WO2024046294A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2024046294A1
WO2024046294A1 PCT/CN2023/115401 CN2023115401W WO2024046294A1 WO 2024046294 A1 WO2024046294 A1 WO 2024046294A1 CN 2023115401 W CN2023115401 W CN 2023115401W WO 2024046294 A1 WO2024046294 A1 WO 2024046294A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
resource configuration
information
network node
node
Prior art date
Application number
PCT/CN2023/115401
Other languages
English (en)
French (fr)
Inventor
孙飞
朱元萍
史玉龙
曹振臻
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024046294A1 publication Critical patent/WO2024046294A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]

Definitions

  • the present application relates to the field of communication, and more specifically, to a communication method and device.
  • the fifth generation mobile communication system (5th-generation, 5G) introduces integrated access and backhaul (IAB) network technology.
  • the access link and backhaul link in the IAB network (backhaul link) all adopt wireless transmission solutions, which reduces fiber deployment, thereby reducing deployment costs and improving deployment flexibility.
  • IAB network it includes IAB node (IAB node) and IAB host (IAB donor).
  • IAB node is composed of the mobile terminal (MT) part and the distributed unit (DU) part
  • the IAB donor is composed of the centralized unit (centralized unit, CU) part and the distributed unit (distributed unit).
  • DU distributed unit
  • Resource configuration conflicts may occur between the cells provided by the IAB node and the cells provided by other network nodes. If this occurs, communications will be affected for terminals in cells with conflicting resource configurations. Therefore, how to reduce the probability of resource configuration conflicts between two cells is an urgent problem to be solved.
  • This application provides a communication method and device for reducing the probability of resource configuration conflicts between two cells.
  • a communication method including: when the resource configuration of the first cell conflicts with the resource configuration of the second cell, the first host node generates first information according to the resource configuration of the second cell, The first information is used to update the resource configuration of the first cell; the first host node sends the first information to a first network node; wherein the first network node is configured by the first host node Management, the first cell is provided by the first network node, and the second cell is provided by the second network node.
  • the first host node sends the first information to the first network node to update the resource configuration of the first cell, thereby reducing the The probability of conflict between the resource configuration and the resource configuration of the second cell improves the stability of communication between the first network node and the terminal of the first cell.
  • the method further includes: the first host node determines the updated resource configuration of the first cell, and the first information includes the updated resource configuration of the first cell. Resource configuration of the first cell. After the update, the resource configuration of the first cell does not conflict with the resource configuration of the second cell.
  • the first information includes resource configuration of the second cell.
  • the method before the first host node sends the first information to the first network node, the method further includes: the first host node Send second information to the terminal of the first cell, where the second information is used to enable temporary resource configuration, and the temporary resource configuration does not conflict with the resource configuration of the second cell.
  • the first host node sends the second information to the terminal of the first cell to start the temporary resource configuration, so that before the terminal of the first cell receives the updated resource configuration of the first cell, the first host node of the first cell receives the updated resource configuration of the first cell.
  • the terminal can communicate normally with the first network node.
  • the second information includes the temporary resource configuration.
  • the second information includes instruction information for enabling the temporary resource configuration; and the first host node sends the first host node to the terminal of the first cell.
  • the method further includes: the first host node sending the temporary resource configuration to the terminal of the first cell.
  • the method before the first host node sends the first information to the first network node, the method further includes: the first host node Send third information to the second network node, the third The information is used to request an update of the resource configuration of the second cell; the first host node receives fourth information from the second network node, and the fourth information indicates a refusal to update the resource configuration of the second cell.
  • the first host node can negotiate with the second network node. If the second network node refuses to update the resource configuration of the second cell, the first host node still sends the first information to the first network node, so as to Update the resource configuration of the first cell to avoid the occurrence of a secondary conflict due to simultaneous updates of the resource configuration of the first cell and the resource configuration of the second cell.
  • the method before the first host node sends the first information to the first network node, the method further includes: the first host node Send fifth information to the access network equipment intelligent controller (RAN intelligent controller, RIC), the fifth information indicating that the resource configuration of the first cell conflicts with the resource configuration of the second cell; the first host The node receives the first information from the RIC, where the first information includes the updated resource configuration of the first cell.
  • RAN intelligent controller RAN intelligent controller
  • the first host node can obtain the updated resource configuration of the first cell from the RIC.
  • the method further includes: the first host node obtaining the resource configuration of the second cell from the second network node.
  • the first cell is adjacent to the second cell.
  • a communication method including: RIC receiving fifth information from a first host node, the fifth information indicating that resource configuration of the first cell conflicts with resource configuration of the second cell; The fifth information sends first information to the first host node, where the first information includes the updated resource configuration of the first cell.
  • the method further includes:
  • the RIC determines the updated resource configuration of the first cell based on the resource configuration of the second cell, and the updated resource configuration of the first cell does not conflict with the resource configuration of the second cell.
  • the first cell is adjacent to the second cell.
  • a communication method including: when the resource configuration of the first cell conflicts with the resource configuration of the second cell, the first host node generates first information, and the first information is used to activate the first cell.
  • the third cell of the network node the resource configuration of the second cell does not conflict with the resource configuration of the third cell; the first host node sends the first information to the first network node; wherein, The first network node is managed by the first host node, the first cell is provided by the first network node, and the second cell is provided by a second network node.
  • the first host node can send the first information to the first network node to activate the third cell, and subsequently the terminal of the first cell can switch to the third cell. three cells, thereby improving the stability of communication between the first network node and the terminal of the first cell.
  • the method further includes: the first host node determines the resource configuration of the third cell, and the first information includes the resource configuration of the third cell. Resource allocation.
  • the first information includes resource configuration of the second cell.
  • the method further includes: the first host node sending second information to the terminal of the first cell, the second information being used to trigger the The terminal of the first cell switches to the third cell; the first host node sends third information to the first network node, and the third information indicates closing the first cell.
  • a fourth aspect provides a communication method, including: a first network node receiving first information from a first host node, the first information being used to activate a third cell of the first network node, wherein the first The resource configuration of the cell conflicts with the resource configuration of the second cell, and the resource configuration of the second cell does not conflict with the resource configuration of the third cell; the first network node activates the third cell according to the first information.
  • Cell wherein, the first network node is managed by the first host node, the first cell is provided by the first network node, and the second cell is provided by a second network node.
  • the first network node can activate the third cell, and subsequently the terminal of the first cell can switch to the third cell, thereby improving the relationship between the first network node and the third cell.
  • the stability of communication between terminals in a cell if the resource configurations of the first cell and the second cell conflict, the first network node can activate the third cell, and subsequently the terminal of the first cell can switch to the third cell, thereby improving the relationship between the first network node and the third cell.
  • the first information includes resource configuration of the third cell.
  • the first information includes resource configuration of the second cell
  • the method further includes: the first network node according to the resource configuration of the second cell.
  • the resource configuration determines the resource configuration of the third cell.
  • the method further includes: the first network node switching the terminal of the first cell to the third cell; the first network node Receive third information from the first host node, the third information indicating shutting down the first cell; and the first network node shutting down the first cell according to the third information.
  • a communication device may include modules or units that perform one-to-one correspondence with the methods/operations/steps/actions described in the first to fourth aspects.
  • the module or unit may be
  • the hardware circuit may also be implemented by software, or the hardware circuit may be combined with software.
  • a communication device including a communication interface and a processor, the communication interface is used to output and/or input signals, and the processor is used to execute computer programs or instructions stored in a memory, so that the communication device executes the first A method in any possible implementation manner from the first aspect to the fourth aspect.
  • the memory may be included in the communication device.
  • the memory may be provided separately from the processor; as another way, the memory may be located in the processor and integrated with the processor.
  • the memory may also be external to the communication device and coupled to the processor.
  • a computer-readable storage medium including a computer program.
  • the computer program When the computer program is run on a computer, it causes the computer to execute the method in any one of the possible implementations of the first to fourth aspects.
  • a chip or chip system in an eighth aspect, includes a processing circuit and an input/output interface.
  • the processing circuit is used to execute the method in any one of the possible implementations of the first to fourth aspects.
  • Input and output interfaces are used to input and/or output signals.
  • a computer program product includes: a computer program (which may also be called a code, or an instruction).
  • a computer program which may also be called a code, or an instruction.
  • the computer program When the computer program is run, it causes the computer to execute any one of the first to fourth aspects. possible implementation methods.
  • Figure 1 shows a communication system to which this application is applicable.
  • FIG. 2 is a schematic diagram of the control plane protocol stack in the IAB network provided by this embodiment of the present application.
  • Figure 3 is a schematic diagram of the user plane protocol stack in the IAB network provided by the embodiment of the present application.
  • Figure 4 is a schematic interaction diagram of the method proposed in this application.
  • Figure 5 is a schematic interaction diagram of the method proposed in this application.
  • Figure 6 is a schematic interaction diagram of the method proposed in this application.
  • Figure 7 is a schematic interaction diagram of the method proposed in this application.
  • Figure 8 is a schematic interaction diagram of the method proposed in this application.
  • Figure 9 is a schematic block diagram of the communication device provided by this application.
  • Figure 10 is a schematic block diagram of the communication device provided by this application.
  • 3GPP third generation partnership project
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • 5th generation, 5G fifth generation
  • NR new radio, NR
  • Multiple appearing in the embodiments of this application refers to two or more than two.
  • the resource configuration of the cell may include one or more of communication-related time domain resource configuration, frequency domain resource configuration and code domain resource configuration.
  • the resource configuration of the cell can be any of the following:
  • the cell s random access channel (RACH) resource configuration, beam configuration, control resource set (coreset) configuration, reference signal resource configuration, physical downlink control channel (PDCCH) configuration, Physical downlink shared channel (PDSCH) configuration.
  • RACH random access channel
  • coreset control resource set
  • PDCH physical downlink control channel
  • PDSCH Physical downlink shared channel
  • FIG 1 is a schematic diagram of an IAB network communication system provided by this application.
  • the communication system includes terminals, IAB nodes, and host base stations.
  • IAB network is just an example and can be replaced by "wireless backhaul network” or “relay network”.
  • IAB node is just an example and can be replaced with “wireless backhaul device” or “relay node”.
  • the donor base station can serve as the host node of the IAB node.
  • the host base station may include but is not limited to: next-generation base station (generation nodeB, gNB), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), Node B (Node B) B, NB), base station controller (BSC), base transceiver station (BTS), home base station (home evolved Node B or home Node B), transmission point (transmission and reception point or transmission point ), road side unit (RSU) with base station function, baseband unit (baseband unit, BBU), radio frequency remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit, AAU), One or a group of antenna panels, or nodes with base station functions in subsequent evolution systems.
  • generation nodeB generation nodeB, gNB
  • evolved node B evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base
  • the host base station can be an entity, and can also include a centralized unit (CU) entity plus at least one distributed unit (DU) entity.
  • the interface between CU and DU can be called the F1 interface.
  • the two ends of the F1 interface are CU and DU respectively.
  • the opposite end of CU's F1 interface is DU, and the opposite end of DU's F1 interface is CU.
  • the F1 interface can further include an F1 interface control plane (F1-C) and an F1 interface user plane (F1-U).
  • F1-C F1 interface control plane
  • F1-U F1 interface user plane
  • the CU of the host base station may be referred to as Donor CU
  • the DU of the host base station may be referred to as Donor DU.
  • the terminal is sometimes also called user equipment (UE), mobile station, terminal equipment, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things (internet) of things, IoT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the terminal may include but is not limited to: user equipment UE, mobile station, mobile device, terminal device, user agent, cellular phone, cordless phone, session initiation protocol (SIP) phone, wireless local loop, WLL) station, personal digital assistant (PDA), handheld device with wireless communication capabilities, computing device, other processing device connected to a wireless modem, vehicle-mounted device, wearable device (such as smart watch, smart bracelet, Smart glasses, etc.), smart furniture or home appliances, vehicle equipment in the Internet of Vehicles (vehicle to everything, V2X), terminal equipment with relay functions, customer premises equipment (CPE), IAB nodes (specifically IAB MT of the node or IAB node as the terminal role), etc.
  • This application does not limit the specific name and implementation form of the terminal.
  • the IAB node may include at least one mobile terminal (mobile terminal, MT) and at least one distributed unit DU (distributed unit, DU).
  • the IAB node may be an entity.
  • the IAB node includes at least one MT function and at least one DU function.
  • the IAB node may also include multiple entities.
  • the IAB node includes at least one MT entity and at least one DU entity.
  • the MT entity and the DU entity can communicate with each other, for example, through network cables.
  • the IAB node When the IAB node faces its parent node (the parent node can be the host base station or other IAB node), it can be used as a terminal, for example, in various scenarios where the above terminals are applied, that is, the terminal role of the IAB node. In this case, it is the MT function or MT entity that provides the terminal role for the IAB node.
  • the DU function or DU entity When an IAB node faces its child nodes (the child nodes can be other IAB nodes or terminals), it can serve as a network device, that is, the network device role of the IAB node. In this case, it is the DU function or DU entity that provides the network device role for the IAB node.
  • the MT of the IAB node may be referred to as IAB-MT, and the DU of the IAB node may be referred to as IAB-DU.
  • the IAB node can access the host base station or connect to the host base station through other IAB nodes.
  • the IAB network supports multi-hop networking and multi-connection networking to ensure the reliability of service transmission.
  • the IAB node regards the IAB node that provides the backhaul service as a parent node, and accordingly, the IAB node can be regarded as a child node of its parent node.
  • the terminal can also connect itself to the IAB
  • the node is regarded as the parent node.
  • the IAB node can also regard the terminal connected to itself as a child node.
  • the IAB node can regard the host base station connected to itself as a parent node.
  • the host base station can also regard the IAB node connected to itself as a child node.
  • the parent node of IAB node 1 includes the host base station.
  • IAB node 1 is the parent node of IAB node 2 or IAB node 3.
  • the parent node of terminal 1 includes IAB node 4.
  • the child nodes of IAB node 4 include terminal 1 or terminal 2.
  • the IAB node that the terminal directly accesses can be called an access IAB node.
  • IAB node 4 in Figure 1 is the access IAB node for terminal 1 and terminal 2.
  • IAB node 5 is the access IAB node of terminal 2.
  • the nodes on the uplink transmission path from the IAB node to the host base station may be called the upstream node of the IAB node.
  • Upstream nodes can include parent nodes, parent nodes of parent nodes (or grandparent nodes), etc.
  • IAB node 1 and IAB node 2 in Figure 1 can be called the upstream nodes of IAB node 5.
  • the nodes on the downlink transmission path from the IAB node to the terminal can be called the downstream node (downstream node) or descendant node (descendant node) of the IAB node.
  • Downstream nodes or descendant nodes may include child nodes (or called next-hop nodes), child nodes of child nodes (or called grandchild nodes), or terminals, etc.
  • terminal 1, terminal 2, IAB node 2, IAB node 3, IAB node 4 or IAB node 5 in Figure 1 can be called downstream nodes or descendant nodes of IAB node 1.
  • IAB node 4 and IAB node 5 in Figure 1 can be called downstream nodes or descendant nodes of IAB node 2.
  • Terminal 1 in Figure 1 can be called a downstream node or descendant node of IAB node 4.
  • Each IAB node needs to maintain a backhaul link (BL) facing the parent node. If the child node of the IAB node is a terminal, the IAB node also needs to maintain an access link (AL) with the terminal.
  • the link between IAB node 4 and terminal 1 or terminal 2 includes AL.
  • a BL is included between IAB node 4 and IAB node 2 or IAB node 3.
  • transmission path 1 "Host base station-IAB node 1-IAB node 2-IAB node 5-terminal 2"
  • transmission path 2 “Host base station-IAB node 1-IAB node 2-IAB node 4-terminal 2"
  • transmission path 3 "Host base station-IAB node 1-IAB node 3-IAB node 4-terminal 2".
  • adaptation protocol routing identity (bakhaul adaptation protocol routing identity, BAP routing ID).
  • IAB nodes on the path can have BAP addresses (BAP addresses) and Internet Protocol (internet protocol, IP) addresses.
  • FIGS 2 and 3 are respectively a schematic diagram of the control plane protocol stack and a schematic diagram of the user plane protocol stack in the IAB network provided by the embodiment of the present application.
  • the host base station in Figure 2 and Figure 3 may include host CU and host DU functions (in this case, the host base station is one entity), or may include a host CU entity and a host DU entity (in this case, the host base station is divided into two entities).
  • the equivalent protocol layers between the host DU and the host CU include the IP layer, layer 2 (layer 2, L2), and layer 1 (layer 1, L1).
  • L1 and L2 may refer to the protocol stack layer in the wired transmission (such as optical fiber transmission) network.
  • L1 can be the physical layer
  • L2 can be the data link layer
  • Backhaul links (BL) are established between IAB node 4 and IAB node 3, between IAB node 3 and IAB node 1, and between IAB node 1 and the host DU.
  • the peer-to-peer protocol stacks at both ends of the BL can include the backhaul adaptation protocol (BAP) layer, radio link control (RLC), media access control (medium access control, MAC) layer, and Physical (PHY) layer.
  • BAP backhaul adaptation protocol
  • RLC radio link control
  • MAC media access control
  • PHY Physical
  • an interface between the terminal and the host base station sometimes called an air interface.
  • Uu interface One end of the Uu interface is located at the terminal, and the other end is located at the host base station.
  • the peer control plane protocol stacks at both ends of the Uu interface include radio resource control (RRC) layer, packet data convergence protocol (PDCP) layer, RLC layer, MAC layer, and PHY layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC layer packet data convergence protocol
  • MAC layer packet data convergence protocol
  • PHY layer The protocol layer included in the Uu interface control plane protocol stack can also be called the access stratum (AS) of the control plane.
  • AS access stratum
  • the host base station includes a host CU entity and a host DU entity
