与基站进行通信。
作为主导UE的UE-1可以经由直连链路,获取其它UE的直连链路资源使用需求以及蜂窝链路资源使用需求。该步骤例如可以通过图6所示的步骤S6000和S6010实现。
具体而言,在步骤S6000中,UE-1向其它UE(即UE-2至UE-5)分别发送测量请求,用于测量其它各UE的uulink和sidelink的资源使用需求。如上文所述,uulink的资源使用需求例如可以由与uulink有关的BSR来指示,sidelink的资源使用需求例如可以由与sidelink有关的BSR和/或CBR来指示。
接下来,在步骤S6010中,UE-1从UE-2至UE-5分别接收测量响应,以获得UE-2至UE-5的uulink和sidelink的资源使用需求。
在步骤S6020中,UE-1根据其自身的资源使用需求以及从其它各UE获得的资源使用需求,确定直连通信设备组的资源使用信息。该资源使用信息例如可以包括直连通信设备组的uulink和sidelink资源使用需求。
在一些实施例中,UE-1可以将直连通信设备组中的各UE中的最大的sidelink资源使用需求确定为该直连通信设备组的sidelink资源使用需求。例如,在使用BSR来指示sidelink资源使用需求的情况下,UE-1可以从各UE(即UE-1至UE-5)各自的sidelink BSR中选择最大的BSR,用以指示最大的sidelink资源使用需求,并作为直连通信设备组的sidelink资源使用需求来上报给基站。另外,对于使用CBR来指示sidelink资源使用需求的情况下,也可以进行类似的处理。
在另一些实施例中,UE-1也可以将直连通信设备组中的各UE中的平均sidelink资源使用需求确定为该直连通信设备组的sidelink资源使用需求。例如,在使用BSR来指示sidelink资源使用需求的情况下,UE-1可以对各UE(即UE-1至UE-5)的sidelink BSR求平均,用平均sidelink BSR来指示直连通信设备组的sidelink资源使用需求,并上报给基站。另外,对于使用CBR来指示sidelink资源使用需求的情况下,也可以进行类似的处理。
在一些实施例中,UE-1可以将直连通信设备组中的各UE(即UE-1至UE-5)的uulink资源使用需求之和确定为直连通信设备组的uulink资源使用需求。例如,在使用BSR来指示uulink资源使用需求的情况下,UE-1可以对各UE(即UE-1至UE-5)的uulink BSR所指示的缓冲数据量进行求和,作为直连通信设备组的uulink BSR上报给基站。
在一些实施例中,UE-1可以收集其它能够表示uulink和sidelink资源利用情况的信息,用于确定直连通信设备组的uulink和sidelink资源使用需求。例如,UE-1可以收集各UE传输失败的信息或者UE在需要传输时没有可用资源的情况,对从各UE收集的这些信息进行分析,以确定直连通信设备组的uulink和sidelink资源使用需求。另外,也可以将这些信息与各UE的sidelink BSR/CBR、uulink BSR一起考虑,从而确定直连通信设备组的uulink和sidelink资源使用需求。
接下来,在步骤S6030中,UE-1经由蜂窝链路向基站发送资源使用信息,从而将直连通信设备组的uulink和sidelink资源使用需求提供给基站。
此外,步骤S6020和步骤S6030描述的是在作为主导UE的UE-1处确定直连通信设备组的资源使用需求并向基站上报的情况。然而,在一些实施例中,该确定过程也可以在基站侧实现。例如,UE-1收集各UE的uulink和sidelink资源使用需求并直接上报给基站,由基站根据这些资源使用需求来确定直连通信设备组的uulink和sidelink资源使用需求。
接下来,在步骤S6040中,基站根据所接收到的资源使用信息来进行资源协调。
在一些实施例中,基站可以根据直连通信设备组的uulink和sidelink资源使用需求,为直连通信设备组分配直连链路资源池。具体而言,基站可以根据上述资源使用需求,判定是上行资源时隙分配过少或者是sidelink资源池的可用资源不足,从而根据具体情况的不同来进行合理的资源分配。
在直连通信设备组的sidelink资源使用需求较大时,sidelink资源池的可用资源可能不足。在该情况下,基站可以动态调整直连链路资源池的大小,从而为直连通信设备组分配更大的直连链路资源池。此时,相应地,用于uulink上行链路的资源会减少。
在直连通信设备组的sidelink资源使用需求和uulink上行资源使用需求都较大时,由于sidelink资源和uulink上行资源使用的都是上行链路资源,因此当前的上行链路资源可能无法满足直连设备组的sidelink和uulink资源使用需求。在该情况下,基站可以调整上行链路资源与下行链路资源的配比,使得上行链路资源的比例增大。在调整配比后,可用的上行链路资源变多,从而能够满足sidelink资源和uulink上行资源的使用需求。
在一些实施例中,基站可以根据直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,为直连通信设备组分配蜂窝下行链路组播资源。
例如,在UE-1至UE-5进行游戏交互的场景下,UE-2通过uulink上行链路将游戏互动数据上传给云游戏服务器,该游戏互动数据的上传会导致游戏内容的更新,游戏内容的更新需要通过uulink下行链路发送给所有UE-1至UE-5,以确保各UE都及时获得游戏数据的更新。也就是说,即便只有一个UE的上行链路的数据上传,也可能导致直连通信设备组中的所有UE产生下行链路资源使用需求。针对这种情况,在一些实施例中,基站可以根据直连通信设备组的uulink和sidelink资源使用需求,为直连通信设备组统一分配uulink下行组播资源。直连通信设备组中的各UE例如使用该组播资源来下载游戏数据,从而能够保证各UE都及时获得数据更新。
在一些实施例中,也可以由云游戏服务器根据直连通信设备组上传的游戏互动数据,估计该直连通信设备组的uulink下行组播资源需求,并向基站通知。基站根据该uulink下行组播资源需求为直连通信设备组分配uulink下行组播资源。
