WO2022047746A1 - 一种授时方法及装置 - Google Patents

一种授时方法及装置 Download PDF

Info

Publication number
WO2022047746A1
WO2022047746A1 PCT/CN2020/113570 CN2020113570W WO2022047746A1 WO 2022047746 A1 WO2022047746 A1 WO 2022047746A1 CN 2020113570 W CN2020113570 W CN 2020113570W WO 2022047746 A1 WO2022047746 A1 WO 2022047746A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
information
terminal device
timing information
time
Prior art date
Application number
PCT/CN2020/113570
Other languages
English (en)
French (fr)
Inventor
徐小英
酉春华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2020/113570 priority Critical patent/WO2022047746A1/zh
Publication of WO2022047746A1 publication Critical patent/WO2022047746A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a timing method and device.
  • the communication link between the terminal device and one or more of the network devices may fail.
  • how the terminal device obtains accurate timing is a matter of issues that need resolving.
  • the present application provides a timing method and apparatus, so as to ensure that the terminal device obtains accurate timing in a scenario where the terminal device accesses multiple network devices.
  • a timing method is provided, and the method can be executed by a network device or by a component of the network device (for example, a processor, a chip, or a chip system, etc.).
  • the method may be implemented by the first network device and the second network device.
  • the first network device manages the secondary cell group SCG, or the first network device is deployed with the SCG, and the first network device may also be referred to as a secondary network device.
  • the second network device manages the primary cell group MCG, or the second network device is deployed with the MCG, and the second network device may also be referred to as the primary network device.
  • the terminal device establishes dual connections with the first network device and the second network device.
  • the terminal device establishes multiple connections with multiple network devices, wherein the second network device is the primary network device, and the first network device is one of the multiple secondary network devices.
  • the method may be implemented by the following steps: the second network device sends the first information to the first network device, and the first network device receives the first information from the second network device.
  • the first information includes the first time, and the first information further includes the frame number of the first downlink frame of the primary cell Pcell in the MCG corresponding to the first time, and the frame number may be a system frame number or a radio frame number.
  • the frame number of the first downlink frame of the primary cell Pcell in the MCG corresponding to the first time means that the first time corresponds to the frame number of the first downlink frame of the primary cell Pcell in the MCG.
  • the first network device sends timing information to the terminal device based on the first information.
  • the first network device can send timing information to the terminal device based on the first information, so that a wireless link occurs between the second network device and the terminal device
  • the first network device sends timing information to the terminal device, so that the terminal device can obtain the timing information in time, ensuring that the terminal device has not recovered when the link with the second network device fails.
  • High-precision timing information can still be obtained during normal periods, thereby ensuring high-precision time synchronization between the terminal device and the network, and ensuring the reliability of data transmission between the terminal device and the network.
  • the timing information includes the first time and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time. That is, the first network device directly regards the content contained in the first information as timing information.
  • the second network device forwards the timing information originally sent to the terminal device to the terminal device through the first network device, thus ensuring that a link failure occurs between the second network device and the terminal device
  • the terminal device can obtain the high-precision time service in time to ensure the normal transmission of the service and the reliability of the data transmission between the terminal device and the network.
  • the first network device may determine timing information according to the first information. For example, the first network device determines the frame number of the second downlink frame of the secondary primary cell PScell in the SCG based on the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time, based on the first time and the frame number in the SCG The frame number of the second downlink frame of the PScell determines the timing information.
  • the timing information includes the first time and the frame number of the second downlink frame of the PScell in the SCG. In this way, the first network device can send the timing information of the cell under its jurisdiction to the terminal device. When multiple times of timing information is sent to the terminal device, it is not necessary to obtain the timing information of the cell under the jurisdiction of the second network device from the second network device every time, which can save signaling overhead.
  • the first network device as a secondary network device, can send timing information to the terminal device through the signaling radio bearer SRB3.
  • the method may be performed by a network device, or may be performed by a component of the network device (eg, a processor, a chip, or a system-on-a-chip, etc.).
  • the method may be implemented by the first network device and the second network device.
  • the first network device manages the secondary cell group SCG, or the first network device is deployed with the SCG, and the first network device may also be referred to as a secondary network device.
  • the second network device manages the primary cell group MCG, or the second network device is deployed with the MCG, and the second network device may also be referred to as the primary network device.
  • the terminal device establishes dual connections with the first network device and the second network device.
  • the terminal device establishes multiple connections with multiple network devices, wherein the second network device is the primary network device, and the first network device is one of the multiple secondary network devices.
  • the method can be implemented by the following steps: the first network device acquires the first information, and sends timing information to the terminal device based on the first information.
  • the first information comes from a terminal device, the terminal device sends the first information to the first network device, the first network device receives the first information from the terminal device, and the first information is used to indicate the terminal device.
