WO2023087924A1 - 一种通信的方法、装置及系统 - Google Patents

一种通信的方法、装置及系统 Download PDF

Info

Publication number
WO2023087924A1
WO2023087924A1 PCT/CN2022/121399 CN2022121399W WO2023087924A1 WO 2023087924 A1 WO2023087924 A1 WO 2023087924A1 CN 2022121399 W CN2022121399 W CN 2022121399W WO 2023087924 A1 WO2023087924 A1 WO 2023087924A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
air interface
iab node
node
communication key
Prior art date
Application number
PCT/CN2022/121399
Other languages
English (en)
French (fr)
Inventor
祝仰伟
宋卓
郭建
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023087924A1 publication Critical patent/WO2023087924A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0433Key management protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0205Traffic management, e.g. flow control or congestion control at the air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/06Optimizing the usage of the radio link, e.g. header compression, information sizing, discarding information

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method, device and system.
  • Wireless backhaul equipment provides an idea to solve the above problems.
  • Both the access link (AL) and the backhaul link (BL) of the wireless backhaul equipment adopt wireless transmission solutions, which can reduce fiber deployment.
  • the wireless backhaul device may be a relay node (relay node, RN), for example, an integrated access backhaul (integrated access backhaul, IAB) node.
  • relay node relay node, RN
  • IAB integrated access backhaul
  • the high-frequency carrier is severely attenuated by occlusion and the coverage area is not wide. Therefore, a large number of densely deployed high-frequency small stations are required. The cost of providing backhaul for these densely deployed high-frequency small stations through optical fibers is high, and the construction is difficult. Therefore, A more economical and convenient backhaul solution is needed.
  • the wireless backhaul device can return the service data of the terminal device to the host node through the wireless backhaul link, and can also send the service data from the host node to the terminal device through the wireless access link or the wireless backhaul link.
  • the wireless backhaul device itself does not generate service data
  • the host node does not send service data of the wireless backhaul node to the wireless backhaul node
  • the air interface between the wireless backhaul device and the host node will only Interact the control signaling of the wireless backhaul device itself without exchanging the service data of the wireless backhaul device itself.
  • the problem of updating the air interface communication key between the wireless backhaul device and the host node needs to be solved urgently.
  • the present application provides a communication method, device and system, which can realize updating of an air interface communication key between a wireless backhaul device and a host node.
  • a communication method including: an IAB node uses a first air interface communication key to receive a first message from a host node, wherein the first message includes a handover instruction, first parameter information, and a first Instructions.
  • the IAB node generates a second air interface communication key according to the first parameter information.
  • the IAB node ignores the handover instruction according to the first instruction information, and sends the second message to the host node by using the second air interface communication key.
  • the IAB node and the host node originally use the first air interface communication key to protect the security of the air interface message.
  • the IAB node and the host node start to use the second air interface
  • the communication key is used to protect the security of the air interface message, thus completing the update process of the air interface communication key.
  • exemplary beneficial effects include: on the basis of ensuring the air interface communication security between the IAB node and the host node, the impact on the transmission of service data of other nodes by the IAB node can be reduced. Since the IAB node ignores the handover instruction during the update process of the air interface communication key, there is no need to perform a random access process, which will not cause the IAB node to interrupt the transmission of service data of other nodes.
  • the handover instruction includes an inter-cell handover instruction or an intra-cell handover instruction.
  • the first air interface communication key and the second air interface communication key include a root key.
  • the first message is a (radio resource control, RRC) reconfiguration message
  • the second message is an RRC reconfiguration complete message
  • the first indication information includes a value of a first indication field being true, where the first indication field exists in the first message.
  • the IAB node includes a mobile terminal (mobile terminal, MT) and a distributed unit (distributed unit, DU).
  • the above method may specifically be that the MT uses the first air interface communication key to receive the first message from the host node.
  • the MT generates a second air interface communication key according to the first parameter information.
  • the MT ignores the handover instruction according to the first instruction information, and uses the second key to send the second message to the host node.
  • an IAB node uses a first air interface communication key to receive a first message from a host node, where the first message includes first parameter information.
  • the IAB node generates a second air interface communication key according to the first parameter information.
  • the IAB node sends the second message to the host node by using the second air interface communication key.
  • the first message does not need to include the handover instruction and the first instruction information, which reduces the load of the first message, thereby reducing the number of air interface communication keys. Air interface overhead for the update process.
  • the handover instruction includes an inter-cell handover instruction or an intra-cell handover instruction.
  • the first air interface communication key and the second air interface communication key include a root key.
  • the first message is an RRC reconfiguration message
  • the second message is an RRC reconfiguration complete message
  • the first indication information includes a value of a first indication field being true, where the first indication field exists in the first message.
  • the IAB node includes MT and DU.
  • the above method may specifically be that the MT uses the first air interface communication key to receive the first message from the host node.
  • the MT generates a second air interface communication key according to the first parameter information.
  • the MT ignores the handover instruction according to the first instruction information, and uses the second key to send the second message to the host node.
  • the present application provides a communication device, including at least one processor and an interface, where the interface is used to input and/or output signals.
  • the interface is used to receive signals from other communication devices other than the communication device and transmit them to the processor, and/or the interface is used to send signals from the processor to other communication devices other than the communication device device.
  • the processor is configured to enable the communication device to execute the above method.
  • the processor implements any method in the first aspect or the second aspect through logic circuits and/or executing program instructions.
  • the device may be a chip or an integrated circuit in the node involved in the first aspect or the second aspect.
  • the communication device may further include at least one memory, where the memory stores program instructions.
  • the processor is coupled with the at least one memory, and is used to execute the program, so as to realize the above-mentioned method design.
  • the present application provides a communication device, the device has a component or a module that implements any method in the method of the first aspect or the second aspect and any method in any design thereof , unit (unit), or means (means).
  • the device can be implemented by hardware, software, firmware, or any combination thereof.
  • a corresponding software implementation may be performed by hardware.
  • the hardware or software includes one or more corresponding units (modules) designed to implement the above method, such as including a transceiver unit and a processing unit.
  • the present application provides a computer-readable storage medium, in which program instructions are stored in the computer-readable storage medium, and when the program instructions are executed by a processor, the method of the first aspect or the second aspect and any of them Either method in the design is implemented.
  • the present application provides a computer program product, the computer program product includes program instructions, and when the program instructions are executed by a processor, any one of the method in the first aspect or the second aspect and any design thereof method is implemented.
  • the present application further provides a chip, which is used to implement the method in the first aspect or the second aspect and any method in any design thereof.
  • Fig. 1 is a schematic diagram of an IAB network communication system
  • Fig. 2 is a schematic diagram of a control plane protocol stack in an IAB network
  • Fig. 3 is a schematic diagram of a user plane protocol stack in an IAB network
  • FIG. 4 is a schematic diagram of a communication scenario
  • FIG. 5 is a schematic diagram of a communication method 100
  • FIG. 6 is a schematic diagram of a communication method 200
  • Fig. 7 is a schematic block diagram of a communication device
  • Fig. 8 is a schematic block diagram of an apparatus.
  • FIG. 1 is a schematic diagram of an IAB network communication system provided by the present application.
  • the communication system includes a terminal, an IAB node, and a host base station.
  • IAB network is just an example, and may be replaced with “wireless backhaul network” or “relay network”.
  • IAB node is just an example, and can be replaced with “wireless backhaul device” or “relay node”.
  • the donor base station can serve as the donor node of the IAB node.
  • the host base station may include but not limited to: next generation base station (generation nodeB, gNB), evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS), home base station (home evolved Node B or home Node B), transmission point (transmission and reception point or transmission point ), roadside unit (RSU) with base station function, baseband unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit, AAU), One or a group of antenna panels, or nodes with base station functions in subsequent evolution systems, etc.
  • generation nodeB, gNB next generation base station
  • eNB evolved node B
  • RNC radio network controller
  • node B Node B, NB
  • base station controller base
  • the host base station may be one entity, and may also include a centralized unit (centralized unit, CU) entity plus at least one distributed unit (distributed unit, DU) entity.
  • the interface between the CU and the DU may be referred to as an F1 interface.
  • the two ends of the F1 interface are the CU and the DU.
  • the opposite end of the F1 interface of the CU is the DU, and the opposite end of the F1 interface of the DU is the CU.
  • the F1 interface may further include a control plane F1 interface (F1-C) and a user plane F1 interface (F1-U).
  • the CU of the host base station may be referred to as Donor CU for short
  • the DU of the host base station may be referred to as Donor DU for short.
  • a terminal is sometimes referred to as user equipment (user equipment, UE), mobile station, terminal equipment, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things (Internet of Things) of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • Terminals may include, but are not limited to: user equipment UE, mobile station, mobile device, terminal device, user agent, cellular phone, cordless phone, session initiation protocol (session initiation protocol, SIP) phone, wireless local loop (wireless local loop, WLL) station, personal digital assistant (PDA), handheld devices with wireless communication capabilities, computing devices, other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices (such as smart watches, smart bracelets, Smart glasses, etc.), smart furniture or home appliances, vehicle equipment in vehicle to everything (V2X), terminal equipment with relay function, customer premises equipment (CPE), IAB nodes (specifically IAB The MT of the node or the IAB node as the terminal role), etc., the application does not limit the specific name and implementation form of the terminal.
  • V2X vehicle equipment in vehicle to everything
  • CPE customer premises equipment
  • IAB nodes specifically IAB The MT of the node or the IAB node as the terminal role
  • the IAB node may include at least one mobile terminal (mobile terminal, MT) and at least one distributed unit DU (distributed unit, DU).
  • An IAB node may be an entity, for example, the IAB node includes at least one MT function and at least one DU function.
  • the IAB node may also include multiple entities, for example, the IAB node includes at least one MT entity and at least one DU entity.
  • the MT entity and the DU entity can communicate with each other, for example, communicate with each other through a network cable.
  • an IAB node When an IAB node faces its parent node (the parent node may be a host base station or other IAB nodes), it can be used as a terminal, for example, in various scenarios where the above-mentioned terminal is applied, that is, the terminal role of the IAB node. In this case, it is the MT function or MT entity that provides the terminal role for the IAB node.
  • the MT function or MT entity that provides the terminal role for the IAB node.
  • an IAB node faces its child nodes (the child nodes can be other IAB nodes or terminals)
  • it can act as a network device, that is, the network device role of the IAB node.
  • it is the DU function or DU entity that provides the network device role for the IAB node.
  • the MT of the IAB node may be referred to as IAB-MT for short, and the DU of the IAB node may be referred to as IAB-DU for short.
  • the IAB node can access the host base station, and can also connect to the host base station through other IAB nodes.
  • the IAB network supports multi-hop networking and multi-connection networking to ensure the reliability of service transmission.
  • the IAB node regards the IAB node providing the backhaul service as a parent node, and accordingly, the IAB node can be regarded as a child node of its parent node.
  • the terminal may also regard the IAB node which it accesses as a parent node, and correspondingly, the IAB node may also regard the terminal which it accesses as a child node.
  • the IAB node may regard the host base station that it accesses as a parent node, and correspondingly, the host base station may also regard the IAB node that accesses itself as a child node. As shown in FIG.
  • the parent node of the IAB node 1 includes a master base station.
  • IAB node 1 is also the parent node of IAB node 2 or IAB node 3 .
  • the parent node of terminal 1 includes IAB node 4 .
  • the child nodes of IAB node 4 include terminal 1 or terminal 2 .
  • the IAB node directly accessed by the terminal may be referred to as an access IAB node.
  • the IAB node 4 in FIG. 1 is the access IAB node of the terminal 1 and the terminal 2 .
  • the IAB node 5 is the access IAB node of the terminal 2 .
  • the nodes on the uplink transmission path from the IAB node to the donor base station may be referred to as upstream nodes (upstream nodes) of the IAB node.
  • the upstream node may include a parent node, a parent node (or a grandparent node) of the parent node, and the like.
  • IAB node 1 and IAB node 2 in FIG. 1 may be referred to as upstream nodes of IAB node 5 .
