WO2022027523A1 - 一种辅助信息的配置方法及通信装置 - Google Patents

一种辅助信息的配置方法及通信装置 Download PDF

Info

Publication number
WO2022027523A1
WO2022027523A1 PCT/CN2020/107579 CN2020107579W WO2022027523A1 WO 2022027523 A1 WO2022027523 A1 WO 2022027523A1 CN 2020107579 W CN2020107579 W CN 2020107579W WO 2022027523 A1 WO2022027523 A1 WO 2022027523A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
network device
burst
arrival time
qos flow
Prior art date
Application number
PCT/CN2020/107579
Other languages
English (en)
French (fr)
Inventor
徐小英
韩锋
娄崇
余芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/107579 priority Critical patent/WO2022027523A1/zh
Priority to EP20948818.8A priority patent/EP4187829A4/en
Priority to CN202080105138.1A priority patent/CN116114212A/zh
Priority to CA3190818A priority patent/CA3190818A1/en
Publication of WO2022027523A1 publication Critical patent/WO2022027523A1/zh
Priority to US18/164,431 priority patent/US20230199600A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/14Backbone network devices

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method for configuring auxiliary information and a communication device.
  • Some communication scenarios have relatively high requirements on latency and reliability, such as low-latency and high-reliability communication (URLLC) services in industrial control scenarios.
  • URLLC low-latency and high-reliability communication
  • the business of industrial control scenarios is divided into deterministic and non-deterministic.
  • a deterministic URLLC service the service period is definite, and the amount of service data generated in the period is definite.
  • a session management function transfers the service characteristics of the quality of Service (QoS) flow of the deterministic service through the access and mobility management functions (access and mobility management functions). and mobility management function, AMF) is notified to the base station, which facilitates the base station to more efficiently schedule and transmit periodic deterministic QoS flows according to service characteristics.
  • QoS quality of Service
  • AMF mobility management function
  • the terminal equipment may be handed over from the source base station to the target base station.
  • the target base station acquires the service characteristics of the QoS flow is a problem that needs to be solved.
  • the present application provides a configuration method and a communication device for auxiliary information, so as to realize that a target base station obtains service characteristics of a QoS flow in a scenario of Xn interface handover between base stations and base stations.
  • a first aspect provides a method for configuring auxiliary information, the method is applied to a first network device, the method includes the following steps: sending a path switching request message to an access and mobility management function, the path switching request message using requesting at least one radio bearer RB of the terminal device to be switched from the second network device to the first network device; receiving a path switching request response message from the access and mobility management function; according to the path switching request response message, A first burst arrival time of the downlink quality of service QoS flow arriving at the first network device entrance within the first period is determined, and the first burst arrival time is used for downlink scheduling.
  • the first network device may perform downlink scheduling according to the first burst arrival time, and the first network device may more efficiently schedule and transmit the QoS flow according to the first burst arrival time, for example, through a preconfigured grant (configured Grant), Semi-static scheduling or dynamic scheduling of QoS flows.
  • the URLLC service is divided into deterministic and non-deterministic.
  • the service period is definite, and the amount of service data generated in the period is definite.
  • the first network device acquires the service characteristics of the deterministic service (for example, the arrival time of the first burst), it can perform downlink scheduling more effectively.
  • the first network device can determine the arrival time of the first burst according to the path switching request response message, and does not require the traditional method to obtain the arrival time of the first burst in the subsequent SMF-initiated PDU session modification process, thereby saving energy. Signaling overhead can be reduced, and the delay in obtaining the arrival time of the first burst can be reduced, thereby further saving system functions and improving system performance.
  • the path switching request response message carries the first burst arrival time.
  • the method further includes: receiving a handover request message from the second network device, where the handover request message is used to request at least one RB of the terminal device to be handed over from the second network device To the first network device, the handover request message carries the second burst arrival time and the first packet delay budget PDB between the user plane function and the second network device, and the second burst arrival time is the time when the burst of the downlink QoS flow reaches the entrance of the second network device in the second period; the path switching request response message carries the second PDB between the user plane function and the first network device; according to For the path switching request response message, determining the first burst arrival time of the downlink QoS flow to the first network device entrance within the first cycle includes: according to the second burst arrival time, the first PDB and the second PDB, determining the first burst arrival time.
  • the above relational expression is an example, and some modifications can be made on the basis of the above relational expression, such as multiplying a parameter by a coefficient, or adding an offset value to both sides of the equation, and the offset value can be positive or negative.
  • the deformed relational expression can still determine the arrival time of the first burst according to the arrival time of the second burst, the first PDB and the second PDB.
  • the first burst arrival time is carried in the auxiliary information of the delay-sensitive communication.
  • the first burst arrival time is carried in the TSC transmission characteristic.
  • a method for configuring auxiliary information is provided, the method is applied to an access and mobility management function, and the method includes the steps of: receiving a path switch request message from a first network device, the path switch request message for requesting at least one radio bearer RB of the terminal device to be switched from the second network device to the first network device; sending a path switching request response message to the first network device, where the path switching request response message is used for the
  • the first network device determines the first burst arrival time at which the downlink quality of service QoS flow arrives at the entrance of the first network device within the first period, and the first burst arrival time is used for downlink scheduling.
  • the path switching request response message carries the first burst arrival time.
  • the path switching request response message carries a second packet delay budget PDB between the user plane function and the first network device; the second PDB is used for the first network device The first burst arrival time is determined.
  • the first burst arrival time is carried in the auxiliary information of the delay-sensitive communication.
  • the first burst arrival time is carried in the TSC transmission characteristic.
  • the method of the second aspect is a solution of the opposite device of the method of the first aspect, and has the same or corresponding features as the first aspect.
  • the present application also designs the following possible implementations.
  • the first burst arrival time includes a first time and a second time
  • the first time is when the first data packet of the downlink QoS flow reaches the The time of the first network device entry
  • the second time is the time when the last data packet of the downlink QoS flow reaches the first network device entry in the first period.
  • the first burst arrival time includes a first time and a first duration
  • the first time is when the first data packet of the downlink QoS flow reaches the The time of the first network device entry, the time after the first time and the first time distance from the first time is the second time, and the second time is the downlink QoS in the first period The time at which the last packet of the flow reaches the entry of the first network device.
  • the first burst arrival time includes a third time and a second duration, and a time before the third time and distance from the third time from the second duration is a fourth time , the time after the third time and the second time duration from the third time is the fifth time, and the fourth time is the first data of the downlink QoS flow in the first period
  • the last data packet here is actually the first data packet, and the data packet caused by the jitter of the first data packet may reach the first data packet at the first time and the second time.
  • Internet equipment when there is jitter, the last data packet here is actually the first data packet, and the data packet caused by the jitter of the first data packet may reach the first data packet at the first time and the second time.
  • a communication apparatus may be a network device, denoted as a first network device, or a device (eg, a chip, or a chip system, or a circuit) located in the first network device, or a A device that can be matched with the first network device.
  • the apparatus has the function of implementing the method described in the first aspect and any possible design of the first aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the apparatus may include a communication module and a processing module.
  • a communication module configured to send a path switch request message to the access and mobility management function, where the path switch request message is used to request at least one radio bearer RB of the terminal device to be switched from the second network device to the first a network device; and for receiving a path switch request response message from the access and mobility management function; a processing module for determining, according to the path switch request response message, that the downlink quality of service QoS flow arrives at the destination within the first period The first burst arrival time of the first network device entry, the first burst arrival time is used for downlink scheduling.
  • the path switching request response message carries the first burst arrival time.
  • the communication module is further configured to: receive a handover request message from the second network device, where the handover request message is used to request at least one RB of the terminal device from the second network
  • the device switches to the first network device, the handover request message carries the arrival time of the second burst and the first packet delay budget PDB between the user plane function and the second network device, the second burst The arrival time is the time when the burst of the downlink QoS flow reaches the entrance of the second network device within the second period; the path switching request response message carries the second PDB between the user plane function and the first network device
  • the processing module is configured to: determine the first burst arrival time of the downlink QoS flow to the entrance of the first network device within the first cycle according to the path switching request response message, including: according to the second burst The arrival time, the first PDB and the second PDB are sent, and the first burst arrival time is determined.
  • the first burst arrival time is carried in the auxiliary information of the delay-sensitive communication.
  • the first burst arrival time is carried in the TSC transmission characteristic.
  • a communication apparatus may be a network device, denoted as the first network device, or a device (for example, a chip, or a chip system, or a circuit) located in the first network device, or a A device that can be matched with the first network device.
  • the apparatus has the functionality to implement the method described in the first aspect and any possible design of the first aspect above.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the apparatus may include a communication module and a processing module. Further, the communication module may also include a receiving module and a sending module. Exemplarily:
  • a receiving module configured to receive a path switching request message from the first network device, where the path switching request message is used to request at least one radio bearer RB of the terminal device to be switched from the second network device to the first network device; a sending module , used to send a path switch request response message to the first network device, where the path switch request response message is used by the first network device to determine that the downlink QoS flow reaches the first network device within the first period The arrival time of the first burst of the entry, where the first burst arrival time is used for downlink scheduling.
  • the path switching request response message carries the first burst arrival time.
  • the path switching request response message carries a second packet delay budget PDB between the user plane function and the first network device; the second PDB is used for the first network device The first burst arrival time is determined.
  • the first burst arrival time is carried in the auxiliary information of the delay-sensitive communication.
  • the first burst arrival time is carried in the TSC transmission characteristic.
  • the present application also designs the following possible implementation manners.
  • the first burst arrival time includes a first time and a second time
  • the first time is when the first data packet of the downlink QoS flow reaches the The time of the first network device entry
  • the second time is the time when the last data packet of the downlink QoS flow reaches the first network device entry in the first period.
  • the first burst arrival time includes a first time and a first duration
  • the first time is when the first data packet of the downlink QoS flow reaches the The time of the first network device entry, the time after the first time and the first time distance from the first time is the second time, and the second time is the downlink QoS in the first period The time at which the last packet of the flow reaches the entry of the first network device.
  • the first burst arrival time includes a third time and a second duration, and a time before the third time and distance from the third time from the second duration is a fourth time , the time after the third time and the second time duration from the third time is the fifth time, and the fourth time is the first data of the downlink QoS flow in the first period
  • an embodiment of the present application provides a communication apparatus, the apparatus includes a communication interface and a processor, and the communication interface is used for the apparatus to communicate with other devices, such as sending and receiving data or signals.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and other devices may be network devices.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the first aspect or each possible design of the first aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor. The memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method described in the first aspect or each possible design of the first aspect can be implemented.
  • an embodiment of the present application provides a communication apparatus, the apparatus includes a communication interface and a processor, and the communication interface is used for the apparatus to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module or other type of communication interface, and other devices may be terminal devices.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the second aspect or each possible design of the second aspect.
  • the apparatus may also include a memory for storing programs, instructions or data invoked by the processor. The memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method described in the second aspect or each possible design of the second aspect can be implemented.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a computer, the A method as described in one aspect, the second aspect, each possible design of the first aspect or each possible design of the second aspect is performed.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor and may also include a memory, for implementing the first aspect, the second aspect, each possible design of the first aspect, or the second aspect methods described in each possible design.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the system includes a terminal device and a network device, where the terminal device is configured to execute the method in the first aspect or each possible design of the first aspect, the The network device is configured to perform the method in the above second aspect or each possible design of the second aspect.
  • a computer program product comprising instructions which, when run on a computer, cause the above-mentioned first aspect, second aspect, each possible design of the first aspect or each possible design of the second aspect The described method is executed.
  • FIG. 1 is a schematic diagram of a communication system architecture in an embodiment of the application
  • FIG. 2 is a schematic diagram of a 5GS architecture in an embodiment of the present application.
  • FIG. 3 is one of the schematic flow charts of switching scenarios in an embodiment of the present application.
  • FIG. 4 is the second schematic flow diagram of switching scenarios in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for configuring auxiliary information in an embodiment of the present application
  • FIG. 6 is a schematic diagram of a relationship between burst arrival times in an embodiment of the present application.
  • FIG. 7 is one of the schematic diagrams of a data burst expansion scenario in an embodiment of the present application.
  • FIG. 8 is the second schematic diagram of a data burst expansion scenario in an embodiment of the present application.
  • FIG. 9 is a third schematic diagram of a data burst expansion scenario in an embodiment of the present application.
  • FIG. 10 is one of the schematic structural diagrams of the communication device in the embodiment of the application.
  • FIG. 11 is the second schematic diagram of the structure of the communication device according to the embodiment of the present application.
  • Embodiments of the present application provide a configuration method and a communication device for auxiliary information.
  • the method and the device are based on the same inventive concept. Since the principles of the method and the device for solving the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • "and/or" describes the association relationship of the associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, and a single relationship exists. There are three cases of B.
  • the character "/" generally indicates that the associated objects are an "or” relationship.
  • the method for configuring auxiliary information provided in the embodiments of the present application may be applied to a fourth generation (4th generation, 4G) communication system, such as a long term evolution (long term evolution, LTE) communication system, and may also be applied to a fifth generation (5th generation, 4G) communication system.
  • 5G) communication system such as 5G new radio (NR) communication system, or applied to various communication systems in the future, such as 6th generation (6G) communication system.
  • the methods provided in the embodiments of the present application may also be applied to a Bluetooth system, a WiFi system, a LoRa system, or a car networking system.
  • the methods provided in the embodiments of the present application may also be applied to a satellite communication system, where the satellite communication system may be integrated with the above-mentioned communication system.
  • the communication system 100 includes a network device 101 and a terminal device 102 .
  • the apparatuses provided in the embodiments of the present application may be applied to the network device 101 or applied to the terminal device 102 .