  • the link with the second network device fails or the first information is used to request timing information; in a possible implementation, the first information comes from the second network device, and the second network device sends the first information to the first network device.
  • the first network device receives first information from the second network device, where the first information is used to instruct to send timing information to the terminal device.
  • the first network device receives the first information of the terminal device, if the first information is used to indicate that the link between the terminal device and the second network device fails, the first network device sends timing information to the terminal device, so that the first network device sends timing information to the terminal device.
  • the first network device sends timing information to the terminal device, so that the first network device sends timing information to the terminal device.
  • a link is sent between the second network device and the terminal device, there is no need to wait for the link to recover, and the first network device sends timing information to the terminal device, so that the terminal device can obtain the timing information in time, ensuring that the terminal device is in contact with the second device.
  • the first network device When the link of the second network device is not restored to normal, high-precision timing information can still be obtained, thereby ensuring high-precision time synchronization between the terminal device and the network, and ensuring the reliability of data transmission between the terminal device and the network.
  • the first network device sends the timing information to the terminal device, which also enables the terminal device to obtain the timing information in time, which is applicable to the failure of the link between the second network device and the terminal device to recover. During the normal period, the normal transmission of terminal equipment services is guaranteed.
  • the first network device can also send timing information to the terminal device according to the instruction of the second network device, which can achieve the same technical effect.
  • the timing information includes the first time, and also includes the frame number of the downlink frame of the secondary primary cell PScell in the SCG corresponding to the first time.
  • the first network device does not need to obtain the timing information of the cell under the jurisdiction of the second network device from the second network device, and also enables the terminal device to obtain the timing, which can save signaling overhead.
  • the first network device may also send second information to the second network device, where the second information is used to indicate that the link between the terminal device and the second network device fails, so that the second network device can recover The link with the terminal device, or make the second network device perform subsequent operations such as reselection or handover of the primary network device, so as to ensure the service quality of the terminal device.
  • the first network device may also notify the second network device that the first network device sends timing information to the terminal device.
  • the second network device may send third information to the first network device, and the first network device receives the third information from the second network device,
  • the third information is used to instruct the first network device to stop sending timing information to the terminal device.
  • the third information can be used to timely switch to notify the second network device of timing information to ensure high precision of timing.
  • the third network device may be a new primary network device accessed by the terminal device.
  • the first network device may send timing information to the terminal device through the signaling radio bearer SRB3.
  • the method may be performed by a network device, or may be performed by a component of the network device (eg, a processor, a chip, or a system-on-a-chip, etc.).
  • the method may be implemented by the first network device and the second network device.
  • the first network device manages the secondary cell group SCG, or the first network device is deployed with the SCG, and the first network device may also be referred to as a secondary network device.
  • the second network device manages the primary cell group MCG, or the second network device is deployed with the MCG, and the second network device may also be referred to as the primary network device.
  • the terminal device establishes dual connections with the first network device and the second network device.
  • the terminal device establishes multiple connections with multiple network devices, wherein the second network device is the primary network device, and the first network device is one of the multiple secondary network devices.
  • the method can be implemented by the following steps: the first network device sends first information to the second network device, the second network device receives the first information from the first network device, and the first information is used to indicate the second network device and the terminal device. The link between them failed.
  • the second network device sends second information to the first network device.
  • the second information is used to instruct the first network device to send timing information to the terminal device.
  • the second information includes: the first time and the MCG corresponding to the first time. Frame number of the first downlink frame of the primary cell Pcell.
  • the second network device sends the first information to the first network device, and the first network device can send timing information to the terminal device based on the first information, so that there is no need to wait when sending RLF between the second network device and the terminal device
  • the link is restored, and sending timing information to the terminal device through the first network device enables the terminal device to obtain the timing information in a timely manner, ensuring that the terminal device can still obtain high-precision when the link with the second network device fails and has not returned to normal. Timing information, thereby ensuring high-precision time synchronization between the terminal device and the network, and ensuring the reliability of data transmission between the terminal device and the network.
  • the timing information includes the first time and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time.
  • the second network device may also send third information to the first network device, where the third information is used to instruct the first network device to stop sending timing information to the terminal device.
  • the third information can be used to timely switch to notify the second network device of timing information to ensure high precision of timing.
  • a communication apparatus may be a network device, a device in a network device (eg, a chip, or a chip system, or a circuit), or a device that can be used in conjunction with the network device.
  • the communication apparatus may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the first network device described in the first aspect, and the modules may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending. Further, the communication module may also include a receiving module and a sending module. Exemplarily:
  • the receiving module is configured to receive the first information from the second network device, where the first information includes: the first time and the frame number of the first downlink frame of the primary cell Pcell in the MCG corresponding to the first time; the sending module, using for sending timing information to the terminal device based on the first information.