  • the control plane protocol stack of the Uu interface on the host base station side may be located in the host DU and the host CU respectively.
  • the PHY layer, MAC layer and RLC layer are located in the host DU
  • the F1 interface There is an interface between the DU of the IAB node that the terminal accesses (ie, IAB node 4 in Figure 2) and the host base station, for example, it is called the F1 interface.
  • One end of the F1 interface is located at IAB node 4, and the other end is located at the host base station.
  • the opposite end of the F1 interface of the host base station (for example, it can be the host CU) is the IAB node (specifically, it can be the DU of the IAB node), and the opposite end of the F1 interface of the IAB node (specifically, it can be the DU of the IAB node) is the host base station (specifically, it can be the DU of the IAB node).
  • the peer control plane protocol stack at both ends of the F1 interface includes the F1 application protocol (F1AP) layer, the stream control transmission protocol (SCTP) layer and the IP layer, optionally including the Internet security protocol (internet protocol) security, IPsec) layer.
  • the host base station may include a host CU entity and a host DU entity.
  • the control plane protocol stack of the F1 interface at the host base station can be located in the host CU.
  • the host CU includes the F1AP layer, the SCTP layer and the IP layer, and optionally includes the IPsec layer.
  • the control plane protocol stack of the F1 interface at the host base station can also be located in the host CU and the host DU respectively.
  • the host CU includes the F1AP layer and the SCTP layer, optionally including the IPsec layer
  • the host DU includes the IP layer.
  • the peer-to-peer user plane protocol stacks at both ends of the Uu interface between the terminal and the host base station include the service data adaptation protocol (SDAP) layer, PDCP layer, RLC layer, MAC layer, and PHY layer.
  • SDAP service data adaptation protocol
  • the protocol layer included in the Uu interface user plane protocol stack can also be called the access layer (AS) of the user plane.
  • AS access layer
  • the host base station includes a host CU entity and a host DU entity
  • the user plane protocol stack of the Uu interface on the host base station side may be located in the host DU and the host CU respectively.
  • the PHY layer, MAC layer and RLC layer are located in the host DU
  • SDAP layer and PDCP layer are located in the host CU.
  • the peer-to-peer user plane protocol layers at both ends of the F1 interface between the DU of IAB node 4 and the host base station include the general packet radio service tunneling protocol for the user plane (GTP-U) layer.
  • Datagram protocol user datagram protocol, UDP
  • IP layer optionally including IPsec layer.
  • the host base station may include a host CU entity and a host DU entity.
  • the user plane protocol stack of the F1 interface on the host base station side can be located in the host CU.
  • the host CU includes a GTP-U layer, a UDP layer and an IP layer, and optionally includes an IPsec layer.
  • the user plane protocol stack of the F1 interface at the host base station can also be located in the host CU and the host DU respectively.
  • the host CU includes the GTP-U layer and the UDP layer, optionally including the IPsec layer
  • the host DU includes the IP layer.
  • each BH RLC CH corresponds to a backhaul RLC channel identity (BH RLC CH ID).
  • the interface between the host DU and the host CU may also include an F1 interface.
  • the peer-to-peer control plane protocol stack at both ends of the F1 interface includes the F1AP layer, SCTP layer and IP layer.
  • the peer-to-peer user plane protocol stacks at both ends of the F1 interface include GTP-U layer, UDP layer and IP layer.
  • an F1 interface may also be included between the IAB node 1 or IAB node 3 and the host base station.
  • the description of the F1 interface may refer to the DU of the above-mentioned IAB node 4 and the host base station. Description of the F1 interface between.
  • the protocol stack of the terminal shown in Figure 2 or Figure 3 is the MT function or MT entity protocol stack of a certain IAB node. , or the protocol stack when an IAB node acts as a terminal.
  • the IAB nodes can act as terminals when accessing the IAB network.
  • the MT of the IAB node has the protocol stack of the terminal.
  • the protocol stack of the terminal has an RRC layer or SDAP layer, PDCP layer, RLC layer, MAC layer and PHY layer.
  • the RRC message of the IAB node is encapsulated in the F1AP message and transmitted by the parent node of the IAB node.
  • the data packet of the IAB node is encapsulated in a PDCP protocol data unit (PDU) and sent to the parent node of the IAB node.
  • PDU PDCP protocol data unit
  • the parent node of the IAB node encapsulates the received PDCP PDU in the parent node of the IAB node. Transmitted in the GTP-U tunnel on the F1 interface between the node and the host CU.
  • the IAB node can still act as an ordinary terminal.
  • the IAB node can transmit its own data packets with the host base station, such as operating, managing and maintaining network elements (operation, administration and maintenance, OAM) data packets, measurement reports, etc.
  • OAM operation, administration and maintenance
  • an IAB node may have one or more roles in the IAB network.
  • the IAB node can act as a terminal, an access IAB node (the protocol stack of IAB node 4 in Figures 2 and 3), or an intermediate IAB node (the IAB in Figures 2 and 3). node 1 or IAB node 3 protocol stack).
  • the IAB node can use protocol stacks corresponding to different roles for different roles.
  • the IAB node When the IAB node has multiple roles in the IAB network, it can have multiple sets of protocol stacks at the same time. Each set of protocol stacks can share some of the same protocol layers, such as sharing the same RLC layer, MAC layer, and PHY layer.
  • the following methods 200 to 600 of this application are applicable to a communication system including a first host node, a first network node (for example, an IAB node) and a second network node.
  • the first network node is managed by the first host node
  • the first cell is provided by a first network node
  • the second cell is provided by a second network node.
  • Figure 4 shows the method 200 proposed by this application.
  • the first network node updates Resource allocation of the first cell.
  • the method 200 includes:
  • the first host node When the resource configuration of the first cell conflicts with the resource configuration of the second cell, the first host node generates first information according to the resource configuration of the second cell, and the first information is used to update the resource configuration of the first cell.
  • the first host node can determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell.
  • the first cell and the second cell may be adjacent.
  • the first network node may be installed on a movable device such as a car, an airplane, or a train. Due to the movement of the first network node, the first cell and the second cell are adjacent.
  • the process of the first host node making the above determination may include the following steps:
  • Step 1 The terminal of the first cell detects cells adjacent to the first cell (including the second cell).
  • the terminal of the first cell can obtain the physical cell identity (PCI) of the adjacent cell by searching and detecting the synchronization signal block (SSB) of the adjacent cell.
  • PCI physical cell identity
  • SSB synchronization signal block
  • Step 2 The terminal of the first cell sends the identification (for example, PCI) of the cell adjacent to the first cell to the first host node.
  • identification for example, PCI
  • the first host node can obtain the identity of the second cell.
  • Step 3 The first host node determines the resource configuration of the second cell according to the identifier of the second cell.
  • Step 4 The first host node determines whether the resource configuration of the first cell conflicts with the resource configuration of the second cell.
  • the second network node may be any of the following:
  • IAB nodes IAB nodes, second host nodes, and access network equipment (for example, radio access network (RAN)) managed by the first host node.
  • access network equipment for example, radio access network (RAN)
  • the first host node can obtain the resource configuration information of the cell of the second network node, and then determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell. .
  • the first host node and the second network node may exchange information through an inter-base station interface (for example, an Xn interface).
  • the first host node may obtain the resource configuration information of the cell of the second network node, and accordingly, the second network node may obtain the resource configuration information of the cell of the first host node. Therefore, the first host node can determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell based on the obtained information.
  • the first host node sends the first information to the first network node. Accordingly, the first network node receives the first information.
  • the first network node sends the updated resource configuration of the first cell to the terminal of the first cell according to the first information.
  • the terminal of the first cell receives the updated resource configuration of the first cell.
  • the updated resource configuration of the first cell does not conflict with the resource configuration of the second cell at all.
  • the conflict between the updated resource configuration of the first cell and the resource configuration of the second cell is within a permitted range. For example, if the number of symbols that conflict between the time domain resources of the first cell and the time domain resources of the second cell after the update is within a preset range, it is also allowed.
  • the first network node may send a system information block (SIB) 1 to the terminal of the first cell, where the SIB1 includes the updated resource configuration of the first cell.
  • SIB system information block
  • steps S201 to S203 should be completed within an update cycle of the system information, thereby ensuring that the terminal of the first cell can receive the updated resource configuration of the first cell in a timely manner.
  • the first information includes updated resource configuration information of the first cell. That is, the updated resource configuration of the first cell is determined by the first host node and sent to the first network node.
  • the first network node After acquiring the first information, the first network node sends updated resource configuration information of the first cell to the terminal of the first cell.
  • the first information includes resource configuration of the second cell.
  • the first host node has not determined the updated resource configuration of the first cell.
  • the first network node determines the updated resource configuration of the first cell based on the resource configuration of the second cell, and sends the updated resource configuration of the first cell to the terminal of the first cell.
  • S201 may be executed by the CU of the first host node; in S202, the CU of the first host node sends the first information to the DU of the first network node; in S203 , the DU of the first network node sends the updated resource configuration of the first cell to the IAB-MT of the child node.
  • the first network node updates the resource configuration of the first cell, thereby reducing the probability that the resource configuration of the first cell conflicts with the resource configuration of the second cell, Improve the stability of communication between the first network node and the terminal of the first cell.
  • Figure 5 shows the method 300 proposed in this application.
  • the method 300 may be executed before the terminal of the first cell obtains the updated resource configuration of the first cell in the method 200, or may be executed independently from the method 200.
  • the method 300 includes:
  • the first host node sends second information to the terminal of the first cell.
  • the terminal of the first cell receives the second information.
  • the second information is used to enable temporary resource configuration.
  • the first host node may determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell. For this process, reference may be made to S201, which will not be described again here.
  • the temporary resource configuration does not conflict with the resource configuration of the second cell at all. It should be understood that before the terminal of the first cell enables the “temporary resource configuration", the “temporary resource configuration" will not be applied to other cells except the first cell. Therefore, the “temporary resource configuration” will not conflict with the resource configuration of the second cell.
  • the conflict between the temporary resource configuration and the resource configuration of the second cell is within the allowed range.
  • the first host node may directly send the second information to the terminal of the first cell, or may send the second information to the terminal of the first cell through the first network node, without limitation.
  • the second information includes the temporary resource configuration.
  • the second information may implicitly (indirectly) instruct the terminal of the first cell to enable the temporary resource configuration.
  • the second information may also explicitly (directly) instruct the terminal of the first cell to enable the temporary resource configuration.
  • the second information may also include instruction information for enabling the temporary resource configuration.
  • the terminal of the first cell has obtained the temporary resource configuration in advance.
  • the second information includes instruction information for enabling the temporary resource configuration.
  • the terminal of the first cell has obtained the temporary resource configuration.
  • the first network node may send downlink control information (DCI) or a short message to the terminal of the first cell, where the DCI or short message includes the second information.
  • DCI downlink control information
  • the methods for the terminal of the first cell to obtain the temporary resource configuration include:
  • the first host node determines the temporary resource configuration from the reserved resource configuration, and sends the temporary resource configuration to the terminal of the first cell. For example, the first host node may send the temporary resource configuration to the first network node, and the first network node sends the temporary resource configuration to the terminal of the first cell in a broadcast or unicast manner.
  • the first network node determines the temporary resource configuration from the reserved resource configuration, and sends the temporary resource configuration to the terminal of the first cell.
  • the first host node or the first network node can report the temporary resource configuration to the RIC. If the RIC needs to generate other resource configurations later, the other resource configurations should not include the temporary resource configuration reported by the first host node or the first network node.
  • the RIC determines the temporary resource configuration from the reserved resource configuration, and further, the RIC sends the temporary resource configuration to the terminal of the first cell.
  • the RIC may send the temporary resource configuration to the terminal of the first cell through the first home node and the first network node.
  • S302 The terminal of the first cell activates the temporary resource configuration according to the second information.
  • activating the temporary resource configuration by the terminal of the first cell means that the terminal of the first cell stops using the original resource configuration.
  • the terminal of the first cell can perform random access according to the temporary resource configuration.
  • the method 300 may also include the following S303 and S304:
  • the first host node sends the third information to the terminal of the first cell.
  • the terminal of the first cell receives the third information.
  • the third information is used to stop using the temporary resource configuration.
  • the third information can also be carried in a short message or DCI.
  • S304 The terminal of the first cell stops using the temporary resource configuration according to the third information.
  • the terminal of the first cell can continue to enable the original resource configuration.
  • the first host node sends the first information to the first network node. Accordingly, the first network node receives the first information.
  • the first information is used to update the resource configuration of the first cell, and the first information is determined based on the resource configuration of the second cell.
  • the first network node sends the updated resource configuration information of the first cell to the terminal of the first cell according to the first information.
  • the terminal of the first cell receives the updated resource configuration information of the first cell.
  • the terminal of the first cell receives the updated resource configuration information of the first cell, the terminal of the first cell stops using the above temporary resource configuration.
  • the updated resource configuration of the first cell is also used to indicate to stop using the temporary resource configuration.
  • the CU of the first host node sends the second information to the IAB-MT of the child node of the first network node, and S302 may be executed by the IAB-MT.
  • the CU of the first home node sends the third information to the IAB-MT, and S304 may be executed by the IAB-MT.
  • the CU of the first host node sends the first information to the DU of the first network node; in S306, the DU of the first network node sends the updated resource configuration of the first cell to the IAB-MT.
  • the terminal of the first cell can enable temporary resource configuration, thereby reducing the probability of resource configuration conflict between the two cells and improving the relationship between the first network node and the first cell.
  • the stability of communication between terminals in the cell if the resource configuration of the first cell conflicts with the resource configuration of the second cell, the terminal of the first cell can enable temporary resource configuration, thereby reducing the probability of resource configuration conflict between the two cells and improving the relationship between the first network node and the first cell. The stability of communication between terminals in the cell.
  • Figure 6 shows the method 400 proposed by this application. What is different from the method 200 and the method 300 is that in the method 400, if the resource configuration of the first cell of the first network node is different from the resource configuration of the second cell of the second network node, If there is a resource configuration conflict, the second network node updates the resource configuration of the second cell.
  • the method 400 includes:
  • the first host node sends third information to the second network node, and the third information is used to request to update the resource configuration of the second cell.
  • the first host node can determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell. For this process, reference can be made to S201, which will not be described again here.
  • the third information includes the identifier of the second cell or the resource configuration of the second cell.
  • the third information also includes the identification of the first cell or the resource configuration of the first cell.
  • the second network node determines whether to update the resource configuration of the second cell according to the third information.
  • the second network node is pre-configured with an area range in which the resource configuration can be updated. If the second cell is located within the area, the second network node determines to update the resource configuration of the second cell. If the second cell is not located within the area, the second network node refuses to update the resource configuration of the second cell.
  • the second network node may determine whether to update the resource configuration of the second cell based on the number of terminals corresponding to the second cell or the load condition corresponding to the second cell. If the number of terminals exceeds threshold #A, or the load exceeds threshold #B, the second network node determines not to update the resource configuration of the second cell; otherwise, the second network node determines to update the resource configuration of the second cell.
  • the threshold #A and the threshold #B may be specified by the protocol or preconfigured in the second network node.
  • the method 400 further includes S403.
  • the second network node sends fourth information to the first host node.
  • the first host node receives the fourth information.
  • the fourth information indicates that updating the resource configuration of the second cell is refused.
  • the first host node may update the resource configuration of the first cell according to the fourth information.
  • steps S202 and S203 can be continued; as another way, after S403, steps S301 to S306 can be continued, which will not be described again.
  • the method 400 also includes S404 and S405.
  • the second network node determines the updated resource configuration of the second cell.
  • the second network node may determine the updated resource configuration of the second cell according to the resource configuration of the first cell.
  • the resource configuration of the first cell does not conflict with the updated resource configuration of the second cell at all.
  • the conflict between the resource configuration of the first cell and the updated resource configuration of the second cell is within the allowed range.
  • S405 The second network node sends the updated resource configuration of the second cell to the terminal of the second cell.
  • the terminal of the second cell receives the updated resource configuration of the second cell.
  • the CU of the first host node sends the third information to the second network node; in S403 , the second network node sends fourth information to the CU of the first host node.
  • the first host node can negotiate with the second network node, and decide whether to update the resource configuration of the first cell or update the resources of the second cell based on the negotiation result. configuration, thereby avoiding the occurrence of secondary conflicts due to simultaneous updates of the resource configuration of the first cell and the resource configuration of the second cell.
  • Figure 7 shows the method 500 provided by this application.
  • the difference from the method 200 to the method 400 is that in the method 500, if the resource configuration of the first cell of the first network node is different from the resource configuration of the second cell of the second network node, In case of resource configuration conflict, the terminal in the first cell is switched to the third cell of the first network node.
  • the method 500 includes:
  • the first host node can determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell. For this process, reference can be made to S201, which will not be described again here.
  • the first host node generates and sends first information to the first network node.
  • the first information includes the identity of the third cell.
  • the resource configuration of the second cell does not conflict with the resource configuration of the third cell at all.
  • the conflict between the resource configuration of the second cell and the resource configuration of the third cell is within the allowed range.
