WO2022027901A1 - 一种具有光感测功能的双模显示装置 - Google Patents

一种具有光感测功能的双模显示装置 Download PDF

Info

Publication number
WO2022027901A1
WO2022027901A1 PCT/CN2020/137505 CN2020137505W WO2022027901A1 WO 2022027901 A1 WO2022027901 A1 WO 2022027901A1 CN 2020137505 W CN2020137505 W CN 2020137505W WO 2022027901 A1 WO2022027901 A1 WO 2022027901A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
sensing
mode
photoelectric conversion
conversion units
Prior art date
Application number
PCT/CN2020/137505
Other languages
English (en)
French (fr)
Inventor
周正三
范成至
Original Assignee
神盾股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 神盾股份有限公司 filed Critical 神盾股份有限公司
Publication of WO2022027901A1 publication Critical patent/WO2022027901A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes

Definitions

  • the present invention provides a dual-mode display device with a light sensing function, in particular a dual-mode display device utilizing a dual-mode photoelectric conversion unit to take both display and light sensing functions into consideration.
  • the miniaturized optical imaging device is placed under the screen (it can be called under the screen), and through the screen part Light transmission (especially organic light-emitting diode (Organic Light Emitting Diode, OLED) screens) can capture images of objects above the screen, such as fingerprint images or photos.
  • Light transmission especially organic light-emitting diode (Organic Light Emitting Diode, OLED) screens
  • the image sensing technology under the screen has certain difficulties, because the light representing the image needs to penetrate the display panel, which causes difficulties in signal processing (because the image signal will be combined with the panel light transmission pattern), all of which require complex
  • the image processing method solves the problem.
  • different display panels have different light transmittance ratios and light transmittance patterns. It is often necessary to propose solutions for them.
  • the technology of light transmission, at this time, the image sensing under the screen will be useless for heroes. Therefore, in order to solve the above problems, the present invention proposes how to design an in-screen optical sensing device, which is the problem to be solved by the present disclosure.
  • an object of the present invention is to provide a dual-mode display device that utilizes a dual-mode photoelectric conversion unit to take into account display, light sensing and anti-counterfeiting functions, which can be applied to OLED displays, micro light-emitting diode displays, inorganic light-emitting diode displays or other Displays with separate lighting units.
  • the present invention provides a dual-mode display device, which at least includes: a substrate; a control unit; and a plurality of photoelectric conversion units; the plurality of photoelectric conversion units are disposed on the substrate and electrically coupled to the control unit .
  • the control unit controls the plurality of photoelectric conversion units to enter a light-emitting mode; and in a sensing mode, the control unit controls at least one of the photoelectric conversion units to enter a light-sensing mode.
  • the present invention also provides a dual-mode display device, comprising at least: a substrate; a control unit; and a plurality of photoelectric conversion units; the plurality of photoelectric conversion units are disposed on the substrate and electrically coupled to the control unit; wherein the control unit Control and adjust the luminous proportions of the three primary colors of the three primary color photodiodes of the photoelectric conversion units, and control the three primary color photodiodes with different three primary color energy levels to receive light with different spectra during sensing, so as to perform the function of spectral separation.
  • the present invention also provides a dual-mode display device, comprising at least: a substrate; a control unit; and a plurality of photoelectric conversion units; the plurality of photoelectric conversion units are disposed on the substrate and are electrically coupled to the control unit;
  • the photoelectric conversion unit has at least a first energy level and a second energy level, the second energy level is higher than the first energy level, and the control unit controls the photoelectric conversion units with the first energy level to receive the corresponding first spectrum to generate a
  • the control unit controls the photoelectric conversion units with the second energy level to receive the corresponding second spectrum to generate a second electrical signal, thereby performing operations on the first electrical signal and the second electrical signal to achieve spectral separation function.
  • the photoelectric conversion units in the light-emitting mode and the light-sensing mode can be used for display and light sensing, wherein the photoelectric conversion units in the light-emitting mode can provide not only light for display, but also light for sensing. Since the display does not need to be redesigned and manufactured, and only the circuit driving method needs to be changed, the function of the in-screen optical sensor can be achieved without spending a lot of cost. Furthermore, by utilizing the characteristics of RGB diodes, spectral separation can be performed to provide sensing data for anti-counterfeiting, without additional color filter elements, which can effectively save costs.
  • FIG. 1 is a partial cross-sectional schematic diagram of a dual-mode display device performing a display function according to a preferred embodiment of the present invention.
  • FIG. 2 is a partial cross-sectional schematic diagram of a dual-mode display device performing a light sensing function.
  • FIG. 3 is a functional block diagram of a dual-mode display device.
  • 4A to 4B show two states of a pixel.
  • 5A to 5C show three examples of pixels.
  • FIG. 6 is a partial cross-sectional schematic diagram of a dual-mode display device performing a spectral separation function.
  • FIG. 7A to 7B are partial cross-sectional schematic diagrams illustrating a modification of the dual-mode display device of FIG. 1 performing a display function and a light sensing function.
  • FIG. 8 is a schematic diagram of different sensing regions of an electronic device equipped with a dual-mode display device.
  • B blue light
  • EM light-emitting unit
  • F object
  • G green light
  • L1 light for display
  • L2 light for sensing
  • L3 light
  • R red light
  • RC light-receiving unit
  • S1 sensing signal
  • S2 touch signal
  • SA1, SA2, SA3 sensing area
  • 10 substrate
  • 12 transistor layer
  • 20 photoelectric conversion unit
  • 21 red photodiode
  • 22 green photodiode
  • 23 blue light photodiode
  • 24 pixel
  • 25 transistor layer
  • 25A, 25B, 25C transistor
  • 30 control unit
  • 40 display panel protective layer
  • 50 touch sensing layer
  • 100 dual-mode display device
  • 200 electronics device.
  • the spirit of the present invention is to use light emitting diodes (including organic and inorganic materials, such as OLED, micro light emitting diodes (Micro LED), etc., to provide light sensing and display functions.
  • the known OLED will be used as the main, It operates in two modes. When the OLED operates in the forward bias light-emitting mode (referred to as the light-emitting mode or electro-optical conversion mode), the OLED can be used as a display, and when the OLED operates in the reverse bias light-sensing mode (referred to as light When operating in sensing mode, light receiving mode or photoelectric conversion mode), some or all of the OLEDs can be used as photodiodes and used as light sensors.
  • the design can be single-point, multi-point, one-dimensional and two-dimensional.
  • a two-dimensional (2D) light sensor can sense objects, and it is called a dual-mode display device because it operates in two modes.
  • a sensing area can be used for fingerprint sensing.
  • Some of the OLED pixels also called light-emitting units
  • the control unit can be used to set the scene according to the application.
  • the ratio of light-emitting and sensing in the sensing area (for example, the light-emitting and sensing ratio of a dim scene is 5:3; the light-emitting and sensing ratio of an indoor light source scene is 5:4; or the light-emitting and sensing ratio of a solar light source scene
  • the ratio is 1:4, of course, this ratio is not limited
  • the application scene can be judged by the control unit according to the relevant information obtained by the ambient light sensor.
  • the control unit can be used to control these photoelectric devices according to the application scene
  • the three-primary-color photodiode of the conversion unit adjusts the light-emitting ratio of the three-primary colors (RGB).
  • the "at least one" mentioned in the present invention includes one or more cases, or a part or all of the cases.
  • FIGS. 1 to 3 are partial cross-sectional schematic diagrams of a dual-mode display device performing a display function and a light sensing function according to a preferred embodiment of the present invention.
  • FIG. 3 is a functional block diagram of a dual-mode display device. As shown in FIGS. 1 to 3 , the dual-mode display device 100 at least includes a substrate 10 (eg, a glass or polymer flexible substrate), a plurality of photoelectric conversion units 20 and a control unit 30 .
  • a substrate 10 eg, a glass or polymer flexible substrate
  • the dual-mode display device 100 is described with an OLED display provided with a sensor as an example, the present invention is not limited thereto.