  • the timing information includes: the first time, and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time.
  • the processing module is configured to determine the frame number of the second downlink frame of the secondary primary cell PScell in the SCG based on the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time; and It is used to determine timing information based on the first time and the frame number of the second downlink frame of the PScell in the SCG.
  • the sending module when sending the timing information to the terminal device, is specifically configured to: send the timing information through the signaling radio bearer SRB3.
  • a communication apparatus may be a network device, a device in a network device (eg, a chip, or a chip system, or a circuit), or a device that can be matched with the network device.
  • the communication apparatus may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the first network device described in the second aspect, and the modules may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending. Further, the communication module may also include a receiving module and a sending module. Exemplarily:
  • a processing module configured to acquire first information; wherein the first information comes from the terminal device, and the first information is used to indicate that the link between the terminal device and the second network device fails, or the first information is used to request timing information; or , the first information comes from the second network device, and is used for instructing to send timing information to the terminal device; the communication module is used for sending timing information to the terminal device based on the first information.
  • the timing information includes: the first time, and the frame number of the downlink frame of the secondary primary cell PScell in the SCG corresponding to the first time.
  • the communication module is further configured to: send second information to the second network device, where the second information is used to indicate that the link between the terminal device and the second network device fails.
  • the communication module is further configured to: notify the second network device that the first network device sends timing information to the terminal device.
  • the communication module is further configured to: receive third information from the second network device, where the third information is used to instruct the first network device to stop sending timing information to the terminal device.
  • the communication module is further configured to: receive fourth information from the third network device, where the fourth information is used to instruct the first network device to stop sending timing information to the terminal device, and the third network device manages the second MCG .
  • the communication module when sending the timing information to the terminal device, is configured to: send the timing information through the signaling radio bearer SRB3.
  • a communication apparatus may be a network device, a device in a network device (eg, a chip, or a chip system, or a circuit), or a device that can be matched with the network device.
  • the communication apparatus may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the second network device described in the third aspect, and the modules may be hardware circuits, software, or It can be implemented by hardware circuit combined with software.
  • the communication device may include a processing module and a communication module. The processing module is used to call the communication module to perform the function of receiving and/or sending. Further, the communication module may also include a receiving module and a sending module.
  • the receiving module is configured to receive first information from the first network device, where the first information is used to indicate that the link between the second network device and the terminal device fails;
  • the sending module is configured to send a message to the first network device.
  • Send second information where the second information is used to instruct the first network device to send timing information to the terminal device, and the second information includes: the first time, and the first downlink frame of the primary cell Pcell in the MCG corresponding to the first time. frame number.
  • the timing information includes: the first time, and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time.
  • the sending module is further configured to: send third information to the first network device, where the third information is used to instruct the first network device to stop sending timing information to the terminal device.
  • a communication device in a seventh aspect, includes a communication interface and a processor, and the communication interface is used for the communication device to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method described in the first aspect or the second aspect.
  • the communication apparatus may further include a memory for storing programs, instructions or data called by the processor.
  • the memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method performed by the first network device described in the first aspect or the second aspect can be implemented.
  • a communication device in an eighth aspect, includes a communication interface and a processor, and the communication interface is used for the communication device to communicate with other devices, such as data or signal transmission and reception.
  • the communication interface may be a transceiver, circuit, bus, module, or other type of communication interface.
  • the processor is configured to invoke a set of programs, instructions or data to execute the method performed by the second network device described in the third aspect.
  • the communication apparatus may further include a memory for storing programs, instructions or data called by the processor.
  • the memory is coupled to the processor, and when the processor executes the instructions or data stored in the memory, the method described in the third aspect can be implemented.
  • the embodiments of the present application further provide a computer-readable storage medium, where computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a computer, the computer-readable instructions can be The method described in any one of the one to third aspects is performed.
  • an embodiment of the present application provides a chip system, where the chip system includes a processor and may further include a memory, for implementing the method described in any one of the first to third aspects.
  • the chip system can be composed of chips, and can also include chips and other discrete devices.
  • an embodiment of the present application provides a communication system, where the communication system includes the communication device according to the fourth aspect or the communication device according to the fifth aspect, and the communication device according to the sixth aspect. communication device.
  • a twelfth aspect provides a computer program product comprising instructions which, when run on a computer, cause the method as described in any of the first to third aspects to be performed.
  • FIG. 1 is a schematic diagram of a communication system architecture in an embodiment of the application
  • FIG. 2a is a schematic diagram of a primary network device managing a primary cell group in an embodiment of the present application
  • 2b is a schematic diagram of a secondary network device managing a secondary cell group in an embodiment of the present application
  • 3a is one of the schematic flowcharts of the timing method in the embodiment of the present application.