  • FIG. 1 only shows a possible communication system architecture to which the embodiments of the present application can be applied, and in other possible scenarios, the communication system architecture may also include other devices.
  • the network device 110 is a node in a radio access network (radio access network, RAN), which may also be referred to as a base station, and may also be referred to as a RAN node (or device).
  • access network devices 101 are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B, NB), Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, home evolved NodeB, or home Node B, HNB) , base band unit (BBU), or wireless fidelity (wireless fidelity, Wifi) access point (access point, AP), satellite equipment, or network equipment in 5G communication systems, or possible future communication systems network equipment.
  • RNC transmission reception point
  • RNC radio network controller
  • Node B Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • BBU base band
  • the network device 110 may also be other devices with network device functions.
  • the network device 110 may also be a device that functions as a network device in device to device (device to device, D2D) communication, vehicle networking communication, and machine communication.
  • the network device 110 may also be a network device in a possible future communication system.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control, MAC
  • physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • the terminal device 102 also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc., is a device that provides voice or data connectivity to users , or IoT devices.
  • the terminal device includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • terminal devices can be: mobile phones, tablet computers, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), in-vehicle devices ( For example, automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rails, etc.), virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, smart home devices ( For example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in unmanned driving, wireless terminals in remote surgery, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (eg, smart robots, hot air balloons, drones, airplanes), etc.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • in-vehicle devices For example, automobiles, bicycles, electric vehicles, airplanes
  • the terminal device may also be other devices with a terminal function, for example, the terminal device may also be a device serving as a terminal function in D2D communication.
  • the terminal device may also be a device serving as a terminal function in D2D communication.
  • a terminal device with a wireless transceiver function and a chip that can be installed in the aforementioned terminal device are collectively referred to as a terminal device.
  • the communication system architecture to which the embodiments of the present application are applicable may further include functional network elements or functional entities of the core network.
  • the communication system architecture may further include an access and mobility management function 103, and may also include a user plane function 104.
  • the access and mobility management function 103 and the user plane function 104 may have different names.
  • the access and mobility management function 103 may be AMF 103
  • the user plane function 104 may be UPF 104.
  • the scenarios in which the embodiments of the present application can be applied to the 5GS system include non-roaming scenarios and roaming scenarios.
  • both the service-oriented architecture and the interface-based architecture can be used.
  • Figure 2 takes a non-roaming 5GS scenario as an example.
  • the device connection relationship involved in the solution of the embodiment of the present application is shown in FIG. 2 .
  • An interface exists between the network device 101 and the AMF 103, for example, an NG2 interface.
  • An interface exists between the network device 101 and the UPF 104, for example, an NG3 interface.
  • the AMF 103 is mainly responsible for the access management and mobility management of the UE, and the control plane signaling between the core network and the access network is transmitted through the N2 interface.
  • UPF104 is responsible for functions such as data packet transmission and routing.
  • the user plane data between the core network and the access network is transmitted through the tunnel protocol-user plane (GPRS tunnel protocol-user plane, GTP-U) tunnel of the N3 interface.
  • GTP-U tunnel protocol-user plane
  • the communication system architecture to which the embodiments of the present application are applicable may further include more or less devices, for example, may further include a session management function (session management function, SMF).
  • SMF session management function
  • PDU protocol data unit
  • QoS flow QoS flow
  • the terminal device can be switched from the source network device to the target network device, and the switching process between network devices can also be understood as a reselection process of the network devices.
  • the target network device may also be referred to as the first network device
  • the source network device may also be referred to as the second network device.
  • the switching of the terminal device from the source network device to the target network device can be understood as the switching of one or more radio bearers (RBs) of the terminal device from the source network device to the target network device, or as one or more radio bearers of the terminal device. RBs are migrated from the source network device to the target network device.
  • RBs radio bearers
  • the method provided by the embodiment of the present application may be applicable to the scenario of Xn interface switching, that is, the source network device may directly send a switching request to the target network device through the Xn interface.
  • the method provided by the embodiments of the present application may be a scenario in which a terminal device in an inactive state migrates a UE context from a source serving network device to a target serving network device.
  • the context of the terminal device is migrated from the source serving network device to the target serving network device.
  • the source serving network device of the end device may also be referred to as the last serving network device (last serving gNB) of the end device.
  • the target network device involved in the embodiments of the present application may be considered as the target service network device of the terminal device, and the source network device may be considered as the source service network device of the terminal device or the last service network device.
  • FIG. 3 and FIG. 4 are used to illustrate the switching scenarios of the embodiment of the present application as an example.
  • the terminal device sends a measurement report to the source network device, and the source network device receives the measurement report from the terminal device.
  • the terminal device performs measurement according to the measurement configuration of the source network device, and performs measurement reporting according to the measurement configuration.
  • the measurement report may include measurement results of wireless channels of neighboring cells and/or serving cells.
  • the source network device sends a handover request (handover request) message to the target network device, and the target network device receives the handover request message from the source network device.
  • handover request handover request
  • the handover request message carries one or more QoS information, and the QoS information includes the configuration of the QoS flow.
  • the target network device configures parameters of a data radio bearer (DRB) for the QoS flow according to the QoS information, and sends a handover request acknowledgement (handover request acknowledge) message to the source network device.
  • the source network device receives the handover request confirmation message from the target network device.
  • DRB data radio bearer
  • the source network device sends a radio resource control (radio resource control, RRC) reconfiguration (reconfiguration) message including a handover command to the terminal device.
  • RRC radio resource control
  • the terminal device After receiving the RRC reconfiguration message from the source network device, the terminal device accesses the target network device according to the handover command.
  • the handover command carries one or more DRBs and the configuration of a logical channel (logical channel, LCH) corresponding to the one or more DRBs.
  • a logical channel logical channel, LCH
  • the source network device may also forward the downlink user data of the terminal device received from the UPF to the target network device.
  • the terminal device performs configuration according to the RRC reconfiguration message, and sends an RRC reconfiguration complete (reconfiguration complete) message to the target network device, and the target network device receives the RRC reconfiguration complete message from the terminal device.
  • the terminal device After receiving the RRC reconfiguration message, the terminal device performs corresponding configuration to access the target network device. In this way, the terminal device can send uplink user data to the target network device, and the target network device sends the uplink user data of the terminal device to the UPF.
  • the target network device may send the downlink user data of the terminal device forwarded by the source network device to the target network device to the terminal device.
  • the target network device sends a path switch request (path switch request) message to the AMF, and the AMF receives the path switch request message from the target network device.
  • path switch request path switch request
  • the path switching request message can be used to trigger the core network to switch the downlink path to the target network device.
  • the path switch request message carries the downlink tunnel address information of the session on the target network device.
  • the target network device may transmit the uplink user data of the terminal device to the UPF.
  • the switching of the downlink path from the core network to the target network device may include the following procedures.
  • the AMF sends a PDU session update context request (Nsmf_PDUSession_UpdateSMContext Request) message to the SMF, which carries the downlink tunnel address information of the session on the target network device.
  • the SMF sends an N4 Session Modification Request (N4 Session Modification Request) message to the UPF, which carries the downlink tunnel address information of the session on the target network device.
  • the UPF sends an N4 Session Modification Response (N4 Session Modification Response) message to the SMF, which carries the uplink tunnel address information of the session switched to the target network device in the UPF.
  • the SMF sends a PDU session update context response (Nsmf_PDUSession_UpdateSMContext Response) message to the AMF, indicating the session information of the successful handover to the target network device.
  • Nsmf_PDUSession_UpdateSMContext Response PDU session update context response
  • the UPF may also send the downlink user data of the terminal device to the target network device.
  • the AMF sends a path switch request ack (path switch request ack) message to the target network device.
  • the target network device accepts the path switch request confirmation message from the AMF.
  • the path switch request confirmation message may carry the session information received from the SMF to successfully switch to the target network device.
  • the context of the terminal device is migrated from the source serving network device to the target serving device.
  • the target network device can be regarded as the target service network device of the terminal device.
  • the source network device may be regarded as the source serving network device of the terminal device or the last serving network device.
  • the terminal device moves to a new serving base station (ie, the target network device), and when the terminal device has an uplink service transmission requirement, it can initiate a context migration process, as described below.
  • a new serving base station ie, the target network device
  • the terminal device sends an RRC connection resume request (RRC resume request) message to the target service network device, and the target service network device receives the RRC connection resume request message from the terminal device.
  • RRC resume request RRC resume request
  • the RRC connection recovery request message carries the identity verification information of the terminal device, and the RRC connection recovery request message may also carry the Inactive wireless network temporary identifier (Inactive radio network temporary identifier, I-RNTI) allocated by the source serving network device.
  • the source serving network device is a network device that serves the terminal device when the terminal device is in the connected state for the last time, and may also be referred to as the last serving network device (last serving gNB) of the terminal device.
  • the target serving network device determines the last serving network device where the terminal device is located, and sends a retrieve UE context request message to the last serving network device, and the last serving network device receives the retrieved UE from the target serving network device. Context request message.
  • the UE context acquisition request message may carry identity verification information and may also carry I-RNTI.
  • the last serving network device sends a retrieve UE context response (retrieve UE context response) message to the target serving network device, and the target serving network device receives the retrieve UE context response message from the last serving network device.
  • the last serving network device determines the context of the UE according to the I-RNTI, and verifies the identity information of the terminal device according to the security key of the terminal device. After passing the verification, the last serving network device sends the UE context recovery response message to the target serving network. equipment.
  • the target serving network device sends an RRC resume (RRC resume) message to the terminal device, and the terminal device receives the RRC resume message from the target serving network device.
  • RRC resume RRC resume
  • the terminal device goes to the connected state.
  • the terminal device sends an RRC resume complete (RRC Resume Comple) message to the target service network device, and the target service network device receives the RRC resume complete message from the terminal device.
  • RRC resume complete RRC Resume Comple
  • the target service network device sends the address message of the forwarding tunnel of the downlink data to the last service network device, which is used for the downlink data buffered by the last service network device, thereby forwarding the downlink data to the target service network device losslessly.
  • This step is optional.
  • the target serving network device sends a path switch request (path switch request) message to the AMF.
  • the AMF receives the path switch request message from the target serving network device.
  • the path switching request message can be used to trigger the core network to switch the downlink path to the target serving network device.
  • the path switch request message may carry downlink tunnel address information of the session at the target serving network device.
  • For the process of switching the downlink path from the core network to the target service network device reference may be made to the above-mentioned process of S306 for the core network to switch the downlink path to the target service network device, which will not be repeated here.
  • the AMF sends a path switch request ack (path switch request ack) message to the target service network device.
  • the target serving network device accepts the path switch request confirmation message from the AMF.
  • the flow of the method for configuring auxiliary information provided by the embodiment of the present application is as follows.
  • the access and mobility management functions are represented by AMF
  • the user plane functions are represented by UPF. It is understandable that each function may have different names in different communication systems, and may also be replaced by other name.
  • the first network device in this embodiment may refer to a target network device
  • the second network device may refer to a source network device.
  • the first network device sends a path switching request message to the AMF, and correspondingly, the AMF receives the path switching request message from the first network device.
  • the path switching request message is used to request at least one RB of the terminal device to switch from the second network device to the first network device.
  • the switching scene may be the application scene 1 shown in FIG. 3 , or the application scene 2 shown in FIG. 4 , and of course other switching scenes may also be used.
  • the AMF sends a path switching request response message to the first network device, and correspondingly, the first network device receives the path switching request response message from the AMF.
  • the path switching request response message is a response message to the path switching request message in S501.
  • the path switching request response message may carry the session information of the successful switching to the target network device from the SMF.
  • the first network device determines, according to the path switching request response message, the first burst arrival time (burst arrival time) at which the downlink QoS flow reaches the entrance of the first network device within the first cycle.
  • the QoS flow may also be referred to as a service flow or service data.
  • the first period is any period in which the downlink QoS flow periodically reaches the entrance of the first network device.
  • the period may refer to the start time interval of two data bursts (the time period between start of two bursts), and for distinction, the first period and the second period may be used for description.
  • the first network device may perform downlink scheduling according to the first burst arrival time, and the first network device may more efficiently schedule and transmit the QoS flow according to the first burst arrival time, for example, through a preconfigured grant (configured Grant), Semi-static scheduling or dynamic scheduling of QoS flows.
  • the URLLC service is divided into deterministic and non-deterministic.
  • the service period is definite, and the amount of service data generated in the period is definite.
  • the first network device acquires the service characteristics of the deterministic service (for example, the arrival time of the first burst), it can perform downlink scheduling more effectively.
  • the target network device obtains the burst arrival time of the downlink QoS flow reaching the entrance of the target network device within one cycle, which may be implemented by an optional embodiment A.
  • S307 or S408 AMF sends a path switch request confirmation message to the target network device, it means that the switch is completed.
  • the SMF initiates the modification of the PDU session, and the AMF notifies the target network device to modify the QoS flow, indicating the service characteristics of each QoS flow. For example, the AMF sends a PDU session resource modify request message to the target network device.
  • the target network device After receiving the PDU session resource modification request, the target network device sends a PDU session resource modify response to the AMF.
  • the PDU session resource modification request message may carry the service characteristics of the downlink QoS flow.
  • the service characteristics of the downstream QoS flow include time sensitive communication assistance information (TSCAI) for downstream delay-sensitive communication.
  • TSCAI time sensitive communication assistance information
  • the downlink TSCAI may in turn include the burst arrival time of the downlink QoS flow to the ingress of the target network device within one cycle.
  • the target network device needs to initiate PDU session modification through SMF, so that the target network device can obtain the burst arrival time of the downstream QoS flow reaching the target network device entrance within one cycle.