接下来,在步骤S6050中,基站向作为主导UE的UE-1发送资源更新。例如,基站可以将为直连通信设备分配的sidelink资源池和/或uulink下行组播资源发送给UE-1。
在步骤S6060中,UE-1向其它UE分别发送该资源更新。例如,UE-1可以向其它UE分别发送sidelink资源池和/或uulink下行组播资源。由此,各UE可以在更新的sidelink资源池和/或uulink下行组播资源中进行相应的sidelink通信和uulink通信。
此外,在步骤S6050中,基站也可以直接将资源更新分别发送给各UE。在该情况下,无需在步骤S6060中由作为主导UE的UE-1向其它UE发送资源更新。
以上结合图6描述了直连通信设备组与基站之间的通信和资源分配方案。在该方案中,仅由主导UE经由uulink与基站进行通信,而无需每个UE分别与基站通信。由此,只需要主导UE保持与基站的链接状态即可,其它UE可以处于未链接状态,从而能够降低基站进行资源分配的复杂度并降低系统开销。通过这样的方式,尤其是在直连通信设备组中的UE数量较大的情况下,能够更显著地降低资源分配的复杂度和系统开销。
在一些实施例中,直连通信设备组中的主导UE除了获取各UE的uulink和sidelink 资源使用需求之外,还可以获取各UE的位置信息。该步骤例如也可以通过图6所示的步骤S6000和S6010来实现,其中步骤S6000中的测量请求包括对其它UE的位置信息的测量请求,步骤S6010中的测量相应包括由其它UE测量出的各自的位置信息。
接下来,在步骤S6020中,UE-1根据各UE的位置信息,确定直连通信设备组中的终端设备之间的最大距离。该最大距离可以包括在直连通信设备组的资源使用信息内,在步骤S6030中发送给基站。
在步骤S6040中,基站根据接收到的最大距离来进行资源协调,确定为该直连通信设备组分配的直连链路资源池的空间上的使用范围和所述直连通信设备组的最小直连通信发射功率中的至少一个。
在一些实施例中,为了确保直连通信设备组中的各UE都能够使用相同的sidelink资源池,可以利用各UE之间的最大距离来确定直连链路资源池的空间上的使用范围。由此,使得各UE都位于该使用范围内,因此能够确保各UE都能够使用相同的sidelink资源池。
在一些实施例中,也可以利用各UE之间的最大距离来确定直连通信设备组的最小直连通信发射功率。例如,可以将能够保证该最大距离的传输的发射功率确定为最小直连通信发射功率。由此,能够在保证传输的质量的情况下节约直连通信组中的各UE的发射功率。
接下来,与上文的描述类似地,在步骤S6050中,基站向UE-1发送资源更新(例如直连链路资源池的空间上的使用范围和/或直连通信设备组的最小直连通信发射功率),在步骤S6060中,UE-1将该资源更新发送给其它UE。
在一些情况下,即使调整了上行链路中sidelink资源所占的比例,并且调整了上行链路资源与下行链路资源的配比,也无法实现uulink与sidelink的资源协调。例如,如果小区内存在大量需要uulink下行链路资源的UE,或者游戏中的UE需要进行大量的数据下载,则上行链路资源可能不足,进而导致没有足够的sidelink资源。在该情况下,可以通过在UE侧或基站侧设置应用媒体控制单元,来调整UE的应用层媒体分发方式。
在一些实施例中,应用媒体控制单元可以设置在UE侧,根据UE的sidelink和uulink资源使用需求,调整UE的应用层媒体分发方式。例如,在小区内需要大量的uulink下行链路资源而无法确保足够的sidelink资源的情况下,可以调整UE的应用层媒体分发方式,使得UE之间的交互更多的地通过uulink来实现,在网络侧实现更多的渲染,从而减少sidelink资源使用需求。相反,在小区内的uulink下行链路资源需求较少而能够保证较多的sidelink资源的情况下,可以调整UE的应用层媒体分发方式,使得UE之间的交互更多地通过sidelink来实现,并且在UE侧实现更多的本地渲染。
在一些实施例中,应用媒体控制单元也可以设置在基站侧,根据UE向基站提供的sidelink和uulink资源使用需求,向UE提供用于调整UE的应用层媒体分发方式的媒体分发控制指令。
另外,在多个UE进行游戏互动并与游戏服务器交互游戏数据的场景下,应用媒体控制单元也可以相应地对游戏服务器的媒体分发方式进行调整,以适应uulink和sidelink资源使用需求。
根据上述实施例,可以通过应用层来根据网络性能调整应用的内容分发,从而提升用户体验。
接下来,考虑相邻小区之间的干扰的情况。
相邻小区的上行链路和下行链路如果没有进行协调则可能会导致相邻小区间的干扰。因此,在一些实施例中,基站根据与相邻基站之间的干扰情况,调节针对UE的直连链路资源以及蜂窝链路资源的分配。由此,能够减小相邻小区间的干扰的情况。
在一些实施例中,基站可以与相邻基站进行UE位置信息的交互。该UE位置信息例如可以指示由该基站服务的单个UE的地理位置或者多个UE构成的直连通信设备组的地理位置。基站可以通过与相邻基站的UE位置信息的交互,确定该UE位置信息所指示的位置处与相邻基站发生干扰的情况,并据此调整针对UE的直连链路资源以及蜂窝链路资源的分配(例如上行链路资源中sidelink所占的比例、上行链路资源与下行链路资源的配比),以减少相邻小区之间的干扰。
在一些实施例中,如果基站与相邻基站都是NR基站,则基站可以通过Xn接口来与相邻基站进行信息交互与协调。在一些实施例中,如果基站与相邻基站都是LTE基站,则基站可以通过X2接口来与相邻基站进行信息交互与协调。应当理解,在基站为NR基站并且相邻基站为LTE基站(反之亦然)的情况下,该基站也可以与相邻基站进行信息交互与协调。在一些实施例中,基站也可以通过波束赋形方向(针对毫米波波段)控制,在空间上减小相邻小区的资源干扰问题。
根据该实施例,能够通过与相邻小区之间信息交互与协调,调节针对UE的直连链路资源以及蜂窝链路资源的分配,从而减少相邻小区之间的干扰。
在上文的描述中,以多个UE之间的游戏互动的场景为例,介绍了根据本公开的实施例的sidelink资源和uulink资源的协调分配方案。应当理解,根据本公开的技术也能够类似地应用于同时使用sidelink资源和uulink资源的其它场景,例如车联网、物联网等场景。