  • 3b is a schematic diagram of a method for determining timing information in an embodiment of the present application.
  • FIG. 5 is one of the schematic flowcharts of a specific embodiment of the timing method in the embodiment of the application.
  • FIG. 6 is the second schematic flow chart of the specific embodiment of the timing method in the embodiment of the application.
  • Fig. 7a is the third schematic flow chart of the specific embodiment of the timing method in the embodiment of the application.
  • FIG. 7b is a schematic diagram of a traffic splitting scenario of SRB1 and SRB2 in an embodiment of the present application.
  • FIG. 7c is a schematic diagram of a scenario in which SRB1 and SRB2 are not shunted in an embodiment of the present application;
  • FIG. 8 is one of schematic structural diagrams of a communication device in an embodiment of the present application.
  • FIG. 9 is a second schematic structural diagram of a communication device according to an embodiment of the present application.
  • Embodiments of the present application provide a timing method and device. Among them, the method and the device are based on the same technical concept. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • "and/or" describes the association relationship of the associated objects, indicating that there may be three kinds of relationships, for example, A and/or B may indicate that A exists alone, A and B exist simultaneously, and a single relationship exists. There are three cases of B.
  • the character "/" generally indicates that the associated objects are an "or” relationship. In this application, at least one refers to one or more; multiple refers to two or more.
  • the timing method provided by the embodiments of the present application may be applied to a fourth generation (4th generation, 4G) communication system, such as a long term evolution (long term evolution, LTE) communication system, and may also be applied to a fifth generation (5th generation, 5G) communication system systems, such as 5G new radio (NR) communication systems, or applied to various future communication systems, such as 6th generation (6G) communication systems.
  • 4G fourth generation
  • 4G long term evolution
  • 5G fifth generation
  • 5G new radio (NR) communication systems such as 5G new radio (NR) communication systems
  • 6th generation (6G) communication systems 6th generation
  • eMBB enhanced mobile broadband
  • ultra-reliable and low-latency communication ultra-reliable and low-latency communication
  • URLLC ultra-reliable low-latency communication
  • MTC machine type communication
  • mMTC massive machine type communication
  • D2D device-to-device
  • V2X vehicle to vehicle
  • IoT Internet of things
  • a network device is a node in a radio access network (RAN), which may also be called a base station, or a RAN node (or device).
  • RAN radio access network
  • some examples of access network equipment are: gNB/NR-NB, transmission reception point (TRP), evolved Node B (evolved Node B, eNB), radio network controller (radio network controller, RNC) ), Node B (Node B, NB), base station controller (BSC), base transceiver station (base transceiver station, BTS), home base station (for example, home evolved NodeB, or home Node B, HNB), Baseband unit (BBU), or wireless fidelity (Wifi) access point (AP), satellite equipment, or network equipment in 5G communication systems, or in possible future communication systems Network equipment.
  • TRP transmission reception point
  • eNB evolved Node B
  • RNC radio network controller
  • Node B Node B
  • BSC base station controller
  • BTS base transceiver station
  • BTS home base
  • the network device may also be other devices with network device functions.
  • the network device may also be a device that functions as a network device in device to device (device to device, D2D) communication, vehicle networking communication, and machine communication.
  • the network device may also be a network device in a possible future communication system.
  • a network device with a wireless transceiver function and a chip that can be installed in the aforementioned network device are collectively referred to as a network device.
  • a gNB may include a centralized unit (CU) and a DU.
  • the gNB may also include a radio unit (RU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB, for example, CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements wireless chain
  • the functions of the road control radio link control, RLC
  • media access control media access control, MAC
  • physical (physical, PHY) layers The functions of the road control (radio link control, RLC), media access control (media access control, MAC) and physical (physical, PHY) layers.
  • the network device may be a CU node, a DU node, or a device including a CU node and a DU node.
  • the CU may be divided into network equipment in the access network RAN, and the CU may also be divided into network equipment in the core network CN, which is not limited herein.
  • Terminal equipment also known as user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE user equipment
  • MS mobile station
  • MT mobile terminal
  • the terminal device includes a handheld device with a wireless connection function, a vehicle-mounted device, and the like.
  • terminal devices can be: mobile phones, tablet computers, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices (such as smart watches, smart bracelets, pedometers, etc.), in-vehicle devices ( For example, automobiles, bicycles, electric vehicles, airplanes, ships, trains, high-speed rails, etc.), virtual reality (VR) devices, augmented reality (AR) devices, wireless terminals in industrial control, smart home devices ( For example, refrigerators, TVs, air conditioners, electricity meters, etc.), intelligent robots, workshop equipment, wireless terminals in unmanned driving, wireless terminals in remote surgery, wireless terminals in smart grid, wireless terminals in transportation safety , wireless terminals in smart cities, or wireless terminals in smart homes, flying equipment (eg, smart robots, hot air balloons, drones, airplanes), etc.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, etc.