  • the first network device can determine the arrival time of the first burst according to the path switching request response message.
  • the first network device receiving the path switching request response message may correspond to S307 .
  • the first network device receiving the path switching request response message may correspond to S408 . Therefore, in the embodiment of FIG.
  • the arrival time of the first burst can be obtained, and it is not necessary to obtain the arrival time of the first burst in the subsequent SMF-initiated PDU session modification process, thereby saving signaling overhead. , and the delay in obtaining the arrival time of the first burst can be reduced, further saving system functions and improving system performance.
  • the first network device determines the arrival time of the first burst according to the path switching request response message, which may include the following two methods.
  • the path switching request response message carries the first burst arrival time
  • the first network device obtains the first burst arrival time from the path switching request response message.
  • the AMF in S307 or S408 may carry the arrival time of the first burst in the path switching request confirmation message sent to the target network device.
  • the method further includes the following steps: the second network device sends a handover request message to the first network device, and correspondingly, the first network device receives the handover request message from the second network device.
  • the handover request message is used to request at least one RB of the terminal device to be handed over from the second network device to the first network device.
  • the handover request message carries the second burst arrival time at which the downstream QoS flow reaches the ingress of the second network device within the second period.
  • the handover request message also carries the first packet delay budget (packet delay budget, PDB) between the UPF and the second network device.
  • the first PDB is the packet transmission delay budget of the UPF to the second network device.
  • the second period is any period in which the downlink QoS flow periodically reaches the ingress of the second network device.
  • the burst arrival time of the downstream QoS flow to the network device entrance in one cycle may be equal to the sum of the time when the data burst of the downstream QoS flow reaches the UPF and the downstream PDB between the UPF and the network device.
  • the time when the data burst of the downstream QoS flow reaches the UPF is represented by T UPF .
  • T UPF the arrival time of the second burst - the first PDB.
  • the first network device can determine the time T UPF when the data burst of the downstream QoS flow reaches the UPF through S500 . If the first network device knows the second PDB between the UPF and the first network device, the arrival time of the first burst can be determined.
  • the first network device may acquire the second PDB through any message.
  • the AMF sends a path switching request response message to the first network device that carries the second PDB between the UPF and the first network device.
  • relational expression is an example, and some modifications can be made on the basis of the above relational expression, such as multiplying a parameter by a coefficient, or adding an offset value to both sides of the equation, and the offset value can be positive or negative.
  • the deformed relational expression can still determine the arrival time of the first burst according to the arrival time of the second burst, the first PDB and the second PDB.
  • S500 may correspond to S302, and the AMF in S307 sends the path switching request confirmation message to the target network device, which may carry the second PDB, and the first network device may carry the second PDB according to the second PDB carried in the switching request message in S302.
  • the arrival time of the burst, the first PDB, and the second PDB carried in the path switch request confirmation message in S307 can determine the arrival time of the first burst.
  • the burst arrival time can be carried in the path switch request acknowledge transfer IE (path switch request acknowledge transfer IE) in TS 38.413.
  • > indicates the cell of the first level under the QoS flow parameter list
  • >> indicates the cell of the level below the > cell
  • the > QoS flow parameter item cell includes the QoS flow identifier and the burst arrival time, both of which are the same. level cells.
  • the optional carrying mode 2 is shown in Table 2.
  • > indicates the cell of the first level under the QoS flow parameter list
  • >> indicates the cell of the level below the > cell
  • > QoS flow parameter item cell includes the QoS flow identifier
  • TSCAI/downlink TSCAI Two cells of the same level.
  • TSCAI/downstream TSCAI indicates the burst arrival time.
  • the optional carrying mode 3 is shown in Table 4.
  • > indicates the cell of the first level under the QoS flow parameter list
  • >> indicates the cell of the level below the > cell
  • the > QoS flow parameter item cell includes the QoS flow identifier and the time sensitive communication (time sensitive communication).
  • communication, TSC) transmission features two cells of the same level.
  • the TSC transmission characteristic indicates the auxiliary information of the downlink QoS flow, and the auxiliary information of the downlink QoS flow may include the burst arrival time.
  • the following table 5 describes the expression of the TSC transmission characteristic cell.
  • Tables 1 to 5 are only some examples of the way of carrying the arrival time of the burst. In practical applications, the way of carrying the arrival time of the burst may also have other cell representation forms.
  • the burst arrival time may be a specific moment or a time range. Since there may be jitter in the burst arrival time, the time for a data burst to arrive at a network device in one cycle may be a time range. Alternatively, a data burst includes multiple data packets, and a time range is also formed from the time when the first data packet reaches the network device to the end of the time when the last data packet reaches the network device. When the burst arrival time is a time range, the time range of the data burst can also be referred to as a burst spread.
  • the first network device may acquire the data burst extension based on the foregoing manner of acquiring the arrival time of the first burst.
  • For the carrying manner of the data burst extension reference may also be made to the carrying manner of the burst arrival time above.
  • the following takes the arrival time of the first burst as an example to describe the scenario of data burst expansion. Of course, the arrival time of the second burst is also applicable.
  • the first burst arrival time is the burst arrival time at which the downstream QoS flow reaches the ingress of the first network device.
  • the first burst arrival time may include a first time and a second time.
  • the first time is the time when the first data packet of the downstream QoS flow reaches the entrance of the first network device within the first period
  • the second time is the time when the last data packet of the downstream QoS flow reaches the entrance of the first network device within the first period. time. It can be understood that when there is jitter, the last data packet here is actually the first data packet, and the data packet caused by the jitter of the first data packet may be within the range of the first time and the second time. to the first network device.
  • the first burst arrival time may include a first time and a first duration.
  • the first time is the time when the first data packet of the downlink QoS flow reaches the entrance of the first network device in the first period, and the time after the first time and the first time distance from the first time is the second time, and the second time It is the time when the last data packet of the downlink QoS flow reaches the entrance of the first network device in the first period.
  • the first duration can be understood as the burst spread length. It can be understood that when there is jitter, the last data packet here is actually the first data packet, and the data packet caused by the jitter of the first data packet may be within the range of the first time and the second time. to the first network device.
  • the arrival time of the first burst includes the third time and the second duration, and the time before the third time and the second duration from the third time is the fourth time , the time after the third time and the second time distance from the third time is the fifth time, the fourth time is the time when the first data packet of the downlink QoS flow in the first cycle reaches the entrance of the first network device, the fifth time The time is the time when the last data packet of the downlink QoS flow in the first period reaches the entrance of the first network device.
  • the second duration can be understood as half of the burst extension length.
  • the third time is a moment between the first time and the second time. It can be understood that when there is jitter, the last data packet here is actually the first data packet, and the data packet caused by the jitter of the first data packet may be within the range of the first time and the second time. to the first network device.
  • Figures 7 to 9 are only possible representations of the first burst time in the scenario of data burst expansion, and other forms may also be used to indicate the first burst time in practical applications.
  • the first network device can obtain the second duration from the second network device, then the AMF sends the second duration to the first network device. It is sufficient for one network device to indicate the first time, and it is not necessary to further indicate the second duration.
  • the first network device may determine the data burst expansion corresponding to the first burst time based on the second duration obtained from the second network device.
  • the first network device can obtain the third duration from the second network device, then the AMF sends the third duration to the second network device. It is sufficient for one network device to indicate the third time, and it is not necessary to further indicate the third duration.
  • the first network device may determine the data burst expansion corresponding to the first burst time based on the third duration obtained from the second network device.
  • the methods provided in the embodiments of the present application may also be applied to the CU-DU separation architecture and/or the CP/UP separation architecture.
  • the operations performed by the CU can refer to the operations performed by the network device above.
  • the CU sends a path switching request message to the AMF, and the CU receives a path switching request response message from the AMF;
  • the first burst arrival time of the downlink QoS flow reaching the network device entrance within the first period is determined.
  • the CU may send the arrival time of the first burst to the DU through the F1 interface, so that the DU performs data transmission according to the arrival time of the first burst.
  • the F1 interface please refer to the 3GPP protocol specification TS 38.473v15.7.0, which will not be repeated here.
  • the operations performed by the CU-CP can refer to the operations performed by the network device above.
  • the CU-CP sends a path switch request message to the AMF, and the CU-CP receives the path switch request from the AMF. Response message; the CU-CP determines, according to the path switch request response message, the arrival time of the first burst of the downlink QoS flow to the network device entrance within the first cycle.
  • the CU-CP sends the arrival time of the first burst to the CU-UP through the E1 interface, so that the CU-UP performs data transmission according to the arrival time of the first burst.
  • Corresponding information exchange needs to be added to the E1 interface to facilitate the CU-UP to perform data transmission according to the arrival time of the first burst.
  • the methods provided by the embodiments of the present application are respectively introduced from the perspectives of the first network device, the AMF, and the interaction between the first network device and the AMF.
  • the first network device and the AMF may include hardware structures and/or software modules, and implement the above-mentioned various functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • the above functions may be performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depending on the specific application and design constraints of the technical solution.
  • an embodiment of the present application further provides a communication apparatus 1000.
  • the communication apparatus 1000 may be a first network device or an AMF, or a device in the first network device or AMF, Or it is a device that can be matched with the first network device or AMF.
  • the communication apparatus 1000 may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the first network device or the AMF in the above method embodiments, and the modules may be hardware circuits or software. It can also be implemented by a hardware circuit combined with software.
  • the communication device 1000 may include a communication module 1001 and a processing module 1002 . Further, the communication module 1001 may further include a receiving module 1001-1 and a sending module 1001-2.
  • the processing module 1002 is configured to call the communication module 1001 to receive and/or send signals.
  • a communication module 1001 configured to send a path switch request message to an access and mobility management function, where the path switch request message is used to request at least one radio bearer RB of a terminal device to be switched from a second network device to the first network device; and for receiving a path switch request response message from the access and mobility management function;
  • a processing module 1002 configured to determine, according to the path switching request response message, the arrival time of the first burst of the downlink quality of service QoS flow to the entrance of the first network device within the first cycle, and the arrival time of the first burst Used for downlink scheduling.
  • the communication module 1001 and the processing module 1002 are further configured to perform other operations performed by the first network device in the foregoing method embodiments, which will not be repeated here.
  • a receiving module 1001-1 configured to receive a path switch request message from a first network device, where the path switch request message is used to request at least one radio bearer RB of a terminal device to be switched from the second network device to the first network device
  • the sending module 1001-2 is configured to send a path switching request response message to the first network device, and the path switching request response message is used by the first network device to determine that the downlink quality of service QoS flow arrives at the destination within the first cycle.
  • the first burst arrival time of the first network device entry, the first burst arrival time is used for downlink scheduling.
  • the receiving module 1001-1, the sending module 1001-2, and the processing module 1002 are further configured to perform other operations performed by the AMF in the above method embodiments, which will not be repeated here.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • a communication apparatus 1100 provided by an embodiment of the present application is used to implement the function of the AMF or the first network device in the above method.
  • the device may be the first network device, or a device in the first network device, or a device that can be matched and used with the first network device.
  • the device may be an AMF, a device in the AMF, or a device that can be matched and used with the AMF.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 1100 includes at least one processor 1120, configured to implement the function of the AMF or the first network device in the method provided in the embodiment of the present application.
  • the apparatus 1100 may also include a communication interface 1110 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 1110 is used for the apparatus in the communication apparatus 1100 to communicate with other devices.
  • the other device may be an AMF.
  • the other apparatus may be the first network device.
  • the processor 1120 uses the communication interface 1110 to send and receive data, and is used to implement the methods described in the above method embodiments.
  • the processor 1120 is configured to invoke the communication apparatus 1100 to perform the following operations: receive a path switch request message from the first network device, where the path switch request message is used to request at least one of the terminal devices.
  • the radio bearer RB is switched from the second network device to the first network device, and sends a path switch request response message to the first network device, where the path switch request response message is used by the first network device to determine downlink service quality
  • the first burst arrival time at which the QoS flow reaches the first network device entry within the first period, and the first burst arrival time is used for downlink scheduling.
  • the communication interface 1110 is configured to send a path switch request message to the access and mobility management function, where the path switch request message is used to request at least one radio bearer RB of the terminal device to transfer from the second network device handover to the first network device; and for receiving a path switch request response message from the access and mobility management function.
  • the processor 1120 is configured to determine, according to the path switching request response message, the first burst arrival time of the downlink quality of service QoS flow arriving at the entrance of the first network device within the first cycle, and the first burst arrival time Used for downlink scheduling.
  • the processor 1120 and the communication interface 1110 may also be configured to perform other corresponding steps or operations performed by the AMF or the first network device in the above method embodiment, which will not be repeated here.
  • Communication apparatus 1100 may also include at least one memory 1130 for storing program instructions and/or data.
  • Memory 1130 and processor 1120 are coupled.
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the processor 1120 may cooperate with the memory 1130.
  • the processor 1120 may execute program instructions stored in the memory 1130 . At least one of the at least one memory may be integrated with the processor.
  • the specific connection medium between the communication interface 1110 , the processor 1120 , and the memory 1130 is not limited in this embodiment of the present application.
  • the memory 1130, the processor 1120, and the communication interface 1110 are connected through a bus 1140 in FIG. 11.
  • the bus is represented by a thick line in FIG. 11, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 11, but it does not mean that there is only one bus or one type of bus.
  • the communication module 1102 and the communication interface 1110 may output or receive baseband signals.
  • the output or reception of the communication module 1102 and the communication interface 1110 may be radio frequency signals.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 1130 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), and may also be a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • Some or all of the operations and functions performed by the first network device or the AMF described in the above method embodiments of this application, or some or all of the operations and functions performed by the first network device or the AMF, may use chips or integrated circuit to complete.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication apparatus to implement the first network device or the AMF involved in the above method embodiment. function.
  • the chip is connected to a memory or the chip includes a memory for storing necessary program instructions and data of the communication device.
  • An embodiment of the present application provides a computer-readable storage medium storing a computer program, where the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which, when executed on a computer, cause the above method embodiments to be executed.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Abstract