  • the first host node determines the third cell from a plurality of cells of the first network node.
  • the third cell can provide similar or higher quality services to the terminals in the first cell.
  • the beam direction corresponding to the third cell is substantially the same as the beam direction corresponding to the first cell.
  • the terminals of the first cell are switched from the first cell to the third cell, and the first network node and these terminals can communicate normally after the switching.
  • the first network node activates the third cell according to the first information.
  • the first information includes resource configuration of the third cell. That is, in S501, the first host node determines the resource configuration of the third cell. The first network node activates the third cell according to the resource configuration of the third cell.
  • the first information includes resource configuration of the second cell. That is, in S501, the first host node does not determine the resource configuration of the third cell. In this case, the first network node determines the resource configuration of the third cell according to the resource configuration of the second cell, and then activates the third cell according to the resource configuration of the third cell.
  • the first host node sends the second information to the terminal of the first cell.
  • the terminal of the first cell receives the second information.
  • the second information is used to trigger the terminal in the first cell to switch to the third cell.
  • the second information includes the identifier of the third cell.
  • the first home node may directly send the second information to the terminal of the first cell.
  • the first host node may send the second information to the terminal of the first cell through the first network node.
  • S504 The terminal of the first cell performs a process of switching to the third cell according to the second information.
  • the terminal in the connected state in the first cell can switch to the third cell according to the second information.
  • the first host node sends the third information to the first network node.
  • the first network node receives the third information.
  • the third information indicates closing the first cell.
  • the third information may include the identification of the first cell.
  • S506 The first network node closes the first cell according to the third information.
  • the terminal in the idle state and deactivated state in the first cell can perform cell reselection to access a suitable cell.
  • the first network node If the first network node does not shut down the first cell, the resource configuration of the first cell and the resource configuration of the second cell will continue to conflict, affecting subsequent communications of terminals accessing the first cell. Therefore, according to the method of the present application, the first network node shuts down the first cell and releases the resource configuration of the first cell, thereby avoiding the above situation.
  • the CU of the first host node sends the first information to the DU of the first network node
  • S502 is executed by the DU of the first network node
  • the CU of the first host node sends the first information to the DU of the first network node.
  • the terminal of the first cell sends the second information.
  • the CU of the first host node sends the third information to the DU of the first network node.
  • S506 is executed by the DU of the first network node.
  • the first host node can send the first information to the first network node to activate the third cell, and subsequently the terminal of the first cell can switch to the third cell. , thereby improving the stability of communication between the first network node and the terminal of the first cell.
  • Figure 8 shows the method 600 provided by this application, which is based on the O-RAN architecture. Specifically, the method 600 includes:
  • the first host node may determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell. For this process, reference may be made to S201, which will not be described again here.
  • the fifth information indicates that the resource configuration of the first cell conflicts with the resource configuration of the second cell.
  • the fifth information includes the identity of the first cell and the identity of the second cell.
  • the fifth information includes resource configuration of the first cell and resource configuration of the second cell.
  • the RIC determines the updated resource configuration of the first cell based on the fifth information.
  • the updated resource configuration of the first cell does not conflict with the resource configuration of the second cell at all.
  • the conflict between the updated resource configuration of the first cell and the resource configuration of the second cell is within a permitted range.
  • the RIC may obtain resource configuration information of multiple cells from the first host node and the first network node in advance through the E2 interface, including the resource configuration information of the first cell.
  • the RIC may also obtain resource configuration information of multiple cells from the second network node in advance, including resource configuration information of the second cell.
  • the RIC stores the correspondence between the identity of the cell and the resource configuration of the cell.
  • the RIC can determine the resource configuration of the first cell and the resource configuration of the second cell based on the above-mentioned stored correspondence, and then determine the updated resource configuration of the first cell. Resource allocation.
  • the RIC may also determine whether the resource configuration of the first cell conflicts with the resource configuration of the second cell. For the determination process, refer to S201.
  • the method also includes S603.
  • the RIC sends the first information to the first host node.
  • the first host node receives the first information.
  • the first information is used to update resource configuration of the first cell.
  • the first information includes the updated resource configuration of the first cell.
  • steps S202 and S203 can be continued and will not be described again.
  • the method also includes S604.
  • the RIC may directly send the first information to the first network node.
  • the first network node receives the first information.
  • the first information is used to update resource configuration of the first cell.
  • the first information includes the updated resource configuration of the first cell.
  • step S203 can be continued and will not be described again.
  • the CU of the first host node sends the fifth information to the RIC; in S603, the RIC sends the first information to the CU of the first host node; in S604, the RIC sends the first information to the first network.
  • the node's DU sends the first information.
  • the updated resource configuration of the first cell can be determined by the RIC, and the first network node can obtain the updated resource configuration of the first cell from the RIC, thereby reducing the cost of the first cell and the first cell.
  • the probability of resource configuration conflict in the two cells improves the stability of communication between the first network node and the terminal of the first cell.
  • Figure 9 shows a communication device provided by an embodiment of the present application.
  • the communication device includes a transceiver unit 901 and a processing unit 902.
  • the transceiver unit 901 can be used to implement corresponding information transceiver functions.
  • the transceiver unit 901 may also be called a communication interface or a communication unit.
  • Processing unit 902 may be used to perform processing operations.
  • the device also includes a storage unit, which can be used to store instructions and/or data.
  • the processing unit 902 can read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments. the action of the device.
  • the device may be the first host node in the aforementioned embodiment, or may be a component (such as a chip) of the first host node.
  • a processing unit configured to generate the first information according to the resource configuration of the second cell when the resource configuration of the first cell conflicts with the resource configuration of the second cell;
  • a transceiver unit configured to send the first information to the first network node , the first information is used to update the resource configuration of the first cell.
  • the processing unit is configured to determine the updated resource configuration of the first cell, the first information includes the updated resource configuration of the first cell, and the updated resource configuration of the first cell does not conflict with the resource configuration of the second cell.
  • the first information includes resource configuration of the second cell.
  • the transceiver unit is configured to send second information to the terminal of the first cell, and the second information is used to enable temporary resource configuration.
  • the current resource configuration does not conflict with the resource configuration of the second cell.
  • the second information includes temporary resource configuration.
  • the second information includes indication information for enabling temporary resource configuration; and a transceiver unit configured to send the temporary resource configuration to the terminal of the first cell.
  • the transceiver unit is configured to send third information to the second network node, and the third information is used to request to update the resource configuration of the second cell; the transceiver unit is configured to receive fourth information from the second network node, and the fourth The information indicates that updating the resource configuration of the second cell is refused.
  • the transceiver unit is configured to send fifth information to the RIC, and the fifth information indicates that the resource configuration of the first cell conflicts with the resource configuration of the second cell; the transceiver unit is configured to receive the first information from the RIC, the first The information includes the updated resource configuration of the first cell.
  • the transceiver unit is configured to obtain the resource configuration of the second cell from the second network node.
  • the device may be the first network node in the aforementioned embodiment, or may be a component (such as a chip) of the first network node.
  • the transceiver unit is used to receive the first information from the first host node, the first information is used to update the resource configuration of the first cell, and the resource configuration of the first cell conflicts with the resource configuration of the second cell; the transceiver unit is used to update the resource configuration of the first cell according to the The first information sends the updated resource configuration of the first cell to the terminal of the first cell.
  • the first information includes the updated resource configuration of the first cell, and the updated resource configuration of the first cell does not conflict with the resource configuration of the second cell.
  • the first information includes the resource configuration of the second cell
  • the processing unit is configured to determine the updated resource configuration of the first cell according to the resource configuration of the second cell, and the updated resource configuration of the first cell is consistent with the resource configuration of the second cell. There is no conflict in resource allocation.
  • the transceiver unit is used to receive the second information from the first host node; the transceiver unit is used to send the second information to the terminal of the first cell, the second information is used to enable temporary resource configuration, and the temporary resource configuration is related to The resource configuration of the second cell does not conflict.
  • the device may be the terminal of the first cell in the aforementioned embodiment, or may be a component (such as a chip) of the terminal of the first cell.
  • a transceiver unit configured to receive second information, the second information is used to enable temporary resource configuration, the resource configuration of the first cell conflicts with the resource configuration of the second cell, and the temporary resource configuration does not conflict with the resource configuration of the second cell; a processing unit , used to enable temporary resource configuration according to the second information.
  • the second information includes temporary resource configuration.
  • the second information includes instruction information to enable temporary resource configuration; a transceiver unit configured to receive the temporary resource configuration.
  • the transceiver unit is configured to receive the updated resource configuration of the first cell, and the updated resource configuration of the first cell does not conflict with the resource configuration of the second cell; the processing unit is configured to stop enabling the temporary resource configuration.
  • the device may be the second network node in the aforementioned embodiment, or may be a component (such as a chip) of the second network node.
  • a transceiver unit configured to receive third information from the first host node, where the third information is used to request to update the resource configuration of the second cell of the second network node, and the resource configuration of the first cell conflicts with the resource configuration of the second cell; If the resource configuration of the second cell is refused to be updated, the transceiver unit is configured to send fourth information to the first host node, where the fourth information indicates that the resource configuration of the second cell is refused to be updated.
  • the processing unit is configured to update the resource configuration of the second cell, and the resource configuration of the first cell does not conflict with the updated resource configuration of the second cell.
  • the device may be the first host node in the aforementioned embodiment, or may be a component (such as a chip) of the first host node.
  • a processing unit configured to generate first information when the resource configuration of the first cell conflicts with the resource configuration of the second cell.
  • the first information is used to activate the third cell of the first network node and the resource configuration of the second cell. It does not conflict with the resource configuration of the third cell; the transceiver unit is used to send the first information to the first network node.
  • the processing unit is configured to determine the resource configuration of the third cell, and the first information includes the resource configuration of the third cell.
  • the first information includes resource configuration of the second cell.
  • the transceiver unit is configured to send second information to the terminal of the first cell, and the second information is used to trigger the terminal of the first cell to switch to the third cell; the transceiver unit is configured to send the third message to the first network node. information, and the third information indicates closing the first cell.
  • the device may be the first network node in the aforementioned embodiment, or may be a component (such as a chip) of the first network node.
  • a transceiver unit configured to receive first information from the first host node.
  • the first information is used to activate the third cell of the first network node.
  • the resource configuration of the first cell conflicts with the resource configuration of the second cell.
  • the resource configuration does not conflict with the resource configuration of the third cell; the processing unit is configured to activate the third cell according to the first information.
  • the first information includes resource configuration of the third cell.
  • the first information includes the resource configuration of the second cell
  • the processing unit is configured to determine the resource configuration of the third cell according to the resource configuration of the second cell.
  • the processing unit is used to switch the terminal of the first cell to the third cell;
  • the transceiver unit is used to receive the third information from the first host node, and the third information indicates to close the first cell;
  • the processing unit is used to Yu closes the first cell based on the third information.
  • the device may be the RIC in the previous embodiment, or may be a component of the RIC (such as a chip).
  • a transceiver unit configured to receive fifth information from the first host node, the fifth information indicating that the resource configuration of the first cell conflicts with the resource configuration of the second cell; a transceiver unit, configured to send the message to the first host node according to the fifth information.
  • the first information includes the updated resource configuration of the first cell.
  • the processing unit is configured to determine the updated resource configuration of the first cell according to the resource configuration of the second cell.
  • unit may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor (such as a shared processor, a proprietary processor, or a group of processors) used to execute one or more software or firmware programs. processor, etc.) and memory, merged logic circuitry, and/or other suitable components to support the described functionality.
  • ASIC application specific integrated circuit
  • processor such as a shared processor, a proprietary processor, or a group of processors
  • memory merged logic circuitry, and/or other suitable components to support the described functionality.
  • the device may be specifically the first network element in the above embodiments, and may be used to execute various processes corresponding to the first network element in the above method embodiments and/or Steps, or the device can be specifically the network management network element in the above embodiments, and can be used to execute various processes and/or steps corresponding to the network management network element in the above method embodiments. To avoid duplication, they will not be repeated here. Repeat.
  • the above communication device has the function of realizing the corresponding steps performed by the device in the above method.
  • Functions can be implemented by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions; for example, the transceiver unit can be replaced by a transceiver (for example, the transmitting unit in the transceiver unit can be replaced by a transmitter, and the receiving unit in the transceiver unit can be replaced by a receiver. ), other units, such as a processing unit, can be replaced by a processor to respectively perform the sending and receiving operations and related processing operations in each method embodiment.
  • transceiver unit 901 may also be a transceiver circuit (for example, it may include a receiving circuit and a transmitting circuit), and the processing unit may be a processing circuit.
  • the device in Figure 9 can be the device in the aforementioned method embodiment, or it can be a chip or a chip system, such as a system on chip (SoC).
  • the transceiver unit may be an input-output circuit or a communication interface; the processing unit may be a processor, microprocessor, or integrated circuit integrated on the chip. No limitation is made here.
  • An embodiment of the present application also provides a communication device, as shown in Figure 10, including: a processor 1101 and a communication interface 1102.
  • the processor 1101 is used to execute computer programs or instructions stored in the memory 1103, or read data stored in the memory 1103, to execute the methods in each of the above method embodiments.
  • the communication interface 1102 is used for receiving and/or transmitting signals.
  • the processor 1101 is used to control the communication interface 1102 to receive and/or send signals.
  • the communication device may further include a memory 1103, which is used to store computer programs or instructions and/or data.
  • the memory 1103 may be integrated with the processor 1101, or may be provided separately.
  • the communication device may not include the memory 1103, and the memory 1103 is provided outside the communication device.
  • the memory 1103 is one or more.
  • the processor 1101, the communication interface 1102 and the memory 1103 are connected to each other through a bus 1104;
  • the bus 1104 can be a peripheral component interconnect standard (PCI) bus or an extended industry standard architecture (EISA) ) bus, etc.
  • PCI peripheral component interconnect standard
  • EISA extended industry standard architecture
  • the above-mentioned bus 1104 can be divided into an address bus, a data bus, a control bus, etc. For ease of presentation, only one thick line is used in Figure 10, but it does not mean that there is only one bus or one type of bus.
  • the processor 1101 is used to execute computer programs or instructions stored in the memory 1103.
  • the communication device may be used to perform related operations of the first host node, the first network node, the terminal of the first cell, the second network node or the RIC in the above embodiments.
  • the specific process of the processor 1101 and the communication interface 1102 performing the above corresponding steps has been described in detail in the above method embodiments, and will not be described again for the sake of brevity.
  • the processor (such as the processor 1101) mentioned in the embodiment of the present application may be a central processing unit (central processing unit, CPU), network processor (network processor, NP) or a combination of CPU and NP.
  • the processor may further include hardware chips.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a general array logic (GAL) or any combination thereof.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or integrated. to another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • a unit described as a separate component may or may not be physically separate.
  • a component shown as a unit may or may not be a physical unit, that is, it may be located in one place, or it may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • Functions may be stored in a computer-readable storage medium when implemented in the form of software functional units and sold or used as independent products.
  • This application provides a computer-readable storage medium, which includes a computer program. When the computer program is run on a computer, it causes the computer to perform any possible implementation of the above method embodiments.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • a computer program product is provided.
  • the computer program product includes: a computer program (which may also be called a code, or an instruction). When the computer program is run, it causes the computer to execute any possible implementation of the above method embodiments.
  • the computer software product is stored in a storage medium and includes a number of instructions to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods of various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the UE and/or the base station may perform some or all of the steps in the embodiment of the present application. These steps or operations are only examples. In the embodiment of the present application, other operations or various operations may also be performed. Deformation of operations. In addition, various steps may be performed in a different order than those presented in the embodiments of the present application, and it may not be necessary to perform all operations in the embodiments of the present application.