  • the dual-mode display device 100 can also sense biometric features such as blood vessel images and blood oxygen concentration images of fingers, or be used as a point-like, line-like, or plane-like sensing device.
  • the dual-mode display device 100 is a miniature light-emitting diode display provided with an optical sensor or other displays using similar light-emitting diodes as a display light source.
  • the substrate 10 may be a dielectric substrate.
  • a transistor layer 25 can be formed on the substrate 10 (the transistor layer 25 is used as a part of the photoelectric conversion unit 20 , that is, the photoelectric conversion unit 20 includes at least the transistor layer 25 ), such as a thin film transistor layer.
  • the transistor layer 25 has at least one or more transistors 25A, 25B and 25C for switching, and of course also includes conductor connecting wires (not shown).
  • a plurality of photoelectric conversion units 20 which may be organic light emitting diodes or micro light emitting diodes, are disposed on the substrate 10 .
  • the photoelectric conversion unit 20 includes a plurality of pixels 24, and each pixel 24 includes at least one photodiode of three primary colors (a red photodiode 21, a green photodiode 22, and a blue photodiode 23) and at least one transistor 25A, 25B and at least one transistor for controlling the photodiodes.
  • the control unit 30 is electrically coupled to the red photodiode 21 , the green photodiode 22 and the blue photodiode 23 through the at least one transistor 25A, 25B, 25C serving as a switch.
  • a single photodiode may be connected to a single transistor, a single transistor may be connected to a plurality of photodiodes, or a plurality of transistors may be connected to a single photodiode, which is not particularly limited. Therefore, the control unit 30 is electrically coupled to these photoelectric conversion units 20 . For example, the control unit 30 outputs control signals to the transistors 25A, 25B and 25C, which can control the operation of the three primary color photodiodes.
  • the installation position of the control unit 30 is not particularly limited. Of course, the configuration and quantity between each pixel and each transistor are only described here for basic operation, not intended to be limited. Those skilled in the art should understand and can change it according to the application. For example, the design of increasing the reverse bias voltage may The number of control transistors for each pixel is increased.
  • control unit 30 controls the photoelectric conversion units 20 to enter the light-emitting mode, so as to perform electrical signal-to-optical signal conversion to provide, for example, light L1 for display.
  • the displayed function can be provided.
  • the control unit 30 controls at least one (including one or more) of the photoelectric conversion units 20 to enter the light sensing mode, and entering the light sensing mode can receive the light L3 from an object F and execute the light signal Converted to an electrical signal to obtain a sensing signal S1. Therefore, one or more photoelectric conversion units 20 can be controlled by the control unit 30 to selectively operate between the light-emitting mode and the light-sensing mode, or selectively operate in the light-emitting mode or the light-sensing mode.
  • the remaining photoelectric conversion units 20 can be controlled by the control unit 30 to selectively operate in the light-emitting mode or Unlit mode.
  • the OLED display is a small-area display, all the photoelectric conversion units 20 can be controlled to enter the light sensing mode.
  • the OLED display is a large-area display (such as having the size of a mobile phone screen)
  • a part of the photoelectric conversion units 20 can be controlled to enter the light sensing mode, but all the photoelectric conversion units 20 can also be controlled to enter the light sensing mode to perform
  • the light sensing function of multiple parts for example, is to sense the fingerprints of two, three, four or five objects (fingers) at the same time, etc.
  • control unit 30 can control the photoelectric conversion unit 20 to operate in the light-emitting mode and/or the light-sensing mode, and such control actions may include: (a) a simple display case; (b) a full-screen sensing case; (c) no Display plus partial sensing (for example, when the screen is generally black and want to unlock); and (d) partial display plus partial sensing (for example, when operating an application and requires fingerprint authentication).
  • control unit 30 can control the three primary color photodiodes of the photoelectric conversion units 20 to perform the function of spectral separation, so as to facilitate the anti-counterfeiting procedure, the details will be described later.
  • the photoelectric conversion units 20 can be used to perform electro-optic (light-emitting) and photo-electric (sensing) conversion at different time points, so as to obtain the functions of display, lighting and light-sensing, Or photoelectric conversion units 20 at different positions (by geometric planning, the photoelectric conversion units 20 can perform partial light emission and partial light sensing) perform electro-optic (light-emitting) and photo-electric (sensing) conversion to obtain display, illumination and light sensing. function.
  • the display can have both display and light-sensing functions, and
  • the three primary color photodiodes that can control these photoelectric conversion units perform the function of spectral separation, which are the most important spirits of the present invention.
  • the dual-mode display device 100 may further include a display panel protective layer 40 disposed above the photoelectric conversion units 20 and displaying information according to the display light L1.
  • the display panel protective layer 40 includes a glass substrate or other light-transmitting materials, such as a protective sticker.
  • the dual-mode display device 100 may further include a touch sensing layer 50 electrically coupled to the control unit 30 and disposed on the display panel protective layer 40 (of course, with the development of technology, the touch sensing layer shown here is
  • the layer 50 and the display panel protective layer 40 are not limited in their manufacturing sequence or relationship.
  • some in-cell touch technologies integrate the touch technology, and the display panel protective layer is arranged at the outermost part.
  • the touch sensing layer 50 is disposed above the photoelectric conversion units 20 ), and the touch sensing layer 50 senses the touch information of the object F to generate a touch signal S2 .
  • control unit 30 can select a region of interest (Region Of Interest, ROI) according to the touch position corresponding to the touch signal S2, and control at least one of the photoelectric conversion units 20 located in the ROI to enter the light sensing mode, so as to A sensing signal S1 is obtained.
  • ROI region of interest
  • the control unit 30 also controls a first group of the photoelectric conversion units 20 (for example, the group formed by the pixels 24 used as the light-emitting unit EM in FIG. 4A ) to enter the light-emitting mode to provide Sensing the light L2, and controlling a second group of the photoelectric conversion units 20 (for example, the group formed by the pixels 24 used as the light receiving unit RC in FIG. 4A ) to enter the light sensing mode, so as to utilize the sensing
  • the sensing signal S1 is obtained with the light L2. Therefore, a part of the photoelectric conversion unit 20 provides the light L2 for sensing, and the other part is used for light sensing.
  • two groups of pixels 24 can be controlled to perform light-emitting and light-receiving functions at the same time.
  • These photoelectric conversion units 20 The first group and the second group can be staggered. Of course, the staggered arrangement here is only an example of the application. Any geometric arrangement of the light-emitting pixels and the sensing pixels can be controlled by the control unit. All belong to the scope covered by the present invention. It is worth noting that the light for sensing can also be provided by other light sources, for example, a light source for sensing is provided separately, or ambient light is used, etc., and is not limited to be provided by the photoelectric conversion unit 20 .
  • control unit 30 may control the first group and the second group of the photoelectric conversion units 20 to enter the light-emitting mode and the light-sensing mode, respectively, so as to use the first group for lighting and the function of light sensing using the second group.
  • control unit 30 can control the first group and the second group of the photoelectric conversion units 20 to enter the light sensing mode and the light emission mode, respectively, so as to use the second group for lighting and the function of using the first group for light sensing.
  • the data sensed by the first group and the second group can be combined to obtain complete data.
  • At least one of the photoelectric conversion units 20 may perform a light receiving function (eg, a proximity sensor) after providing the light L2 for sensing.
  • the control unit 30 also controls the photoelectric conversion units 20 to enter the light-emitting mode to provide the light L2 for sensing, and the control unit 30 sequentially controls at least one of the photoelectric conversion units 20 to enter the light-emitting mode and the light-emitting mode according to the touch signal S2.
  • the sensing signal S1 is obtained by using the light L2 for sensing.
  • the photoelectric conversion units 20 at least include a plurality of pixels 24 , and each pixel 24 includes at least one red photodiode 21 , at least one green photodiode 22 and at least one blue photodiode 23 , and the three may be referred to as RGB photodiodes, corresponding to a display pixel (or part of a display pixel).