  • the nodes on the downlink transmission path from the IAB node to the terminal may be referred to as downstream nodes (downstream nodes) or descendant nodes (descendant nodes) of the IAB node.
  • a downstream node or a descendant node may include a child node, a child node (or called a grandson node) of a child node, or a terminal.
  • terminal 1, terminal 2, IAB node 2, IAB node 3, IAB node 4 or IAB node 5 in FIG. 1 may be referred to as a downstream node or descendant node of IAB node 1.
  • the IAB node 4 and the IAB node 5 in FIG. 1 may be referred to as downstream nodes or descendant nodes of the IAB node 2 .
  • the terminal 1 in FIG. 1 may be referred to as a downstream node or a descendant node of the IAB node 4 .
  • Each IAB node needs to maintain a backhaul link (BL) facing the parent node.
  • BL backhaul link
  • the IAB node also needs to maintain an access link (access link, AL) with the terminal.
  • AL access link
  • the link between the IAB node 4 and the terminal 1 or the terminal 2 includes an AL.
  • a BL is included between IAB node 4 and IAB node 2 or IAB node 3 .
  • FIG. 2 and FIG. 3 are respectively a schematic diagram of a control plane protocol stack and a schematic diagram of a user plane protocol stack in an IAB network provided by an embodiment of the present application.
  • the donor base station in Figure 2 and Figure 3 may include the functions of the host CU and the host DU (in this case, the host base station is one entity), or may include the host CU entity and the host DU entity (in this case, the host base station is divided into two entities).
  • the peer-to-peer protocol layers between the host DU and the host CU include the IP layer, layer 2 (layer 2, L2), and layer 1 (layer 1, L1).
  • L1 and L2 may refer to protocol stack layers in a wired transmission (such as optical fiber transmission) network.
  • L1 may be the physical layer
  • L2 may be the data link layer.
  • Backhaul links (BL) are established between the IAB node 4 and the IAB node 3, between the IAB node 3 and the IAB node 1, and between the IAB node 1 and the host DU.
  • the peer-to-peer protocol stack at both ends of the BL may include a backhaul adaptation protocol (BAP) layer, a radio link control (radio link control, RLC), a medium access control (medium access control, MAC) layer, and Physical (PHY) layer.
  • BAP backhaul adaptation protocol
  • RLC radio link control
  • MAC medium access control
  • PHY Physical
  • the peer-to-peer control plane protocol stack at both ends of the Uu interface includes a radio resource control (radio resource control, RRC) layer, a packet data convergence protocol (PDCP) layer, an RLC layer, a MAC layer, and a PHY layer.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC Radio Link Control
  • PHY PHY layer
  • the protocol layer included in the Uu interface control plane protocol stack may also be called the access stratum (AS) of the control plane.
  • AS access stratum
  • the control plane protocol stack of the Uu interface at the host base station side can be respectively located in the host DU and the host CU.
  • the PHY layer, the MAC layer and the RLC layer are located in the host DU
  • the RRC layer and the PDCP layer are located in the host CU.
  • an interface between the DU of the IAB node that the terminal accesses (that is, the IAB node 4 in FIG. 2 ) and the host base station, for example, it is called an F1 interface.
  • One end of the F1 interface is located at the IAB node 4, and the other end is located at the host base station.
  • the opposite end of the F1 interface of the host base station (for example, it may be the host CU) is the IAB node (specifically, it may be the DU of the IAB node), and the opposite end of the F1 interface of the IAB node (specifically, it may be the DU of the IAB node) is the host base station (specifically, it may be the DU of the IAB node).
  • the peer-to-peer control plane protocol stack at both ends of the F1 interface includes the F1 application protocol (F1 application protocol, F1AP) layer, the stream control transmission protocol (stream control transmission protocol, SCTP) layer and the IP layer, and optionally includes the Internet security protocol (internet protocol security, IPsec) layer.
  • the host base station may include a host CU entity and a host DU entity.
  • the control plane protocol stack of the F1 interface at the end of the host base station may be located in the host CU.
  • the host CU includes an F1AP layer, an SCTP layer, and an IP layer, and optionally includes an IPsec layer.
  • the control plane protocol stack of the F1 interface at the end of the host base station can also be respectively located in the host CU and the host DU.
  • the host CU includes the F1AP layer and the SCTP layer, and optionally includes the IPsec layer, and the host DU includes the IP layer.
  • the user plane protocol stacks at both ends of the Uu interface between the terminal and the host base station are equivalent, including a service data adaptation protocol (service data adaptation protocol, SDAP) layer, a PDCP layer, an RLC layer, a MAC layer, and PHY layer.
  • the protocol layer included in the Uu interface user plane protocol stack may also be referred to as the access layer (AS) of the user plane.
  • AS access layer
  • the user plane protocol stack of the Uu interface at the end of the host base station may be respectively located in the host DU and the host CU.
  • the PHY layer, the MAC layer and the RLC layer are located in the host DU
  • the SDAP layer and the PDCP layer are located in the host CU.
  • the peer-to-peer user plane protocol layers at both ends of the F1 interface between the DU of IAB node 4 and the host base station include the general packet radio service user plane tunneling protocol (general packet radio service tunneling protocol for the user plane, GTP-U) layer.
  • GTP-U general packet radio service tunneling protocol for the user plane
  • UDP user datagram protocol
  • IP IP Security
  • the host base station may include a host CU entity and a host DU entity.
  • the user plane protocol stack of the F1 interface at the end of the host base station may be located in the host CU.
  • the host CU includes a GTP-U layer, a UDP layer, and an IP layer, and optionally includes an IPsec layer.
  • the user plane protocol stack of the F1 interface at the end of the host base station can also be respectively located in the host CU and the host DU.
  • the host CU includes the GTP-U layer and the UDP layer, and optionally includes the IPsec layer
  • the host DU includes the IP layer.
  • the interface between the host DU and the host CU may also include the F1 interface.
  • the peer-to-peer control plane protocol stacks at both ends of the F1 interface include an F1AP layer, an SCTP layer and an IP layer.
  • the peer-to-peer user plane protocol stacks at both ends of the F1 interface include a GTP-U layer, a UDP layer, and an IP layer.
  • an F1 interface may also be included between the IAB node 1 or IAB node 3 and the host base station, and the description of the F1 interface may refer to the above-mentioned DU of the IAB node 4 and the host base station Description of the interface between F1.
  • the protocol stack of the terminal shown in Figure 2 or Figure 3 is the protocol stack of the MT function or MT entity of an IAB node , or the protocol stack when an IAB node acts as a terminal.
  • the MT of the IAB node When an IAB node accesses the IAB network, it can act as a terminal.
  • the MT of the IAB node has the protocol stack of the terminal.
  • the RRC message of the IAB node is encapsulated in the F1AP message by the parent node of the IAB node for transmission.
  • the data packet of the IAB node is encapsulated in a PDCP protocol data unit (protocol data unit, PDU) and sent to the parent node of the IAB node, and the parent node of the IAB node encapsulates the received PDCP PDU in the parent node of the IAB node.
  • PDU protocol data unit
  • the IAB node acting as a common terminal can transmit signaling messages, such as backhaul link configuration messages, with the donor base station.
  • an IAB node may have one or more roles in the IAB network.
  • the IAB node can be used as a terminal role, or as an access IAB node role (such as the protocol stack of IAB node 4 in Figure 2 and Figure 3 ) or an intermediate IAB node role (such as the IAB node role in Figure 2 and Figure 3 ).
  • protocol stack of node 1 or IAB node 3 The IAB node can use protocol stacks corresponding to different roles for different roles.
  • the IAB node has multiple roles in the IAB network, it can have multiple sets of protocol stacks at the same time.
  • Various sets of protocol stacks may share some same protocol layers, such as sharing the same RLC layer, MAC layer, and PHY layer.
  • Fig. 4 is a schematic diagram of a communication scenario. As shown in Figure 4, it includes a Donor base station (Donor base station) and an IAB node.
  • the donor base station may include a donor CU (Donor CU) and at least one donor DU (Donor DU).
  • the communication interface between the donor base station and the IAB node may include an air interface (Uu interface) and an F1 interface.
  • Uu interface air interface
  • F1 interface F1 interface
  • the air interface (Uu interface) between the IAB node and the donor base station can use keys for security protection.
  • the IAB node and the host base station use the same root key (root key) (also called the access layer root key (AS root key), the specific definition can refer to the third generation partnership project (the 3rd generation partnership project, 3GPP) technical standard (technical standard, TS) 33.501 V17.3.0 version definition).
  • the root key used for Uu interface communication between the IAB node and the donor base station may be called K gNB .
  • the IAB node and the donor base station can use the root key to derive the encryption or integrity protection key required for Uu interface transmission, and then use the encryption or integrity protection key to pair the RRC message transmitted on the Uu interface (the RRC message carries Encryption or integrity protection is performed on SRB (signalling radio bearer, signaling radio bearer) transmission).
  • SRB signaling radio bearer
  • FIG. 5 provides a schematic flowchart of a communication method 100 .
  • S101 The host node sends an RRC reconfiguration message to the IAB node.
  • the host node may use the first air interface communication key to send an RRC reconfiguration message to the IAB node.
  • the RRC reconfiguration message may include a handover indication and first parameter information.
  • the handover indication can be used to instruct the IAB node to perform handover.
  • the first parameter information may be used to generate a second air interface communication key.
  • the first air interface communication key and the second air interface communication key may include a root key, for example, the first air interface communication key may be K gNB , and the second air interface communication key may be K gNB * .
  • the handover instruction may specifically be an intra-cell handover (intra-cell handover) command, that is to say, the handover instruction may be used to instruct the IAB node to perform intra-cell handover.
  • the IAB node can initiate a random access procedure in the serving cell A managed by the master node according to the intra-cell handover instruction, and access the serving cell A again. That is to say, during the intra-cell handover process, the serving cell of the IAB node does not change, but a random access procedure will be initiated.
  • the handover instruction may specifically be an inter-cell handover (inter-cell handover) command, that is, the handover instruction may be used to instruct the IAB node to perform inter-cell handover.
  • the IAB node may randomly access from serving cell A to serving cell B according to the inter-cell handover instruction. That is to say, during inter-cell handover, the serving cell of the IAB node will change, and a random access procedure will also be initiated.
  • the IAB node may include a mobile terminal (mobile terminal, MT) part and a distributed unit (distributed unit, DU) part. Specifically, it may be that the MT of the IAB node receives the RRC reconfiguration message from the host node.
  • MT mobile terminal
  • DU distributed unit
  • the IAB node may generate (derived) a second air interface communication key (for example, K gNB * ) according to the first parameter information carried in the RRC reconfiguration message. Specifically, it may be that the MT of the IAB node generates (derived) a second air interface communication key (for example, K gNB * ) according to the first parameter information.
  • the first parameter information may be a physical cell identifier (physical cell isentifier, PCI) of the cell, and the MT of the IAB node may derive K gNB * based on the PCI and K gNB .
  • the host node will also generate a second air interface communication key (such as K gNB * ), so as to facilitate subsequent secure communication with the IAB node.
  • a second air interface communication key such as K gNB *
  • the IAB node may send a random access preamble (preamble) to the host node.
  • the host node may reply a random access response (random access response, RAR) message to the IAB node.
  • the IAB node may send an RRC connection setup request message (RRC Connection setup Request) to the host node.
  • the host node may reply an RRC connection setup message (RRC Connection setup) message to the IAB node.
  • the IAB node may send an RRC connection setup complete message (RRC Connection setup complete) message to the host node.
  • the order of the above operations S102 and S103 may not be limited, that is, the host node and the IAB node may generate a new air interface communication key after exchanging random access response messages.
  • S104 The IAB node sends an RRC reconfiguration complete message to the host node.
  • the IAB node (or the MT of the IAB node) may use the second air interface communication key (eg K gNB * ) to send an RRC reconfiguration complete message to the host node.
  • the second air interface communication key eg K gNB *
  • the host node receives the RRC reconfiguration complete message from the IAB node (or the MT of the IAB node) by using the second air interface communication key.
  • the IAB node and the host node originally use the first air interface communication key to protect the security of the air interface message.
  • the IAB node and the host node After the second air interface communication key is generated, the IAB node and the host node start to use the second air interface communication key.
  • the security protection of the air interface message completes the update process of the air interface communication key and realizes the security of the air interface communication between the IAB node and the host node.
  • the method 100 is suitable for exchanging the control signaling of the IAB node itself between the air interface between the IAB node and the host node (the control signaling generated by the IAB node and sent to the host node, or the control signal generated by the host node and sent to the IAB node command) and interact with the IAB node's own business data (the business data generated by the IAB node and sent to the host node, or the business data generated by the host node and sent to the IAB node).
  • the IAB node will temporarily interrupt the service data of the terminal device to the host node through the wireless backhaul link, or through the wireless access link/wireless backhaul
  • the link sends service data from the host node to the terminal device, but this can fully guarantee the security of the air interface communication between the IAB node and the host node.
  • the IAB node can establish a new PDCP entity, so that it can determine from which service data packet the new air interface communication key will take effect, thereby ensuring the communication security of the air interface service data packet between the IAB node and the host node .
  • FIG. 6 provides a schematic flowchart of a communication method 200 .
  • S201 The host node sends a first message to the IAB node.
  • the host node may use the first air interface communication key to send the first message to the IAB node.
  • the first message may be an RRC reconfiguration message.