Abstract

本申请提供了一种通信方法和装置,该方法包括:在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点根据第二小区的资源配置生成第一信息,第一信息用于更新第一小区的资源配置;第一宿主节点向第一网络节点发送第一信息;其中,第一网络节点由第一宿主节点管理,第一小区由第一网络节点提供,第二小区由第二网络节点提供。基于本申请的方法,可以降低第一小区的资源配置与第二小区的资源配置发生冲突的概率,提高第一网络节点与第一小区的终端之间进行通信的稳定性。

Description

通信方法和装置
本申请要求于2022年9月1日提交中国专利局、申请号为202211067577.5、发明名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地,涉及一种通信方法和装置。
背景技术
第五代移动通信系统(5th-generation,5G)中引入了接入回传一体化(integrated access and backhaul,IAB)网络技术,IAB网络中的接入链路(access link)和回传链路(backhaul link)皆采用无线传输方案,减少了光纤部署,从而降低了部署成本,提高了部署灵活性。在IAB网络中,包括IAB节点(IAB node)和IAB宿主(IAB donor)。通常来说,IAB node由移动终端(mobile termination,MT)部分和分布式单元(distributed unit,DU)部分组成,IAB donor由集中式单元(centralized unit,CU)部分和分布式单元(distributed unit,DU)部分组成。
IAB节点提供的小区和其他网络节点提供的小区之间可能出现资源配置冲突的情况,如果这种情况发生,对于处于资源配置冲突的小区中的终端而言,通信会受到影响。因此,如何降低两个小区之间发生资源配置冲突的概率,是一个亟待解决的问题。
发明内容
本申请提供一种通信方法和装置,用于降低两个小区之间发生资源配置冲突的概率。
第一方面,提供了一种通信方法,包括:在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点根据所述第二小区的资源配置生成第一信息,所述第一信息用于更新所述第一小区的资源配置;所述第一宿主节点向第一网络节点发送所述第一信息;其中,所述第一网络节点由所述第一宿主节点管理,所述第一小区由所述第一网络节点提供,所述第二小区由第二网络节点提供。
根据本申请的方法,如果第一小区和第二小区的资源配置冲突,由第一宿主节点向第一网络节点发送第一信息,更新所述第一小区的资源配置,从而降低第一小区的资源配置与第二小区的资源配置发生冲突的概率,提高第一网络节点与第一小区的终端之间进行通信的稳定性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一宿主节点确定更新后所述第一小区的资源配置,所述第一信息包括更新后所述第一小区的资源配置,更新后所述第一小区的资源配置与所述第二小区的资源配置不冲突。
结合第一方面,在第一方面的某些实现方式中,所述第一信息包括所述第二小区的资源配置。
结合第一方面,在第一方面的某些实现方式中,在所述第一宿主节点向所述第一网络节点发送所述第一信息之前,所述方法还包括:所述第一宿主节点向所述第一小区的终端发送第二信息,所述第二信息用于启用临时资源配置,所述临时资源配置与所述第二小区的资源配置不冲突。
根据本申请的方法,第一宿主节点向第一小区的终端发送第二信息,以启动临时资源配置,使得在第一小区的终端接收到更新后第一小区的资源配置之前,第一小区的终端可以与第一网络节点正常进行通信。
结合第一方面,在第一方面的某些实现方式中,所述第二信息包括所述临时资源配置。
结合第一方面,在第一方面的某些实现方式中,所述第二信息包括启用所述临时资源配置的指示信息;在所述第一宿主节点向所述第一小区的终端发送所述第二信息之前,所述方法还包括:所述第一宿主节点向所述第一小区的终端发送所述临时资源配置。
结合第一方面,在第一方面的某些实现方式中,在所述第一宿主节点向所述第一网络节点发送所述第一信息之前,所述方法还包括:所述第一宿主节点向所述第二网络节点发送第三信息,所述第三 信息用于请求更新所述第二小区的资源配置;所述第一宿主节点从所述第二网络节点接收第四信息,所述第四信息指示拒绝更新所述第二小区的资源配置。
根据本申请的方法,第一宿主节点可以与第二网络节点协商,如果第二网络节点拒绝更新第二小区的资源配置,则仍然由第一宿主节点向第一网络节点发送第一信息,以更新第一小区的资源配置,从而避免由于第一小区的资源配置和第二小区的资源配置同时更新,导致发生二次冲突的情况。
结合第一方面,在第一方面的某些实现方式中,在所述第一宿主节点向所述第一网络节点发送所述第一信息之前,所述方法还包括:所述第一宿主节点向接入网设备智能控制器(RAN intelligent controller,RIC)发送第五信息,所述第五信息指示所述第一小区的资源配置与所述第二小区的资源配置冲突;所述第一宿主节点接收来自所述RIC的所述第一信息,所述第一信息包括更新后所述第一小区的资源配置。
根据本申请的方法,在开放式无线接入网(open radio access network,O-RAN)架构下,第一宿主节点可以从RIC获取更新后第一小区的资源配置。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一宿主节点从所述第二网络节点获取所述第二小区的资源配置。
结合第一方面,在第一方面的某些实现方式中,所述第一小区与所述第二小区相邻。
第二方面,提供一种通信方法,包括:RIC接收来自第一宿主节点的第五信息,所述第五信息指示第一小区的资源配置与第二小区的资源配置冲突;所述RIC根据所述第五信息向所述第一宿主节点发送第一信息,所述第一信息包括更新后所述第一小区的资源配置。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:
所述RIC根据所述第二小区的资源配置确定更新后所述第一小区的资源配置,更新后所述第一小区的资源配置与第二小区的资源配置不冲突。
结合第二方面,在第二方面的某些实现方式中,所述第一小区与所述第二小区相邻。
第三方面,提供一种通信方法,包括:在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点生成第一信息,所述第一信息用于激活第一网络节点的第三小区,所述第二小区的资源配置与所述第三小区的资源配置不冲突;所述第一宿主节点向所述第一网络节点发送所述第一信息;其中,所述第一网络节点由所述第一宿主节点管理,所述第一小区由所述第一网络节点提供,所述第二小区由第二网络节点提供。
根据本申请的方法,如果第一小区和第二小区的资源配置冲突,第一宿主节点可以向第一网络节点发送第一信息,以激活第三小区,后续第一小区的终端可以切换到第三小区,从而提高第一网络节点与第一小区的终端之间进行通信的稳定性。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述第一宿主节点确定所述第三小区的资源配置,所述第一信息包括所述第三小区的资源配置。
结合第三方面,在第三方面的某些实现方式中,所述第一信息包括所述第二小区的资源配置。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述第一宿主节点向所述第一小区的终端发送第二信息,所述第二信息用于触发所述第一小区的终端切换至所述第三小区;所述第一宿主节点向所述第一网络节点发送第三信息,所述第三信息指示关闭所述第一小区。
第四方面,提供一种通信方法,包括:第一网络节点接收来自第一宿主节点的第一信息,所述第一信息用于激活所述第一网络节点的第三小区,其中,第一小区的资源配置与第二小区的资源配置冲突,所述第二小区的资源配置与所述第三小区的资源配置不冲突;所述第一网络节点根据所述第一信息激活所述第三小区;其中,所述第一网络节点由所述第一宿主节点管理,所述第一小区由所述第一网络节点提供,所述第二小区由第二网络节点提供。
根据本申请的方法,如果第一小区和第二小区的资源配置冲突,第一网络节点可以激活第三小区,后续第一小区的终端可以切换到第三小区,从而提高第一网络节点与第一小区的终端之间进行通信的稳定性。
结合第四方面,在第四方面的某些实现方式中,所述第一信息包括所述第三小区的资源配置。
结合第四方面,在第四方面的某些实现方式中,所述第一信息包括所述第二小区的资源配置,所述方法还包括:所述第一网络节点根据所述第二小区的资源配置确定所述第三小区的资源配置。
结合第四方面,在第四方面的某些实现方式中,所述方法还包括:所述第一网络节点将所述第一小区的终端切换至所述第三小区;所述第一网络节点接收来自所述第一宿主节点的第三信息,所述第三信息指示关闭所述第一小区;所述第一网络节点根据所述第三信息关闭所述第一小区。
第五方面,提供了一种通信装置,该通信装置可以包括执行第一方面至第四方面中所描述的方法/操作/步骤/动作所一一对应的模块或单元,该模块或单元可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。
第六方面,提供一种通信装置,包括通信接口和处理器,所述通信接口用于输出和/或输入信号,所述处理器用于执行存储器存储的计算机程序或指令,使得该通信设备执行第一方面至第四方面中任一种可能实现方式中的方法。
可选地,该存储器可以包括在该通信装置中,作为一种方式,存储器可以与处理器分开设置;作为另一种方式,该存储器可以位于处理器中,与处理器集成在一起。
可选地,该存储器也可以在该通信装置之外,与处理器耦合。
第七方面,提供一种计算机可读存储介质,包括计算机程序,当计算机程序在计算机上运行时,使得计算机执行第一方面至第四方面中任一种可能实现方式中的方法。
第八方面,提供一种芯片或芯片系统,芯片或芯片系统包括处理电路和输入输出接口,处理电路用于执行该第一方面至第四方面中任一种可能实现方式中的方法。输入输出接口用于输入和/或输出信号。
第九方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行第一方面至第四方面中任一种可能实现方式中的方法。
附图说明
图1示出了本申请适用的通信系统。
图2是本申请实施例提供的IAB网络中的控制面协议栈的示意图。
图3是本申请实施例提供的IAB网络中的用户面协议栈的示意图。
图4为本申请所提出的方法的一例示意性交互图。
图5为本申请所提出的方法的一例示意性交互图。
图6为本申请所提出的方法的一例示意性交互图。
图7为本申请所提出的方法的一例示意性交互图。
图8为本申请所提出的方法的一例示意性交互图。
图9为本申请提供的通信装置的一种示意性框图。
图10为本申请提供的通信装置的一种示意性框图。
具体实施方式
本申请实施例的技术方案可以应用于各种第三代合作伙伴计划(the 3rd generation partnership project,3GPP)通信系统,例如:长期演进(long term evolution,LTE)系统、例如,LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第五代(5th generation,5G)通信系统又称新无线(new radio,NR)通信系统、未来演进的通信系统,例如:第六代(6th generation,6G)通信系统等。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。此外,本申请中出现的符号“/”可以表示“和/或”,例如A/B表示A和/或B。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对描述的对象个数的特别限定,不能构成对本申请实施例的任何限制。
为了便于理解,首先介绍本申请涉及的技术术语。
(1)小区的资源配置:
小区的资源配置可以包括通信相关的时域资源配置、频域资源配置和码域资源配置中的一项或多项。
示例性地,小区的资源配置可以为以下中任一种:
小区的随机接入信道(random access channel,RACH)资源配置、波束配置、控制资源集(control resource set,coreset)配置、参考信号资源配置、物理下行控制信道(physical downlink control channel,PDCCH)配置、物理下行控制信道(physical downlink shared channel,PDSCH)配置。
(2)IAB网络:
图1是本申请提供的一种IAB网络通信系统的示意图。该通信系统包括终端,IAB节点,宿主基站。本申请中,“IAB网络”只是一种举例,可以用“无线回传网络”或者“中继网络”进行替换。“IAB节点”也只是一种举例,可以用“无线回传设备”或者“中继节点”进行替换。
宿主基站(donor base station)可以作为IAB节点的宿主节点。本申请中,宿主基站可以包括但不限于:下一代基站(generation nodeB,gNB),演进型节点B(evolved Node B,eNB),无线网络控制器(radio network controller,RNC),节点B(Node B,NB),基站控制器(base station controller,BSC),基站收发台(base transceiver station,BTS),家庭基站(home evolved Node B或者home Node B),传输点(transmission and reception point或者transmission point),具有基站功能的路边单元(road side unit,RSU),基带单元(baseband unit,BBU),射频拉远单元(Remote Radio Unit,RRU),有源天线单元(active antenna unit,AAU),一个或一组天线面板,或后续演进系统中具备基站功能的节点等。宿主基站可以是一个实体,还可以包括一个集中式单元(centralized unit,CU)实体加上至少一个分布式单元(distributed unit,DU)实体。其中,CU和DU之间的接口可以称之为F1接口。F1接口的两端分别是CU和DU,CU的F1接口的对端是DU,DU的F1接口的对端是CU。F1接口又可以进一步包括F1接口控制面(F1-C)和F1接口用户面(F1-U)。本申请中,宿主基站的CU可以简称为Donor CU,宿主基站的DU可以简称为Donor DU。