  • a single pixel 24 may include at least one red photodiode 21 , at least one green photodiode 22 and two blue photodiodes 23 .
  • FIG. 5A to 5C show three examples of pixels.
  • the photoelectric conversion units 20 at least include a plurality of pixels 24 , and each pixel 24 includes at least one red photodiode 21 , at least one green photodiode 22 and at least one blue photodiode 23 , and the three may be referred to as RGB photodiodes, corresponding to a display pixel (or part of a display pixel).
  • a single pixel 24
  • a single pixel 24 may include two red photodiodes 21 , two green photodiodes 22 and one blue photodiode 23 . Because there are many ways to configure the photodiode, this is only an example, and the present invention is not limited to this, and as shown in FIG. 4A and FIG. 5A to 5C perform at least one photodiode (R or G or B), that is, in a partial activation mode, the control unit 30 activates only one or two of the R, G and B photodiodes (but not all of them).
  • R or G or B photodiode
  • R, G, B photodiodes into light sensing mode or light emission mode (for example, only green light and sensing), these can be matched with the application to independently control sub-pixels (R/G/B photodiodes 21 to 23 can be called as for sub-pixels).
  • FIG. 6 is a partial cross-sectional schematic diagram of a dual-mode display device performing a spectral separation function.
  • the red photodiode 21, the green photodiode 22, and the blue photodiode 23 enter the light sensing mode to provide different energy levels to perform spectrally separated sensing.
  • the energy level of the red photodiode 21 is relatively narrow
  • the energy level of the green photodiode 22 is second
  • the energy level of the blue photodiode 23 is relatively wide.
  • the blue light B can excite the red light photodiode 21, the green light photodiode 22 and the blue light photodiode 23 for photoelectric conversion;
  • the light G can only excite the red photodiode 21 and the green photodiode 22 for photoelectric conversion, but cannot excite the blue photodiode 23 for photoelectric conversion; and the red light R can only excite the red photodiode 21 for photoelectric conversion, but cannot excite the photoelectric conversion.
  • the green photodiode 22 and the blue photodiode 23 perform photoelectric conversion.
  • the red light photodiode 21 can sense red light, green light, blue light and their mixed light to enter the light sensing mode
  • the green light photodiode 22 can only sense green light, blue light and their mixed light and enter the light sensing mode
  • the blue light photodiode 23 can only sense blue light and enter the light sensing mode.
  • the above photodiodes with different energy levels are determined by the material characteristics, and even the energy levels of light emission and light sensing are not the same. The above only To illustrate an advantage of spectral separation in the embodiments of the present invention, it is not intended to limit a specific spectral range that each sub-pixel (photodiodes 21 to 23 ) can sense.
  • the plurality of photoelectric conversion units 20 have at least a first energy level (for example, an energy level corresponding to red light, but not limited thereto) and a second energy level (for example, an energy level corresponding to green light) , but not limited to), the second energy level is higher than the first energy level, the control unit 30 controls the photoelectric conversion units 20 with the first energy level to receive the corresponding first spectrum to generate the first electrical signal, and the control unit 30
  • the photoelectric conversion units 20 with the second energy level are controlled to receive the corresponding second spectrum to generate the second electrical signal, and the function of spectral separation can be achieved by performing operations on the first and second electrical signals.
  • the distribution ranges of the first spectrum and the second spectrum may partially overlap or not overlap at all.
  • the photoelectric conversion units 20 may further have a third energy level (for example, an energy level corresponding to blue light, but not limited thereto), and the third energy level is higher than the second energy level.
  • the control unit 30 controls the photoelectric conversion units 20 with the third energy level to receive the corresponding third spectrum to generate a third electrical signal, and the spectrum can be achieved by performing operations on the first, second and/or third electrical signals Separate function. It should be noted that the above-mentioned operations can be performed by the control unit 30, an external computer, or a cloud server, and the distribution ranges of the first, second and third spectrums may partially overlap or not overlap at all.
  • the dual-mode display device 100 can provide sensed spectral information according to the separated spectra, such as data required for fingerprint anti-counterfeiting, such as sensing of different spectra. Changes in the time domain or space domain of the data, or the mathematical operation relationship of the sensing data of different spectra, etc., do not need to set any color filters, which has the advantages of reducing the cost and simplifying the structure.
  • FIG. 7A and FIG. 7B are partial cross-sectional schematic diagrams of a modification of the dual-mode display device of FIG. 1 performing a display function and a light sensing function.
  • Figures 7A and 7B provide an example of local sensing similar to that of Figure 1 .
  • the photoelectric conversion unit 20 provides light L1 for display.
  • FIG. 7A in the display mode, the photoelectric conversion unit 20 provides light L1 for display.
  • the control unit 30 can simultaneously control some of the photoelectric conversion units 20 (eg, the photodiodes on the left and right sides only schematically shown) to enter the light-emitting mode to provide the sensing light L2 and Part of the photoelectric conversion unit 20 (for example, the middle three photodiodes 21, 22 and 23 shown only schematically) enters the light sensing mode to obtain the sensing signal S1 by using the light L2 for sensing; alternatively, the control unit 30 can control the photoelectric conversion units 20 to enter the light-emitting mode and control the photoelectric conversion units 20 to enter the light sensing mode in sequence (not simultaneously) according to the touch signal S2, so as to obtain the sensing signal S1 by using the sensing light L2. In this way, in the sensing mode, the effects of partial light emission and partial light sensing can be achieved.
  • the photoelectric conversion units 20 eg, the photodiodes on the left and right sides only schematically shown
  • Part of the photoelectric conversion unit 20 for example, the middle three photodiodes 21, 22
  • the sensing area SA3 at this time can selectively provide a sensing function and a display function.
  • a local screen sensing application can be provided.
  • another part of the dual-mode display device 100 (for example, outside the sensing area SA1 or SA2 ) can be provided with a photoelectric conversion unit having only a light-emitting mode. Therefore, the claimed scope of this case includes the above two applications.
  • a plurality of photoelectric conversion units 20 may be distributed throughout the entire dual-mode display device 100 , and the electronic device 200 mounted with the dual-mode display device 100 may be divided into two or more grades of products for sale.
  • 20%, 50% and 100% of the photoelectric conversion units 20 can be driven to enter the light sensing mode, which can create three sensing areas SA1, SA2 and SA3 with different sizes. price of electronic devices.
  • users who originally bought 20% of the sensing area SA1 can update the firmware or control characters through a paid account upgrade to upgrade to 40% of the sensing area SA2 or 100% of the sensing area SA3.
  • users who originally purchased the 100% sensing area SA3 can also set their usual sensing area and narrow it down to a specific sensing area of any proportion and/or specific location to meet the user's needs need.
  • the above-mentioned sensing mode includes a plurality of sub-sensing modes, and the control unit 30 can control different proportions of the photoelectric conversion units 20 to enter the light-sensing mode according to the sub-sensing modes. Therefore, this example has a ROI configurable structure, allowing the user to configure the region of interest to enter the light sensing mode.
  • the photoelectric conversion unit in the light-emitting mode and the sensing mode can be used for display and light sensing, wherein the photoelectric conversion unit in the light-emitting mode can not only provide light for display, but also light for sensing. Since the display does not need to be redesigned and manufactured, and only the circuit driving method needs to be changed, the function of the in-screen optical sensor can be achieved without spending a lot of cost. Furthermore, by utilizing the characteristics of RGB diodes, spectral separation can be performed to provide sensing data for anti-counterfeiting applications such as fingerprint applications without additional color filter elements, which can effectively save costs.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种具有光感测功能的双模显示装置(100),至少包括:一基板(10);一控制单元(30);及多个光电转换单元(20);多个光电转换单元(20)设置于基板(10)上,并电耦合至控制单元(30)。在一显示模式下,控制单元(30)控制多个光电转换单元(20)进入一发光模式;以及在一感测模式下,控制单元(30)控制多个光电转换单元(20)的至少一个进入一光感测模式。利用发光模式及光感测模式的光电转换单元(20)来进行显示及光感测,其中发光模式的光电转换单元(20)除了可提供显示用光线以外,也可以提供感测用光线。由于不需要重新设计制造显示器,仅需更改电路驱动方式,所以不需要耗费大量的成本,即可达成屏内光学感测器应有的功能。