  • the first message has the following two possibilities:
  • the first message includes a handover indication, first parameter information, and first indication information.
  • the first parameter information may be used to generate the second air interface communication key.
  • the first indication information is used to indicate to ignore the handover indication. That is to say, the handover instruction may not be executed during the air interface communication key update process.
  • the first message may include a first indication field whose value is true. That is to say, when the value of the first indication field in the first message is true (true), the first indication field is the first indication information.
  • the first message includes first parameter information. That is to say, the first message does not include the handover instruction and the first parameter information at the same time.
  • the first air interface communication key and the second air interface communication key may include a root key, for example, the first air interface communication key may be K gNB , and the second air interface communication key may be K gNB * .
  • the handover instruction may specifically be an intra-cell handover (intra-cell handover) command or an inter-cell handover (inter-cell handover) command.
  • the IAB node may include an MT part and a DU part. Specifically, it may be that the MT of the IAB node receives the first message from the host node.
  • the IAB node may generate (derived) a second air interface communication key (for example, K gNB * ) according to the first parameter information carried in the first message. Specifically, it may be that the MT of the IAB node generates (derived) a second air interface communication key (for example, K gNB * ) according to the first parameter information.
  • the host node will also generate a second air interface communication key (such as K gNB * ), so as to facilitate subsequent secure communication with the IAB node.
  • a second air interface communication key such as K gNB *
  • S203 The IAB node sends a second message to the host node.
  • the IAB node (or the MT of the IAB node) may use the second air interface communication key (for example, K gNB * ) to send the second message to the host node.
  • the second message may be an RRC reconfiguration complete message.
  • the host node receives the first message from the IAB node (or the MT of the IAB node) by using the second air interface communication key.
  • the IAB node can ignore the handover indication according to the first indication information, and use the second air interface communication key to send a message to the host The node sends the second message.
  • the IAB node may also directly use the second air interface communication key to send the second message to the host node.
  • the first message does not need to include the handover instruction and the first instruction information, which reduces the load of the first message, thereby reducing the air interface overhead of the update process of the air interface communication key.
  • the IAB node no longer needs to perform the random access process, and can directly use the second air interface communication key (such as K gNB * ) to send The second message, so as to complete the update of the air interface communication key between the IAB node and the host node.
  • the second air interface communication key such as K gNB *
  • the IAB node and the host node originally use the first air interface communication key to protect the security of the air interface message.
  • the IAB node and the host node start to use the second air interface communication key.
  • the security protection of the air interface message completes the update process of the air interface communication key.
  • Method 200 is applicable to only the control signaling of the IAB node itself (the control signaling generated by the IAB node and sent to the host node, or the control signaling generated by the host node and sent to the IAB node) between the air interface between the IAB node and the host node. signaling) without interacting with the IAB node's own business data (the business data generated by the IAB node and sent to the host node, or the business data generated by the host node and sent to the IAB node).
  • the IAB node does not need to perform the random access process, so the IAB node will not be temporarily interrupted to return the service data of the terminal device to the host node through the wireless backhaul link, or pass the wireless access link/wireless
  • the backhaul link sends service data from the host node to the terminal device. This is because the host node and the IAB node can agree on which control plane message (such as the second message) from which the new key will take effect, so that the timing of the new air interface communication key becoming effective can be determined, thereby ensuring the communication between the IAB node and the host node. Communication security of inter-air interface control signaling.
  • the impact on the transmission of service data of other nodes by the IAB node can be reduced. Since during the update process of the air interface communication key, the IAB node will not receive the handover instruction and the first parameter information at the same time, or the IAB node will ignore the handover instruction, so the IAB node does not need to perform a random access process, which will not cause The IAB node interrupts the transmission of service data of other nodes (terminals or other IAB nodes).
  • an embodiment of the present application provides a communication device, which may be the host node or the first node in any possible design scheme of the method 100 or 200 of the foregoing embodiment, and the communication device includes : in the communication method provided by method 100 or 200, at least one corresponding unit for executing method steps or operations or behaviors performed by the host node or the first node.
  • the configuration of the at least one unit may have a one-to-one correspondence with the method steps or operations or behaviors performed by the host node or the first node.
  • These units may be realized by computer programs, hardware circuits, or a combination of computer programs and hardware circuits.
  • the communication device 700 may be applied to an IAB node.
  • the structure and functions of the communication device 700 will be divided into different designs for specific description below.
  • the module name is the same between different designs, but the structure and function can be different.
  • the communication device 700 may include a processing module 701 , an acquiring module 702 and a sending module 703 .
  • the processing module 701 is configured to use the first air interface communication key to receive a first message from the host node through the obtaining module 702, where the first message includes a handover instruction, first parameter information, and first instruction information.
  • the processing module 701 is further configured to generate a second air interface communication key according to the first parameter information.
  • the processing module 701 is further configured to ignore the handover instruction according to the first instruction information, and use the second air interface communication key to send the second message to the host node through the sending module 703 .
  • the handover instruction includes an inter-cell handover instruction or an intra-cell handover instruction.
  • the first air interface communication key and the second air interface communication key include a root key.
  • the first message is an RRC reconfiguration message
  • the second message is an RRC reconfiguration complete message
  • the first indication information includes a value of the first indication field being true, where the first indication field exists in the first message.
  • the IAB node includes an MT and a DU, where the MT includes the processing module 701 , the acquiring module 702 and the receiving module 703 .
  • the communication device 700 may also be applied to a host node.
  • the communication device 700 may include a processing module 701 , an acquiring module 702 and a sending module 703 .
  • the processing module 701 is configured to use the first air interface communication key to send a first message to the IAB node through the sending module 703, where the first message includes a handover instruction, first parameter information, and first instruction information, wherein the first The parameter information is used to generate the second air interface communication key, and the first instruction information is used to indicate to ignore the handover instruction.
  • the processing module 701 is further configured to generate and use the second air interface communication key, and receive the second message from the IAB node through the obtaining module 702 .
  • the handover instruction includes an inter-cell handover instruction or an intra-cell handover instruction.
  • the first air interface communication key and the second air interface communication key include a root key.
  • the first message is an RRC reconfiguration message
  • the second message is an RRC reconfiguration complete message
  • the first indication information includes a value of the first indication field being true, where the first indication field exists in the first message.
  • a communications device 800 includes one or more processors 801 , and optionally, an interface 802 .
  • the apparatus 800 may implement the communication method provided in any of the foregoing embodiments and any possible design therein.
  • the processor 801 implements the communication method provided by any of the foregoing embodiments and any possible design thereof through a logic circuit or by executing code instructions.
  • the interface 802 may be used to receive program instructions and transmit them to the processor, or the interface 802 may be used for the apparatus 800 to communicate and interact with other communication devices, such as to exchange control signaling and/or service data.
  • the interface 802 may be used to receive signals from other devices other than the device 800 and transmit them to the processor 801 or send signals from the processor 801 to other communication devices other than the device 800 .
  • the interface 802 may be a code and/or data read/write interface circuit, or the interface 802 may be a signal transmission interface circuit between the communication processor and the transceiver, or a chip pin.
  • the communication device 800 may further include at least one memory 803, and the memory 803 may be used to store required related program instructions and/or data.
  • the apparatus 800 may further include a power supply circuit 804, which may be used to supply power to the processor 801, and the power supply circuit 804 may be located in the same chip as the processor 801, or located inside another chip outside of the chip.
  • the apparatus 800 may further include a bus 805 , and various parts in the apparatus 800 may be interconnected through the bus 805 .
  • the processor in the embodiment of the present application may be a central processing unit (central processing unit, CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), off-the-shelf programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically programmable Erases programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • dynamic random access memory dynamic random access memory
  • DRAM dynamic random access memory
  • synchronous dynamic random access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • Synchronous connection dynamic random access memory synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the power supply circuit described in the embodiment of the present application includes but is not limited to at least one of the following: a power supply circuit, a power supply subsystem, a power management chip, a power consumption management processor, or a power consumption management control circuit.
  • the transceiver device, interface, or transceiver described in the embodiments of the present application may include a separate transmitter and/or a separate receiver, or the transmitter and the receiver may be integrated.
  • Transceiving means, interfaces, or transceivers may operate under the direction of a corresponding processor.
  • the transmitter may correspond to the transmitter in the physical device
  • the receiver may correspond to the receiver in the physical device.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components can be combined Or it can be integrated into another system, or some features can be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • a processor reads and executes program instructions stored in a memory to realize the functions corresponding to the above-mentioned modules or units, wherein a processor refers to a processing circuit capable of executing program instructions, Including but not limited to at least one of the following: central processing unit (central processing unit, CPU), microprocessor, digital signal processing (digital signal processing, DSP), microcontroller (microcontroller unit, MCU), or artificial intelligence processing Processors and other processing circuits capable of executing program instructions.
  • the processor may also include circuits with other processing functions (such as hardware circuits for hardware acceleration, buses and interfaces, etc.).
  • Processors can be presented in the form of an integrated chip, for example, in the form of an integrated chip whose processing function consists only of executing software instructions, or in the form of a system on a chip (SoC), that is, on a chip
  • SoC system on a chip
  • the processing circuit usually called “core”
  • core the processing circuit
  • the processing function may also include various hardware acceleration functions (such as AI calculation, codec, compression and decompression, etc.).
  • the hardware processing circuit may be composed of discrete hardware components, or may be an integrated circuit. In order to reduce power consumption and size, it is usually implemented in the form of an integrated circuit.
  • the hardware processing circuit may include an ASIC, or a programmable logic device (programmable logic device, PLD); wherein, the PLD may include an FPGA, a complex programmable logic device (complex programmable logic device, CPLD) and the like.
  • These hardware processing circuits can be a semiconductor chip packaged separately (such as packaged into an ASIC); they can also be integrated with other circuits (such as CPU, DSP) and packaged into a semiconductor chip, for example, can be formed on a silicon base.
  • a variety of hardware circuits and CPUs are packaged separately into a chip.
  • This chip is also called SoC, or circuits and CPUs for realizing FPGA functions can also be formed on a silicon base, and separately sealed into a chip.
  • This chip Also known as a programmable system on a chip (system on a programmable chip, SoPC).
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple on the network unit. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of the embodiment of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of software products, and the computer software products are stored in a storage
  • the medium may include several instructions to enable a computer device, such as a personal computer, server, or network device, or a processor to perform all or part of the operations of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium can include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk, or optical disk, etc., which can store program codes. media or computer-readable storage media.
  • transmission may include the following three situations: sending of data, receiving of data, or sending of data and receiving of data.
  • data may include service data and/or signaling data.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”.
  • At least one means one or more.
  • “Including at least one of the following: A, B, C.” means that it may include A, or include B, or include C, or include A and B, or include A and C, or include B and C, or include A, B, and c. Among them, A, B, and C can be single or multiple.