本申请中,终端有时也称为用户设备(user equipment,UE),移动台,终端设备等。终端可以广泛引用于各种场景,例如设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。终端可以包括但不限于:用户设备UE,移动站,移动设备,终端设备,用户代理,蜂窝电话,无绳电话,会话启动协议(session initiation protocol,SIP)电话,无线本地环路(wireless local loop,WLL)站,个人数字处理(personal digital assistant,PDA),具有无线通信功能的手持设备,计算设备,连接到无线调制解调器的其它处理设备,车载设备,可穿戴设备(如智能手表,智能手环,智能眼镜等),智能家具或家电,车联网(vehicle to everything,V2X)中的车辆设备,具有中继功能的终端设备,客户前置设备(customer premises equipment,CPE),IAB节点(具体是IAB节点的MT或者作为终端角色的IAB节点)等,本申请对终端的具体名称和实现形式并不做限定。
本申请中,IAB节点可以包括至少一个移动终端(mobile terminal,MT)和至少一个分布式单元DU(distributed unit,DU)。IAB节点可以是一个实体,例如该IAB节点包括至少一个MT功能和至少一个DU功能。IAB节点也可以包括多个实体,例如该IAB节点包括至少一个MT实体和至少一个DU实体。其中MT实体和DU实体可以相互通信,例如通过网线相互通信。当IAB节点面向其父节点(父节点可以是宿主基站或者其他IAB节点)时,可以作为终端,例如用于上述终端所应用各种场景,即IAB节点的终端角色。这种情况下,为IAB节点提供终端角色的是MT功能或MT实体。当IAB节点面向其子节点(子节点可以是其他IAB节点或者终端)时,可以作为网络设备,即IAB节点的网络设备角色。这种情况下,为IAB节点提供网络设备角色的是DU功能或DU实体。本申请中,IAB节点的MT可以简称为IAB-MT,IAB节点的DU可以简称为IAB-DU。IAB节点可以接入宿主基站,也可以通过其他IAB节点连接到宿主基站。
IAB网络支持多跳组网和多连接组网以保证业务传输的可靠性。IAB节点将为其提供回传服务的IAB节点视为父节点,相应地,该IAB节点可视为其父节点的子节点。终端也可以将自己接入的IAB 节点视为父节点,相应地,IAB节点也可以将接入自己的终端视为子节点。IAB节点可以将自己接入的宿主基站视为父节点,相应地,宿主基站也可以将接入自己的IAB节点视为子节点。如图1所示,IAB节点1的父节点包括宿主基站。IAB节点1又为IAB节点2或者IAB节点3的父节点。终端1的父节点包括IAB节点4。IAB节点4的子节点包括终端1或者终端2。终端直接接入的IAB节点可以称之为接入IAB节点。图1中的IAB节点4是终端1和终端2的接入IAB节点。IAB节点5是终端2的接入IAB节点。从IAB节点到宿主基站的上行传输路径上的节点可以称之为该IAB节点的上游节点(upstream node)。上游节点可以包括父节点,父节点的父节点(或称为祖父节点)等。例如图1中的IAB节点1和IAB节点2可以称之为IAB节点5的上游节点。从IAB节点到终端的下行传输路径上的节点可以称之为该IAB节点的下游节点(downstream node)或者后代节点(descendant node)。下游节点或者后代节点可以包括子节点(或者称为下一跳节点),子节点的子节点(或称为孙节点),或者终端等。例如图1中的终端1,终端2,IAB节点2,IAB节点3,IAB节点4或者IAB节点5可以称之为IAB节点1的下游节点或者后代节点。又例如图1中的IAB节点4和IAB节点5可以称之为IAB节点2的下游节点或者后代节点。图1中的终端1可以称之为IAB节点4的下游节点或者后代节点。每个IAB节点需要维护面向父节点的回传链路(backhaul link,BL)。若IAB节点的子节点是终端,该IAB节点还需要维护和终端之间的接入链路(acess link,AL)。如图1所示,IAB节点4和终端1或者终端2之间的链路包括AL。IAB节点4和IAB节点2或IAB节点3之间包括BL。
如图1所示,宿主基站与终端2之间的传输路径存在多种可能,例如传输路径1:“宿主基站-IAB节点1-IAB节点2-IAB节点5-终端2”,传输路径2:“宿主基站-IAB节点1-IAB节点2-IAB节点4-终端2”,传输路径3:“宿主基站-IAB节点1-IAB节点3-IAB节点4-终端2”。不同的传输路径可以通过回传适配协议路由标识(bakhaul adaptation protocol routing identity,BAP routing ID)进行标识。路径上的IAB节点可以具有BAP地址(BAP address)和互联网协议(internet protocol,IP)地址。
图2和图3分别是本申请实施例提供的IAB网络中的控制面协议栈的示意图和用户面协议栈的示意图。图2和图3中的宿主基站可以包括宿主CU和宿主DU功能(这种情况下,宿主基站为一个实体),或者可以包括宿主CU实体和宿主DU实体(这种情况下,宿主基站分为两个实体)。如图2或图3所示,宿主DU和宿主CU之间对等的协议层包括IP层,层2(layer 2,L2),层1(layer 1,L1)。其中,L1和L2可以指的是有线传输(例如光纤传输)网络中的协议栈层。例如L1可以是物理层,L2可以是数据链路层。IAB节点4和IAB节点3之间,IAB节点3和IAB节点1之间,以及IAB节点1和宿主DU之间均建立有回传链路(BL)。BL两端对等的协议栈可以包括回传适配协议(backhaul adaptation protocol,BAP)层,无线链路控制(radio link control,RLC),媒体接入控制(medium access control,MAC)层,以及物理(physical,PHY)层。
如图2所示,终端和宿主基站之间有接口,有时称为空口。例如可以称为Uu接口。Uu接口一端位于终端,一端位于宿主基站。Uu接口两端对等的控制面协议栈包括无线资源控制(radio resource control,RRC)层,分组数据汇聚(packet data convergence protocol,PDCP)层,RLC层,MAC层,以及PHY层。Uu接口控制面协议栈包括的协议层也可以称为控制面的接入层(access stratum,AS)。如果宿主基站包括宿主CU实体和宿主DU实体,则Uu接口在宿主基站这端的控制面协议栈可以分别位于宿主DU和宿主CU。例如,PHY层,MAC层及RLC层位于宿主DU,RRC层和PDCP层位于宿主CU。
终端接入的IAB节点(即图2中的IAB节点4)的DU和宿主基站之间有接口,例如称为F1接口。F1接口一端位于IAB节点4,一端位于宿主基站。宿主基站(例如可以是宿主CU)的F1接口的对端是IAB节点(具体可以是IAB节点的DU),IAB节点(具体可以是IAB节点的DU)的F1接口的对端是宿主基站(具体可以是宿主CU)。F1接口两端对等的控制面协议栈包括F1应用协议(F1application protocol,F1AP)层,流控制传输协议(stream control transmission protocol,SCTP)层以及IP层,可选的包括互联网安全协议(internet protocol security,IPsec)层。宿主基站可以包括宿主CU实体和宿主DU实体。F1接口在宿主基站这端的控制面协议栈可以位于宿主CU,例如,宿主CU包括F1AP层,SCTP层以及IP层,可选的包括IPsec层。F1接口在宿主基站这端的控制面协议栈也可以分别位于宿主CU和宿主DU,例如,宿主CU包括F1AP层和SCTP层,可选的包括IPsec层,宿主DU包括IP层。
如图3所示,终端和宿主基站之间的Uu接口两端对等的用户面协议栈包括业务数据适配协议(service data adaptation protocol,SDAP)层,PDCP层,RLC层,MAC层,以及PHY层。Uu接口用户面协议栈包括的协议层也可以称为用户面的接入层(AS)。如果宿主基站包括宿主CU实体和宿主DU实体,则Uu接口在宿主基站这端的用户面协议栈可以分别位于宿主DU和宿主CU。例如,PHY层,MAC层及RLC层位于宿主DU,SDAP层和PDCP层位于宿主CU。
IAB节点4的DU和宿主基站之间的F1接口两端对等的用户面协议层包括通用分组无线业务用户面隧道协议(general packet radio service tunnelling protocol for the user plane,GTP-U)层,用户数据报协议(user datagram protocol,UDP)层以及IP层,可选的包括IPsec层。宿主基站可以包括宿主CU实体和宿主DU实体。F1接口在宿主基站这端的用户面协议栈可以位于宿主CU,例如,宿主CU包括GTP-U层,UDP层以及IP层,可选的包括IPsec层。F1接口在宿主基站这端的用户面协议栈也可以分别位于宿主CU和宿主DU,例如,宿主CU包括GTP-U层和UDP层,可选的包括IPsec层,宿主DU包括IP层。
在图2和图3中,IAB节点4和IAB节点3之间,IAB节点3和IAB节点1之间,IAB节点1和宿主基站或者宿主DU之间,可以存在多个回传RLC信道(backhaul RLC channel,BH RLC CH)。每个BH RLC CH对应有回传RLC信道标识(backhaul RLC channel identity,BH RLC CH ID)。另外,在图2和图3中,当有终端接入该宿主DU时,该宿主DU和宿主CU之间的接口也可以包括F1接口。该F1接口两端对等的控制面协议栈包括F1AP层,SCTP层以及IP层。该F1接口两端对等的用户面协议栈包括GTP-U层,UDP层以及IP层。当有终端接入该IAB节点1或IAB节点3时,该IAB节点1或者IAB节点3和宿主基站之间也可以包括F1接口,该F1接口的描述可以参照上述IAB节点4的DU和宿主基站之间F1接口的描述。
当终端指的是IAB节点的MT功能或者MT实体,或者作为终端角色的IAB节点时,图2或者图3中示出的终端的协议栈为某个IAB节点的MT功能或者MT实体的协议栈,或者为某个IAB节点作为终端角色时的协议栈。
IAB节点在接入IAB网络时,可以充当终端的角色。这种情况下,该IAB节点的MT具有终端的协议栈。该IAB节点和宿主基站之间存在空口(Uu接口)的协议栈。如图2和图3中的终端的协议栈,即具备RRC层或SDAP层,PDCP层,RLC层,MAC层和PHY层。其中,控制面上,IAB节点的RRC消息被IAB节点的父节点封装在F1AP消息中传输的。用户面上,IAB节点的数据包被封装在PDCP协议数据单元(protocol data unit,PDU)中发送到IAB节点的父节点,IAB节点的父节点将收到的PDCP PDU封装在该IAB节点的父节点与宿主CU之间的F1接口上的GTP-U隧道中传输。另外,该IAB节点接入IAB网络后,该IAB节点仍然可以充当普通终端的角色,例如,该IAB节点可以与宿主基站之间传输自己的数据包,例如操作、管理和维护网元(operation,administration and maintenance,OAM)数据包,测量报告等。
需要说明的是,一个IAB节点在IAB网络中可能具备一个或者多个角色。例如,该IAB节点既可以作为终端角色,也可以作为接入IAB节点角色(如图2和图3中的IAB节点4的协议栈)或者中间IAB节点角色(如图2和图3中的IAB node 1或者IAB node 3的协议栈)。该IAB节点可以针对不同角色,使用不同角色对应的协议栈。当该IAB节点在IAB网络中具备多种角色时,可以同时具备多套协议栈。各套协议栈之间可以共享一些相同的协议层,例如共享相同的RLC层,MAC层,PHY层。
本申请的下述方法200至方法600,适用于包括第一宿主节点、第一网络节点(例如,IAB节点)和第二网络节点的通信系统中,第一网络节点由第一宿主节点管理,第一小区由第一网络节点提供,第二小区由第二网络节点提供。
图4示出了本申请提出的方法200,在该方法200中,如果第一网络节点的第一小区的资源配置与第二网络节点的第二小区的资源配置冲突,由第一网络节点更新第一小区的资源配置。具体地,该方法200包括:
S201,在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点根据第二小区的资源配置生成第一信息,第一信息用于更新第一小区的资源配置。
应理解,第一宿主节点可以判断第一小区的资源配置与第二小区的资源配置是否冲突。
作为一种实现,该第一小区和第二小区可以是相邻的。例如,第一网络节点可以设置在汽车、飞机或者火车等可移动的装置上,由于第一网络节点的移动,使得第一小区和第二小区相邻。
具体地,第一宿主节点进行上述判断的过程可以包括以下步骤:
步骤1:第一小区的终端检测与第一小区相邻的小区(其中,包括第二小区)。
作为一种实现,第一小区的终端可以通过搜索和检测相邻小区的同步信号块(synchronization signal block,SSB),来获取相邻小区的物理小区标识(physical cell identity,PCI)。
步骤2:第一小区的终端向第一宿主节点发送与第一小区相邻的小区的标识(例如,PCI)。