下面将介绍根据本公开的应用示例。
本公开内容的技术能够应用于各种产品。
例如,基站可以被实现为任何类型的演进型节点B(eNB)或下一代无线电接入技术中的gNodeB(gNB),诸如宏eNB/gNB和小eNB/gNB。小eNB/gNB可以为覆盖比宏小区小的小区的eNB/gNB,诸如微微eNB/gNB、微eNB/gNB和家庭(毫微微)eNB/gNB。代替地,基站可以被实现为任何其它类型的基站,诸如GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和NodeB中的一者或两者,或者可以是未来通信系统中对应的网络节点。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,终端设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图7是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 800包括一个或多个天线810以及基站设备820。基站设备820和每个天线810可以经由RF线缆彼此连接。
天线810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备820发送和接收无线信号。如图7所示,gNB 800可以包括多个天线810。例如,多个天线810可以与gNB 800使用的多个频带兼容。基站设备820包括控制器821、存储器822、网络接口823以及无线通信接口825。
控制器821可以为例如CPU或DSP,并且操作基站设备820的较高层的各种功能。例如,控制器821根据由无线通信接口825处理的信号中的数据来生成数据分组,并经由网络接口823来传递所生成的分组。控制器821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的gNB、eNB或核心网节点(例如接入与移动性管理功能AMF(Access and Mobility Management Function))来执行。存储器822包括RAM和ROM, 并且存储由控制器821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口823为用于将基站设备820连接至核心网824的通信接口。控制器821可以经由网络接口823而与核心网节点或另外的gNB/eNB进行通信。在此情况下,gNB 800与核心网节点或其它gNB/eNB可以通过逻辑接口(诸如N2接口与AMF和Xn接口与gNB)而彼此连接。网络接口823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口823为无线通信接口,则与由无线通信接口825使用的频带相比,网络接口823可以使用较高频带用于无线通信。
无线通信接口825支持任何蜂窝通信方案(诸如LTE、LTE-先进、NR(New Radio)),并且经由天线810来提供到位于gNB 800的小区中的终端的无线连接。无线通信接口825通常可以包括例如基带(BB)处理器826和RF电路827。BB处理器826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器821,BB处理器826可以具有上述逻辑功能的一部分或全部。BB处理器826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器826的功能改变。该模块可以为插入到基站设备820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路827可以包括例如混频器、滤波器和放大器,并且经由天线810来传送和接收无线信号。
如图7所示,无线通信接口825可以包括多个BB处理器826。例如,多个BB处理器826可以与gNB 800使用的多个频带兼容。如图7所示,无线通信接口825可以包括多个RF电路827。例如,多个RF电路827可以与多个天线元件兼容。虽然图7示出其中无线通信接口825包括多个BB处理器826和多个RF电路827的示例,但是无线通信接口825也可以包括单个BB处理器826或单个RF电路827。
(第二应用示例)
图8是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 830包括一个或多个天线840、基站设备850和RRH 860。RRH 860和每个天线840可以经由RF线缆而彼此连接。基站设备850和RRH 860可以经由诸如光纤线缆的高速线路而彼此连接。
天线840中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 860发送和接收无线信号。如图8所示,gNB 830可以包括多个天线840。例如,多个天线840可以与gNB 830使用的多个频带兼容。基站设备850包 括控制器851、存储器852、网络接口853、无线通信接口855以及连接接口857。控制器851、存储器852和网络接口853与参照图7描述的控制器821、存储器822和网络接口823相同。
无线通信接口855支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 860和天线840来提供到位于与RRH 860对应的扇区中的终端的无线通信。无线通信接口855通常可以包括例如BB处理器856。除了BB处理器856经由连接接口857连接到RRH 860的RF电路864之外,BB处理器856与参照图7描述的BB处理器826相同。如图8所示,无线通信接口855可以包括多个BB处理器856。例如,多个BB处理器856可以与gNB 830使用的多个频带兼容。虽然图8示出其中无线通信接口855包括多个BB处理器856的示例,但是无线通信接口855也可以包括单个BB处理器856。