  • in-vehicle devices For example, automobiles, bicycles, electric vehicles, airplanes
  • the terminal device may also be other devices with a terminal function, for example, the terminal device may also be a device serving as a terminal function in D2D communication.
  • the terminal device may also be a device serving as a terminal function in D2D communication.
  • a terminal device with a wireless transceiver function and a chip that can be installed in the aforementioned terminal device are collectively referred to as a terminal device.
  • one terminal device may access one or more network devices.
  • a terminal device accessing multiple network devices may be referred to as multiple connections.
  • the terminal device connecting to the two network devices may be referred to as a dual connection (DC).
  • DC dual connection
  • one of the network devices is a master network device or a master node
  • the other network device is a slave network device, a slave node, a slave network device, or a slave node.
  • the dual connectivity is called EN-DC.
  • the primary network device is an NR base station and the secondary network device is an LTE base station
  • the dual connectivity is called NE-DC.
  • both the primary network device and the secondary network device are NR base stations, the dual connection is called NR-DC.
  • the communication system 100 includes a network device 101 - 1 , a network device 101 - 2 and a terminal device 102 .
  • the network device 101-1 and the network device 101-2 may communicate through an interface, for example, the interface may be an Xn interface or an X2 interface, and may also be an interface with other names.
  • FIG. 1 only shows a possible communication system architecture of dual connectivity to which the embodiments of the present application can be applied. When applied to other scenarios, the communication system architecture may also include more or less equipment.
  • the master network device manages a master cell group (MCG), and the MCG includes a group of cells that can provide services for the terminal device.
  • the MCG may include one or more cells.
  • the MCG includes a primary cell (primary cell, Pcell), and may also include one or more secondary cells.
  • PCell is a cell where the terminal equipment performs initial radio resource control (radio resource control, RRC) connection establishment or RRC connection reestablishment.
  • RRC radio resource control
  • the secondary network device manages a secondary cell group (SCG), and the SCG includes a group of cells that can provide services for the terminal device.
  • the SCG may include one or more cells.
  • the SCG includes a primary cell (primary SCG cell, PScell) of the secondary cell group, and may also include one or more secondary cells.
  • PScell may also be referred to as a secondary primary cell.
  • the terminal device needs to obtain timing information from the network device, so that the terminal device and the network device can achieve high-precision time synchronization.
  • the main network device generally sends timing information to the terminal device, for example, the timing information may be sent to the terminal device through PCell.
  • the radio link failure (RLF) between the terminal device and the main network device may occur.
  • the terminal device detects the RLF with the main network device, and will report the RLF to the main network device, and the main network device will perform link recovery. After the link is recovered, the main network device continues to send the terminal device. Send timing information.
  • the terminal device cannot obtain timing information. For example, it takes about 1 second from the detection of RLF by the terminal device to the recovery of the link. For the terminal device with an accuracy of 0.1 part per million (ppm) of the clock crystal oscillator, it means that 1 second will generate about 100 nanometers. The amount of error in seconds. This will affect the timing accuracy of the terminal equipment, thereby affecting the transmission of services.
  • ppm part per million
  • the embodiments of the present application provide a timing method, so as to ensure the timing accuracy of the terminal device when the primary network device generates RLF in a dual-connection or multi-connection scenario.
  • the first network device is a secondary network device
  • the second network device is a primary network device.
  • the first network device manages the SCG
  • the second network device manages the MCG.
  • the second network device sends first information to the first network device, and correspondingly, the first network device receives the first information from the second network device.
  • the first information includes the first time and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time.
  • the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time means that the first time corresponds to the frame number of the first downlink frame of the Pcell in the MCG.
  • the first network device sends timing information to the terminal device based on the first information.
  • the primary network device sends the first information to the secondary network device, and the secondary network device can send timing information to the terminal device based on the first information, so that there is no need to wait when sending RLF between the primary network device and the terminal device Link recovery, and sending timing information to the terminal equipment through the auxiliary network equipment can enable the terminal equipment to obtain the timing information in time, and ensure high-precision timing information during the RLF period with the main network equipment, so as to ensure the high-precision timing information between the terminal equipment and the network.
  • Time synchronization ensures the normal transmission of services and the reliability of data transmission between terminal equipment and the network.
  • the conditions or timings that trigger the second network device to send the first information to the first network device may include the following situations.
  • the second network device determines that RLF occurs with the terminal device.
  • the load of the second network device is heavy, and the first network device is required to assist in sending timing information to the terminal device, so as to reduce the load of the second network device.
  • Other trigger conditions are also possible.
  • S300 may also be included before S301 .
  • the second network device determines that RLF occurs with the terminal device.