Description

一种具有光感测功能的双模显示装置 技术领域
本发明提供一种具有光感测功能的双模显示装置,特别是一种利用双模式光电转换单元来兼顾显示及光感测功能的双模显示装置。
背景技术
现今的移动电子装置(例如手机、平板电脑、笔记本电脑等)最主要的信息与人机介面就是显示装置,因此许多感测器的发展都必须要迎合显示装置的发展而开发新技术,例如手机的全屏幕发展就限缩或改变了很多感测器的空间,包括屏下指纹或屏下相机等等,将微小化光学成像装置设置于屏幕下方(可称为屏下),透过屏幕部分透光(特别是有机发光二极管(Organic Light Emitting Diode,OLED)屏幕),可以撷取屏幕上方的物体的图像,像是指纹图像或是照片。
然而,屏幕下影像感测技术有一定的困难度,因为代表图像的光线需要穿透显示面板,造成信号处理上的困难(因为影像讯号会与面板透光图案结合在一起),都需要复杂的影像处理方法解决,同时,不同的显示面板透光比率与透光图案也不同,常常都需要针对其提出解决方法,更重要的是,随着显示面板发展趋势的增长,最终有可能发展出不透光的技术,这时,屏下影像感测将英雄无用武之地。为此,本发明为了解决上述问题,将提出如何设计出一种屏内光学感测装置,实为本揭露内容所欲解决的问题。
发明内容
因此,本发明的一个目的是提供一种利用双模式光电转换单元来兼顾显示、光感测及防伪功能的双模显示装置,可以应用于OLED显示器、微型发光二极管显示器、无机发光二极管显示器或其他具有独立发光单元的显示器。
为达上述目的,本发明提供一种双模显示装置,至少包括:一基板;一控制单元;及多个光电转换单元;所述多个光电转换单元设置于基板上,并电耦合至控制单元。在一显示模式下,控制单元控制所述多个光电转换单元进入一发光模式;以及在一感测模式下,控制单元控制所述多个光电转换单元的至少一个进入一光感测模式。
本发明还提供一种双模显示装置,至少包含:一基板;一控制单元;以及多个光电转换单元;所述多个光电转换单元设置于基板上,并电耦合至控制单元;其中控制单元 控制并调整这些光电转换单元的三原色光电二极管的三原色的发光比例,另外在感测时控制具有不同的三原色能级的这些三原色光电二极管接收不同光谱的光,以执行光谱分离的功能。
本发明还提供一种双模显示装置,至少包含:一基板;一控制单元;以及多个光电转换单元;所述多个光电转换单元设置于基板上,并电耦合至控制单元;其中多个光电转换单元至少具有一第一能级与一第二能级,第二能级高于第一能级,控制单元控制具有第一能级的这些光电转换单元接收对应的第一光谱而产生一第一电信号,控制单元控制具有第二能级的这些光电转换单元接收对应的第二光谱而产生一第二电信号,借此执行第一电信号及第二电信号的运算以达到光谱分离的功能。
通过上述的实施例,可以利用发光模式及光感测模式的光电转换单元来进行显示及光感测,其中发光模式的光电转换单元除了可提供显示用光线以外,也可以提供感测用光线。由于不需要重新设计制造显示器,仅需更改电路驱动方式,所以不需要耗费大量的成本,即可达成屏内光学感测器应有的功能。再者,利用RGB二极管的特性,可以执行光谱分离,提供防伪用的感测数据,而不需另外设置彩色滤光元件,可以有效节省成本。
为让本发明的上述内容能更明显易懂,下文特举较佳实施例,并配合附图,作详细说明。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为依据本发明较佳实施例的双模显示装置在执行显示功能的局部剖面示意图。
图2为双模显示装置在执行光感测功能的局部剖面示意图。
图3为双模显示装置的功能方块图。
图4A至图4B为像素的两种状态。
图5A至图5C为像素的三种例子。
图6为双模显示装置在执行光谱分离功能的局部剖面示意图。
图7A至图7B为图1的双模显示装置的变化例在执行显示功能及光感测功能的局部剖面示意图。
图8为装设有双模显示装置的电子装置的不同感测区的示意图。
附图标号:
B:蓝光;EM:发光单元;F:物体;G:绿光;L1:显示用光线;L2:感测用光线;L3:光线;R:红光;RC:收光单元;S1:感测信号;S2:触控信号;SA1,SA2,SA3:感测区;10:基板;12:晶体管层;20:光电转换单元;21:红光光电二极管;22:绿光光电二极管;23:蓝光光电二极管;24:像素;25:晶体管层;25A,25B,25C:晶体管;30:控制单元;40:显示面板保护层;50:触控感测层;100:双模显示装置;200:电子装置。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的精神在于利用发光二极管(包含有机及无机材料,例如OLED、微型发光二极管(Micro LED)等等来提供光感测及显示功能。为了简化之后的说明,将以公知的OLED为主,使其在两种模式下运作,当OLED在顺偏压发光模式(简称发光模式或称电光转换模式)运作时,OLED可以当作显示器使用,当OLED在逆偏压光感测模式(简称光感测模式、收光模式或光电转换模式)运作时,部分或全部OLED可以当作光电二极管使用,用来作为光感测器,设计上可以是单点、多点、一维及二维,二维(2D)光感测器便可以感测物体,由于是利用两种模式运作,故称为双模显示装置。在一个实施例中,例如作指纹感测时,可以在一感测区内让部分的OLED像素(也可称发光单元)当作照明用,让部分的OLED像素当作收光感测器用,当然这只是一种实施例,可以利用控制单元随着应用的场景设定在该感测区内的发光与感测比例(例如昏暗场景的发光与感测比例为5:3;室内光源场景的发光与感测比例为5:4;或者太阳光源场景的发光与感测比例为1:4,当然这比例并不受限),应用的场景可以利用控制单元依据环境光感测器获得的相关信息来判断。再者,可以利用控制单元依据应用的场景控制此些光电转换单元的三原色光电二极管,调整该三原色(RGB)的发光比例,另外,在感测时,可以借由三原色能级(Energy Gap)的不同,接收不同光谱的光,执行光谱分离的功能,便于做光谱信息的处理,例如假手指判断。需注意的是,本发明所提的"至少一个"是包含一个或多个的情况,或者部分或全部的情况。
本发明的实施例将以指纹感测为例作为说明,但不是要将其限定于此,任何借由本发明衍生的光感测功能,不管是单点或一维(1D)或二维(2D)影像,都是本发明的范围。图1与图2为依据本发明较佳实施例的双模显示装置在执行显示功能及光感测功能的局部剖面示意图。图3为双模显示装置的功能方块图。如图1至图3所示,双模显示装置100至少包含一基板10(例如玻璃或高分子柔性基板)、多个光电转换单元20以及一控制单元30。值得注意的是,虽然双模显示装置100是以设置有感测器的OLED显示器作为例子来说明,但是并未将本发明限制于此。于另一例子中,双模显示装置100也可以感测手指的血管图像、血氧浓度图像等生物特征或当作点状、线状、面状感测装置使用。于另一例子中,双模显示装置100是设置有光学感测器的微型发光二极管显示器或其他利用类似发光二极管当作显示光源的显示器中。