连接接口857为用于将基站设备850(无线通信接口855)连接至RRH 860的接口。连接接口857还可以为用于将基站设备850(无线通信接口855)连接至RRH 860的上述高速线路中的通信的通信模块。
RRH 860包括连接接口861和无线通信接口863。
连接接口861为用于将RRH 860(无线通信接口863)连接至基站设备850的接口。连接接口861还可以为用于上述高速线路中的通信的通信模块。
无线通信接口863经由天线840来传送和接收无线信号。无线通信接口863通常可以包括例如RF电路864。RF电路864可以包括例如混频器、滤波器和放大器,并且经由天线840来传送和接收无线信号。如图8所示,无线通信接口863可以包括多个RF电路864。例如,多个RF电路864可以支持多个天线元件。虽然图8示出其中无线通信接口863包括多个RF电路864的示例,但是无线通信接口863也可以包括单个RF电路864。
在图7和图8所示的gNB 800和gNB 830中,参考图4描述的处理电路4010中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分也可以由控制器821和控制器851实现。
[关于终端设备的应用示例]
(第一应用示例)
图9是示出可以应用本公开内容的技术的智能电话900的示意性配置的示例的框图。智能电话900包括处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912、一个或多个天线开关915、一个或多个天线916、总线917、电池918以及辅助控制器919。
处理器901可以为例如CPU或片上系统(SoC),并且控制智能电话900的应用层和另外层的功能。存储器902包括RAM和ROM,并且存储数据和由处理器901执行的程序。存储装置903可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口904为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话900的接口。
摄像装置906包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器907可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风908将输入到智能电话900的声音转换为音频信号。输入装置909包括例如被配置为检测显示装置910的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置910包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话900的输出图像。扬声器911将从智能电话900输出的音频信号转换为声音。
无线通信接口912支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口912通常可以包括例如BB处理器913和RF电路914。BB处理器913可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路914可以包括例如混频器、滤波器和放大器,并且经由天线916来传送和接收无线信号。无线通信接口912可以为其上集成有BB处理器913和RF电路914的一个芯片模块。如图9所示,无线通信接口912可以包括多个BB处理器913和多个RF电路914。虽然图9示出其中无线通信接口912包括多个BB处理器913和多个RF电路914的示例,但是无线通信接口912也可以包括单个BB处理器913或单个RF电路914。
此外,除了蜂窝通信方案之外,无线通信接口912可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口912可以包括针对每种无线通信方案的BB处理器913和RF电路914。
天线开关915中的每一个在包括在无线通信接口912中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线916中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口912传送和接收无线信号。如图9所示,智能电话900可以包括多个天线916。虽然图9示出其中智能电话900包括多个天线916的示例,但是智能电话900也可以包括单个天线916。
此外,智能电话900可以包括针对每种无线通信方案的天线916。在此情况下,天 线开关915可以从智能电话900的配置中省略。
总线917将处理器901、存储器902、存储装置903、外部连接接口904、摄像装置906、传感器907、麦克风908、输入装置909、显示装置910、扬声器911、无线通信接口912以及辅助控制器919彼此连接。电池918经由馈线向图9所示的智能电话900的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器919例如在睡眠模式下操作智能电话900的最小必需功能。
在图9所示的智能电话900中,参考图2描述的处理电路2010中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分也可以由处理器901或辅助控制器919实现。
(第二应用示例)
图10是示出可以应用本公开内容的技术的汽车导航设备920的示意性配置的示例的框图。汽车导航设备920包括处理器921、存储器922、全球定位系统(GPS)模块924、传感器925、数据接口926、内容播放器927、存储介质接口928、输入装置929、显示装置930、扬声器931、无线通信接口933、一个或多个天线开关936、一个或多个天线937以及电池938。
处理器921可以为例如CPU或SoC,并且控制汽车导航设备920的导航功能和另外的功能。存储器922包括RAM和ROM,并且存储数据和由处理器921执行的程序。