  • the second network device determines that RLF occurs through self-detection. For example, the second network device may determine that RLF occurs with the terminal device when detecting that the uplink is out of synchronization with the terminal device. The second network device may determine that the uplink is out of synchronization when sending a reference signal or sending data to the terminal device but not receiving feedback information from the terminal device. For another example, the second network device may determine that RLF occurs with the terminal device when the number of downlink retransmissions reaches the set threshold.
  • the downlink retransmission may be a hybrid automatic repeat request (HARQ) retransmission, or may be a radio link control (radio link control, RLC) layer retransmission.
  • HARQ hybrid automatic repeat request
  • RLC radio link control
  • the second network device determines that the RLF occurs through the report message of the first network device. In this case, it can be realized by S300-1 and S300-2.
  • the terminal device sends the second information to the first network device, and correspondingly, the first network device receives the second information from the terminal device.
  • the second information is used to indicate that RLF occurs between the terminal device and the second network device.
  • the second information may be MCG failure information (MCG failure information).
  • the first network device sends third information to the second network device, and correspondingly, the second network device receives the third information from the first network device.
  • the third information is used to indicate that RLF occurs between the terminal device and the second network device.
  • the third information may be an RRC transfer (RRC transfer) message.
  • the third information may carry or include the second information.
  • the RRC transfer message includes or carries MCG failure information.
  • the second network device determines, according to the third information, that RLF occurs with the terminal device.
  • the RRC transfer message is a type of message between network devices.
  • the first network device and the second network device transmit the RRC transfer message through the Xn interface.
  • the first information includes the first time and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time.
  • the first time may be an absolute time.
  • the second network device may obtain the first time from the connected clock source, and the second network device determines the frame number of the downlink frame of the Pcell corresponding to the first time, and the frame number of the downlink frame of the Pcell may refer to the frame of the downlink frame boundary of the Pcell No.
  • the absolute time may be global positioning system (global positioning system, GPS) time.
  • the GPS start time is preset, and the absolute time is the time relative to the GPS start time.
  • the GPS start time point may be: January 6, 1980 00:00:00 on the solar calendar.
  • the absolute time may be UTC time, that is, the coordinated universal time (UTC) is calculated from the GPS time minus leap seconds.
  • the absolute time may be a local time, which is a time relative to the local start time (preset time). The value of the local start time point depends on the implementation of the upper layer. For example, it can be determined according to the local clock of the synchronous clock source.
  • the first network device sends timing information to the terminal device based on the first information.
  • the timing information may include the first time and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time. That is, the first network device sends the first time obtained from the first information and the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time as timing information to the terminal device.
  • the first network device may also generate timing information according to the first information. Specifically, based on the frame number of the first downlink frame of the Pcell in the MCG corresponding to the first time, determine the frame number of the second downlink frame of the PScell in the SCG, based on the first time and the second downlink frame of the PScell in the SCG The frame number of the frame determines the timing information. There is a timing difference between the first downlink frame of the Pcell in the MCG and the second downlink frame of the PScell in the SCG. The first network device may determine the frame number of the second downlink frame of the PScell in the SCG corresponding to the first time according to the timing difference.
  • Frame interval The number of radio frames.
  • the timing information includes the first time and the frame number of the second downlink frame of the PScell in the SCG corresponding to the first time.
  • the second network device may also directly send timing information to the first network device, where the timing information includes the first time and the frame number of the second downlink frame of the PScell in the SCG corresponding to the first time .
  • the second network device may also determine the frame number of the second downlink frame of the PScell in the SCG corresponding to the first time according to the aforementioned timing difference.
  • the first network device can directly send the timing information to the terminal device.
  • the first information described in S301 may be a downlink information transfer (DL information transfer) message.
  • the first information described in S301 may also be an RRC transfer message, and the RRC transfer message carries a DL information transfer cell, or the first information is carried in an RRC transfer message, and the first information is a DL information transfer cell.
  • the timing information described in S302 may be carried in the DL information transfer MRDC, where the MRDC is a multi-radio dual connectivity (MRDC). Alternatively, the timing information described in S302 may be carried in the DL information transfer MRDC, and the timing information is a DL information transfer cell.
  • MRDC multi-radio dual connectivity
  • the network device may transmit RRC signaling and non-access stratum (non access stratum, NAS) signaling to the terminal device through a signaling radio bearer (signaling radio bearer, SRB).
  • the SRBs include SRB0, SRB1, SRB2, and SRB3.
  • SRB0 uses a common control channel (CCCH), and SRB1, SRB2 and SRB3 all use a dedicated control channel (DCCH).
  • SRB2 is used to carry NAS signaling, and SRB1 can also transmit NAS signaling before SRB2 is established.
  • SRB0, SRB1 and SRB2 are all used for signaling transmission between the terminal equipment and the main network equipment.