Abstract

本申请提供了一种通信方法、装置及系统。该方法包括:接入回传一体化(integrated access backhaul,IAB)节点使用第一空口通信密钥,接收来自宿主节点的第一消息,其中,第一消息包括切换指示,第一参数信息,以及第一指示信息。IAB节点根据第一参数信息,生成第二空口通信密钥。IAB节点根据第一指示信息,忽略切换指示,并使用第二空口通信密钥向所述宿主节点发送第二消息。通过本方法,可以在保障IAB节点与宿主节点之间的空口通信安全的基础上,减少对IAB节点传输其他节点的业务数据的影响。

Description

一种通信的方法、装置及系统
本申请要求于2021年11月17日提交中国专利局、申请号为202111360387.8、申请名称为“一种通信的方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信的方法、装置及系统。
背景技术
一方面,在一些偏远地区提供网络覆盖时,光纤的部署难度大,成本高,因此也需要设计灵活便利的回传方案。无线回传设备为解决上述问题提供了思路。无线回传设备的接入链路(acess link,AL)和回传链路(backhaul link,BL)皆采用无线传输方案,从而可以减少光纤部署。无线回传设备可以是中继节点(relay node,RN),例如接入回传一体化(integrated access backhaul,IAB)节点。另一方面,考虑到高频载波频率资源丰富,在热点区域,为满足未来通信的超高容量需求,利用高频小站进行组网愈发流行。但高频载波受遮挡衰减严重,覆盖范围不广,故而需要大量密集部署的高频小站,而通过光纤为这些大量密集部署的高频小站提供回传的代价高,施工难度大,因此需要更加经济便捷的回传方案。
无线回传设备可以通过无线回传链路向宿主节点回传终端设备的业务数据,也可以通过无线接入链路或者无线回传链路向终端设备发送来自宿主节点的业务数据。但是在无线回传设备自身并不产生业务数据,宿主节点也不会向无线回传节点发送无线回传节点的业务数据的场景下,无线回传设备和宿主节点之间的空口之间只会交互无线回传设备自身的控制信令而不会交互无线回传设备自身的业务数据。针对这种场景下的无线回传设备和宿主节点之间的空口通信密钥更新的问题,亟需解决。
发明内容
本申请提供了一种通信方法、装置及系统,可以实现无线回传设备和宿主节点之间的空口通信密钥的更新。
第一方面,提供一种通信方法,包括:IAB节点使用第一空口通信密钥,接收来自宿主节点的第一消息,其中,所述第一消息包括切换指示,第一参数信息,以及第一指示信息。所述IAB节点根据所述第一参数信息,生成第二空口通信密钥。所述IAB节点根据所述第一指示信息,忽略所述切换指示,并使用所述第二空口通信密钥向所述宿主节点发送所述第二消息。
在第一方面提供的方法中,IAB节点和宿主节点本来是使用第一空口通信密钥进行空口消息的安全保护,在生成第二空口通信密钥之后,IAB节点和宿主节点开始使用第二空口通信密钥进行空口消息的安全保护,从而完成了空口通信密钥的更新过程。通过本方法,示例性的有益效果包括:可以在保障IAB节点与宿主节点之间的空口通信安全的基础上,减少对IAB节点传输其他节点的业务数据的影响。由于在空口通信密钥的更新过程中,IAB节点忽略了该切换指示,就不需要执行随机接入过程,从而不会导致IAB节点中断传输其他节点的业务数据。
一种可能的设计中,该切换指示包括小区间切换指示或者小区内切换指示。
一种可能的设计中,该第一空口通信密钥和该第二空口通信密钥包括根密钥。
一种可能的设计中,该第一消息为(radio resource control,RRC)重配置消息,该第二消息为RRC重配置完成消息。
一种可能的设计中,该第一指示信息包括第一指示字段的取值为真,其中该第一指示字段存在于该第一消息中。
一种可能的设计中,该IAB节点包括移动终端(mobile terminal,MT)和分布式单元(distributed unit,DU)。上述方法具体可以是该MT使用第一空口通信密钥,接收来自宿主节点的第一消息。该MT根据该第一参数信息,生成第二空口通信密钥。该MT根据该第一指示信息,忽略该切换指示,并使用该第二密钥向该宿主节点发送该第二消息。
第二方面,提供另一种通信方法,包括:IAB节点使用第一空口通信密钥,接收来自宿主节点的第一消息,其中,所述第一消息包括第一参数信息。所述IAB节点根据所述第一参数信息,生成第二空口通信密钥。所述IAB节点使用所述第二空口通信密钥向所述宿主节点发送所述第二消息。
相比于第一方面提供的方法,在第二方面提供的方法中,第一消息中不需要包括切换指示和第一指示信息,减少了第一消息的负荷,从而减少了空口通信密钥的更新过程的空口开销。
一种可能的设计中,该切换指示包括小区间切换指示或者小区内切换指示。
一种可能的设计中,该第一空口通信密钥和该第二空口通信密钥包括根密钥。
一种可能的设计中,该第一消息为RRC重配置消息,该第二消息为RRC重配置完成消息。
一种可能的设计中,该第一指示信息包括第一指示字段的取值为真,其中该第一指示字段存在于该第一消息中。
一种可能的设计中,该IAB节点包括MT和DU。上述方法具体可以是该MT使用第一空口通信密钥,接收来自宿主节点的第一消息。该MT根据该第一参数信息,生成第二空口通信密钥。该MT根据该第一指示信息,忽略该切换指示,并使用该第二密钥向该宿主节点发送该第二消息。
第三方面,本申请提供一种通信装置,包括至少一个处理器和接口,所述接口用于输入和/或输出信号。例如该接口用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器,和/或或该接口用于将来自该处理器的信号发送给该通信装置之外的其它通信装置。所述处理器被配置用于使能该通信装置执行上述方法。例如,该处理器通过逻辑电路和/或执行程序指令来实现第一方面或第二方面中的任一方法。
可选的,所述装置可以是第一方面或第二方面中所涉及的节点中的芯片或者集成电路。
可选的,该通信装置还可以包括至少一个存储器,该存储器存储程序指令。所述处理器与所述至少一个存储器耦合,用于执行所述程序,以实现上述方法设计。
第四方面,本申请提供一种通信装置,该装置具有实现上述第一方面或第二方面的方法及其任一设计中的方法中的任一种方法的部件(component),模块(module),单元(unit),或手段(means)。所述装置可以通过硬件,软件、固件,或其任意组合实现。例如,可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个用于实现上述方法设计相对应的单元(模块),比如包括收发单元和处理单元。
第五方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储有程 序指令,该程序指令被处理器运行时,第一方面或第二方面的方法及其任一设计中的任一种方法被实现。
第六方面,本申请提供了一种计算机程序产品,该计算机程序产品包括程序指令,该程序指令被处理器执行时,第一方面或第二方面的方法及其任一设计中的任一种方法被实现。
第七方面,本申请还提供一种芯片,所述芯片用于实现第一方面或第二方面的方法及其任一设计中的任一种方法。
附图说明
下面结合附图对本申请提供的方案进行详细说明,附图中以虚线标识的特征或内容可理解为本申请实施例的可选操作或者可选结构。
图1是一种IAB网络通信系统的示意图;
图2是一种IAB网络中的控制面协议栈的示意图;
图3是一种IAB网络中的用户面协议栈的示意图;
图4是一种通信场景的示意图;
图5是一种通信方法100的示意图;
图6是一种通信方法200的示意图;
图7是一种通信装置的示意性框图;
图8是一种装置的示意性框图。
具体实施方式
图1是本申请提供的一种IAB网络通信系统的示意图。该通信系统包括终端,IAB节点,宿主基站。本申请中,“IAB网络”只是一种举例,可以用“无线回传网络”或者“中继网络”进行替换。“IAB节点”也只是一种举例,可以用“无线回传设备”或者“中继节点”进行替换。
宿主基站(donor base station)可以作为IAB节点的宿主节点。本申请中,宿主基站可以包括但不限于:下一代基站(generation nodeB,gNB),演进型节点B(evolved Node B,eNB),无线网络控制器(radio network controller,RNC),节点B(Node B,NB),基站控制器(base station controller,BSC),基站收发台(base transceiver station,BTS),家庭基站(home evolved Node B或者home Node B),传输点(transmission and reception point或者transmission point),具有基站功能的路边单元(road side unit,RSU),基带单元(baseband unit,BBU),射频拉远单元(Remote Radio Unit,RRU),有源天线单元(active antenna unit,AAU),一个或一组天线面板,或后续演进系统中具备基站功能的节点等。宿主基站可以是一个实体,还可以包括一个集中式单元(centralized unit,CU)实体加上至少一个分布式单元(distributed unit,DU)实体。其中,CU和DU之间的接口可以称之为F1接口。F1接口的两端分别是CU和DU,CU的F1接口的对端是DU,DU的F1接口的对端是CU。F1接口又可以进一步包括控制面F1接口(F1-C)和用户面F1接口(F1-U)。本申请中,宿主基站的CU可以简称为Donor CU,宿主基站的DU可以简称为Donor DU。
本申请中,终端有时也称为用户设备(user equipment,UE),移动台,终端设备等。终端可以广泛引用于各种场景,例如设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家 具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。终端可以包括但不限于:用户设备UE,移动站,移动设备,终端设备,用户代理,蜂窝电话,无绳电话,会话启动协议(session initiation protocol,SIP)电话,无线本地环路(wireless local loop,WLL)站,个人数字处理(personal digital assistant,PDA),具有无线通信功能的手持设备,计算设备,连接到无线调制解调器的其它处理设备,车载设备,可穿戴设备(如智能手表,智能手环,智能眼镜等),智能家具或家电,车联网(vehicle to everything,V2X)中的车辆设备,具有中继功能的终端设备,客户前置设备(customer premises equipment,CPE),IAB节点(具体是IAB节点的MT或者作为终端角色的IAB节点)等,本申请对终端的具体名称和实现形式并不做限定。