GPS模块924使用从GPS卫星接收的GPS信号来测量汽车导航设备920的位置(诸如纬度、经度和高度)。传感器925可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口926经由未示出的终端而连接到例如车载网络941,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器927再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口928中。输入装置929包括例如被配置为检测显示装置930的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置930包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器931输出导航功能的声音或再现的内容。
无线通信接口933支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口933通常可以包括例如BB处理器934和RF电路935。BB处理器934可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路935可以包括例如混频器、滤波器和放大器,并且经由天线937来传送和接收无线信号。无线通信接口933还可以为其上集成有BB处理器934 和RF电路935的一个芯片模块。如图10所示,无线通信接口933可以包括多个BB处理器934和多个RF电路935。虽然图10示出其中无线通信接口933包括多个BB处理器934和多个RF电路935的示例,但是无线通信接口933也可以包括单个BB处理器934或单个RF电路935。
此外,除了蜂窝通信方案之外,无线通信接口933可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口933可以包括BB处理器934和RF电路935。
天线开关936中的每一个在包括在无线通信接口933中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线937的连接目的地。
天线937中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口933传送和接收无线信号。如图10所示,汽车导航设备920可以包括多个天线937。虽然图10示出其中汽车导航设备920包括多个天线937的示例,但是汽车导航设备920也可以包括单个天线937。
此外,汽车导航设备920可以包括针对每种无线通信方案的天线937。在此情况下,天线开关936可以从汽车导航设备920的配置中省略。
电池938经由馈线向图10所示的汽车导航设备920的各个块提供电力,馈线在图中被部分地示为虚线。电池938累积从车辆提供的电力。
在图10示出的汽车导航设备920中,参考图2描述的处理电路2010中包括的一个或多个组件可被实现在无线通信接口912中。可替代地,这些组件中的至少一部分也可以由处理器921实现。
本公开内容的技术也可以被实现为包括汽车导航设备920、车载网络941以及车辆模块942中的一个或多个块的车载系统(或车辆)940。车辆模块942生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络941。
应当理解,本说明书中“实施例”或类似表达方式的引用是指结合该实施例所述的特定特征、结构、或特性系包括在本公开的至少一具体实施例中。因此,在本说明书中,“在本公开的实施例中”及类似表达方式的用语的出现未必指相同的实施例。
本领域技术人员应当知道,本公开被实施为一系统、装置、方法或作为计算机程序产品的计算机可读存储介质(例如非瞬态存储介质)。因此,本公开可以实施为各种形式,例如完全的硬件实施例、完全的软件实施例(包括固件、常驻软件、微程序代码等),或者也可实施为软件与硬件的实施形式,在以下会被称为“电路”、“模块”或“系统”。此外,本公开也可以任何有形的媒体形式实施为计算机程序产品,其具有计算机可 使用程序代码存储于其上。
本公开的相关叙述参照根据本公开具体实施例的系统、装置、方法及计算机程序产品的流程图和/或框图来进行说明。可以理解每一个流程图和/或框图中的每一个块,以及流程图和/或框图中的块的任何组合,可以使用计算机程序指令来实施。这些计算机程序指令可供通用型计算机或特殊计算机的处理器或其它可编程数据处理装置所组成的机器来执行,而指令经由计算机或其它可编程数据处理装置处理以便实施流程图和/或框图中所说明的功能或操作。
在附图中显示根据本公开各种实施例的系统、装置、方法及计算机程序产品可实施的架构、功能及操作的流程图及框图。因此,流程图或框图中的每个块可表示一模块、区段、或部分的程序代码,其包括一个或多个可执行指令,以实施指定的逻辑功能。另外应当注意,在某些其它的实施例中,块所述的功能可以不按图中所示的顺序进行。举例来说,两个图示相连接的块事实上也可以同时执行,或根据所涉及的功能在某些情况下也可以按图标相反的顺序执行。此外还需注意,每个框图和/或流程图的块,以及框图和/或流程图中块的组合,可藉由基于专用硬件的系统来实施,或者藉由专用硬件与计算机指令的组合,来执行特定的功能或操作。
以上已经描述了本公开的各实施例,上述说明是示例性的,并非穷尽性的,并且也不限于所披露的各实施例。在不偏离所说明的各实施例的范围和精神的情况下,对于本技术领域的普通技术人员来说许多修改和变更都是显而易见的。本文中所用术语的选择,旨在最好地解释各实施例的原理、实际应用或对市场技术的技术改进,或者使本技术领域的其它普通技术人员能理解本文披露的各实施例。
注意,本说明书中公开的技术可以具有以下配置。
(1)一种用于终端设备侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为:
经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
(2)根据(1)所述的电子设备,其中,
所述直连链路资源使用需求由与所述直连链路有关的信道繁忙率CBR和缓冲状态报告BSR中的至少一个来指示。
(3)根据(1)所述的电子设备,其中,
所述蜂窝链路资源使用需求由与所述蜂窝链路有关的缓冲状态报告BSR来指示。