于一例子中,基板10可以是一介电基板。于基板10上可以形成一晶体管层25(晶体管层25当作光电转换单元20的一部分,也就是光电转换单元20至少包含晶体管层25),例如是薄膜晶体管层。晶体管层25具有至少一个或多个当作开关用的晶体管25A、25B与25C,当然也包括导体连接导线(未显示)。于一例子中,可以是有机发光二极管或微型发光二极管等等的多个光电转换单元20设置于基板10上。光电转换单元20包含多个像素24,各像素24包含至少一个三原色光电二极管(红光光电二极管21、绿光光电二极管22及蓝光光电二极管23)及控制上述光电二极管的至少一晶体管25A、25B与25C,控制单元30通过当作开关用的该至少一晶体管25A、25B、25C,而电耦合至红光光电二极管21、绿光光电二极管22及蓝光光电二极管23。值得注意的是,可以是单一光电二极管连接至单一晶体管,也可以单一晶体管连接至多个光电二极管,或者是多个晶体管连接至单一光电二极管,于此不特别设限。因此,控制单元30电耦合至这些光电转换单元20。例如,控制单元30输出控制信号给晶体管25A、25B与25C,可以控制三原色光电二极管的运作。控制单元30的设置位置不作特别限制。当然各像素与各晶体管间的配置及数量,在此仅以基本操作说明,并不是要加以设限,熟悉此技艺者当了解且可以根据应用加以变化,例如增加逆偏压的设计,就可能使各像素控制晶体管的数量增加。
于显示模式下,控制单元30控制这些光电转换单元20进入发光模式,以执行电信号至光信号转换而提供例如显示用光线L1。于此情况下,可以提供显示的功能。
于感测模式下,控制单元30控制这些光电转换单元20的至少一个(包含一个或多个)进入光感测模式,进入光感测模式可以接收来自一物体F的光线L3,并执行光信号至电信号转换以获得一感测信号S1。因此,一个或多个光电转换单元20可受控于控制单元 30而选择性地在发光模式与光感测模式之间操作,或选择性地操作于发光模式或光感测模式。于另一例子中,当一个或多个光电转换单元20受控于控制单元30操作于光感测模式时,其余的光电转换单元20可受控于控制单元30选择性的操作于发光模式或不发光模式。当OLED显示器为小面积的显示器时,可以控制全部的光电转换单元20进入光感测模式。当OLED显示器为大面积的显示器(例如具有手机屏幕的尺寸)时,可以控制一部分的光电转换单元20进入光感测模式,但是也可以控制全部的光电转换单元20进入光感测模式,以执行多部位的光感测功能,例如是同时感测两个、三个、四个或五个物体(手指)的指纹等等。因此,控制单元30可以控制光电转换单元20操作于发光模式及/或光感测模式,这样的控制动作可以可包含:(a)单纯显示场合;(b)全屏感测场合;(c)没有显示加上部分感测(例如一般黑屏情况欲解锁);以及(d)部分显示加上部分感测(例如操作应用程式而需要指纹认证时)。此外,控制单元30可以控制这些光电转换单元20的三原色光电二极管执行光谱分离的功能,以利防伪程序的进行,细节将在后续说明。
借由上述的发光模式与光感测模式的控制,可以利用这些光电转换单元20在不同时间点进行电光(发光)及光电(感测)转换,而获得显示、照明及光感测的功能,或者不同位置的光电转换单元20(借由几何规划,光电转换单元20可以执行部分发光及部分光感测)进行电光(发光)及光电(感测)转换,而获得显示、照明及光感测的功能。因此,不需牺牲显示器的解析度,也不需重新配置显示器的发光单元,更不用在显示器的发光单元之间插入光感测单元,而能让显示器同时具有显示及光感测的功能,并且可以控制这些光电转换单元的三原色光电二极管执行光谱分离的功能,这些都是本发明最重要的精神。
此外,双模显示装置100还可以包括一显示面板保护层40,设置于这些光电转换单元20的上方,并依据显示用光线L1显示信息。于一例子中,显示面板保护层40包含玻璃基板或者是其他透光材料,例如保护贴。
再者,双模显示装置100还可以包括一触控感测层50,电耦合至控制单元30,设置于显示面板保护层40上(当然随着技术的发展,此处所显示的触控感测层50与显示面板保护层40不限定其制造时序或前后关系,例如有些屏内触控(in-cell touch)技术是整合了触控技术,而将显示面板保护层设置于最外部,于此情况下,触控感测层50设置于这些光电转换单元20的上方),触控感测层50感测物体F的触控信息而产生一触控信号S2。因此,控制单元30可以依据触控信号S2对应触控的位置选择一个感兴趣的区域(Region Of Interest,ROI),控制位于ROI内的这些光电转换单元20的至少一个进入光感测模式,以获得感测信号S1。
图4A与图4B为像素的两种状态。如图4A与图3所示,控制单元30还控制这些光电转换单元20的一第一群组(例如图4A中当作发光单元EM用的像素24所组成的群组)进入发光模式而提供感测用光线L2,并且控制这些光电转换单元20的一第二群组(例如图4A中当作收光单元RC用的像素24所组成的群组)进入光感测模式,以利用感测用光线L2来获得感测信号S1。因此,光电转换单元20的一部分提供感测用光线L2,另一部分供光感测用,于此情况下,可以控制两个群组的像素24同时进行发光及收光功能,这些光电转换单元20的第一群组及第二群组可以交错排列,当然此处的交错排列仅为说明应用的一种实施例,任何的发光像素与感测像素的几何排列,都可以借由控制单元控制,都属于本发明涵盖的范围。值得注意的是,感测用光线也可以由其他的光源提供,例如是另外设置感测用光源,或者使用环境光等,而不限制于一定要由光电转换单元20提供。
或者,如图3与图4A所示,控制单元30可以控制这些光电转换单元20的第一群组及第二群组分别进入发光模式及光感测模式,以利用第一群组进行打光及利用第二群组进行光感测的功能。此外,如图3与图4B所示,控制单元30可以控制这些光电转换单元20的第一群组及第二群组分别进入光感测模式及发光模式,以利用第二群组进行打光及利用第一群组进行光感测的功能。借此,可以将第一群组及第二群组所感测到的数据结合起来,而获得完整的数据。
当然,如图1至图3所示,光电转换单元20的至少一个可以在提供感测用光线L2后,再进行收光功能(例如近接式感测器(proximity sensor))。于此情况下,控制单元30还控制这些光电转换单元20进入发光模式而提供感测用光线L2,且控制单元30依据触控信号S2依序控制这些光电转换单元20的至少一个进入发光模式及光感测模式,以利用感测用光线L2来获得感测信号S1。