本申请中,IAB节点可以包括至少一个移动终端(mobile terminal,MT)和至少一个分布式单元DU(distributed unit,DU)。IAB节点可以是一个实体,例如该IAB节点包括至少一个MT功能和至少一个DU功能。IAB节点也可以包括多个实体,例如该IAB节点包括至少一个MT实体和至少一个DU实体。其中MT实体和DU实体可以相互通信,例如通过网线相互通信。当IAB节点面向其父节点(父节点可以是宿主基站或者其他IAB节点)时,可以作为终端,例如用于上述终端所应用各种场景,即IAB节点的终端角色。这种情况下,为IAB节点提供终端角色的是MT功能或MT实体。当IAB节点面向其子节点(子节点可以是其他IAB节点或者终端)时,可以作为网络设备,即IAB节点的网络设备角色。这种情况下,为IAB节点提供网络设备角色的是DU功能或DU实体。本申请中,IAB节点的MT可以简称为IAB-MT,IAB节点的DU可以简称为IAB-DU。IAB节点可以接入宿主基站,也可以通过其他IAB节点连接到宿主基站。
IAB网络支持多跳组网和多连接组网以保证业务传输的可靠性。IAB节点将为其提供回传服务的IAB节点视为父节点,相应地,该IAB节点可视为其父节点的子节点。终端也可以将自己接入的IAB节点视为父节点,相应地,IAB节点也可以将接入自己的终端视为子节点。IAB节点可以将自己接入的宿主基站视为父节点,相应地,宿主基站也可以将接入自己的IAB节点视为子节点。如图1所示,IAB节点1的父节点包括宿主基站。IAB节点1又为IAB节点2或者IAB节点3的父节点。终端1的父节点包括IAB节点4。IAB节点4的子节点包括终端1或者终端2。终端直接接入的IAB节点可以称之为接入IAB节点。图1中的IAB节点4是终端1和终端2的接入IAB节点。IAB节点5是终端2的接入IAB节点。从IAB节点到宿主基站的上行传输路径上的节点可以称之为该IAB节点的上游节点(upstream node)。上游节点可以包括父节点,父节点的父节点(或称为祖父节点)等。例如图1中的IAB节点1和IAB节点2可以称之为IAB节点5的上游节点。从IAB节点到终端的下行传输路径上的节点可以称之为该IAB节点的下游节点(downstream node)或者后代节点(descendant node)。下游节点或者后代节点可以包括子节点,子节点的子节点(或称为孙节点),或者终端等。例如图1中的终端1,终端2,IAB节点2,IAB节点3,IAB节点4或者IAB节点5可以称之为IAB节点1的下游节点或者后代节点。又例如图1中的IAB节点4和IAB节点5可以称之为IAB节点2的下游节点或者后代节点。图1中的终端1可以称之为IAB节点4的下游节点或者后代节点。每个IAB节点需要维护面向父节点的回传链路(backhaul link,BL)。若IAB节点的子节点是终端,该IAB节点还需要维护和终端之间的接入链路(acess link,AL)。如图1所示,IAB节点4和终端1或者终端2之间的链路包括AL。IAB节点4和IAB节点2或IAB节点3之间包括BL。
图2和图3分别是本申请实施例提供的IAB网络中的控制面协议栈的示意图和用户面协议栈的示意图。图2和图3中的宿主基站可以包括宿主CU和宿主DU功能(这种情况下,宿主基站为一个实体),或者可以包括宿主CU实体和宿主DU实体(这种情况下,宿主基站分为两个实体)。如图2或图3所示,宿主DU和宿主CU之间对等的协议层包括IP层,层2(layer 2,L2),层1(layer 1,L1)。其中,L1和L2可以指的是有线传输(例如光纤传输)网络中的协议栈层。例如L1可以是物理层,L2可以是数据链路层。IAB节点4和IAB节点3之间,IAB节点3和IAB节点1之间,以及IAB节点1和宿主DU之间均建立有回传链路(BL)。BL两端对等的协议栈可以包括回传适配协议(backhaul adaptation protocol,BAP)层,无线链路控制(radio link control,RLC),媒体接入控制(medium access control,MAC)层,以及物理(physical,PHY)层。
如图2所示,终端和宿主基站之间有接口,有时也称为空口。例如可以称为Uu接口。Uu接口一端位于终端,一端位于宿主基站。Uu接口两端对等的控制面协议栈包括无线资源控制(radio resource control,RRC)层,分组数据汇聚(packet data convergence protocol,PDCP)层,,RLC层,MAC层,以及PHY层。Uu接口控制面协议栈包括的协议层也可以称为控制面的接入层(access stratum,AS)。如果宿主基站包括宿主CU实体和宿主DU实体,则Uu接口在宿主基站这端的控制面协议栈可以分别位于宿主DU和宿主CU。例如,PHY层,MAC层及RLC层位于宿主DU,RRC层和PDCP层位于宿主CU。
终端接入的IAB节点(即图2中的IAB节点4)的DU和宿主基站之间有接口,例如称为F1接口。F1接口一端位于IAB节点4,一端位于宿主基站。宿主基站(例如可以是宿主CU)的F1接口的对端是IAB节点(具体可以是IAB节点的DU),IAB节点(具体可以是IAB节点的DU)的F1接口的对端是宿主基站(具体可以是宿主CU)。F1接口两端对等的控制面协议栈包括F1应用协议(F1 application protocol,F1AP)层,流控制传输协议(stream control transmission protocol,SCTP)层以及IP层,可选的包括互联网安全协议(internet protocol security,IPsec)层。宿主基站可以包括宿主CU实体和宿主DU实体。F1接口在宿主基站这端的控制面协议栈可以位于宿主CU,例如,宿主CU包括F1AP层,SCTP层以及IP层,可选的包括IPsec层。F1接口在宿主基站这端的控制面协议栈也可以分别位于宿主CU和宿主DU,例如,宿主CU包括F1AP层和SCTP层,可选的包括IPsec层,宿主DU包括IP层。如图3所示,终端和宿主基站之间的Uu接口两端对等的用户面协议栈包括业务数据适配协议(service data adaptation protocol,SDAP)层,PDCP层,RLC层,MAC层,以及PHY层。Uu接口用户面协议栈包括的协议层也可以称为用户面的接入层(AS)。如果宿主基站包括宿主CU实体和宿主DU实体,则Uu接口在宿主基站这端的用户面协议栈可以分别位于宿主DU和宿主CU。例如,PHY层,MAC层及RLC层位于宿主DU,SDAP层和PDCP层位于宿主CU。
IAB节点4的DU和宿主基站之间的F1接口两端对等的用户面协议层包括通用分组无线业务用户面隧道协议(general packet radio service tunnelling protocol for the user plane,GTP-U)层,用户数据报协议(user datagram protocol,UDP)层以及IP层,可选的包括IPsec层。宿主基站可以包括宿主CU实体和宿主DU实体。F1接口在宿主基站这端的用户面协议栈可以位于宿主CU,例如,宿主CU包括GTP-U层,UDP层以及IP层,可选的包括IPsec层。F1接口在宿主基站这端的用户面协议栈也可以分别位于宿主CU和宿主DU,例如,宿主CU包括GTP-U层和UDP层,可选的包括IPsec层,宿主DU包括IP层。
另外,在图2和图3中,当有终端接入该宿主DU时,该宿主DU和宿主CU之间的接 口也可以包括F1接口。该F1接口两端对等的控制面协议栈包括F1AP层,SCTP层以及IP层。该F1接口两端对等的用户面协议栈包括GTP-U层,UDP层以及IP层。当有终端接入该IAB节点1或IAB节点3时,该IAB节点1或者IAB节点3和宿主基站之间也可以包括F1接口,该F1接口的描述可以参照上述IAB节点4的DU和宿主基站之间F1接口的描述。
当终端指的是IAB节点的MT功能或者MT实体,或者作为终端角色的IAB节点时,图2或者图3中示出的终端的协议栈为某个IAB节点的MT功能或者MT实体的协议栈,或者为某个IAB节点作为终端角色时的协议栈。
IAB节点在接入IAB网络时,可以充当终端的角色。这种情况下,该IAB节点的MT具有终端的协议栈。该IAB节点和宿主基站之间存在空口(Uu接口)的协议栈,如图2和图3中的终端的协议栈,即具备RRC层或SDAP层,PDCP层,RLC层,MAC层和PHY层。其中,控制面上,IAB节点的RRC消息被IAB节点的父节点封装在F1AP消息中传输的。用户面上,IAB节点的数据包被封装在PDCP协议数据单元(protocol data unit,PDU)中发送到IAB节点的父节点,IAB节点的父节点将收到的PDCP PDU封装在该IAB节点的父节点与宿主CU之间的F1接口上的GTP-U隧道中传输。另外,当该IAB节点接入IAB网络后,充当普通终端的角色的该IAB节点可以与宿主基站之间传输信令消息,例如回传链路配置消息等。
需要说明的是,一个IAB节点在IAB网络中可能具备一个或者多个角色。例如,该IAB节点既可以作为终端角色,也可以作为接入IAB节点角色(如图2和图3中的IAB节点4的协议栈)或者中间IAB节点角色(如图2和图3中的IAB node 1或者IAB node 3的协议栈)。该IAB节点可以针对不同角色,使用不同角色对应的协议栈。当该IAB节点在IAB网络中具备多种角色时,可以同时具备多套协议栈。各套协议栈之间可以共享一些相同的协议层,例如共享相同的RLC层,MAC层,PHY层。
图4为一种通信场景的示意图。如图4所示,其中包括宿主基站(Donor base station)和IAB节点。宿主基站可以包括宿主CU(Donor CU)和至少一个宿主DU(Donor DU)。该宿主基站和该IAB节点之间的通信接口可以包括空口(Uu接口)和F1接口。例如,该IAB的MT和该宿主基站之间具有空口(Uu接口),该IAB的DU和该宿主基站之间具有F1接口。