(4)根据(1)所述的电子设备,其中,所述处理电路还被配置为:
经由直连链路,获取其它终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,所述其它终端设备与所述终端设备经由直连链路相互通信,构成直连通信设备组;
根据所述直连通信设备组中的各终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,确定所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求;以及
经由蜂窝链路,将所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求提供给所述基站,以使所述基站根据所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,为所述直连通信设备组分配直连链路资源池。
(5)根据(4)所述的电子设备,其中,根据所述直连通信设备组中的各终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,确定所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求包括:
将所述直连通信设备组中的各终端设备中的最大的直连链路资源使用需求或者各终端设备的平均直连链路资源使用需求确定为所述直连通信设备组的直连链路资源使用需求。
(6)根据(4)所述的电子设备,其中,根据所述直连通信设备组中的各终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,确定所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求包括:
将所述直连通信设备组中的各终端设备的蜂窝链路资源使用需求之和确定为所述直连通信设备组的蜂窝链路资源使用需求。
(7)根据(4)所述的电子设备,其中,所述处理电路还被配置为:
获取所述直连通信设备组中的各终端设备的位置信息;
根据所述位置信息,确定所述直连通信设备组中的终端设备之间的最大距离;
将所述最大距离提供给所述基站,以使所述基站根据所述最大距离确定为所述直连通信设备组分配的所述直连链路资源池的空间上的使用范围和所述直连通信设备组的最小直连通信发射功率中的至少一个。
(8)根据(1)所述的电子设备,其中,所述处理电路还被配置为:
根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,调整所述终端设备的应用层媒体分发方式。
(9)一种用于基站侧的电子设备,所述电子设备包括:
处理电路,所述处理电路被配置为:
经由蜂窝链路,获取终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求;以及
根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
(10)根据(9)所述的电子设备,其中,
所述直连链路资源使用需求由与所述直连链路有关的信道繁忙率CBR和缓冲状态报告BSR中的至少一个来指示。
(11)根据(9)所述的电子设备,其中,
所述蜂窝链路资源使用需求由与蜂窝链路有关的缓冲状态报告BSR来指示。
(12)根据(9)所述的电子设备,其中,根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源包括:
根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,调整上行链路资源中直连链路资源所占的比例,根据调整后的所述比例,为所述终端设备分配直连链路资源以及蜂窝链路资源。
(13)根据(9)所述的电子设备,其中,根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源包括:
根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,调整上行链路资源与下行链路资源的配比,根据调整后的所述配比,为所述终端设备分配直连链路资源以及蜂窝链路资源。
(14)根据(9)所述的电子设备,其中,所述处理电路还被配置为:
经由所述蜂窝链路,获取直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,所述直连通信设备组包括经由直连链路相互通信的多个终端设备;
根据所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,为所述直连通信设备组分配直连链路资源池。
(15)根据(14)所述的电子设备,其中,所述处理电路还被配置为:
根据所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,为所述直连通信设备组分配蜂窝下行链路组播资源。
(16)根据(9)所述的电子设备,其中,所述处理电路还被配置为:
根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,向所述终端设备提供用于调整所述终端设备的应用层媒体分发方式的媒体分发控制指令。
(17)根据(9)所述的电子设备,其中,所述处理电路还被配置为:
根据与相邻基站之间的干扰情况,调节所述直连链路资源以及蜂窝链路资源的分配。
(18)一种通信方法,包括:
终端设备经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
(19)一种通信方法,包括:
基站经由蜂窝链路,获取终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求;以及
所述基站根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
(20)一种计算机可读存储介质,包括可执行指令,当所述可执行指令由信息处理装置执行时,使所述信息处理装置执行根据(18)或(19)所述的通信方法。