图5A至图5C为像素的三种例子。如图5A所示,这些光电转换单元20至少包含多个像素24,各像素24包含至少一红光光电二极管21、至少一绿光光电二极管22及至少一蓝光光电二极管23,三者可以称为RGB光电二极管,对应至一显示像素(或称为是显示像素的一部分)。如图5B所示,单一像素24可以包含至少一红光光电二极管21、至少一绿光光电二极管22及两个蓝光光电二极管23。如图5C所示,单一像素24可以包含两个红光光电二极管21、两个绿光光电二极管22及一蓝光光电二极管23。因为光电二极管的配置方式有很多种,于此仅是举例说明,并未将本发明限制于此,又如图4A与图4B中作为发光或光感测用的像素24,还可以选择由图5A至图5C中至少一光电二 极管(R或G或B)执行,也就是在一局部启动模式下,控制单元30仅启动R、G及B光电二极管的其中一个或两个(而没有启动全部的R、G、B光电二极管)进入光感测模式或发光模式(例如只有发绿光及感测),这些都可以配合应用独立控制子像素(R/G/B光电二极管21至23可以称为子像素)。
图6为双模显示装置在执行光谱分离功能的局部剖面示意图。如图6所示,因为有RGB二极管,所以可以执行光谱分离的功能。因此,于各像素24中,红光光电二极管21、绿光光电二极管22及蓝光光电二极管23进入光感测模式以提供不同的能级来执行光谱分离感测。例如,光感测模式下的红光光电二极管21的能级比较窄,绿光光电二极管22的能级次之,蓝光光电二极管23的能级比较宽。因为红光R的能量低,绿光G的能量次之,而蓝光B的能量较高,所以蓝光B能激发红光光电二极管21、绿光光电二极管22及蓝光光电二极管23进行光电转换;绿光G仅能激发红光光电二极管21及绿光光电二极管22进行光电转换,而无法激发蓝光光电二极管23进行光电转换;而红光R仅能激发红光光电二极管21进行光电转换,而无法激发绿光光电二极管22及蓝光光电二极管23进行光电转换。因此,红光光电二极管21感测红光、绿光、蓝光及其混合光而进入光感测模式,绿光光电二极管22仅能感测绿光、蓝光及其混合光而进入光感测模式,而蓝光光电二极管23仅能感测蓝光而进入光感测模式,当然上述不同能级的光电二极管是由材料特性决定,甚至发光与光感测的能级也不尽相同,以上所述仅用以说明本发明实施例的一种对光谱分离的优点,并不是要限定每一子像素(光电二极管21至23)所能感测的特定光谱范围。
因此,于上述例子中,多个光电转换单元20至少具有一第一能级(例如是对应红光的能级,但不限于此)与一第二能级(例如是对应绿光的能级,但不限于此),第二能级高于第一能级,控制单元30控制具有第一能级的这些光电转换单元20接收对应的第一光谱而产生第一电信号,且控制单元30控制具有第二能级的这些光电转换单元20接收对应的第二光谱而产生第二电信号,借由执行第一及第二电信号的运算可以达到光谱分离的功能。第一光谱与第二光谱的分布范围可以是局部重叠或完全不重叠。此外,这些光电转换单元20可以更具有一第三能级(例如是对应蓝光的能级,但不限于此),第三能级高于第二能级。控制单元30控制具有第三能级的这些光电转换单元20接收对应的第三光谱而产生第三电信号,借由执行第一、第二电信号及/或第三电信号的运算可以达到光谱分离的功能。值得注意的是,上述的运算可以由控制单元30、外部的计算机、或云端伺服器来执行,且第一、第二与第三光谱的分布范围可以是局部重叠或完全不重叠。
因为可以利用光电二极管的特性来执行光谱分离,所以依据分离的光谱,使得双模显示装置100可以提供感测的光谱信息,例如可以应用如指纹防伪所需要的数据,例如是不同光谱的感测数据的时间域或空间域的变化,或者是不同光谱的感测数据的数学运算关系等等,而不需要设置任何的彩色滤光器,具有降低成本,简化结构的优点。
图7A与图7B为图1的双模显示装置的变化例在执行显示功能及光感测功能的局部剖面示意图。如图7A与7B,提供的是一种类似于图1的局部感测的例子。如图7A所示,在显示模式下,光电转换单元20提供显示用光线L1。如图7B所示,于感测模式下,控制单元30可以同时控制部分的光电转换单元20(例如仅以示意的方式表示的左右侧的光电二极管)进入发光模式而提供感测用光线L2以及部分的光电转换单元20(例如仅以示意的方式表示的中间三个光电二极管21、22与23)进入光感测模式,以利用感测用光线L2来获得感测信号S1;或者,控制单元30可以依据触控信号S2依序(不同时)控制这些光电转换单元20进入发光模式及控制这些光电转换单元20进入光感测模式,以利用感测用光线L2来获得感测信号S1。借此,在感测模式下,可以达到局部发光与局部光感测的效果。
如图8所示,值得注意的是,当可以进入发光模式及光感测模式的多个光电转换单元20布满整个双模显示装置100时,可以提供一种全屏显示及全屏感测的应用,此时的感测区SA3可以选择性地提供感测的功能及显示的功能。当可以进入发光模式及光感测模式的多个光电转换单元20只有填满双模显示装置100的一部分(例如感测区SA1或SA2以内)时,可以提供一种局部屏感测的应用,而双模显示装置100的另一部分(例如感测区SA1或SA2以外),可提供仅具有发光模式的光电转换单元即可。因此,本案的所请求的范围包含上述两种应用。实际制造时,也可以将多个光电转换单元20布满整个双模显示装置100,将安装有双模显示装置100的电子装置200分成两个或多个级别的产品来贩售。借由控制单元30的不同固件,可以驱动例如20%、50%及100%的光电转换单元20可以进入光感测模式,可以造就三种不同大小的感测区SA1、SA2与SA3的三种价格的电子装置。当然,原先买20%的感测区SA1的使用者,可以自行通过付费的帐户升级来更新固件或控制字符,以提升至40%的感测区SA2或100%的感测区SA3,获得不同的体验。当然,原先购买100%的感测区SA3的使用者,也可以自行设定其所惯用的感测区,而缩小至任何占比及/或特定位置的特定感测区,以符合使用者的需求。于此情况下,上述感测模式包含多个子感测模式,而控制单元30可以依据这些子感测模式控制不同占比的这些光电转换单元20进入光感测模式。因此,本例子具有一种感兴趣 的区域可配置化(ROI configurable)的架构,让使用者自行配置感兴趣的区域来进入光感测模式。
通过上述的实施例,可以利用发光模式及感测模式的光电转换单元来进行显示及光感测,其中发光模式的光电转换单元除了可提供显示用光线以外,也可以提供感测用光线。由于不需要重新设计制造显示器,仅需更改电路驱动方式,所以不需要耗费大量的成本,即可达成屏内光学感测器应有的功能。再者,利用RGB二极管的特性,可以执行光谱分离,提供例如指纹应用防伪用的感测数据,而不需另外设置彩色滤光元件,可以有效节省成本。
在较佳实施例的详细说明中所提出的具体实施例仅用以方便说明本发明的技术内容,而非将本发明狭义地限制于上述实施例,在不超出本发明的精神及权利要求的情况下,所做的种种变化实施,皆属于本发明的范围。