本申请提供一种辅助信息的配置方法及通信装置,该方法包括以下步骤:第一网络设备向接入和移动管理功能AMF发送路径切换请求消息,该路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至第一网络设备;第一网络设备接收来自AMF的路径切换请求响应消息;第一网络设备根据该路径切换请求响应消息,确定下行服务质量QoS流在第一周期内到达第一网络设备入口的第一突发到达时间,该第一突发到达时间用于下行调度。通过实施该方法,可以节省信令开销,并且可以降低获取突发到达时间的时延,进一步节省系统功能,提高系统性能。

Description

一种辅助信息的配置方法及通信装置 技术领域
本申请涉及通信技术领域,特别涉及一种辅助信息的配置方法及通信装置。
背景技术
随着通信技术的发展,出现了越来越多的通信场景。一些通信场景对时延和可靠度的要求都比较高,例如工业控制场景的低时延高可靠通信(ultra-reliable and low latency communication,URLLC)业务,该URLLC业务空口的指标设定为用户面要保证1毫秒(ms)时延加99.999%的可靠性需求。工业控制场景的业务分为确定性和非确定性的。对于确定性的URLLC业务,业务周期是确定的,周期内产生的业务数据量是确定的。
现有技术中,对于确定性的业务,会话管理功能(session management function,SMF)将确定性业务的业服务量(quality of Service,QoS)流的业务特征经由接入和移动性管理功能(access and mobility management function,AMF)通知给基站,方便基站根据业务特征更有效率地调度传输周期性的确定性的QoS流。
由于终端设备的移动性,终端设备可能会从源基站切换到目标基站。然而在基站与基站间的Xn接口切换的场景中,目标基站如何获取QoS流的业务特征,是需要解决的问题。
发明内容
本申请提供一种辅助信息的配置方法及通信装置,以期在基站-基站间的Xn接口切换的场景中实现目标基站获取QoS流的业务特征。
第一方面,提供一种辅助信息的配置方法,所述方法应用于第一网络设备,所述方法包括以下步骤:向接入和移动管理功能发送路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;接收来自所述接入和移动管理功能的路径切换请求响应消息;根据所述路径切换请求响应消息,确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。第一网络设备可以根据该第一突发到达时间进行下行调度,第一网络设备可以根据该第一突发到达时间更有效率地调度传输QoS流,比如通过预配置的授权(configured Grant)、半静态调度或者动态调度QoS流。以URLLC业务为例,URLLC业务分为确定性和非确定性的。对于确定性的URLLC业务,业务周期是确定的,周期内产生的业务数据量是确定的。第一网络设备获取确定性业务的业务特征(例如第一突发到达时间)之后,就可以更有效地进行下行调度。另一个方面,第一网络设备根据路径切换请求响应消息就可以确定第一突发到达时间,不需要传统方法通过后续的SMF发起PDU会话修改流程中获取该第一突发到达时间,从而可以节省信令开销,并且可以降低获取第一突发到达时间的时延,进一步节省系统功能,提高系统性能。
在一个可能的设计中,所述路径切换请求响应消息中携带所述第一突发到达时间。通过在路径切换请求响应消息携带所述第一突发到达时间,不需要后续的SMF发起PDU会话修改流程中获取该第一突发到达时间,从而可以节省信令开销。
在一个可能的设计中,所述方法还包括:接收来自所述第二网络设备的切换请求消息, 所述切换请求消息用于请求所述终端设备的至少一个RB从所述第二网络设备切换至所述第一网络设备,所述切换请求消息携带第二突发到达时间以及用户面功能与所述第二网络设备之间的第一包时延预算PDB,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间;所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二PDB;根据所述路径切换请求响应消息,确定下行QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,包括:根据所述第二突发到达时间、所述第一PDB和所述第二PDB,确定所述第一突发到达时间。通过来自所述第二网络设备的切换请求消息获取第二突发到达时间以及第一PDB,通过路径切换请求响应消息获取第二PDB,不需要后续的SMF发起PDU会话修改流程中获取该第一突发到达时间,从而可以节省信令开销。
在一个可能的设计中,所述第一突发到达时间符合以下关系式:所述第一突发到达时间=第二突发到达时间-所述第一PDB+所述第二PDB。可以理解的是,上述关系式是一种举例,在上述关系式的基础上,可以做一些变形,比如参量乘以系数,或者等式两边增加偏移值,偏移值可以为正或负。变形后的关系式仍然可以根据第二突发到达时间、第一PDB和第二PDB,确定出第一突发到达时间。
在一个可能的设计中,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
在一个可能的设计中,所述第一突发到达时间携带于TSC传输特征中。
第二方面,提供一种辅助信息的配置方法,所述方法应用于接入和移动管理功能,所述方法包括以下步骤:接收来自第一网络设备的路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;向所述第一网络设备发送路径切换请求响应消息,所述路径切换请求响应消息用于所述第一网络设备确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
在一个可能的设计中,所述路径切换请求响应消息中携带所述第一突发到达时间。
在一个可能的设计中,所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二包时延预算PDB;所述第二PDB用于所述第一网络设备确定所述第一突发到达时间。
在一个可能的设计中,所述第一突发到达时间符合以下关系式:所述第一突发到达时间=第二突发到达时间-第一PDB+所述第二PDB;其中,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间,所述第一PDB为所述用户面功能与所述第二网络设备之间的PDB。
在一个可能的设计中,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
在一个可能的设计中,所述第一突发到达时间携带于TSC传输特征中。
第二方面的有益效果可以参考第一方面的描述,第二方面的方法是第一方面的方法的对侧设备的方案,具有与第一方面相同或相应的特征。
针对第一方面和第二方面,本申请还设计了以下可能的实施方式。
在一个可能的设计中,所述第一突发到达时间包括第一时间和第二时间,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
在一个可能的设计中,所述第一突发到达时间包括第一时间和第一时长,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,在所述第一时间之后且与所述第一时间距离第一时长的时刻为第二时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
在一个可能的设计中,所述第一突发到达时间包括第三时间和第二时长,在所述第三时间之前且与所述第三时间距离所述第二时长的时刻为第四时间,在所述第三时间之后且与所述第三时间距离所述第二时长的时刻为第五时间,所述第四时间为所述下行QoS流在所述第一周期内的首个数据包达到所述第一网络设备入口的时间,所述第五时间为所述下行QoS流在所述第一周期内的最后一个数据包达到所述第一网络设备入口的时间。
可以理解的是,当存在抖动时,这里的最后一个数据包实际上就是第一个数据包,由第一个数据包抖动造成的该数据包在第一时间和第二时间都可能到达第一网络设备。
第三方面,提供一种通信装置,该装置可以是网络设备,记为第一网络设备,也可以是位于第一网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和第一网络设备匹配使用的装置。该装置具有实现上述第一方面和第一方面的任一种可能的设计中所述的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括通信模块和处理模块。示例性地:通信模块,用于向接入和移动管理功能发送路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;以及用于接收来自所述接入和移动管理功能的路径切换请求响应消息;处理模块,用于根据所述路径切换请求响应消息,确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
在一个可能的设计中,所述路径切换请求响应消息中携带所述第一突发到达时间。
在一个可能的设计中,所述通信模块还用于:接收来自所述第二网络设备的切换请求消息,所述切换请求消息用于请求所述终端设备的至少一个RB从所述第二网络设备切换至所述第一网络设备,所述切换请求消息携带第二突发到达时间以及用户面功能与所述第二网络设备之间的第一包时延预算PDB,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间;所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二PDB;所述处理模块用于:根据所述路径切换请求响应消息,确定下行QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,包括:根据所述第二突发到达时间、所述第一PDB和所述第二PDB,确定所述第一突发到达时间。
在一个可能的设计中,所述第一突发到达时间符合以下关系式:所述第一突发到达时间=第二突发到达时间-所述第一PDB+所述第二PDB。
在一个可能的设计中,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
在一个可能的设计中,所述第一突发到达时间携带于TSC传输特征中。
第三方面的有益效果可以参考第一方面对应特征的描述。
第四方面,提供一种通信装置,该装置可以是网络设备,记为第一网络设备,也可以是位于第一网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和第一网络设备匹配使用的装置。该装置具有实现上述第一方面和第一方面的任一种可能的 设计中所述的方法的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。一种设计中,该装置可以包括通信模块和处理模块。进一步地,通信模块还可以包括接收模块和发送模块。示例性地:
接收模块,用于接收来自第一网络设备的路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;发送模块,用于向所述第一网络设备发送路径切换请求响应消息,所述路径切换请求响应消息用于所述第一网络设备确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
在一个可能的设计中,所述路径切换请求响应消息中携带所述第一突发到达时间。
在一个可能的设计中,所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二包时延预算PDB;所述第二PDB用于所述第一网络设备确定所述第一突发到达时间。
在一个可能的设计中,所述第一突发到达时间符合以下关系式:所述第一突发到达时间=第二突发到达时间-第一PDB+所述第二PDB;其中,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间,所述第一PDB为所述用户面功能与所述第二网络设备之间的PDB。
在一个可能的设计中,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
在一个可能的设计中,所述第一突发到达时间携带于TSC传输特征中。
第四方面的有益效果可以参考第一方面对应特征的描述。
针对第三方面和第四方面,本申请还设计了以下可能的实施方式。
在一个可能的设计中,所述第一突发到达时间包括第一时间和第二时间,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
在一个可能的设计中,所述第一突发到达时间包括第一时间和第一时长,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,在所述第一时间之后且与所述第一时间距离第一时长的时刻为第二时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
在一个可能的设计中,所述第一突发到达时间包括第三时间和第二时长,在所述第三时间之前且与所述第三时间距离所述第二时长的时刻为第四时间,在所述第三时间之后且与所述第三时间距离所述第二时长的时刻为第五时间,所述第四时间为所述下行QoS流在所述第一周期内的首个数据包达到所述第一网络设备入口的时间,所述第五时间为所述下行QoS流在所述第一周期内的最后一个数据包达到所述第一网络设备入口的时间。
第五方面,本申请实施例提供一种通信装置,该装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为网络设备。处理器用于调用一组程序、指令或数据,执行上述第一方面或第一方面各个可能的设计描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上 述第一方面或第一方面各个可能的设计描述的方法。
第六方面,本申请实施例提供一种通信装置,该装置包括通信接口和处理器,所述通信接口用于该装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,其它设备可以为终端设备。处理器用于调用一组程序、指令或数据,执行上述第二方面或第二方面各个可能的设计描述的方法。所述装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。所述存储器与所述处理器耦合,所述处理器执行所述存储器中存储的、指令或数据时,可以实现上述第二方面或第二方面各个可能的设计描述的方法。
第七方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如第一方面、第二方面、第一方面各个可能的设计或第二方面各个可能的设计中所述的方法被执行。
第八方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述第一方面、第二方面、第一方面各个可能的设计或第二方面各个可能的设计中所述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第九方面,本申请实施例提供了一种通信系统,所述系统包括终端设备和网络设备,所述终端设备用于执行上述第一方面或第一方面各个可能的设计中的方法,所述网络设备用于执行上述第二方面或第二方面各个可能的设计中的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得如上述第一方面、第二方面、第一方面各个可能的设计或第二方面各个可能的设计中所述的方法被执行。
附图说明
图1为本申请实施例中通信系统架构示意图;
图2为本申请实施例中5GS架构示意图;
图3为本申请实施例中切换场景流程示意图之一;
图4为本申请实施例中切换场景流程示意图之二;
图5为本申请实施例中辅助信息的配置方法流程示意图;
图6为本申请实施例中突发到达时间关系示意图;
图7为本申请实施例中数据突发扩展的场景示意图之一;
图8为本申请实施例中数据突发扩展的场景示意图之二;
图9为本申请实施例中数据突发扩展的场景示意图之三;