即,在该步骤2中,第一宿主节点可以获取第二小区的标识。
步骤3:第一宿主节点根据第二小区的标识,确定第二小区的资源配置。
步骤4:第一宿主节点判断第一小区的资源配置与第二小区的资源配置是否冲突。
应理解,第二网络节点可以为以下中的任一项:
第一宿主节点管理的IAB节点、第二宿主节点、接入网设备(例如,无线接入网(radio access network,RAN))。
如果第二网络节点为第一宿主节点管理的IAB节点,则第一宿主节点可以获取第二网络节点的小区的资源配置信息,进而判断第一小区的资源配置与第二小区的资源配置是否冲突。
如果第二网络节点为第二宿主节点或者RAN,第一宿主节点与第二网络节点之间可以通过基站间接口(例如Xn接口)进行信息交互。第一宿主节点可以获取第二网络节点的小区的资源配置信息,相应地,第二网络节点可以获取第一宿主节点的小区的资源配置信息。因此,第一宿主节点可以根据获取的信息,判断第一小区的资源配置与第二小区的资源配置是否冲突。
S202,第一宿主节点向第一网络节点发送第一信息。相应地,第一网络节点接收第一信息。
S203,第一网络节点根据第一信息向第一小区的终端发送更新后第一小区的资源配置。相应地,第一小区的终端接收更新后第一小区的资源配置。
作为一种方式,更新后第一小区的资源配置与第二小区的资源配置完全不冲突。
作为另一种方式,更新后第一小区的资源配置与第二小区的资源配置之间的冲突在允许的范围内。例如,更新后第一小区的时域资源和第二小区的时域资源发生冲突的符号(symbol)个数在预设范围内,则也是允许的。
第一网络节点可以向第一小区的终端发送系统信息块(system information block,SIB)1,该SIB1中包括更新后第一小区的资源配置。
作为一种实现,步骤S201至S203应在系统信息的一个更新周期之内完成,从而确保第一小区的终端能够及时收到更新后第一小区的资源配置。
下面分情况对S203进行详细说明。
情况1:
第一信息中包括更新后第一小区的资源配置信息。即,该更新后第一小区的资源配置是由第一宿主节点确定并向第一网络节点发送的。
第一网络节点在获取到第一信息之后,向第一小区的终端发送更新后第一小区的资源配置信息。
情况2:
第一信息包括第二小区的资源配置。换句话说,第一宿主节点未确定更新后第一小区的资源配置。
在此情况下,第一网络节点根据第二小区的资源配置确定更新后第一小区的资源配置,并向第一小区的终端发送更新后第一小区的资源配置。
此外,作为一种实现,在该方法200中,S201可以由第一宿主节点的CU执行;在S202中,由第一宿主节点的CU向第一网络节点的DU发送第一信息;在S203中,由第一网络节点的DU向子节点的IAB-MT发送更新后第一小区的资源配置。
根据方法200,如果第一小区和第二小区的资源配置冲突,由第一网络节点更新第一小区的资源配置,从而降低第一小区的资源配置与第二小区的资源配置发生冲突的概率,提高第一网络节点与第一小区的终端之间进行通信的稳定性。
图5示出了本申请提出的方法300,该方法300可以是在方法200中在第一小区的终端获取到更新后第一小区的资源配置之前执行,也可以独立于方法200单独执行。具体地,该方法300包括:
S301,在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点向第一小区的终端发送第二信息。相应地,第一小区的终端接收第二信息。第二信息用于启用临时资源配置。
其中,第一宿主节点可以判断第一小区的资源配置与第二小区的资源配置是否冲突,该过程可以参考S201,在此不再赘述。
作为一种方式,该临时资源配置与第二小区的资源配置完全不冲突。应理解,在第一小区的终端启用“临时资源配置”之前,该“临时资源配置”不会被应用于除第一小区之外的其他小区。因此,该“临时资源配置”不会与第二小区的资源配置发生冲突。
作为另一种方式,临时资源配置与第二小区的资源配置之间的冲突在允许的范围内。
示例性地,第一宿主节点可以直接向第一小区的终端发送第二信息,也可以通过第一网络节点向第一小区的终端发送第二信息,不予限制。
下面分情况对第二信息的内容进行说明:
情况1:
第二信息中包括该临时资源配置。此时,该第二信息可以隐式(间接)指示第一小区的终端启用该临时资源配置。
当然,该第二信息也可以显式(直接)指示第一小区的终端启用该临时资源配置。此时,第二信息中还可以包括启用该临时资源配置的指示信息。
情况2:
第一小区的终端预先获取了该临时资源配置。第二信息包括启用该临时资源配置的指示信息。例如,在S301之前,第一小区的终端已经获取了该临时资源配置。在此情况下,第一网络节点可以向第一小区的终端发送下行控制信息(downlink control information,DCI)或者短消息,该DCI或者短消息中包括第二信息。
第一小区的终端获取该临时资源配置的方式包括:
方式1:
第一宿主节点从预留的资源配置中确定该临时资源配置,并向第一小区的终端发送该临时资源配置。例如,第一宿主节点可以向第一网络节点发送该临时资源配置,第一网络节点通过广播或单播的方式向第一小区的终端发送该临时资源配置。
方式2:
第一网络节点从预留的资源配置中确定该临时资源配置,并向第一小区的终端发送该临时资源配置。
对于上述方式1和方式2,可选地,如果在O-RAN架构下,在确定了该临时资源配置之后,第一宿主节点或第一网络节点可以向RIC上报该临时资源配置。后续如果RIC需要生成其他资源配置,该其他资源配置应不包括第一宿主节点或第一网络节点上报的临时资源配置。
方式3:
在O-RAN架构下,RIC从预留的资源配置中确定该临时资源配置,进一步地,RIC向第一小区的终端发送该临时资源配置。
例如,RIC可以通过第一宿主节点和第一网络节点,向第一小区的终端发送该临时资源配置。
S302,第一小区的终端根据第二信息启用该临时资源配置。
应理解,第一小区的终端启用该临时资源配置,意味着第一小区的终端停止使用原先的资源配置。
例如,第一小区的终端可以根据该临时资源配置,进行随机接入。
可选地,如果在S301中第一宿主节点判断第一小区的资源配置与第二小区的资源配置冲突,但是实际上第一小区的资源配置与第二小区的资源配置不冲突。换句话说,第一宿主节点的判断出现了错误。此时,该方法300还可以包括下述S303和S304:
S303,第一宿主节点向第一小区的终端发送第三信息。相应地,第一小区的终端接收第三信息。
该第三信息用于停止使用临时资源配置。该第三信息也可以承载于短消息或者DCI中。
S304,第一小区的终端根据第三信息停止使用该临时资源配置。
应理解,此时第一小区的终端可以继续启用原先的资源配置。
S305,第一宿主节点向第一网络节点发送第一信息。相应地,第一网络节点接收第一信息。
第一信息用于更新第一小区的资源配置,第一信息是根据第二小区的资源配置确定的。
S306,第一网络节点根据第一信息向第一小区的终端发送更新后第一小区的资源配置信息。相应地,第一小区的终端接收更新后第一小区的资源配置信息。
该过程可以参考S203,在此不再赘述。
应理解,如果第一小区的终端接收了更新后第一小区的资源配置信息,第一小区的终端停止使用上述临时资源配置。换句话说,更新后第一小区的资源配置还用于指示停止使用临时资源配置。
此外,作为一种实现,在S301中,第一宿主节点的CU向第一网络节点的子节点的IAB-MT发送第二信息,S302可以由该IAB-MT执行。类似地,在S303中,第一宿主节点的CU向该IAB-MT发送第三信息,S304可以由该IAB-MT执行。在S305中,第一宿主节点的CU向第一网络节点的DU发送第一信息;在S306中,第一网络节点的DU向该IAB-MT发送更新后第一小区的资源配置。
根据方法300,如果第一小区的资源配置与第二小区的资源配置冲突,第一小区的终端可以启用临时资源配置,从而降低两个小区资源配置冲突的概率,提高第一网络节点与第一小区的终端之间进行通信的稳定性。
图6示出了本申请提出的方法400,与方法200和方法300不同的是,在该方法400中,如果第一网络节点的第一小区的资源配置与第二网络节点的第二小区的资源配置冲突,由第二网络节点更新第二小区的资源配置。具体地,该方法400包括:
S401,在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点向第二网络节点发送第三信息,第三信息用于请求更新第二小区的资源配置。
应理解,第一宿主节点可以判断第一小区的资源配置与第二小区的资源配置是否冲突,该过程可以参考S201,在此不再赘述。
第三信息中包括第二小区的标识,或者第二小区的资源配置。此外,第三信息中还包括第一小区的标识,或者第一小区的资源配置。
S402,第二网络节点根据第三信息确定是否更新第二小区的资源配置。
作为一种方式,第二网络节点中预先配置了可以对资源配置进行更新的区域范围。如果第二小区位于该区域范围,则第二网络节点确定更新第二小区的资源配置。如果第二小区不位于该区域范围,则第二网络节点拒绝更新第二小区的资源配置。
作为另一种方式,第二网络节点可以根据第二小区对应的终端数量,或者第二小区对应的负载情况,确定是否更新第二小区的资源配置。如果终端数量超过阈值#A,或者,负载超过阈值#B,则第二网络节点确定不更新第二小区的资源配置,反之第二网络节点确定更新第二小区的资源配置。其中,阈值#A和阈值#B可以是协议规定的,或预配置到第二网络节点中的。
在S402之后,作为第一种情况,如果第二网络节点拒绝更新第二小区的资源配置,该方法400还包括S403。
S403,第二网络节点向第一宿主节点发送第四信息。相应地,第一宿主节点接收第四信息。
第四信息指示拒绝更新第二小区的资源配置。
此后,第一宿主节点可以根据该第四信息更新第一小区的资源配置。作为一种方式,在S403之后,可以继续执行步骤S202和S203;作为另一种方式,在S403之后,可以继续执行步骤S301至S306,在此不再赘述。
在S402之后,作为第二种情况,如果第二网络节点同意更新第二小区的资源配置,该方法400还包括S404和S405。
S404,第二网络节点确定更新后第二小区的资源配置。
即,第二网络节点可以根据第一小区的资源配置确定更新后第二小区的资源配置。
作为一种方式,第一小区的资源配置与更新后第二小区的资源配置完全不冲突。
作为另一种方式,第一小区的资源配置与更新后第二小区的资源配置之间的冲突在允许的范围内。
S405,第二网络节点向第二小区的终端发送更新后第二小区的资源配置。相应地,第二小区的终端接收更新后第二小区的资源配置。
此外,作为一种实现,在S402中,第一宿主节点的CU向第二网络节点发送第三信息;在S403 中,第二网络节点向第一宿主节点的CU发送第四信息。
根据方法400,如果第一小区和第二小区的资源配置冲突,第一宿主节点可以与第二网络节点协商,根据协商的结果决定是更新第一小区的资源配置,还是更新第二小区的资源配置,从而避免由于第一小区的资源配置和第二小区的资源配置同时更新,导致发生二次冲突的情况。
图7示出了本申请提供的方法500,与方法200至方法400不同的是,在该方法500中,如果第一网络节点的第一小区的资源配置与第二网络节点的第二小区的资源配置冲突,将第一小区的终端切换至第一网络节点的第三小区。具体地,该方法500包括:
S501,在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点向第一网络节点发送第一信息。相应地,第一网络节点接收第一信息。第一信息用于激活第一网络节点的第三小区。
应理解,第一宿主节点可以判断第一小区的资源配置与第二小区的资源配置是否冲突,该过程可以参考S201,在此不再赘述。
第一宿主节点生成并向第一网络节点发送第一信息。示例性地,第一信息中包括第三小区的标识。
作为一种方式,第二小区的资源配置与第三小区的资源配置完全不冲突。
作为另一种方式,第二小区的资源配置与第三小区的资源配置之间的冲突在允许的范围内。
应理解,在S501中,第一宿主节点从第一网络节点的多个小区中确定该第三小区。示例性地,该第三小区能够给第一小区中终端提供质量相近或者更高的服务。例如,该第三小区对应的波束方向与第一小区对应的波束方向大致相同。换句话说,第一小区的终端从第一小区切换到第三小区,切换后第一网络节点与这些终端之间可以正常进行通信。
S502,第一网络节点根据第一信息激活第三小区。
下面分情况对该过程进行描述:
情况1:
第一信息包括第三小区的资源配置。即,在S501中,由第一宿主节点确定了第三小区的资源配置。第一网络节点根据第三小区的资源配置激活第三小区。
情况2:
第一信息包括第二小区的资源配置。即,在S501中,第一宿主节点并未确定第三小区的资源配置。在此情况下,第一网络节点根据第二小区的资源配置确定第三小区的资源配置,进而根据第三小区的资源配置激活第三小区。
S503,第一宿主节点向第一小区的终端发送第二信息。相应地,第一小区的终端接收第二信息。
第二信息用于触发第一小区的终端切换至第三小区。第二信息中包括第三小区的标识。
示例性地,第一宿主节点可以直接向第一小区的终端发送第二信息。或者,第一宿主节点可以通过第一网络节点向第一小区的终端发送第二信息。
S504,第一小区的终端根据第二信息执行切换至第三小区的流程。
即,第一小区中处于连接态的终端可以根据第二信息切换至第三小区。
S505,第一宿主节点向第一网络节点发送第三信息。相应地,第一网络节点接收第三信息。
第三信息指示关闭第一小区。第三信息可以包括第一小区的标识。
S506,第一网络节点根据第三信息关闭第一小区。
应理解,在第一网络节点关闭了第一小区之后,第一小区中处于空闲态和去激活态的终端可以执行小区的重选,从而接入到合适的小区中。
如果第一网络节点不关闭第一小区,则第一小区的资源配置与第二小区的资源配置会持续冲突,影响后续接入到第一小区的终端的通信。因此,根据本申请的方法,第一网络节点关闭第一小区,释放了第一小区的资源配置,从而避免上述情况。