IAB节点和宿主基站之间的空口(Uu接口)可以使用密钥来进行安全保护。在建立安全保护的过程中,IAB节点与宿主基站使用相同的根密钥(root key)(也可以称为接入层根密钥(AS root key),具体定义可以参照第三代合作伙伴项目(the 3rd generation partnership project,3GPP)技术标准(technical standard,TS)33.501 V17.3.0版本中的定义)。该用于IAB节点和宿主基站之间的Uu接口通信的根密钥可以称之为K gNB。IAB节点与宿主基站可以使用根密钥派生出Uu接口传输所需的加密或者完整性保护密钥,再使用该加密或者完整性保护密钥对在Uu接口上传输的RRC消息(该RRC消息承载在SRB(signalling radio bearer,信令无线承载)上传输)进行加密或者完整性保护。
图5提供了一种通信方法100的流程示意图。
S101:宿主节点向IAB节点发送RRC重配置消息。
该宿主节点可以使用第一空口通信密钥,向IAB节点发送RRC重配置消息。
该RRC重配置消息可以包括切换指示以及第一参数信息。该切换指示可以用于指示IAB节点进行切换。该第一参数信息可以用于生成第二空口通信密钥。
该第一空口通信密钥和该第二空口通信密钥可以包括根密钥,例如该第一空口通信密钥可以为K gNB,该第二空口通信密钥可以为K gNB *
一种可能的设计中,该切换指示具体可以是小区内切换(intra-cell handover)命令,也就 是说,该切换指示可以用于指示IAB节点进行小区内的切换。IAB节点可以根据该小区内切换指示,在宿主节点管理的服务小区A中发起随机接入流程,再次接入该服务小区A。也就是说,在小区内切换过程中,IAB节点的服务小区不发生变化,但是会发起随机接入流程。
另一种可能的设计中,该切换指示具体可以是小区间切换(inter-cell handover)命令,也就是说,该切换指示可以用于指示IAB节点进行小区间的切换。IAB节点可以根据该小区间切换指示,从服务小区A随机接入到服务小区B。也就是说,在小区间切换过程中,IAB节点的服务小区会发生变化,也会发起随机接入流程。
该IAB节点可以包括移动终端(mobile terminal,MT)部分和分布式单元(distributed unit,DU)部分。具体的,可以是该IAB节点的MT接收来自该宿主节点的RRC重配置消息。
S102:宿主节点和IAB节点生成新的空口通信密钥。
IAB节点可以根据该RRC重配置消息中携带的第一参数信息,生成(派生出)第二空口通信密钥(例如K gNB *)。具体的,可以是该IAB节点的MT根据该第一参数信息,生成(派生出)第二空口通信密钥(例如K gNB *)。示例性的,该第一参数信息可以是小区的物理小区标识(physical cell isentifier,PCI),该IAB节点的MT可以基于该PCI和K gNB派生出K gNB *
宿主节点也会生成第二空口通信密钥(例如K gNB *),以便于后续与IAB节点进行安全通信。
S103:IAB节点发起随机接入流程。
具体的随机接入流程可以参考3GPP TS 38.300 V16.7.0版本中的定义。示例性的,IAB节点可以向宿主节点发送随机接入前导码(preamble)。宿主节点可以向IAB节点回复随机接入响应(random access response,RAR)消息。IAB节点可以向宿主节点发送RRC连接建立请求消息(RRC Connection setup Request)。宿主节点可以向IAB节点回复RRC连接建立消息(RRC Connection setup)消息。IAB节点可以向宿主节点发送RRC连接建立完成消息(RRC Connection setup complete)消息。
上述操作S102与S103的顺序可以不限定,也就是说,宿主节点和IAB节点可以是在交互随机接入响应消息之后,再生成新的空口通信密钥。
S104:IAB节点向宿主节点发送RRC重配置完成消息。
该IAB节点(或者IAB节点的MT)可以使用第二空口通信密钥(例如K gNB *),向宿主节点发送RRC重配置完成消息。
宿主节点使用该第二空口通信密钥,接收来自IAB节点(或者IAB节点的MT)的RRC重配置完成消息。
在方法100中,IAB节点和宿主节点本来是使用第一空口通信密钥进行空口消息的安全保护,在生成第二空口通信密钥之后,IAB节点和宿主节点开始使用第二空口通信密钥进行空口消息的安全保护,从而完成了空口通信密钥的更新过程,实现了对于IAB节点与宿主节点之间的空口通信安全的保障。
方法100适用于IAB节点和宿主节点之间的空口之间既交互IAB节点自身的控制信令(IAB节点产生并发往宿主节点的控制信令,或者宿主节点产生并发往IAB节点的控制信令),又会交互IAB节点自身的业务数据(IAB节点产生并发往宿主节点的业务数据,或者宿主节点产生并发往IAB节点的业务数据)的场景。在方法100中,虽然由于IAB节点要执行随机接入流程,会导致IAB节点暂时中断通过无线回传链路向宿主节点回传终端设备的业务数据,或者通过无线接入链路/无线回传链路向终端设备发送来自宿主节点的业务数据,但是这可以充分保证IAB节点与宿主节点之间空口通信的安全。因为通过随机接入流程,IAB节点可以 建立新的PDCP实体,从而可以确定从哪个业务数据包开始生效新的空口通信密钥,进而保障了IAB节点与宿主节点之间空口业务数据包的通信安全。
图6提供了一种通信方法200的流程示意图。
S201:宿主节点向IAB节点发送第一消息。
该宿主节点可以使用第一空口通信密钥,向IAB节点发送第一消息。该第一消息可以是RRC重配置消息。
该第一消息有以下两种可能:
(1)该第一消息中包括切换指示,第一参数信息,以及第一指示信息。
该第一参数信息可以用于第二空口通信密钥的生成。该第一指示信息用于指示忽略该切换指示。也就是说,在空口通信密钥更新过程中,可以不用执行该切换指示。
举例来说,该第一消息中可以包括取值为真的第一指示字段。也就是说,当该第一消息中的第一指示字段取值为真(true)时,该第一指示字段即为该第一指示信息。
在这种可能的设计中,可以比较好的兼容现有网络中的存量IAB节点,也就是说对于不支持方法200的IAB节点,还是可以根据该第一消息中包括的切换指示以及第一参数信息(例如,该第一消息中包括的切换指示以及第一参数信息的位置和结构可以和方法100中RRC重配置消息中包括的切换指示以及第一参数信息的位置和结构保持一致),执行如方法100所述的方法,而不会造成现有网络中的存量IAB节点无法识别该第一消息,从而无法进行空口通信密钥更新的情况。
(2)该第一消息中包括第一参数信息。也就是说,该第一消息中不会同时包括切换指示和第一参数信息。
该第一空口通信密钥和该第二空口通信密钥可以包括根密钥,例如该第一空口通信密钥可以为K gNB,该第二空口通信密钥可以为K gNB *
该切换指示具体可以是小区内切换(intra-cell handover)命令或者小区间切换(inter-cell handover)命令。
该IAB节点可以包括MT部分和DU部分。具体的,可以是该IAB节点的MT接收来自该宿主节点的第一消息。
S202:宿主节点和IAB节点生成新的空口通信密钥。
IAB节点可以根据该第一消息中携带的第一参数信息,生成(派生出)第二空口通信密钥(例如K gNB *)。具体的,可以是该IAB节点的MT根据该第一参数信息,生成(派生出)第二空口通信密钥(例如K gNB *)。
宿主节点也会生成第二空口通信密钥(例如K gNB *),以便于后续与IAB节点进行安全通信。
S203:IAB节点向宿主节点发送第二消息。
该IAB节点(或者IAB节点的MT)可以使用第二空口通信密钥(例如K gNB *),向宿主节点发送第二消息。该第二消息可以是RRC重配置完成消息。
宿主节点使用该第二空口通信密钥,接收来自IAB节点(或者IAB节点的MT)的第一消息。
当该第一消息中包括切换指示,第一参数信息,以及第一指示信息时,该IAB节点可以根据该第一指示信息,忽略该切换指示,并使用该第二空口通信密钥向该宿主节点发送该第二消息。
当该第一消息中包括第一参数信息时(即该第一消息中不包括切换指示),该IAB节点 也可以直接使用该第二空口通信密钥向该宿主节点发送该第二消息。在此种情况中,第一消息中不需要包括切换指示和第一指示信息,减少了第一消息的负荷,从而减少了空口通信密钥的更新过程的空口开销。
总而言之,在IAB节点和宿主节点之间的空口通信密钥更新过程中,IAB节点不再需要执行随机接入流程,可以直接使用第二空口通信密钥(例如K gNB *),向宿主节点发送第二消息,从而完成IAB节点和宿主节点之间空口通信密钥的更新。
在方法200中,IAB节点和宿主节点本来是使用第一空口通信密钥进行空口消息的安全保护,在生成第二空口通信密钥之后,IAB节点和宿主节点开始使用第二空口通信密钥进行空口消息的安全保护,从而完成了空口通信密钥的更新过程。
方法200适用于IAB节点和宿主节点之间的空口之间只会交互IAB节点自身的控制信令(IAB节点产生并发往宿主节点的控制信令,或者宿主节点产生并发往IAB节点的控制信令),而不会交互IAB节点自身的业务数据(IAB节点产生并发往宿主节点的业务数据,或者宿主节点产生并发往IAB节点的业务数据)的场景。在方法200中,IAB节点并不需要执行随机接入流程,所以不会导致IAB节点暂时中断通过无线回传链路向宿主节点回传终端设备的业务数据,或者通过无线接入链路/无线回传链路向终端设备发送来自宿主节点的业务数据。这是因为宿主节点和IAB节点可以约定从哪条控制面消息(如第二消息)生效新的密钥,从而可以确定新的空口通信密钥的生效时机,进而保障了IAB节点与宿主节点之间空口控制信令的通信安全。
通过方法200,可以在保障IAB节点与宿主节点之间的空口通信安全的基础上,减少对IAB节点传输其他节点的业务数据的影响。由于在空口通信密钥的更新过程中,IAB节点不会同时接收到切换指示和第一参数信息,或者IAB节点会忽略了切换指示,从而IAB节点不需要执行随机接入过程,从而不会导致IAB节点中断传输其他节点(终端或者其他IAB节点)的业务数据。
基于上述相类似的技术构思,本申请实施例提供了一种通信装置,该通信装置可以是前述实施例方法100或200中任一可能的设计方案中宿主节点或者第一节点,该通信装置包括:方法100或200所提供的通信方法中,用于执行宿主节点或者第一节点所进行的方法步骤或操作或行为的相应的至少一个单元。其中,该至少一个单元的设置,可以与该宿主节点或者第一节点进行的方法步骤或操作或行为具有一一对应的关系。这些单元可以是由计算机程序实现,也可以由硬件电路实现,还可以是用计算机程序结合硬件电路的方式来实现。