图10为本申请实施例中通信装置结构示意图之一;
图11为本申请实施例中通信装置结构示意图之二。
具体实施方式
本申请实施例提供一种辅助信息的配置方法及通信装置。其中,方法和装置是基于同一发明构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独 存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的辅助信息的配置方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的方法还可以应用于蓝牙系统、WiFi系统、LoRa系统或车联网系统中。本申请实施例提供的方法还可以应用于卫星通信系统其中,所述卫星通信系统可以与上述通信系统相融合。
下面将结合附图,对本申请实施例进行详细描述。
为了便于理解本申请实施例,以图1所示的通信系统架构为例对本申请使用的应用场景进行说明。参阅图1所示,通信系统100包括网络设备101和终端设备102。本申请实施例提供的装置可以应用到网络设备101,或者应用到终端设备102。可以理解的是,图1仅示出了本申请实施例可以应用的一种可能的通信系统架构,在其他可能的场景中,所述通信系统架构中也可以包括其他设备。
网络设备110为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备101的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),卫星设备,或5G通信系统中的网络设备,或者未来可能的通信系统中的网络设备。网络设备110还可以是其他具有网络设备功能的设备,例如,网络设备110还可以是设备到设备(device to device,D2D)通信、车联网通信、机器通信中担任网络设备功能的设备。网络设备110还可以是未来可能的通信系统中的网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备102,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。 目前,终端设备可以是:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶中的无线终端、远程手术中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端,或智慧家庭中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
在图1所示通信系统架构的基础上,可选的,本申请实施例适用的通信系统架构中还可以包括核心网的功能网元或功能实体。例如,通信系统架构中还可以包括接入和移动管理功能103,还可以包括用户面功能104。随着通信系统的演进,接入和移动管理功能103和用户面功能104可以有不同的名称。
如图2所示,例如在第五代系统(the 5th generation system,5GS)中,接入和移动管理功能103可以是AMF103,用户面功能104可以是UPF104。本申请实施例可以适用于5GS系统的场景包含非漫游场景和漫游场景。在5GS系统中,既用于服务化的架构又可以用于基于接口的架构。图2以非漫游5GS场景为例。在非漫游5GS场景中本申请实施例方案所涉及到设备连接关系如图2所示。网络设备101与AMF103之间存在接口,例如可以是NG2接口。网络设备101与UPF104之间存在接口,例如可以是NG3接口。
本申请实施例中,AMF103主要负责UE的接入管理和移动性管理,核心网与接入网之间的控制面信令通过N2接口传递。UPF104负责数据包传输和路由等功能,核心网与接入网之间的用户面数据通过N3接口的隧道协议-用户面(GPRS tunnel protocol-user plane,GTP-U)隧道传输。
可以理解的是,本申请实施例适用的通信系统架构还可以包括更多或更少的设备,例如还可以包括会话管理功能(session management function,SMF)。SMF负责协议数据单元(protocol data unit,PDU)会话管理,通过AMF向NG-RAN传递PDU会话的QoS流(QoS flow)配置和QoS要求等。
下面结合图1和图2所示的通信系统,对本申请实施例提供的辅助信息的配置方法做详细说明。
本申请实施例中,终端设备可以从源网络设备切换到目标网络设备,网络设备之间的切换过程也可以理解为网络设备的重选过程。其中,目标网络设备也可以称为第一网络设备,源网络设备也可以称为第二网络设备。终端设备从源网络设备到目标网络设备的切换,可以理解为终端设备的一个或多个无线承载(radio bearer,RB)从源网络设备切换到目标网络设备,或者理解为终端设备的一个或多个RB从源网络设备迁移到目标网络设备。
在一种可能的应用场景1中,本申请实施例提供的方法可以适用于Xn接口切换的场景,即源网络设备可以直接通过Xn接口向目标网络设备发送切换请求。
在另一种可能的应用场景2中,本申请实施例提供的方法可以非激活(inactive)态的终端设备从源服务网络设备迁移UE上下文到目标服务网络设备的场景。这种应用场景下,终端设备的上下文从源服务网络设备向目标服务网络设备迁移。终端设备的源服务网络设 备也可以称为终端设备的最后的服务网络设备(last serving gNB)。本申请实施例中所涉及的目标网络设备可以认为是终端设备的目标服务网络设备,源网络设备可以认为是终端设备的源服务网络设备或者是最后的服务网络设备。
针对可能的应用场景1和可能的应用场景2,以下分别通过图3和图4对本申请实施例切换场景进行举例说明。
首先参考图3所示,对基站与基站间的Xn接口切换的流程进行说明。
S301、终端设备向源网络设备发送测量报告,源网络设备接收来自终端设备的测量报告。
其中,终端设备根据源网络设备的测量配置进行测量,并根据测量配置进行测量上报。测量报告可包括邻区和/或服务小区的无线信道的测量结果。
S302、源网络设备向目标网络设备发送的切换请求(handover request)消息,目标网络设备接收来自源网络设备的该切换请求消息。
该切换请求消息携带一个或多个QoS信息,QoS信息包括QoS flow的配置。
S303、目标网络设备根据QoS信息针对QoS flow配置数据无线承载(data radio bearer,DRB)的参数,并发送切换请求确认(handover request acknowledge)消息给源网络设备。源网络设备接收来自目标网络设备的该切换请求确认消息。
S304、源网络设备向终端设备发送包含切换命令的无线资源控制(radio resource control,RRC)重配置(reconfiguration)消息。
终端设备接收来自源网络设备的RRC重配置消息后,根据切换命令接入到目标网络设备。
切换命令中携带一个或多个DRB,以及一个或多个DRB对应的逻辑信道(logical channel,LCH)的配置。
可选地,源网络设备还可以将从UPF接收的该终端设备的下行用户数据转发给目标网络设备。
S305、终端设备根据RRC重配置消息进行配置,并发送RRC重配置完成(reconfiguration complete)消息给目标网络设备,目标网络设备接收来自终端设备的该RRC重配置完成消息。
终端设备接收到RRC重配置消息后,根据进行相应的配置,接入到目标网络设备。这样,终端设备可以向目标网络设备发送上行用户数据,目标网络设备将终端设备的上行用户数据发送给UPF。可选地,目标网络设备可以向终端设备发送源网络设备转发给目标网络设备的该终端设备的下行用户数据。
S306、目标网络设备向AMF发送路径切换请求(path switch request)消息,AMF接收来自目标网络设备的该路径切换请求消息。
该路径切换请求消息可以用于触发核心网切换下行路径到目标网络设备。
具体的,路径切换请求消息携带会话在目标网络设备的下行隧道地址信息。
目标网络设备可以向UPF传输该终端设备的上行用户数据。
其中,核心网切换下行路径到目标网络设备可以包括以下流程。AMF向SMF发送PDU会话更新上下文请求(Nsmf_PDUSession_UpdateSMContext Request)消息,携带会话在目标网络设备的下行隧道地址信息。SMF向UPF发送N4会话修改请求(N4Session Modification Request)消息,携带会话在目标网络设备的下行隧道地址信息。UPF向SMF 发送N4会话修改响应(N4Session Modification Response)消息,携带切换到目标网络设备的会话在UPF的上行隧道地址信息。SMF向AMF发送PDU会话更新上下文响应(Nsmf_PDUSession_UpdateSMContext Response)消息,指示成功切换到目标网络设备的会话信息。在SMF向UPF发送N4会话修改请求(N4Session Modification Request)消息后,UPF也可以向目标网络设备发送该终端设备的下行用户数据。
S307、AMF向目标网络设备发送路径切换请求确认(path switch request ack)消息。目标网络设备接受来自AMF的该路径切换请求确认消息。
该路径切换请求确认消息可以携带从SMF收到成功切换到目标网络设备的会话信息。
本申请实施例中,终端设备的Xn接口切换过程可以参考3GPP TS38.331v15.4.0协议的描述。
参考图4所示,对终端设备迁移上下文的流程进行说明。这种应用场景下,终端设备的上下文从源服务网络设备向目标服务设备迁移。目标网络设备可以认为是终端设备的目标服务网络设备。源网络设备可以认为是终端设备的源服务网络设备或者是最后的服务网络设备。
终端设备移动到新服务基站(即目标网络设备),终端设备有上行业务传输需求时,可发起上下文的迁移流程,具体如下所述。
S401、终端设备向目标服务网络设备发送RRC连接恢复请求(RRC resume request)消息,目标服务网络设备接收来自终端设备的该RRC连接恢复请求消息。
该RRC连接恢复请求消息携带终端设备的身份验证信息,该RRC连接恢复请求消息还可以携带源服务网络设备分配的Inactive态的无线网络临时标识(Inactive radio network temporary identifier,I-RNTI)。其中,源服务网络设备是终端设备在最后一次处于连接态时为该终端设备服务的网络设备,也可以称为终端设备的最后的服务网络设备(last serving gNB)。
S402、目标服务网络设备确定终端设备所在的最后服务网络设备,向最后的服务网络设备发送获取UE上下文请求(retrieve UE context request)消息,最后的服务网络设备接收来自目标服务网络设备的该获取UE上下文请求消息。
该获取UE上下文请求消息可以携带身份验证信息,还可以携带I-RNTI。
S403、最后的服务网络设备向目标服务网络设备发送获取UE上下文响应(retrieve UE context response)消息,目标服务网络设备接收来自最后的服务网络设备的该获取UE上下文响应消息。
最后的服务网络设备根据I-RNTI确定UE的上下文,并根据终端设备的安全密钥验证该终端设备的身份信息,通过验证后,最后的服务网络设备发送该恢复UE上下文响应消息给目标服务网络设备。
S404、目标服务网络设备向终端设备发送RRC恢复(RRC resume)消息,终端设备接收来自目标服务网络设备的该RRC恢复消息。
终端设备转到连接态。
S405、终端设备向目标服务网络设备发送RRC恢复完成(RRC Resume Comple)消息,目标服务网络设备接收来自终端设备的该RRC恢复完成消息。
S406、目标服务网络设备向最后的服务网络设备发送下行数据的转发隧道的地址消息,用于最后的服务网络设备缓存的下行数据,从而将下行数据无损转发到目标服务网络设备。
该步骤为可选步骤。
S407、目标服务网络设备向AMF发送路径切换请求(path switch request)消息。AMF接收来自目标服务网络设备的该路径切换请求消息。
该路径切换请求消息可以用于触发核心网切换下行路径到目标服务网络设备。
该路径切换请求消息可以携带会话在目标服务网络设备的下行隧道地址信息。核心网切换下行路径到目标服务网络设备的流程可以参考上文中S306核心网切换下行路径到目标服务网络设备的流程,在此不再赘述。
S408、AMF向目标服务网络设备发送路径切换请求确认(path switch request ack)消息。目标服务网络设备接受来自AMF的该路径切换请求确认消息。
如图5所示,本申请实施例提供的辅助信息的配置方法的流程如下所述。本申请实施例中,接入和移动管理功能用AMF来表示,用户面功能用UPF来表示,可以理解的是,各个功能在不同的通信系统中可以有不同的名称,还可以更换为其它的名称。本实施例中的第一网络设备可以是指目标网络设备,第二网络设备可以是指源网络设备。
S501、第一网络设备向AMF发送路径切换请求消息,对应的,AMF接收来自第一网络设备的该路径切换请求消息。
其中,路径切换请求消息用于请求终端设备的至少一个RB从第二网络设备切换至第一网络设备。例如,切换的场景可以是如图3所示的应用场景1,也可以是如图4所示的应用场景2,当然还可以是其它的切换的场景。
S502、AMF向第一网络设备发送路径切换请求响应消息,对应的,第一网络设备接收来自AMF的路径切换请求响应消息。
路径切换请求响应消息是针对S501中的路径切换请求消息的响应消息。可选的,该路径切换请求响应消息可以携带来自SMF的成功切换到目标网络设备的会话信息。
S503、第一网络设备根据路径切换请求响应消息,确定下行QoS流在第一周期内到达第一网络设备入口的第一突发到达时间(burst arrival time)。
本申请实施例中,QoS流也可以称为业务流或业务数据。第一周期为下行QoS流周期性到达第一网络设备入口的任意一个周期。
本申请实施例中,周期可以是指两个数据突发的起始时间间隔(the time period between start of two bursts),为作区分,可以用第一周期和第二周期进行说明。
第一网络设备可以根据该第一突发到达时间进行下行调度,第一网络设备可以根据该第一突发到达时间更有效率地调度传输QoS流,比如通过预配置的授权(configured Grant)、半静态调度或者动态调度QoS流。以URLLC业务为例,URLLC业务分为确定性和非确定性的。对于确定性的URLLC业务,业务周期是确定的,周期内产生的业务数据量是确定的。第一网络设备获取确定性业务的业务特征(例如第一突发到达时间)之后,就可以更有效地进行下行调度。
基于图3或图4实施例,目标网络设备获取下行QoS流在一个周期内到达目标网络设备入口的突发到达时间,可以通过一种可选的实施例A来实现。在实施例A中,在S307或S408AMF向目标网络设备发送路径切换请求确认消息之后,就意味着切换完成。在切换完成之后,SMF发起PDU会话修改,AMF通知目标网络设备修改Qos流,指示每个Qos流的业务特征。例如,AMF向目标网络设备发送PDU会话资源修改请求(PDU session resource modify request)消息,目标网络设备接收到该PDU会话资源修改请求后,向AMF 发送PDU会话资源修改响应(PDU session resource modify response)消息。其中,该PDU会话资源修改请求消息中可以携带下行QoS流的业务特征。下行QoS流的业务特征包括下行时延敏感通信的辅助信息(time sensitive communication assistance information,TSCAI)。下行TSCAI又可以包括下行QoS流在一个周期内到达目标网络设备入口的突发到达时间。
可以看出,在实施例A中,需要在切换完成之后,通过SMF发起PDU会话修改,目标网络设备才能获取下行QoS流在一个周期内到达目标网络设备入口的突发到达时间。而相比来说,图5实施例中,第一网络设备可以根据路径切换请求响应消息,就可以确定第一突发到达时间。而结合图3实施例来看,第一网络设备接收路径切换请求响应消息可以对应到S307。结合图4实施例来看,第一网络设备接收路径切换请求响应消息可以对应到S408。因此图5实施例,在S307或S408步骤完成之后,就可以获取第一突发到达时间,不需要后续的SMF发起PDU会话修改流程中获取该第一突发到达时间,从而可以节省信令开销,并且可以降低获取第一突发到达时间的时延,进一步节省系统功能,提高系统性能。