Claims (22)

  1. 一种双模显示装置(100),至少包括:
    一基板(10);
    一控制单元(30);以及
    多个光电转换单元(20),所述多个光电转换单元(20)设置于所述基板(10)上,并电耦合至所述控制单元(30),其中:
    在一显示模式下,所述控制单元(30)控制所述多个光电转换单元(20)进入一发光模式;以及
    在一感测模式下,所述控制单元(30)控制所述多个光电转换单元(20)的至少一个进入一光感测模式。
  2. 根据权利要求1所述的双模显示装置(100),其特征在于,所述多个光电转换单元(20)至少包括多个像素(24),各所述像素(24)包括:
    至少一红光光电二极管(21)、至少一绿光光电二极管(22)及至少一蓝光光电二极管(23),组成一个三原色光电二极管。
  3. 根据权利要求2所述的双模显示装置(100),其特征在于,在一局部启动模式下,所述控制单元(30)仅启动所述红光光电二极管(21)、所述绿光光电二极管(22)及所述蓝光光电二极管(23)中的一个或两个进入所述光感测模式或所述发光模式。
  4. 根据权利要求2或3所述的双模显示装置(100),其特征在于,各所述像素(24)还包括:
    至少一晶体管(25A,25B,25C),其中所述控制单元(30)通过当作开关用的所述至少一晶体管(25A,25B,25C)而电耦合至所述红光光电二极管(21)、所述绿光光电二极管(22)及所述蓝光光电二极管(23)。
  5. 根据权利要求4所述的双模显示装置(100),其特征在于,在各所述像素(24)中,所述红光光电二极管(21)、所述绿光光电二极管(22)及所述蓝光光电二极管(23)进入所述光感测模式以提供不同的能级来执行光谱分离感测。
  6. 根据权利要求1所述的双模显示装置(100),其特征在于,所述多个光电转换单元(20)至少包括一晶体管层(25),形成于所述基板(10)上,其中所述晶体管层(25)包括至少一晶体管。
  7. 根据权利要求1所述的双模显示装置(100),其特征在于,还包括:
    一触控感测层(50),电耦合至所述控制单元(30),并感测一物体(F)的触控信息而产 生一触控信号(S2)。
  8. 根据权利要求7所述的双模显示装置(100),其特征在于,所述控制单元(30)依据所述触控信号(S2)对应触控的位置选择一个感兴趣的区域,控制位于所述感兴趣的区域内的所述多个光电转换单元(20)的至少一个进入所述光感测模式,以接收来自所述物体(F)的光线(L3),并执行光信号至电信号转换以获得一感测信号(S1)。
  9. 根据权利要求7所述的双模显示装置(100),其特征在于,所述控制单元(30)还用于控制所述多个光电转换单元(20)的一第一群组进入所述发光模式而提供感测用光线(L2),并且控制所述多个光电转换单元(20)的一第二群组进入所述光感测模式,以利用所述感测用光线(L2)来获得一感测信号(S1)。
  10. 根据权利要求9所述的双模显示装置(100),其特征在于,所述多个光电转换单元(20)的所述第一群组及所述第二群组交错排列。
  11. 根据权利要求9所述的双模显示装置(100),其特征在于,所述控制单元(30)依据所述触控信号(S2)依序控制所述多个光电转换单元(20)的至少一个进入所述发光模式及所述光感测模式,以提供感测用光线(L2)并利用所述感测用光线(L2)来获得所述感测信号(S1)。
  12. 根据权利要求1所述的双模显示装置(100),其特征在于,所述基板(10)为玻璃基板或高分子柔性基板。
  13. 根据权利要求1所述的双模显示装置(100),其特征在于,所述双模显示装置(100)为一种微型发光二极管显示器或一种利用发光二极管当作显示光源的显示器。
  14. 根据权利要求1所述的双模显示装置(100),其特征在于,所述控制单元(30)控制所述多个光电转换单元(20)的一第一群组及一第二群组分别进入所述发光模式及所述光感测模式,然后控制所述多个光电转换单元(20)的所述第一群组及所述第二群组分别进入所述光感测模式及所述发光模式。
  15. 根据权利要求1所述的双模显示装置(100),其特征在于,利用所述多个光电转换单元(20)在不同时间点进行电光及光电转换来执行部分发光及部分光感测,而获得显示、照明及光感测的功能。
  16. 根据权利要求1所述的双模显示装置(100),其特征在于,利用不同位置的所述多个光电转换单元(20)进行电光及光电转换来执行部分发光及部分光感测,而获得显示、照明及光感测的功能。
  17. 根据权利要求4所述的双模显示装置(100),其特征在于,所述控制单元(30)控制 并调整所述多个光电转换单元(20)的三原色光电二极管的三原色的发光比例,另外在感测时控制具有不同的三原色能级的所述多个三原色光电二极管接收不同光谱的光,以执行光谱分离的功能。
  18. 根据权利要求17所述的双模显示装置(100),其特征在于,所述控制单元(30)依据应用场景控制所述多个三原色光电二极管的发光与感测比例。
  19. 根据权利要求1所述的双模显示装置(100),其特征在于,所述感测模式包含多个子感测模式,所述控制单元(30)依据所述多个子感测模式控制不同占比的所述多个光电转换单元(20)进入所述光感测模式。
  20. 根据权利要求1所述的双模显示装置(100),其特征在于,所述的双模显示装置(100)具有一种感兴趣的区域可配置化的架构,让一使用者自行配置一感兴趣的区域来进入所述光感测模式。
  21. 一种双模显示装置(100),其特征在于,至少包括:
    一基板(10);
    一控制单元(30);以及
    多个光电转换单元(20),所述多个光电转换单元(20)设置于所述基板(10)上,并电耦合至所述控制单元(30),其中所述多个光电转换单元(20)至少具有一第一能级与一第二能级,所述第二能级高于所述第一能级,其中所述控制单元(30)控制具有所述第一能级的所述多个光电转换单元(20)接收对应的第一光谱而产生一第一电信号,所述控制单元(30)控制具有所述第二能级的所述多个光电转换单元(20)接收对应的第二光谱而产生一第二电信号,借此执行所述第一电信号及所述第二电信号的运算以达到光谱分离的功能。
  22. 根据权利要求21所述的双模显示装置(100),其特征在于,所述多个光电转换单元(20)还具有一第三能级,其中所述第三能级高于所述第二能级,其中所述控制单元(30)控制具有所述第三能级的所述多个光电转换单元(20)接收对应的第三光谱而产生一第三电信号,借此执行所述第一电信号、所述第二电信号和/或所述第三电信号的运算以达到光谱分离的功能。
PCT/CN2020/137505 2020-08-03 2020-12-18 一种具有光感测功能的双模显示装置 WO2022027901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202063060341P 2020-08-03 2020-08-03
US63/060,341 2020-08-03