下面结合图7,图8对本申请提供通信装置进行说明。如图7所示,通信装置700可以应用于IAB节点。下面将对通信装置700的结构和功能分为不同的设计进行具体的描述。不同设计间的模块名称虽然相同,但是结构和功能可以不同。
该通信装置700可以包括处理模块701,获取模块702和发送模块703。
处理模块701,用于使用第一空口通信密钥,通过获取模块702接收来自宿主节点的第一消息,其中,该第一消息包括切换指示,第一参数信息,以及第一指示信息。该处理模块701还用于根据该第一参数信息,生成第二空口通信密钥。该处理模块701还用于根据该第一指示信息,忽略该切换指示,并使用该第二空口通信密钥,通过发送模块703向该宿主节点发送该第二消息。
可选的,该切换指示包括小区间切换指示或者小区内切换指示。
一种可能的实现方式中,该第一空口通信密钥和该第二空口通信密钥包括根密钥。
示例性的,该第一消息为RRC重配置消息,该第二消息为RRC重配置完成消息。
具体而言,该第一指示信息包括第一指示字段的取值为真,其中该第一指示字段存在于该第一消息中。
该IAB节点包括MT和DU,其中,该MT包括该处理模块701,该获取模块702和该接收模块703。
如图7所示,通信装置700还可以应用于宿主节点。该通信装置700可以包括处理模块701,获取模块702和发送模块703。
处理模块701,用于使用第一空口通信密钥,通过发送模块703向IAB节点发送第一消息,该第一消息包括切换指示,第一参数信息,以及第一指示信息,其中,该第一参数信息用于第二空口通信密钥的生成,该第一指示信息用于指示忽略该切换指示。该处理模块701,还用于生成并使用该第二空口通信密钥,通过获取模块702接收来自该IAB节点的第二消息。
可选的,该切换指示包括小区间切换指示或者小区内切换指示。
一种可能的实现方式中,该第一空口通信密钥和该第二空口通信密钥包括根密钥。
示例性的,该第一消息为RRC重配置消息,该第二消息为RRC重配置完成消息。
具体而言,该第一指示信息包括第一指示字段的取值为真,其中该第一指示字段存在于该第一消息中。
如图8所示,通信装置800包括一个或多个处理器801,可选的,还包括接口802。当涉及的程序指令在该至少一个处理器801中执行时,可以使得该装置800实现前述任一实施例所提供的通信方法及其中任一可能的设计。或者,该处理器801通过逻辑电路或执行代码指令用于实现前述任一实施例所提供的通信方法及其中任一可能的设计。接口802,可以用于接收程序指令并传输至所述处理器,或者,接口802可以用于装置800与其他通信设备进行通信交互,比如交互控制信令和/或业务数据等。示例性的,该接口802可以用于接收来自该装置800之外的其它装置的信号并传输至该处理器801或将来自该处理器801的信号发送给该装置800之外的其它通信装置。该接口802可以为代码和/或数据读写接口电路,或者,该接口802可以为通信处理器与收发机之间的信号传输接口电路,或者为芯片的管脚。可选的,该通信装置800还可以包括至少一个存储器803,该存储器803可以用于存储所需的涉及的程序指令和/或数据。可选的,该装置800还可以包括供电电路804,该供电电路804可以用于为该处理器801供电,该供电电路804可以与处理器801位于同一个芯片内,或者,位于处理器801所在的芯片之外的另一个芯片内。可选的,该装置800还可以包括总线805,该装置800中的各个部分可以通过总线805互联。
应理解,本申请实施例中的处理器可以为中央处理单元(central processing unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、或者分立硬件组件等。通用处理器可以是微处理器,或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或者可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic  random access memory,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)、或者直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例所述的供电电路包括但不限于如下至少一个:供电线路,供电子系统、电源管理芯片、功耗管理处理器、或者功耗管理控制电路。
本申请实施例所述的收发装置、接口、或者收发器中可以包括单独的发送器,和/或,单独的接收器,也可以是发送器和接收器集成一体。收发装置、接口、或者收发器可以在相应的处理器的指示下工作。可选的,发送器可以对应物理设备中发射机,接收器可以对应物理设备中的接收机。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元或者算法操作,能够通过硬件实现,或者,通过软件实现,或者,通过软件和硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请中,“通过软件实现”可以指处理器读取并执行存储在存储器中的程序指令来实现上述模块或单元所对应的功能,其中,处理器是指具有执行程序指令功能的处理电路,包括但不限于以下至少一种:中央处理单元(central processing unit,CPU)、微处理器、数字信号处理器(digital signal processing,DSP)、微控制器(microcontroller unit,MCU)、或人工智能处理器等各类能够运行程序指令的处理电路。在另一些实施例中,处理器还可以包括其他处理功能的电路(如用于硬件加速的硬件电路、总线和接口等)。处理器可以以集成芯片的形式呈现,例如,以处理功能仅包括执行软件指令功能的集成芯片的形式呈现,或者还可以片上系统(system on a chip,SoC)的形式呈现,即在一个芯片上,除了包括能够运行程序指令的处理电路(通常被称为“核”)外,还包括其他用于实现特定功能的硬件电路(当然,这些硬件电路也可以是基于ASIC、FPGA单独实现),相应的,处理功能除了包括执行软件指令功能外,还可以包括各种硬件加速功能(如AI计算、编解码、压缩解压等)。
本申请中,“通过硬件实现”是指通过不具有程序指令处理功能的硬件处理电路来实现上述模块或者单元的功能,该硬件处理电路可以通过分立的硬件元器件组成,也可以是集成电路。为了减少功耗、降低尺寸,通常会采用集成电路的形式来实现。硬件处理电路可以包括 ASIC,或者可编程逻辑器件(programmable logic device,PLD);其中,PLD又可包括FPGA、复杂可编程逻辑器件(complex programmable logic device,CPLD)等等。这些硬件处理电路可以是单独封装的一块半导体芯片(如封装成一个ASIC);也可以跟其他电路(如CPU、DSP)集成在一起后封装成一个半导体芯片,例如,可以在一个硅基上形成多种硬件电路以及CPU,并单独封装成一个芯片,这种芯片也称为SoC,或者也可以在硅基上形成用于实现FPGA功能的电路以及CPU,并单独封闭成一个芯片,这种芯片也称为可编程片上系统(system on a programmable chip,SoPC)。
需要说明的是,本申请在通过软件、硬件或者软件硬件结合的方式实现时,可以使用不同的软件、硬件,并不限定只使用一种软件或者硬件。例如,其中,其中一个模块或者单元可以使用CPU来实现,另一个模块或者单元可以使用DSP来实现。同理,当使用硬件实现时,其中一个模块或者单元可以使用ASIC来实现,另一个模块或者单元可以使用FPGA实现。当然,也不限定部分或者所有的模块或者单元使用同一种软件(如都通过CPU)或者同一种硬件(如都通过ASIC)来实现。此外,对于本领域技术人员,可以知道,软件通常来说灵活性更好,但性能不如硬件,而硬件正好相反,因此,本领域技术人员可以结合实际需求来选择软件或者硬件或者两者结合的形式来实现。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。本申请实施例之间可以结合,实施例中的某些技术特征也可以从具体实施例中解耦出来,结合现有技术可以解决本申请实施例涉及的技术问题。
本申请实施例中,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者所述技术方案的全部或部分可以以软件产品的形式体现出来,所述计算机软件产品存储在一个存储介质中,可以包括若干指令用以使得一台计算机设备,例如可以是个人计算机,服务器,或者网络设备等,或处理器(processor)执行本申请各个实施例所述方法的全部或部分操作。而前述的存储介质可以包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟、或者光盘等各种可以存储程序代码的介质或计算机可读存储介质。
在本申请的描述中,“第一”,“第二”,“S101”,或“S102”等词汇,仅用于区分描述以及上下文行文方便的目的,不同的次序编号本身不具有特定技术含义,不能理解为指示或暗示相对重要性,也不能理解为指示或暗示操作的执行顺序。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请中,“传输”可以包括以下三种情况:数据的发送,数据的接收,或者数据的发送和数据的接收。本申请中,“数据”可以包括业务数据,和/或,信令数据。
本申请中术语“包括”或“具有”及其任何变形,意图在于覆盖不排他的包括,例如,包括了一系列步骤的过程/方法,或一系列单元的系统/产品/设备,不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程/方法/产品/设备固有的其它步骤或单元。
在本申请的描述中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即“一个或多个”。“至少一个”,表示一个或者多个。“包括以下至少一个:A,B,C。”表示可以包括A,或者包括B,或者包括C,或者包括A和B,或者包括A和C,或者包括B和C,或者包括A,B和C。其中A,B,C可以是单个,也可以是多个。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。