下面对图5实施例的一些可选的实现方式进行详细介绍。
S503中,第一网络设备根据路径切换请求响应消息,确定第一突发到达时间的方式可以包括以下两种。
方式一:
S502中路径切换请求响应消息中携带该第一突发到达时间,第一网络设备从该路径切换请求响应消息中获取该第一突发到达时间。
结合图3或图4实施例来看,S307或S408中的AMF向目标网络设备发送路径切换请求确认消息中,可以携带第一突发到达时间。
方式二:
在S501之前,还包括以下步骤:第二网络设备向第一网络设备发送切换请求消息,对应的,第一网络设备接收来自第二网络设备的切换请求消息。
该切换请求消息用于请求终端设备的至少一个RB从第二网络设备切换至第一网络设备。该切换请求消息携带下行QoS流在第二周期内到达第二网络设备入口的第二突发到达时间。该切换请求消息还携带UPF与第二网络设备之间的第一包时延预算(packet delay budget,PDB)。第一PDB是UPF到达第二网络设备的包传输时延预算。第二周期为下行QoS流周期性到达第二网络设备入口的任意一个周期。
可以理解的是,下行QoS流在一个周期内到达网络设备入口的突发到达时间,可以等于下行QoS流的数据突发到达UPF的时间与UPF和网络设备之间的下行PDB之和。
基于此,如图6所示,下行QoS流的数据突发到达UPF的时间用T UPF来表示。那么第二突发到达时间=T UPF+第一PDB。进一步可以推算出,T UPF=第二突发到达时间-第一PDB。
第一网络设备通过S500可以确定出下行QoS流的数据突发到达UPF的时间T UPF。如果第一网络设备在已知UPF与第一网络设备之间的第二PDB的情况下,就可以确定出第一突发到达时间了。
本申请实施例中,第一网络设备可以通过任意消息获取第二PDB。例如,S502中AMF向第一网络设备发送路径切换请求响应消息中携带UPF与第一网络设备之间的第二PDB。第一网络设备就可以根据第二突发到达时间、第一PDB和第二PDB,确定出第一突发到达时间。如图6所示,第一突发到达时间可以符合以下关系式:第一突发到达时间=第二 突发到达时间-第一PDB+第二PDB。
可以理解的是,上述关系式是一种举例,在上述关系式的基础上,可以做一些变形,比如参量乘以系数,或者等式两边增加偏移值,偏移值可以为正或负。变形后的关系式仍然可以根据第二突发到达时间、第一PDB和第二PDB,确定出第一突发到达时间。
结合图3实施例来看,S500可以对应到S302,S307中的AMF向目标网络设备发送路径切换请求确认消息中可以携带第二PDB,第一网络设备可以根据S302切换请求消息中携带的第二突发到达时间和第一PDB,以及根据S307路径切换请求确认消息中携带的第二PDB,就可以确定出第一突发到达时间。
以下对本申请实施例中的突发到达时间的携带方式进行说明,可以适用于第一突发到达时间,也可以适用于第二突发到达时间。
突发到达时间可以携带在TS 38.413中的路径切换请求确认传输信元(information element,IE)(path switch request acknowledge transfer IE)中。
可选的携带方式一如表1所示。
表1
Figure PCTCN2020107579-appb-000001
表1中,>表示QoS流参数列表下第一级别的信元,>>表示>信元下面级别的信元,>QoS流参数项信元下面包括QoS流标识和突发到达时间两个同样级别的信元。
可选的携带方式二如表2所示。
表2
Figure PCTCN2020107579-appb-000002
Figure PCTCN2020107579-appb-000003
表2中,>表示QoS流参数列表下第一级别的信元,>>表示>信元下面级别的信元,>QoS流参数项目信元下面包括QoS流标识,和,TSCAI/下行TSCAI,两个同样级别的信元。TSCAI/下行TSCAI指示突发到达时间。
以下通过表3对TSCAI信元的表现形式进行说明。
表3
Figure PCTCN2020107579-appb-000004
可选的携带方式三如表4所示。
表4
Figure PCTCN2020107579-appb-000005
表4中,>表示QoS流参数列表下第一级别的信元,>>表示>信元下面级别的信元,>QoS流参数项目信元下面包括QoS流标识和时延敏感通信(time sensitive communication,TSC)传输特征两个同样级别的信元。TSC传输特征指示下行Qos流的辅助信息,下行Qos流的辅助信息可以包括突发到达时间。
以下通过表5对TSC传输特征信元的表现形式进行说明。
表5
Figure PCTCN2020107579-appb-000006
可以理解的是,上述表1~表5只是突发到达时间的携带方式的一些举例,实际应用中突发到达时间的携带方式还可以有其它信元表现形式。
本申请实施例中,突发到达时间可以是一个具体的时刻,也可以是一个时间范围。由于突发到达时间可能存在抖动,在一个周期里数据突发到达网络设备的时间可能是一个时间范围。也或者,一个数据突发包括多个数据包,从第一个数据包达到网络设备的时间开始,到最后一个数据包达到网络设备的时间结束,也会形成一个时间范围。当突发到达时间是一个时间范围时,数据突发的时间范围也可以称为数据突发扩展(burst spread)。
第一网络设备可以基于上述获取第一突发到达时间的方式,来获取数据突发扩展。数据突发扩展的携带方式也可以参考上文中对突发到达时间的携带方式。
下面以第一突发到达时间为例对数据突发扩展的场景进行说明,当然第二突发到达时间也适用。第一突发到达时间为下行QoS流到达第一网络设备入口的突发到达时间。
在数据突发扩展的场景下,如图7所示,第一突发到达时间可以包括第一时间和第二时间。第一时间为在第一周期内下行QoS流的首个数据包达到第一网络设备入口的时间,第二时间为在第一周期内下行QoS流的最后一个数据包达到第一网络设备入口的时间。可以理解的是,当存在抖动时,这里的最后一个数据包实际上就是第一个数据包,由第一个数据包抖动造成的该数据包在第一时间和第二时间的范围内都可能到达第一网络设备。
在数据突发扩展的场景下,如图8所示,第一突发到达时间可以包括第一时间和第一时长。第一时间为在第一周期内下行QoS流的首个数据包达到第一网络设备入口的时间,在第一时间之后且与第一时间距离第一时长的时刻为第二时间,第二时间为在第一周期内下行QoS流的最后一个数据包达到第一网络设备入口的时间。第一时长可以理解为是突发扩展长度(burst spread length)。可以理解的是,当存在抖动时,这里的最后一个数据包实际上就是第一个数据包,由第一个数据包抖动造成的该数据包在第一时间和第二时间的范围内都可能到达第一网络设备。
在数据突发扩展的场景下,如图9所示,第一突发到达时间包括第三时间和第二时长,在第三时间之前且与第三时间距离第二时长的时刻为第四时间,在第三时间之后且与第三时间距离第二时长的时刻为第五时间,第四时间为下行QoS流在第一周期内的首个数据包达到第一网络设备入口的时间,第五时间为下行QoS流在第一周期内的最后一个数据包达到所述第一网络设备入口的时间。第二时长可以理解为是突发扩展长度的一半。第三时间为第一时间和第二时间中间的时刻。可以理解的是,当存在抖动时,这里的最后一个数据包实际上就是第一个数据包,由第一个数据包抖动造成的该数据包在第一时间和第二时间的范围内都可能到达第一网络设备。
当然,图7~图9仅仅是数据突发扩展的场景下第一突发时间的可能表现形式,实际应 用中还可以通过其他形式来指示第一突发时间。
如果基于图8的形式来指示突发到达时间,假设在第二突发到达时间中包括第二时长的情况下,第一网络设备可以从第二网络设备获取了第二时长,那么AMF向第一网络设备指示第一时间即可,不需要进一步指示第二时长,第一网络设备可以基于从第二网络设备获取的第二时长来确定第一突发时间对应的数据突发扩展。
如果基于图9的形式来指示突发到达时间,假设在第二突发到达时间中包括第三时长的情况下,第一网络设备可以从第二网络设备获取了第三时长,那么AMF向第一网络设备指示第三时间即可,不需要进一步指示第三时长,第一网络设备可以基于从第二网络设备获取的第三时长来确定第一突发时间对应的数据突发扩展。
需要说明的是,本申请实施例提供的方法也可以应用于CU-DU分离架构和/或CP/UP分离的架构。在CU/DU分离架构情况下,CU执行的操作可以参考上文中网络设备执行的操作,例如,CU向AMF发送路径切换请求消息,CU接收来自AMF的路径切换请求响应消息;CU根据路径切换请求响应消息,确定下行QoS流在第一周期内到达网络设备入口的第一突发到达时间。CU可以将第一突发到达时间通过F1接口发送给DU,以便DU根据第一突发到达时间进行数据传输。F1接口的详细过程请参看3GPP协议规范TS 38.473v15.7.0,这里不再赘述。
类似地,CP/UP分离架构情况下,CU-CP执行的操作可以参考上文中网络设备执行的操作,例如,CU-CP向AMF发送路径切换请求消息,CU-CP接收来自AMF的路径切换请求响应消息;CU-CP根据路径切换请求响应消息,确定下行QoS流在第一周期内到达网络设备入口的第一突发到达时间。CU-CP将第一突发到达时间通过E1接口发送给CU-UP,以便CU-UP根据第一突发到达时间进行数据传输。E1接口需要增加相应的信息交互,以方便CU-UP根据第一突发到达时间进行数据传输。
上述本申请提供的实施例中,分别从第一网络设备、AMF、以及第一网络设备和AMF之间交互的角度对本申请实施例提供的方法进行了介绍。
为了实现上述本申请实施例提供的方法中的各功能,第一网络设备和AMF可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图10所示,基于同一技术构思,本申请实施例还提供了一种通信装置1000,该通信装置1000可以是第一网络设备或AMF,也可以是第一网络设备或AMF中的装置,或者是能够和第一网络设备或AMF匹配使用的装置。一种设计中,该通信装置1000可以包括执行上述方法实施例中第一网络设备或AMF执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置1000可以包括通信模块1001和处理模块1002。进一步地,通信模块1001又可以包括接收模块1001-1和发送模块1001-2。处理模块1002用于调用通信模块1001进行接收和/或发送信号。
当通信装置1000用于执行第一网络设备的操作时:
通信模块1001,用于向接入和移动管理功能发送路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;以及用于接收来自所述接入和移动管理功能的路径切换请求响应消息;
处理模块1002,用于根据所述路径切换请求响应消息,确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
通信模块1001和处理模块1002还用于执行上述方法实施例中第一网络设备执行其它操作,在此不再一一赘述。
当通信装置1000用于执行AMF的操作时:
接收模块1001-1,用于接收来自第一网络设备的路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;发送模块1001-2用于向所述第一网络设备发送路径切换请求响应消息,所述路径切换请求响应消息用于所述第一网络设备确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
接收模块1001-1、发送模块1001-2以及处理模块1002还用于执行上述方法实施例中AMF执行其它操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图11所示为本申请实施例提供的通信装置1100,用于实现上述方法中AMF或第一网络设备的功能。当实现第一网络设备的功能时,该装置可以是第一网络设备,也可以是第一网络设备中的装置,或者是能够和第一网络设备匹配使用的装置。当实现AMF的功能时,该装置可以是AMF,也可以是AMF中的装置,或者是能够和AMF匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置1100包括至少一个处理器1120,用于实现本申请实施例提供的方法中AMF或第一网络设备的功能。装置1100还可以包括通信接口1110。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口1110用于通信装置1100中的装置可以和其它设备进行通信。示例性地,通信装置1100是第一网络设备时,该其它设备可以是AMF。通信装置1100是AMF时,该其它装置可以是第一网络设备。处理器1120利用通信接口1110收发数据,并用于实现上述方法实施例所述的方法。
示例性地,当实现AMF的功能时,处理器1120用于调用通信装置1100执行以下操作:接收来自第一网络设备的路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备,向所述第一网络设备发送路径切换请求响应消息,所述路径切换请求响应消息用于所述第一网络设备确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
当实现第一网络设备的功能时,通信接口1110,用于向接入和移动管理功能发送路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;以及用于接收来自所述接入和移动管理功能的路径切换请求响应消息。处理器1120,用于根据所述路径切换请求响应消息,确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达 时间用于下行调度。
处理器1120和通信接口1110还可以用于执行上述方法实施例AMF或第一网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
通信装置1100还可以包括至少一个存储器1130,用于存储程序指令和/或数据。存储器1130和处理器1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1120可能和存储器1130协同操作。处理器1120可能执行存储器1130中存储的程序指令。所述至少一个存储器中的至少一个可以与处理器集成在一起。
本申请实施例中不限定上述通信接口1110、处理器1120以及存储器1130之间的具体连接介质。本申请实施例在图11中以存储器1130、处理器1120以及通信接口1110之间通过总线1140连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置1100和通信装置1100具体是芯片或者芯片系统时,通信模块1102和通信接口1110所输出或接收的可以是基带信号。通信装置1100和通信装置1100具体是设备时,通信模块1102和通信接口1110所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1130可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的第一网络设备或AMF所执行的操作和功能中的部分或全部,或者第一网络设备或AMF所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图10或图11所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中第一网络设备或AMF所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例被执行。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实 施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (40)