Claims (20)

  1. 一种用于终端设备侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为:
    经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
  2. 根据权利要求1所述的电子设备,其中,
    所述直连链路资源使用需求由与所述直连链路有关的信道繁忙率CBR和缓冲状态报告BSR中的至少一个来指示。
  3. 根据权利要求1所述的电子设备,其中,
    所述蜂窝链路资源使用需求由与所述蜂窝链路有关的缓冲状态报告BSR来指示。
  4. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    经由直连链路,获取其它终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,所述其它终端设备与所述终端设备经由直连链路相互通信,构成直连通信设备组;
    根据所述直连通信设备组中的各终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,确定所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求;以及
    经由蜂窝链路,将所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求提供给所述基站,以使所述基站根据所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,为所述直连通信设备组分配直连链路资源池。
  5. 根据权利要求4所述的电子设备,其中,根据所述直连通信设备组中的各终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,确定所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求包括:
    将所述直连通信设备组中的各终端设备中的最大的直连链路资源使用需求或者各终端 设备的平均直连链路资源使用需求确定为所述直连通信设备组的直连链路资源使用需求。
  6. 根据权利要求4所述的电子设备,其中,根据所述直连通信设备组中的各终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,确定所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求包括:
    将所述直连通信设备组中的各终端设备的蜂窝链路资源使用需求之和确定为所述直连通信设备组的蜂窝链路资源使用需求。
  7. 根据权利要求4所述的电子设备,其中,所述处理电路还被配置为:
    获取所述直连通信设备组中的各终端设备的位置信息;
    根据所述位置信息,确定所述直连通信设备组中的终端设备之间的最大距离;
    将所述最大距离提供给所述基站,以使所述基站根据所述最大距离确定为所述直连通信设备组分配的所述直连链路资源池的空间上的使用范围和所述直连通信设备组的最小直连通信发射功率中的至少一个。
  8. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,调整所述终端设备的应用层媒体分发方式。
  9. 一种用于基站侧的电子设备,所述电子设备包括:
    处理电路,所述处理电路被配置为:
    经由蜂窝链路,获取终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求;以及
    根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
  10. 根据权利要求9所述的电子设备,其中,
    所述直连链路资源使用需求由与所述直连链路有关的信道繁忙率CBR和缓冲状态报 告BSR中的至少一个来指示。
  11. 根据权利要求9所述的电子设备,其中,
    所述蜂窝链路资源使用需求由与蜂窝链路有关的缓冲状态报告BSR来指示。
  12. 根据权利要求9所述的电子设备,其中,根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源包括:
    根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,调整上行链路资源中直连链路资源所占的比例,根据调整后的所述比例,为所述终端设备分配直连链路资源以及蜂窝链路资源。
  13. 根据权利要求9所述的电子设备,其中,根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源包括:
    根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,调整上行链路资源与下行链路资源的配比,根据调整后的所述配比,为所述终端设备分配直连链路资源以及蜂窝链路资源。
  14. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    经由所述蜂窝链路,获取直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,所述直连通信设备组包括经由直连链路相互通信的多个终端设备;
    根据所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,为所述直连通信设备组分配直连链路资源池。
  15. 根据权利要求14所述的电子设备,其中,所述处理电路还被配置为:
    根据所述直连通信设备组的直连链路资源使用需求以及蜂窝链路资源使用需求,为所述直连通信设备组分配蜂窝下行链路组播资源。
  16. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,向所述终端设备提供用于调整所述终端设备的应用层媒体分发方式的媒体分发控制指令。
  17. 根据权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    根据与相邻基站之间的干扰情况,调节所述直连链路资源以及蜂窝链路资源的分配。
  18. 一种通信方法,包括:
    终端设备经由蜂窝链路,向基站提供所述终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求,以使所述基站根据所述终端设备的直连链路资源使用需求和所述蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
  19. 一种通信方法,包括:
    基站经由蜂窝链路,获取终端设备的直连链路资源使用需求以及蜂窝链路资源使用需求;以及
    所述基站根据所述直连链路资源使用需求以及蜂窝链路资源使用需求,为所述终端设备分配直连链路资源以及蜂窝链路资源。
  20. 一种计算机可读存储介质,包括可执行指令,当所述可执行指令由信息处理装置执行时,使所述信息处理装置执行根据权利要求18或19所述的通信方法。
PCT/CN2021/123973 2020-10-21 2021-10-15 电子设备和通信方法 WO2022083505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/245,365 US20240032081A1 (en) 2020-10-21 2021-10-15 Electronic device and communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011133344.1A CN114390691A (zh) 2020-10-21 2020-10-21 电子设备和通信方法
CN202011133344.1 2020-10-21