Publications (1)

Publication Number Publication Date
WO2022027901A1 true WO2022027901A1 (zh) 2022-02-10

Family

ID=74922362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/137505 WO2022027901A1 (zh) 2020-08-03 2020-12-18 一种具有光感测功能的双模显示装置

Country Status (3)

Country Link
CN (2) CN213424993U (zh)
TW (2) TW202207015A (zh)
WO (1) WO2022027901A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213424993U (zh) * 2020-08-03 2021-06-11 神盾股份有限公司 一种具有光感测功能的双模显示装置
CN113193030A (zh) * 2021-04-28 2021-07-30 广东阿格蕾雅光电材料有限公司 Oled像素结构、显示面板以及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1605094A (zh) * 2001-12-20 2005-04-06 皇家飞利浦电子股份有限公司 双功能电致发光器件及其驱动方法
CN1608281A (zh) * 2001-12-31 2005-04-20 英特尔公司 能量感应式发光二极管显示器
WO2017074097A1 (ko) * 2015-10-28 2017-05-04 크루셜텍 (주) 지문 이미지 스캐닝 장치 및 이를 포함하는 이미지 스캔 가능한 디스플레이 장치
CN108155222A (zh) * 2018-01-31 2018-06-12 厦门凌阳华芯科技有限公司 一种有机电致发光显示装置
CN108257553A (zh) * 2012-02-23 2018-07-06 安华高科技通用Ip(新加坡)公司 Amoled光感测
CN110264958A (zh) * 2019-03-04 2019-09-20 友达光电股份有限公司 显示装置
CN112510075A (zh) * 2020-08-03 2021-03-16 神盾股份有限公司 一种具有光感测功能的双模显示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1605094A (zh) * 2001-12-20 2005-04-06 皇家飞利浦电子股份有限公司 双功能电致发光器件及其驱动方法
CN1608281A (zh) * 2001-12-31 2005-04-20 英特尔公司 能量感应式发光二极管显示器
CN108257553A (zh) * 2012-02-23 2018-07-06 安华高科技通用Ip(新加坡)公司 Amoled光感测
WO2017074097A1 (ko) * 2015-10-28 2017-05-04 크루셜텍 (주) 지문 이미지 스캐닝 장치 및 이를 포함하는 이미지 스캔 가능한 디스플레이 장치
CN108155222A (zh) * 2018-01-31 2018-06-12 厦门凌阳华芯科技有限公司 一种有机电致发光显示装置
CN110264958A (zh) * 2019-03-04 2019-09-20 友达光电股份有限公司 显示装置
CN112510075A (zh) * 2020-08-03 2021-03-16 神盾股份有限公司 一种具有光感测功能的双模显示装置

Also Published As

Publication number Publication date
CN213424993U (zh) 2021-06-11
TWM610904U (zh) 2021-04-21
TW202207015A (zh) 2022-02-16
CN112510075A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
US10854150B2 (en) Display device and electronic apparatus
US10089515B2 (en) Organic light-enitting diode display panel for fingerprint recognition and electronic device
US20210356788A1 (en) Liquid crystal display device for under-screen identification scheme
JP5781651B2 (ja) タッチセンサを有する装置、及び表示装置
TWI427516B (zh) 影像輸入裝置,影像輸入-輸出裝置及電子單元
JP5340905B2 (ja) 表示装置
JP5619521B2 (ja) タッチセンサ
WO2018205835A1 (zh) 指纹识别器件及方法、发光装置、光传感器和显示装置
CN100592367C (zh) 彩色扫描仪显示器
TWI395170B (zh) 液晶顯示裝置
US20110037732A1 (en) Detecting device, display device, and object proximity distance measuring method
WO2018082401A1 (zh) 显示装置和电子装置
WO2022027901A1 (zh) 一种具有光感测功能的双模显示装置
US20140118419A1 (en) Color filter substrate having touch-sensing function
US20220086378A1 (en) Electronic device and imaging method thereof
WO2017202180A1 (zh) 一种触控显示装置
JP2019160349A (ja) 入力装置
WO2018081981A1 (zh) 生物识别装置和电子装置
WO2019148896A1 (zh) 指纹识别方法及装置、显示面板及可读存储介质
US10866447B2 (en) Display panel, display apparatus, and method for manufacturing a display panel
JP2010049479A (ja) 表示撮像装置および電子機器
CN113380186A (zh) 一种显示面板和显示装置
US20150015613A1 (en) Data processing device and data processing system
JP2010204945A (ja) 入力装置、及び入力方法
CN111293159B (zh) 显示基板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947905

Country of ref document: EP

Kind code of ref document: A1