  • SRB3 is used for signaling transmission between terminal equipment and secondary network equipment.
  • the first network device acts as an auxiliary network device, and in S302, the first network device may send timing information to the terminal device through SRB3.
  • an embodiment of the present application further provides a timing method, and the specific process is as follows.
  • the first network device acquires fourth information.
  • the fourth information comes from the terminal device. Then, the terminal device sends the fourth information to the first network device, and correspondingly, the first network device receives the fourth information from the terminal device.
  • the fourth information is used to indicate that the link between the terminal device and the second network device fails; or the fourth information is used to request timing information; or the fourth information is used to indicate the timing information that the terminal device is interested in, in other words, the first Four messages are used to instruct the terminal device that the preferred network device provides timing information for the 5G internal system clock.
  • the first network device can obtain the fourth information in the following manner.
  • Mode 1 the terminal device directly sends the fourth information to the first network device.
  • Mode 2 The terminal device sends the fourth information to the second network device, and the second network device forwards the fourth information to the first network device.
  • the forwarded fourth information may be processed by the second network device, that is, it may be different from the second network device.
  • the original fourth information received by the terminal device is not limited to the terminal device.
  • the fourth information comes from the second network device. Then, the second network device sends the fourth information to the first network device, and correspondingly, the first network device receives the fourth information from the second network device. The fourth information is used to instruct the first network device to send timing information to the terminal device.
  • the first network device sends timing information to the terminal device based on the fourth information.
  • the timing information includes the first time and the frame number of the downlink frame of the PScell in the SCG corresponding to the first time.
  • the timing information here may correspond to the embodiment in FIG. 3a: the timing information includes the first time and the frame number of the second downlink frame of the PScell in the SCG corresponding to the first time.
  • the first network device may determine whether to send the fourth information to the terminal through other methods.
  • the terminal device may send the fourth information to the first network device through the SRB3 established with the first network device, and correspondingly, the first network device receives the fourth information from the terminal device through the SRB3 .
  • the fourth information may be an RRC message, may also be a medium access control element (medium access control element, MAC CE), or may be physical layer signaling.
  • the terminal device may trigger to send the fourth information to the first network device when the following conditions are met, and the condition may be: the T310 timer of the terminal device is started or the T316 timer is started.
  • the terminal device when it detects the physical layer problem of the Pcell, that is, when it receives N310 consecutive out-of-sync indications from the lower layer, it will start the T310 timer.
  • N is the count value of the out-of-step counter
  • N310 indicates that the count value of the out-of-step counter is 310
  • N310 is the preset threshold of the out-of-step counter.
  • the T310 timer is started.
  • the terminal device is triggered to send the fourth information to the first network device.
  • the terminal device will start the T316 timer when sending the MCG failure information (MCG failure information).
  • MCG failure information MCG failure information
  • the first network device may notify the second network device of the link For the failure information, refer to S300-2 for details. Further, after the first network device notifies the second network device that the link fails, the second network device sends the first information to the first network device, and the first network device receives the first information from the second network device , and refer to S301 for details.
  • the first network device determines timing information according to the first information, and executes S402.
  • S403 may also be included.
  • S403 and S402 do not have a strict execution order, and the execution order can be exchanged or executed in parallel.
  • S403. The first network device sends fifth information to the second network device, and the second network device receives the fifth information from the first network device.
  • the fifth information is used to notify the second network device that the first network device sends timing information to the terminal device.
  • the second network device may determine according to the fifth information that the first network device has been sending or will send timing information to the terminal device.
  • the second network device may also learn, according to the fifth information, that a link failure may occur with the terminal device.
  • S404 may also be included after S403.
  • the second network device sends sixth information to the first network device, and correspondingly, the first network device receives the sixth information from the second network device.
  • the sixth information is used to instruct the first network device to stop sending timing information to the terminal device.
  • the sixth information may also be a rejection response message of the fifth information. After the second network device receives the fifth information, for example, it is determined that the link with the terminal device is restored, or based on some other reasons, the second network device may send the sixth information to the first network device.
  • the second network device sends fourth information to the first network device, where the fourth information is used to instruct the first network device to send timing information to the terminal device.
  • the trigger condition for the second network device to send the fourth information is similar to the condition for the second network device to send the first information in the embodiment of FIG. or timing".
  • the timing information in S402 may be DL information transfer MRDC.
  • the timing information in S302 may be carried in the DL information transfer MRDC, and the timing information is a DL information transfer cell.
  • the first network device acts as an auxiliary network device, and in S402, the first network device may send timing information to the terminal device through SRB3.
  • the third network device sends indication information to the first network device, and the first network device receives the indication information from the third network device.
  • the indication information is used to instruct the first network device to stop sending timing information to the terminal device.