Publications (1)

Publication Number Publication Date
WO2022083505A1 true WO2022083505A1 (zh) 2022-04-28

Family

ID=81193371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123973 WO2022083505A1 (zh) 2020-10-21 2021-10-15 电子设备和通信方法

Country Status (3)

Country Link
US (1) US20240032081A1 (zh)
CN (1) CN114390691A (zh)
WO (1) WO2022083505A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020881A1 (en) * 2014-08-08 2016-02-11 Telefonaktiebolaget L M Ericsson (Publ) Coordination between prose bsr and cellular bsr
CN107371260A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 资源请求、资源分配方法及装置
CN109548078A (zh) * 2017-09-22 2019-03-29 索尼公司 电子装置、无线通信方法和计算机可读介质
CN110392431A (zh) * 2018-04-19 2019-10-29 中兴通讯股份有限公司 一种实现边链路资源配置的方法、装置及系统
WO2020193342A1 (en) * 2019-03-27 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Methods for sl sr/bsr handling

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016020881A1 (en) * 2014-08-08 2016-02-11 Telefonaktiebolaget L M Ericsson (Publ) Coordination between prose bsr and cellular bsr
CN107371260A (zh) * 2016-05-13 2017-11-21 中兴通讯股份有限公司 资源请求、资源分配方法及装置
CN109548078A (zh) * 2017-09-22 2019-03-29 索尼公司 电子装置、无线通信方法和计算机可读介质
CN110392431A (zh) * 2018-04-19 2019-10-29 中兴通讯股份有限公司 一种实现边链路资源配置的方法、装置及系统
WO2020193342A1 (en) * 2019-03-27 2020-10-01 Telefonaktiebolaget Lm Ericsson (Publ) Methods for sl sr/bsr handling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOMI: "Discussion on BSR prioritization issue", 3GPP DRAFT; R2-2001107, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200224 - 20200306, 13 February 2020 (2020-02-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051848725 *

Also Published As

Publication number Publication date
CN114390691A (zh) 2022-04-22
US20240032081A1 (en) 2024-01-25

Similar Documents

Publication Publication Date Title
WO2020164439A1 (zh) 用户设备、网络侧设备、无线通信方法和存储介质
US20220352945A1 (en) Electronic devices and communication methods
CN106452705B (zh) 无线通信系统中的电子设备和无线通信方法
JP7019949B2 (ja) リレー通信装置、基地局、方法及び記録媒体
WO2017028664A1 (zh) 用于无线通信的基站侧和用户设备侧的装置及方法
CN113366875B (zh) 电子设备、无线通信方法和计算机可读存储介质
US10212655B2 (en) Communication control device and communication control method
WO2021139669A1 (zh) 用于无线通信系统的电子设备、方法和存储介质
EP4135449A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
JP6848440B2 (ja) 端末装置、基地局装置、方法及び記録媒体
JP2020516087A (ja) 無線通信システムにおける電子機器、及び方法
WO2022028327A1 (zh) 用于无线通信的电子设备、方法和存储介质
JP2021182655A (ja) 通信装置、通信制御方法及び記録媒体
US20200008077A1 (en) Apparatus for frequency band allocation
US10313093B2 (en) Apparatus for communicating using a frequency band with priority
WO2016002332A1 (ja) 装置、方法及びプログラム
WO2022083505A1 (zh) 电子设备和通信方法
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US10880893B2 (en) Transmission of discovery signal in small cells while in off state
US10028256B2 (en) Apparatus
US20240137196A1 (en) Utilizing unused frequency division duplex uplink for time division duplex operations in wireless networks
WO2023143216A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2024027676A1 (zh) 用于分层联邦学习网络中的切换的装置、方法和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881923

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18245365

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881923

Country of ref document: EP

Kind code of ref document: A1