Claims (27)

  1. 一种通信方法,其特征在于,包括:
    接入回传一体化IAB节点使用第一空口通信密钥,接收来自宿主节点的第一消息,其中,所述第一消息包括切换指示,第一参数信息,以及第一指示信息;
    所述IAB节点根据所述第一参数信息,生成第二空口通信密钥;
    所述IAB节点根据所述第一指示信息,忽略所述切换指示,并使用所述第二空口通信密钥向所述宿主节点发送所述第二消息。
  2. 根据权利要求1所述的方法,其特征在于,所述切换指示包括小区间切换指示或者小区内切换指示。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一空口通信密钥和所述第二空口通信密钥包括根密钥。
  4. 根据权利要求1-3任一项所述的通信方法,其特征在于,所述第一消息为无线资源控制RRC重配置消息,所述第二消息为RRC重配置完成消息。
  5. 根据权利要求1-4任一项所述的通信方法,其特征在于,所述第一指示信息包括第一指示字段的取值为真,其中所述第一指示字段存在于所述第一消息中。
  6. 根据权利要求1-5任一项所述的通信方法,其特征在于,所述IAB节点包括移动终端MT和分布式单元DU;
    所述IAB节点使用第一空口通信密钥,接收来自宿主节点的第一消息,包括:
    所述MT使用第一空口通信密钥,接收来自宿主节点的第一消息;
    所述IAB节点根据所述第一参数信息,生成第二空口通信密钥,包括:
    所述MT根据所述第一参数信息,生成第二空口通信密钥;
    所述IAB节点根据所述第一指示信息,忽略所述切换指示,并使用所述第二空口通信密钥向所述宿主节点发送所述第二消息,包括:
    所述MT根据所述第一指示信息,忽略所述切换指示,并使用所述第二密钥向所述宿主节点发送所述第二消息。
  7. 一种通信方法,其特征在于,包括:
    宿主节点使用第一空口通信密钥,向接入回传一体化IAB节点发送第一消息,所述第一消息包括切换指示,第一参数信息,以及第一指示信息,其中,所述第一参数信息用于第二空口通信密钥的生成,所述第一指示信息用于指示忽略所述切换指示;
    所述宿主节点生成并使用所述第二空口通信密钥,接收来自所述IAB节点的第二消息。
  8. 根据权利要求7所述的方法,其特征在于,所述切换指示包括小区间切换指示或者小区内切换指示。
  9. 根据权利要求7或8所述的方法,其特征在于,所述第一空口通信密钥和所述第二空口通信密钥包括根密钥。
  10. 根据权利要求7-9任一项所述的通信方法,其特征在于,所述第一消息为无线资源控制RRC重配置消息,所述第二消息为RRC重配置完成消息。
  11. 根据权利要求7-10任一项所述的通信方法,其特征在于,所述第一指示信息包括第一指示字段的取值为真,其中所述第一指示字段存在于所述第一消息中。
  12. 一种通信装置,应用于接入回传一体化IAB节点,其特征在于,包括:
    处理模块,用于使用第一空口通信密钥,通过获取模块接收来自宿主节点的第一消息,其中,所述第一消息包括切换指示,第一参数信息,以及第一指示信息;
    所述处理模块还用于根据所述第一参数信息,生成第二空口通信密钥;
    所述处理模块还用于根据所述第一指示信息,忽略所述切换指示,并使用所述第二空口通信密钥,通过发送模块向所述宿主节点发送所述第二消息。
  13. 根据权利要求12所述的通信装置,其特征在于,所述切换指示包括小区间切换指示或者小区内切换指示。
  14. 根据权利要求12或13所述的通信装置,其特征在于,所述第一空口通信密钥和所述第二空口通信密钥包括根密钥。
  15. 根据权利要求12-14任一项所述的通信装置,其特征在于,所述第一消息为无线资源控制RRC重配置消息,所述第二消息为RRC重配置完成消息。
  16. 根据权利要求12-15任一项所述的通信装置,其特征在于,所述第一指示信息包括第一指示字段的取值为真,其中所述第一指示字段存在于所述第一消息中。
  17. 根据权利要求12-16任一项所述的通信装置,其特征在于,所述IAB节点包括移动终端MT和分布式单元DU,其中,所述MT包括所述处理模块,所述获取模块和所述接收模块。
  18. 一种通信装置,其特征在于,包括:
    处理模块,用于使用第一空口通信密钥,通过发送模块向接入回传一体化IAB节点发送第一消息,所述第一消息包括切换指示,第一参数信息,以及第一指示信息,其中,所述第一参数信息用于第二空口通信密钥的生成,所述第一指示信息用于指示忽略所述切换指示;
    所述处理模块,还用于生成并使用所述第二空口通信密钥,通过获取模块接收来自所述IAB节点的第二消息。
  19. 根据权利要求18所述的通信装置,其特征在于,所述切换指示包括小区间切换指示或者小区内切换指示。
  20. 根据权利要求18或19所述的通信装置,其特征在于,所述第一空口通信密钥和所述第二空口通信密钥包括根密钥。
  21. 根据权利要求18-20任一项所述的通信装置,其特征在于,所述第一消息为无线资源控制RRC重配置消息,所述第二消息为RRC重配置完成消息。
  22. 根据权利要求18-21任一项所述的通信装置,其特征在于,所述第一指示信息包括第一指示字段的取值为真,其中所述第一指示字段存在于所述第一消息中。
  23. 一种通信装置,其特征在于,包括:至少一个处理器和接口,所述接口用于接收和/或发送信号,所述处理器被配置用于使能权利要求1至6中任一项所述的方法被执行。
  24. 一种通信装置,其特征在于,包括:至少一个处理器和接口,所述接口用于接收和/或发送信号,所述处理器被配置用于使能权利要求7至11中任一项所述的方法被执行。
  25. 一种通信系统,其特征在于,包括:
    如权利要求12-17任一项所述的通信装置以及如权利要求18-22任一项所述的通信装置;或者,
    如权利要求23所述的通信装置以及如权利要求24所述的通信装置。
  26. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序指令,当所述计算机程序指令被处理器执行时,使得如权利要求1至11中任一项所述的方法被实现。
  27. 一种计算机程序产品,所述计算机程序产品包括程序指令,当所述程序指令被处理器执行时,使得如权利要求1至11中任一项所述的方法被实现。
PCT/CN2022/121399 2021-11-17 2022-09-26 一种通信的方法、装置及系统 WO2023087924A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111360387.8A CN116137708A (zh) 2021-11-17 2021-11-17 一种通信的方法、装置及系统
CN202111360387.8 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023087924A1 true WO2023087924A1 (zh) 2023-05-25

Family

ID=86332624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121399 WO2023087924A1 (zh) 2021-11-17 2022-09-26 一种通信的方法、装置及系统

Country Status (2)

Country Link
CN (1) CN116137708A (zh)
WO (1) WO2023087924A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381608A (zh) * 2018-04-13 2019-10-25 华为技术有限公司 一种中继网络的数据传输方法及装置
CN110636562A (zh) * 2018-06-21 2019-12-31 电信科学技术研究院有限公司 一种无线回程路径的数据处理方法和设备
WO2020032638A1 (en) * 2018-08-09 2020-02-13 Lg Electronics Inc. Method for performing access control and device supporting the same
CN111615156A (zh) * 2019-04-26 2020-09-01 维沃移动通信有限公司 一种切换方法及终端
WO2020254113A1 (en) * 2019-06-17 2020-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Key distribution for hop by hop security in iab networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110381608A (zh) * 2018-04-13 2019-10-25 华为技术有限公司 一种中继网络的数据传输方法及装置
CN110636562A (zh) * 2018-06-21 2019-12-31 电信科学技术研究院有限公司 一种无线回程路径的数据处理方法和设备
WO2020032638A1 (en) * 2018-08-09 2020-02-13 Lg Electronics Inc. Method for performing access control and device supporting the same
CN111615156A (zh) * 2019-04-26 2020-09-01 维沃移动通信有限公司 一种切换方法及终端
WO2020254113A1 (en) * 2019-06-17 2020-12-24 Telefonaktiebolaget Lm Ericsson (Publ) Key distribution for hop by hop security in iab networks

Also Published As

Publication number Publication date
CN116137708A (zh) 2023-05-19

Similar Documents

Publication Publication Date Title
CN110324848B (zh) 信息处理方法、通信装置以及计算机存储介质
WO2018202165A1 (zh) 一种失败处理方法、切换方法及终端设备、网络设备
EP3713297B1 (en) Layer 2 processing method, central unit and distributed unit
EP4171122A1 (en) Method for iab network communication, and related device
WO2020216133A1 (zh) 一种通信方法及设备
CN111684856B (zh) 5g nr系统中上行链路传输的方法
US11140735B2 (en) Data replication controlling method and related device
CN109691066B (zh) 数据复制下的处理方法及相关设备
US20220217549A1 (en) Communication Method, Apparatus, and System
WO2023087924A1 (zh) 一种通信的方法、装置及系统
WO2021249425A1 (zh) 一种通信方法及相关装置
WO2022160205A1 (zh) 一种数据传输方法、终端设备和网络设备
WO2022237599A1 (zh) 一种通信方法、装置及系统
WO2022262544A1 (zh) 一种通信的方法、装置及系统
WO2023155655A1 (zh) 算力能力感知方法和装置
WO2024046294A1 (zh) 通信方法和装置
WO2023246746A1 (zh) 一种通信方法及相关设备
WO2022068336A1 (zh) 路由信息更新方法、通信装置及存储介质
WO2022141503A1 (zh) 一种通信方法及装置
WO2023279296A1 (zh) 无线通信方法、第一终端和通信设备
WO2023123212A1 (zh) 通信方法及通信装置
WO2022233011A1 (zh) 建立连接的方法和终端设备
WO2023134531A1 (zh) 一种传输数据的方法和装置
WO2024067869A1 (zh) 通信方法和通信装置
WO2023078321A1 (zh) 一种通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22894462

Country of ref document: EP

Kind code of ref document: A1