此外,作为一种实现,在S501中,第一宿主节点的CU向第一网络节点的DU发送第一信息,S502由第一网络节点的DU执行;在S503中,第一宿主节点的CU向第一小区的终端发送第二信息,S505中第一宿主节点的CU向第一网络节点的DU发送第三信息,S506由第一网络节点的DU执行。
根据方法500,如果第一小区和第二小区的资源配置冲突,第一宿主节点可以向第一网络节点发送第一信息,以激活第三小区,后续第一小区的终端可以切换到第三小区,从而提高第一网络节点与第一小区的终端之间进行通信的稳定性。
图8示出了本申请提供的方法600,该方法600是基于O-RAN架构下的方法。具体地,该方法600包括:
S601,在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点向RIC发送第五信息。相应地,RIC接收第五信息。
其中,第一宿主节点可以判断第一小区的资源配置与第二小区的资源配置是否冲突,该过程可以参考S201,在此不再赘述。
第五信息指示第一小区的资源配置与第二小区的资源配置冲突。
作为一种实现,第五信息中包括第一小区的标识和第二小区的标识。
作为另一种实现,第五信息包括第一小区的资源配置和第二小区的资源配置。
S602,RIC根据第五信息确定更新后第一小区的资源配置。
作为一种方式,更新后第一小区的资源配置与第二小区的资源配置完全不冲突。
作为另一种方式,更新后第一小区的资源配置与第二小区的资源配置之间的冲突在允许的范围内。
在S602之前,RIC可以通过E2接口预先从第一宿主节点和第一网络节点获取多个小区的资源配置信息,其中包括第一小区的资源配置信息。RIC也可以预先从第二网络节点获取多个小区的资源配置信息,其中包括第二小区的资源配置信息。RIC存储小区的标识与小区的资源配置之间的对应关系。
如果第五信息中包括第一小区的标识和第二小区的标识,则RIC可以根据上述存储的对应关系确定第一小区的资源配置和第二小区的资源配置,进而确定更新后第一小区的资源配置。
可选地,作为另一种实现,也可以由RIC判断第一小区的资源配置与第二小区的资源配置是否冲突,该判断的过程可以参考S201。
在S602之后,作为第一种可能的情况,该方法还包括S603。
S603,RIC向第一宿主节点发送第一信息。相应地,第一宿主节点接收第一信息。
第一信息用于更新第一小区的资源配置。第一信息包括更新后第一小区的资源配置。
在S603之后,可以继续执行步骤S202和S203,不再赘述。
在S602之后,作为第二种可能的情况,该方法还包括S604。
S604,RIC可以直接向第一网络节点发送该第一信息。相应地,第一网络节点接收该第一信息。
第一信息用于更新第一小区的资源配置。第一信息包括更新后第一小区的资源配置。
在S604之后,可以继续执行步骤S203,不再赘述。
此外,作为一种实现,在S601中,第一宿主节点的CU向RIC发送第五信息;在S603中,RIC向第一宿主节点的CU发送第一信息;在S604中,RIC向第一网络节点的DU发送第一信息。
根据本申请的方法,在O-RAN架构下,可以由RIC确定更新后第一小区的资源配置,第一网络节点可以从RIC获取更新后第一小区的资源配置,从而降低第一小区和第二小区发生资源配置冲突的概率,提高第一网络节点与第一小区的终端之间进行通信的稳定性。
根据前述方法,图9为本申请实施例提供的一种通信装置,该通信装置包括收发单元901和处理单元902。
其中,收发单元901可以用于实现相应的信息收发功能。收发单元901还可以称为通信接口或通信单元。处理单元902可以用于进行处理操作。
示例性地,该装置还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元902可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的装置的动作。
作为第一种实现方式,该装置可以是前述实施例中的第一宿主节点,也可以是第一宿主节点的组成部件(如芯片)。
处理单元,用于在第一小区的资源配置与第二小区的资源配置冲突的情况下,根据第二小区的资源配置生成第一信息;收发单元,用于向第一网络节点发送第一信息,第一信息用于更新第一小区的资源配置。
可选地,处理单元,用于确定更新后第一小区的资源配置,第一信息包括更新后第一小区的资源配置,更新后第一小区的资源配置与第二小区的资源配置不冲突。
可选地,第一信息包括第二小区的资源配置。
可选地,收发单元,用于向第一小区的终端发送第二信息,第二信息用于启用临时资源配置,临 时资源配置与第二小区的资源配置不冲突。
可选地,第二信息包括临时资源配置。
可选地,第二信息包括启用临时资源配置的指示信息;收发单元,用于向第一小区的终端发送临时资源配置。
可选地,收发单元,用于向第二网络节点发送第三信息,第三信息用于请求更新第二小区的资源配置;收发单元,用于从第二网络节点接收第四信息,第四信息指示拒绝更新第二小区的资源配置。
可选地,收发单元,用于向RIC发送第五信息,第五信息指示第一小区的资源配置与第二小区的资源配置冲突;收发单元,用于接收来自RIC的第一信息,第一信息包括更新后第一小区的资源配置。
可选地,收发单元,用于从第二网络节点获取第二小区的资源配置。
作为第二种实现方式,该装置可以是前述实施例中的第一网络节点,也可以是第一网络节点的组成部件(如芯片)。
收发单元,用于接收来自第一宿主节点的第一信息,第一信息用于更新第一小区的资源配置,第一小区的资源配置与第二小区的资源配置冲突;收发单元,用于根据第一信息向第一小区的终端发送更新后第一小区的资源配置。
可选地,第一信息包括更新后第一小区的资源配置,更新后第一小区的资源配置与第二小区的资源配置不冲突。
可选地,第一信息包括第二小区的资源配置,处理单元,用于根据第二小区的资源配置确定更新后第一小区的资源配置,更新后第一小区的资源配置与第二小区的资源配置不冲突。
可选地,收发单元,用于接收来自第一宿主节点的第二信息;收发单元,用于向第一小区的终端发送第二信息,第二信息用于启用临时资源配置,临时资源配置与第二小区的资源配置不冲突。
作为第三种实现方式,该装置可以是前述实施例中的第一小区的终端,也可以是第一小区的终端的组成部件(如芯片)。
收发单元,用于接收第二信息,第二信息用于启用临时资源配置,第一小区的资源配置与第二小区的资源配置冲突,临时资源配置与第二小区的资源配置不冲突;处理单元,用于根据第二信息启用临时资源配置。
可选地,第二信息包括临时资源配置。
可选地,第二信息包括启用临时资源配置的指示信息;收发单元,用于接收临时资源配置。
可选地,收发单元,用于接收更新后第一小区的资源配置,更新后第一小区的资源配置与第二小区的资源配置不冲突;处理单元,用于停止启用临时资源配置。
作为第四种实现方式,该装置可以是前述实施例中的第二网络节点,也可以是第二网络节点的组成部件(如芯片)。
收发单元,用于接收来自第一宿主节点的第三信息,第三信息用于请求更新第二网络节点的第二小区的资源配置,第一小区的资源配置与第二小区的资源配置冲突;如果拒绝更新第二小区的资源配置,收发单元,用于向第一宿主节点发送第四信息,第四信息指示拒绝更新第二小区的资源配置。
可选地,如果同意更新第二小区的资源配置,处理单元,用于更新第二小区的资源配置,第一小区的资源配置与更新后第二小区的资源配置不冲突。
作为第五种实现方式,该装置可以是前述实施例中的第一宿主节点,也可以是第一宿主节点的组成部件(如芯片)。
处理单元,用于在第一小区的资源配置与第二小区的资源配置冲突的情况下,生成第一信息,第一信息用于激活第一网络节点的第三小区,第二小区的资源配置与第三小区的资源配置不冲突;收发单元,用于向第一网络节点发送第一信息。
可选地,处理单元,用于确定第三小区的资源配置,第一信息包括第三小区的资源配置。
可选地,第一信息包括第二小区的资源配置。
可选地,收发单元,用于向第一小区的终端发送第二信息,第二信息用于触发第一小区的终端切换至第三小区;收发单元,用于向第一网络节点发送第三信息,第三信息指示关闭第一小区。
作为第六种实现方式,该装置可以是前述实施例中的第一网络节点,也可以是第一网络节点的组成部件(如芯片)。
收发单元,用于接收来自第一宿主节点的第一信息,第一信息用于激活第一网络节点的第三小区,第一小区的资源配置与第二小区的资源配置冲突,第二小区的资源配置与第三小区的资源配置不冲突;处理单元,用于根据第一信息激活第三小区。
可选地,第一信息包括第三小区的资源配置。
可选地,第一信息包括第二小区的资源配置,处理单元,用于根据第二小区的资源配置确定第三小区的资源配置。
可选地,处理单元,用于将第一小区的终端切换至第三小区;收发单元,用于接收来自第一宿主节点的第三信息,第三信息指示关闭第一小区;处理单元,用于根据第三信息关闭第一小区。
作为第七种实现方式,该装置可以是前述实施例中的RIC,也可以是RIC的组成部件(如芯片)。
收发单元,用于接收来自第一宿主节点的第五信息,第五信息指示第一小区的资源配置与第二小区的资源配置冲突;收发单元,用于根据第五信息向第一宿主节点发送第一信息,第一信息包括更新后第一小区的资源配置。
可选地,处理单元,用于根据第二小区的资源配置确定更新后第一小区的资源配置。
还应理解,这里的装置以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(application specific integrated circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置可以具体为上述实施例中的第一网元,可以用于执行上述各方法实施例中与第一网元对应的各个流程和/或步骤,或者,装置可以具体为上述实施例中的网络管理网元,可以用于执行上述各方法实施例中与网络管理网元对应的各个流程和/或步骤,为避免重复,在此不再赘述。
上述通信装置具有实现上述方法中的装置所执行的相应步骤的功能。功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。硬件或软件包括一个或多个与上述功能相对应的模块;例如收发单元可以由收发机替代(例如,收发单元中的发送单元可以由发送机替代,收发单元中的接收单元可以由接收机替代),其它单元,如处理单元等可以由处理器替代,分别执行各个方法实施例中的收发操作以及相关的处理操作。
此外,上述收发单元901还可以是收发电路(例如可以包括接收电路和发送电路),处理单元可以是处理电路。
需要指出的是,图9中的装置可以是前述方法实施例中的装置,也可以是芯片或者芯片系统,例如:片上系统(system on chip,SoC)。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。在此不做限定。
本申请实施例还提供一种通信装置,如图10所示,包括:处理器1101和通信接口1102。处理器1101用于执行存储器1103存储的计算机程序或指令,或读取存储器1103存储的数据,以执行上文各方法实施例中的方法。示例性地,处理器1101为一个或多个。通信接口1102用于信号的接收和/或发送。例如,处理器1101用于控制通信接口1102进行信号的接收和/或发送。
示例性地,如图10所示,该通信装置还可以包括存储器1103,存储器1103用于存储计算机程序或指令和/或数据。该存储器1103可以与处理器1101集成在一起,或者也可以分离设置。当然,该通信装置还可以不包括存储器1103,存储器1103设置在该通信装置之外。示例性地,存储器1103为一个或多个。
示例性地,处理器1101、通信接口1102以及存储器1103通过总线1104相互连接;总线1104可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。上述总线1104可以分为地址总线、数据总线和控制总线等。为便于表示,图10中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
例如,处理器1101用于执行存储器1103存储的计算机程序或指令。
该通信装置可以用于执行上述实施例中第一宿主节点、第一网络节点、第一小区的终端、第二网络节点或者RIC的相关操作。处理器1101和通信接口1102执行上述相应步骤的具体过程在上述各方法实施例中已经详细说明,为了简洁,在此不再赘述。
应理解,本申请实施例中提及的处理器(如处理器1101)可以是中央处理器(central processing unit, CPU),网络处理器(network processor,NP)或者CPU和NP的组合。处理器还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
还应理解,本申请实施例中提及的存储器(如存储器1103)可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。本申请提供一种计算机可读存储介质,包括计算机程序,当计算机程序在计算机上运行时,使得计算机执行上述方法实施例中任一种可能的实现。
本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来。提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述方法实施例中任一种可能的实现。该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。
而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请的各个实施例中的内容可以相互参考,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的,本申请实施例中,UE和/或基站可以执行本申请实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例中,还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部操作。