  1. 一种辅助信息的配置方法,其特征在于,所述方法应用于第一网络设备,所述方法包括:
    向接入和移动管理功能AMF发送路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;
    接收来自所述AMF的路径切换请求响应消息;
    根据所述路径切换请求响应消息,确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
  2. 如权利要求1所述的方法,其特征在于,所述路径切换请求响应消息中携带所述第一突发到达时间。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:接收来自所述第二网络设备的切换请求消息,所述切换请求消息用于请求所述终端设备的至少一个RB从所述第二网络设备切换至所述第一网络设备,所述切换请求消息携带第二突发到达时间以及用户面功能与所述第二网络设备之间的第一包时延预算PDB,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间;
    所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二PDB;
    根据所述路径切换请求响应消息,确定下行QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,包括:根据所述第二突发到达时间、所述第一PDB和所述第二PDB,确定所述第一突发到达时间。
  4. 如权利要求3所述的方法,其特征在于,所述第一突发到达时间符合以下关系式:
    所述第一突发到达时间=第二突发到达时间-所述第一PDB+所述第二PDB。
  5. 如权利要求1~4任一项所述的方法,其特征在于,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
  6. 如权利要求1~5任一项所述的方法,其特征在于,所述第一突发到达时间包括第一时间和第二时间,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  7. 如权利要求1~5任一项所述的方法,其特征在于,所述第一突发到达时间包括第一时间和第一时长,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,在所述第一时间之后且与所述第一时间距离第一时长的时刻为第二时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  8. 如权利要求1~5任一项所述的方法,其特征在于,所述第一突发到达时间包括第三时间和第二时长,在所述第三时间之前且与所述第三时间距离所述第二时长的时刻为第四时间,在所述第三时间之后且与所述第三时间距离所述第二时长的时刻为第五时间,所述第四时间为所述下行QoS流在所述第一周期内的首个数据包达到所述第一网络设备入口的时间,所述第五时间为所述下行QoS流在所述第一周期内的最后一个数据包达到所述第一网络设备入口的时间。
  9. 一种辅助信息的配置方法,其特征在于,所述方法应用于接入和移动管理功能AMF, 所述方法包括:
    接收来自第一网络设备的路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;
    向所述第一网络设备发送路径切换请求响应消息,所述路径切换请求响应消息用于所述第一网络设备确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
  10. 如权利要求9所述的方法,其特征在于,所述路径切换请求响应消息中携带所述第一突发到达时间。
  11. 如权利要求9所述的方法,其特征在于,所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二包时延预算PDB;
    所述第二PDB用于所述第一网络设备确定所述第一突发到达时间。
  12. 如权利要求11所述的方法,其特征在于,所述第一突发到达时间符合以下关系式:
    所述第一突发到达时间=第二突发到达时间-第一PDB+所述第二PDB;其中,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间,所述第一PDB为所述用户面功能与所述第二网络设备之间的PDB。
  13. 如权利要求9~12任一项所述的方法,其特征在于,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
  14. 如权利要求9~13任一项所述的方法,其特征在于,所述第一突发到达时间包括第一时间和第二时间,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  15. 如权利要求9~13任一项所述的方法,其特征在于,所述第一突发到达时间包括第一时间和第一时长,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,在所述第一时间之后且与所述第一时间距离第一时长的时刻为第二时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  16. 如权利要求9~13任一项所述的方法,其特征在于,所述第一突发到达时间包括第三时间和第二时长,在所述第三时间之前且与所述第三时间距离所述第二时长的时刻为第四时间,在所述第三时间之后且与所述第三时间距离所述第二时长的时刻为第五时间,所述第四时间为所述下行QoS流在所述第一周期内的首个数据包达到所述第一网络设备入口的时间,所述第五时间为所述下行QoS流在所述第一周期内的最后一个数据包达到所述第一网络设备入口的时间。
  17. 一种通信装置,其特征在于,应用于第一网络设备,包括:
    通信模块,用于向接入和移动管理功能AMF发送路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;以及用于接收来自所述AMF的路径切换请求响应消息;
    处理模块,用于根据所述路径切换请求响应消息,确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
  18. 如权利要求17所述的装置,其特征在于,所述路径切换请求响应消息中携带所 述第一突发到达时间。
  19. 如权利要求17所述的装置,其特征在于,所述通信模块还用于:接收来自所述第二网络设备的切换请求消息,所述切换请求消息用于请求所述终端设备的至少一个RB从所述第二网络设备切换至所述第一网络设备,所述切换请求消息携带第二突发到达时间以及用户面功能与所述第二网络设备之间的第一包时延预算PDB,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间;
    所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二PDB;
    所述处理模块用于:根据所述路径切换请求响应消息,确定下行QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,包括:根据所述第二突发到达时间、所述第一PDB和所述第二PDB,确定所述第一突发到达时间。
  20. 如权利要求19所述的装置,其特征在于,所述第一突发到达时间符合以下关系式:
    所述第一突发到达时间=第二突发到达时间-所述第一PDB+所述第二PDB。
  21. 如权利要求17~20任一项所述的装置,其特征在于,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
  22. 如权利要求17~21任一项所述的装置,其特征在于,所述第一突发到达时间包括第一时间和第二时间,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  23. 如权利要求17~21任一项所述的装置,其特征在于,所述第一突发到达时间包括第一时间和第一时长,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,在所述第一时间之后且与所述第一时间距离第一时长的时刻为第二时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  24. 如权利要求17~21任一项所述的装置,其特征在于,所述第一突发到达时间包括第三时间和第二时长,在所述第三时间之前且与所述第三时间距离所述第二时长的时刻为第四时间,在所述第三时间之后且与所述第三时间距离所述第二时长的时刻为第五时间,所述第四时间为所述下行QoS流在所述第一周期内的首个数据包达到所述第一网络设备入口的时间,所述第五时间为所述下行QoS流在所述第一周期内的最后一个数据包达到所述第一网络设备入口的时间。
  25. 一种通信装置,其特征在于,所述装置应用于接入和移动管理功能AMF,包括:
    接收模块,用于接收来自第一网络设备的路径切换请求消息,所述路径切换请求消息用于请求终端设备的至少一个无线承载RB从第二网络设备切换至所述第一网络设备;
    发送模块,用于向所述第一网络设备发送路径切换请求响应消息,所述路径切换请求响应消息用于所述第一网络设备确定下行服务质量QoS流在第一周期内到达所述第一网络设备入口的第一突发到达时间,所述第一突发到达时间用于下行调度。
  26. 如权利要求25所述的装置,其特征在于,所述路径切换请求响应消息中携带所述第一突发到达时间。
  27. 如权利要求25所述的装置,其特征在于,所述路径切换请求响应消息中携带用户面功能与所述第一网络设备之间的第二包时延预算PDB;
    所述第二PDB用于所述第一网络设备确定所述第一突发到达时间。
  28. 如权利要求27所述的装置,其特征在于,所述第一突发到达时间符合以下关系式:
    所述第一突发到达时间=第二突发到达时间-第一PDB+所述第二PDB;其中,所述第二突发到达时间为下行QoS流的突发在第二周期内到达所述第二网络设备入口的时间,所述第一PDB为所述用户面功能与所述第二网络设备之间的PDB。
  29. 如权利要求25~28任一项所述的装置,其特征在于,所述第一突发到达时间携带于时延敏感通信的辅助信息中。
  30. 如权利要求25~29任一项所述的装置,其特征在于,所述第一突发到达时间包括第一时间和第二时间,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  31. 如权利要求25~29任一项所述的装置,其特征在于,所述第一突发到达时间包括第一时间和第一时长,所述第一时间为在所述第一周期内所述下行QoS流的首个数据包达到所述第一网络设备入口的时间,在所述第一时间之后且与所述第一时间距离第一时长的时刻为第二时间,所述第二时间为在所述第一周期内所述下行QoS流的最后一个数据包达到所述第一网络设备入口的时间。
  32. 如权利要求25~29任一项所述的装置,其特征在于,所述第一突发到达时间包括第三时间和第二时长,在所述第三时间之前且与所述第三时间距离所述第二时长的时刻为第四时间,在所述第三时间之后且与所述第三时间距离所述第二时长的时刻为第五时间,所述第四时间为所述下行QoS流在所述第一周期内的首个数据包达到所述第一网络设备入口的时间,所述第五时间为所述下行QoS流在所述第一周期内的最后一个数据包达到所述第一网络设备入口的时间。
  33. 一种通信装置,其特征在于,包括用于执行如权利要求1~8中任一项所述方法的模块。
  34. 一种通信装置,其特征在于,包括用于执行如权利要求9~16中任一项所述方法的模块。
  35. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1~8中任一项所述的方法。
  36. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求9~16中任一项所述的方法。
  37. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1~8中任一项所述的方法。
  38. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求9~16中任一项所述的方法。
  39. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指 令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1~8中任一项所述的方法,或,实现如权利要求9~16中任一项所述的方法。
  40. 一种通信系统,其特征在于,包括如权利要求17~24、33、35和37中任一项所述通信装置,和,如权利要求25~32、34、36和38中任一项所述通信装置。
PCT/CN2020/107579 2020-08-06 2020-08-06 一种辅助信息的配置方法及通信装置 WO2022027523A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/107579 WO2022027523A1 (zh) 2020-08-06 2020-08-06 一种辅助信息的配置方法及通信装置
EP20948818.8A EP4187829A4 (en) 2020-08-06 2020-08-06 PROCEDURE FOR CONFIGURATION OF AUXILIARY INFORMATION AND COMMUNICATION DEVICE
CN202080105138.1A CN116114212A (zh) 2020-08-06 2020-08-06 一种辅助信息的配置方法及通信装置
CA3190818A CA3190818A1 (en) 2020-08-06 2020-08-06 Method and communications apparatus for configuring assistance information
US18/164,431 US20230199600A1 (en) 2020-08-06 2023-02-03 Method and communications apparatus for configuring assistance information