Claims (29)

  1. 一种通信方法,其特征在于,包括:
    在第一小区的资源配置与第二小区的资源配置冲突的情况下,第一宿主节点根据所述第二小区的资源配置生成第一信息,所述第一信息用于更新所述第一小区的资源配置;
    所述第一宿主节点向第一网络节点发送所述第一信息;
    其中,所述第一网络节点由所述第一宿主节点管理,所述第一小区由所述第一网络节点提供,所述第二小区由第二网络节点提供。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述第一宿主节点确定更新后所述第一小区的资源配置,所述第一信息包括更新后所述第一小区的资源配置,更新后所述第一小区的资源配置与所述第二小区的资源配置不冲突。
  3. 根据权利要求1所述的方法,其特征在于,
    所述第一信息包括所述第二小区的资源配置。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,在所述第一宿主节点向所述第一网络节点发送所述第一信息之前,所述方法还包括:
    所述第一宿主节点向所述第一小区的终端发送第二信息,所述第二信息用于启用临时资源配置,所述临时资源配置与所述第二小区的资源配置不冲突。
  5. 根据权利要求4所述的方法,其特征在于,
    所述第二信息包括所述临时资源配置;或者,
    所述第二信息包括启用所述临时资源配置的指示信息。
  6. 根据权利要求1-3中任一项所述的方法,其特征在于,在所述第一宿主节点向所述第一网络节点发送所述第一信息之前,所述方法还包括:
    所述第一宿主节点向所述第二网络节点发送第三信息,所述第三信息用于请求更新所述第二小区的资源配置;
    所述第一宿主节点从所述第二网络节点接收第四信息,所述第四信息指示拒绝更新所述第二小区的资源配置。
  7. 根据权利要求1所述的方法,其特征在于,在所述第一宿主节点向所述第一网络节点发送所述第一信息之前,所述方法还包括:
    所述第一宿主节点向接入网设备智能控制器RIC发送第五信息,所述第五信息指示所述第一小区的资源配置与所述第二小区的资源配置冲突;
    所述第一宿主节点接收来自所述RIC的所述第一信息,所述第一信息包括更新后所述第一小区的资源配置。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一宿主节点从所述第二网络节点获取所述第二小区的资源配置。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一小区与所述第二小区相邻。
  10. 一种通信方法,其特征在于,包括:
    第一网络节点接收来自第一宿主节点的第一信息,所述第一信息用于更新第一小区的资源配置,其中,所述第一小区的资源配置与第二小区的资源配置冲突;
    所述第一网络节点根据所述第一信息向所述第一小区的终端发送更新后所述第一小区的资源配置;
    其中,所述第一网络节点由所述第一宿主节点管理,所述第一小区由所述第一网络节点提供,所述第二小区由第二网络节点提供。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一信息包括所述更新后所述第一小区的资源配置,所述更新后所述第一小区的资源配置与所述第二小区的资源配置不冲突。
  12. 根据权利要求10所述的方法,其特征在于,所述第一信息包括所述第二小区的资源配置,所述方法还包括:
    所述第一网络节点根据所述第二小区的资源配置确定所述更新后所述第一小区的资源配置,所述更新后所述第一小区的资源配置与所述第二小区的资源配置不冲突。
  13. 根据权利要求10-12中任一项所述的方法,其特征在于,在所述第一网络节点接收所述第一信息之前,所述方法还包括:
    所述第一网络节点接收来自所述第一宿主节点的第二信息;
    所述第一网络节点向所述第一小区的终端发送所述第二信息,所述第二信息用于启用临时资源配置,所述临时资源配置与所述第二小区的资源配置不冲突。
  14. 根据权利要求13所述的方法,其特征在于,
    所述第二信息包括所述临时资源配置;或者,
    所述第二信息包括启用所述临时资源配置的指示信息。
  15. 根据权利要求13或14所述的方法,其特征在于,
    所述更新后所述第一小区的资源配置还用于指示停止使用所述临时资源配置。
  16. 根据权利要求10-15中任一项所述的方法,其特征在于,所述第一小区与所述第二小区相邻。
  17. 一种通信方法,其特征在于,包括:
    第一小区的终端接收第二信息,所述第二信息用于启用临时资源配置,其中,所述第一小区的资源配置与第二小区的资源配置冲突,所述临时资源配置与所述第二小区的资源配置不冲突;
    所述第一小区的终端根据所述第二信息启用所述临时资源配置;
    其中,第一网络节点由第一宿主节点管理,所述第一小区由所述第一网络节点提供,所述第二小区由第二网络节点提供。
  18. 根据权利要求17所述的方法,其特征在于,
    所述第二信息包括所述临时资源配置。
  19. 根据权利要求17所述的方法,其特征在于,所述第二信息包括启用所述临时资源配置的指示信息;
    在所述第一小区的终端接收所述第二信息之前,所述方法还包括:
    所述第一小区的终端接收所述临时资源配置。
  20. 根据权利要求17-19中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一小区的终端接收更新后所述第一小区的资源配置,所述更新后所述第一小区的资源配置与所述第二小区的资源配置不冲突;
    所述第一小区的终端停止使用所述临时资源配置。
  21. 根据权利要求17-20中任一项所述的方法,其特征在于,所述第一小区与所述第二小区相邻。
  22. 一种通信方法,其特征在于,包括:
    第二网络节点接收来自第一宿主节点的第三信息,所述第三信息用于请求更新第二小区的资源配置,其中,第一小区的资源配置与所述第二小区的资源配置冲突;
    如果所述第二网络节点拒绝更新所述第二小区的资源配置,所述第二网络节点向所述第一宿主节点发送第四信息,所述第四信息指示拒绝更新所述第二小区的资源配置;
    其中,第一网络节点由所述第一宿主节点管理,所述第一小区由所述第一网络节点提供,所述第二小区由所述第二网络节点提供。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    如果所述第二网络节点同意更新所述第二小区的资源配置,所述第二网络节点更新所述第二小区的资源配置,所述第一小区的资源配置与更新后所述第二小区的资源配置不冲突。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一小区与所述第二小区相邻。
  25. 一种通信装置,其特征在于,包括用于执行权利要求1-24中任一项方法的单元。
  26. 一种通信装置,其特征在于,包括:通信接口和处理器,所述通信接口用于输出和/或输入信号,所述处理器用于执行存储器中存储的计算机程序或指令,使得所述通信装置执行如权利要求1-24中任一项所述的方法。
  27. 根据权利要求26所述的通信装置,其特征在于,所述通信装置还包括所述存储器。
  28. 一种计算机可读存储介质,其特征在于,包括计算机程序或指令,当所述计算机程序或所述 指令在计算机上运行时,使得所述计算机执行如权利要求1-24中任意一项所述的方法。
  29. 一种计算机程序产品,其特征在于,包含指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-24中任意一项所述的方法。
PCT/CN2023/115401 2022-09-01 2023-08-29 通信方法和装置 WO2024046294A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211067577.5A CN117715067A (zh) 2022-09-01 2022-09-01 通信方法和装置
CN202211067577.5 2022-09-01

Publications (1)

Publication Number Publication Date
WO2024046294A1 true WO2024046294A1 (zh) 2024-03-07

Family

ID=90100369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/115401 WO2024046294A1 (zh) 2022-09-01 2023-08-29 通信方法和装置

Country Status (2)

Country Link
CN (1) CN117715067A (zh)
WO (1) WO2024046294A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271609A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 通信方法及装置
CN114520987A (zh) * 2020-11-20 2022-05-20 维沃移动通信有限公司 Iab节点的冲突处理方法、装置、设备及可读存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113271609A (zh) * 2020-02-14 2021-08-17 华为技术有限公司 通信方法及装置
CN114520987A (zh) * 2020-11-20 2022-05-20 维沃移动通信有限公司 Iab节点的冲突处理方法、装置、设备及可读存储介质

Also Published As

Publication number Publication date
CN117715067A (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
US11546811B2 (en) Method for establishing a fronthaul interface, method for performing access for a UE, method and apparatus for performing a handover for a UE, data forwarding method, user equipment and base station
CN111212459B (zh) 一种中继通信方法及装置
WO2020164613A1 (zh) 中继通信的方法和装置
WO2021147107A1 (zh) 一种通信方法及装置
CN111684856B (zh) 5g nr系统中上行链路传输的方法
WO2022001503A1 (zh) 一种用于iab网络通信的方法及相关设备
WO2023011245A1 (zh) 通信方法和通信装置
WO2021164720A1 (zh) 重建立的方法和通信装置
WO2022017285A1 (zh) 报文转发方法、装置及系统
US20230262557A1 (en) Methods and devices for enhancing integrated access backhaul networks for new radio
TWI775009B (zh) 用於行動通訊系統之基地台及其資料傳輸方法
WO2020164620A1 (zh) 一种终端信息的通信处理方法和相关设备
WO2021056703A1 (zh) 信息更新方法、设备及系统
WO2024046294A1 (zh) 通信方法和装置
WO2021249425A1 (zh) 一种通信方法及相关装置
WO2021000818A1 (zh) 通信方法、装置和系统
WO2022027523A1 (zh) 一种辅助信息的配置方法及通信装置
WO2021159238A1 (zh) 一种数据处理方法、通信装置和通信系统
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2024000110A1 (zh) 一种小区切换方法及装置、终端设备、网络设备
WO2023125274A1 (zh) 一种通信方法及相关设备
WO2022237599A1 (zh) 一种通信方法、装置及系统
US20230199879A1 (en) Methods and devices for enhancing integrated access backhaul networks for new radio
WO2024046176A1 (zh) 通信方法和通信装置
WO2023087924A1 (zh) 一种通信的方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23859324

Country of ref document: EP

Kind code of ref document: A1