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/107579 WO2022027523A1 (zh) 2020-08-06 2020-08-06 一种辅助信息的配置方法及通信装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/164,431 Continuation US20230199600A1 (en) 2020-08-06 2023-02-03 Method and communications apparatus for configuring assistance information

Publications (1)

Publication Number Publication Date
WO2022027523A1 true WO2022027523A1 (zh) 2022-02-10

Family

ID=80119836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/107579 WO2022027523A1 (zh) 2020-08-06 2020-08-06 一种辅助信息的配置方法及通信装置

Country Status (5)

Country Link
US (1) US20230199600A1 (zh)
EP (1) EP4187829A4 (zh)
CN (1) CN116114212A (zh)
CA (1) CA3190818A1 (zh)
WO (1) WO2022027523A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065307A1 (en) * 2022-09-28 2024-04-04 Zte Corporation Method, device, and system for data transmission

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351724A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 通信方法和装置
CN111092705A (zh) * 2019-08-02 2020-05-01 中兴通讯股份有限公司 无线资源配置方法、装置及存储介质
WO2020104005A1 (en) * 2018-11-19 2020-05-28 Nokia Technologies Oy Signalling of dejittering buffer capabilities for tsn integration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116419349A (zh) * 2017-08-11 2023-07-11 北京三星通信技术研究有限公司 支持切换的方法及相应设备
CN110167068A (zh) * 2018-02-14 2019-08-23 华为技术有限公司 一种处理服务质量QoS参数的方法、网元、系统及存储介质
CN113645661A (zh) * 2019-09-27 2021-11-12 腾讯科技(深圳)有限公司 终端执行的方法以及相应的终端、计算机可读存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110351724A (zh) * 2018-04-04 2019-10-18 华为技术有限公司 通信方法和装置
WO2020104005A1 (en) * 2018-11-19 2020-05-28 Nokia Technologies Oy Signalling of dejittering buffer capabilities for tsn integration
CN111092705A (zh) * 2019-08-02 2020-05-01 中兴通讯股份有限公司 无线资源配置方法、装置及存储介质

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.473
3GPP TS38.331
NOKIA ET AL.: "Introduction of NR_IIOT support to TS 38.413", 3GPP TSG-RAN WG3 MEETING #107-E, R3-200056, 10 February 2020 (2020-02-10), XP051853763 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024065307A1 (en) * 2022-09-28 2024-04-04 Zte Corporation Method, device, and system for data transmission

Also Published As

Publication number Publication date
EP4187829A1 (en) 2023-05-31
EP4187829A4 (en) 2023-08-30
US20230199600A1 (en) 2023-06-22
CN116114212A (zh) 2023-05-12
CA3190818A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
CN111212459B (zh) 一种中继通信方法及装置
US11405964B2 (en) Radio bearer configuration method, apparatus, and system
EP3713297B1 (en) Layer 2 processing method, central unit and distributed unit
JP2017508364A (ja) セカンダリ基地局及びマスター基地局によって実行される通信方法、並びに対応する基地局
WO2021164720A1 (zh) 重建立的方法和通信装置
WO2021022687A1 (zh) 通信方法、建立slrb的方法和通信装置
WO2019223639A1 (zh) 无线通信方法和设备
WO2022151306A1 (zh) 数据传输的方法和装置
US20230199600A1 (en) Method and communications apparatus for configuring assistance information
WO2021204016A1 (zh) 通信方法以及通信装置
CN113630738B (zh) 一种侧行链路通信方法及装置
WO2022067796A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2021114115A1 (zh) 通信方法及装置
RU2817719C1 (ru) Способ и устройство связи для конфигурирования вспомогательной информации
WO2023093889A1 (zh) 侧行链路通信方法和装置
WO2022206618A1 (zh) 一种通信方法及装置
WO2022036611A1 (zh) 一种数据传输方法及通信装置
WO2024027540A1 (zh) 一种通信方法及装置
WO2021244579A1 (zh) 一种通信方法、装置及网络架构
WO2022047746A1 (zh) 一种授时方法及装置
WO2024046294A1 (zh) 通信方法和装置
WO2023138669A1 (zh) 一种通信方法及装置
WO2022141332A1 (zh) 一种通信方法及装置
WO2023103958A1 (zh) 一种通信方法及装置
WO2022151294A1 (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3190818

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020948818

Country of ref document: EP

Effective date: 20230222

NENP Non-entry into the national phase

Ref country code: DE