  • the third network device is the new main network device accessed by the terminal device, and the third network device can manage the MCG.
  • the MCG managed by the first network device is recorded as the first MCG
  • the MCG managed by the third network device is recorded as Second MCG.
  • the third network device may send timing information to the terminal device, where the timing information may include the second time and the corresponding second time.
  • the second network device may notify the third network device that the timing information is currently sent by the first network device to the terminal device, and the third network device sends the timing information to the first network device based on the notification from the second network device.
  • the first network device when the first network device receives or sends information, it may refer to the SCG managed by the first network device receiving or sending information, and more specifically, it may refer to the cells in the SCG receiving or sending information.
  • the second network device receiving or sending information when it is related to the second network device receiving or sending information, it may refer to the MCG managed by the second network device receiving or sending the information, and more specifically, it may refer to the cells in the MCG receiving or sending the information.
  • a specific embodiment of a timing method is as follows.
  • the terminal device is connected to the primary network device and the secondary network device, the primary network device manages the MCG, and the secondary network device manages the SCG.
  • the primary cell in the MCG is the Pcell.
  • the primary cell in the SCG is PScell.
  • the terminal device sends MCG failure information (MCG failure information) to the secondary network device, and correspondingly, the secondary network device receives the MCG failure information from the terminal device.
  • MCG failure information MCG failure information
  • the secondary network device sends MCG failure information to the primary network device, and the primary network device receives the MCG failure information from the secondary network device.
  • the secondary network device may send an RRC transfer message to the primary network device, where the RRC transfer message carries the information element of the MCG failure information.
  • S501 and S502 can also be replaced by S501* and S502*.
  • the terminal device sends an RRC message to the secondary network device, where the RRC message is used to request timing information or to indicate interested timing information; the secondary network device receives the RRC message from the terminal device.
  • the terminal device can send the RRC message through SRB3.
  • the RRC message can be replaced with MAC CE or physical layer signaling.
  • the triggering condition for the terminal equipment to send the RRC message may be that the T310 timer of the terminal equipment is started or the T316 timer is started.
  • the starting timing of the T310 timer and the T316 timer may refer to the relevant description of the embodiment in FIG. 4 , and details are not repeated here.
  • the secondary network device sends a request message to the primary network device, and correspondingly, the primary network device receives the request message from the secondary network device.
  • the request message is used to request timing information.
  • the primary network device sends a DL information transfer (DLInformationTransfer) message/information to the secondary network device, and correspondingly, the secondary network device receives the DLInformationTransfer message/information from the primary network device.
  • DLInformationTransfer DL information transfer
  • S501 and S502; or, S501* and S502* are optional steps. Without these optional steps, the conditions for the primary network device to trigger S503 may also be determined by the primary network device, for example, the primary network device detects that the uplink is out of synchronization, or the number of downlink HARQ retransmissions reaches a set threshold or downlink RLC retransmissions The number of times reached the set threshold.
  • the primary network device may send an RRC transfer message to the secondary network device, where the RRC transfer message carries the DLInformationTransfer information element.
  • the DLInformationTransfer message or the DLInformationTransfer information element may carry the timing information of the Pcell, and the timing information of the Pcell includes an absolute time and the frame number of the downlink frame boundary of the Pcell corresponding to the absolute time.
  • the frame number of the downlink frame boundary of the Pcell may be the system frame number (system frame number, SFN) of the downlink frame boundary of the Pcell.
  • the auxiliary network device sends timing information to the terminal device, and correspondingly, the terminal device receives the timing information from the auxiliary network device.
  • the secondary network device After receiving the DLInformationTransfer from the primary network device, the secondary network device carries the DLInformationTransfer in the DL Information Transfer MRDC (DLInformationTransferMRDC), and sends the DLInformationTransferMRDC to the terminal device, and the terminal device receives the DLInformationTransferMRDC from the secondary network device, and obtains the DLInformationTransferMRDC from the secondary network device. Timing information of Pcell.
  • DLInformationTransferMRDC DLInformationTransferMRDC
  • the secondary network device determines the timing information of the PScell according to the timing information of the Pcell in the DLInformationTransfer.
  • the secondary network device may obtain the SFN of the PSCell according to the timing difference between the SFN of the Pcell and the SFN of the PSCell.
  • the timing information of the PScell includes an absolute time and a frame number (for example, the frame number may be SFN) corresponding to the downlink frame boundary of the PScell.
  • the secondary network device carries the timing information of the PScell in the DLInformationTransfer.
  • the secondary network device sends the PScell timing information to the terminal device in the following manner: the secondary network device sends the DLInformationTransferMRDC to the terminal device, where the DLInformationTransferMRDC includes the DLInformationTransfer, and the DLInformationTransfer carries the PScell timing information.
  • the terminal device receives the DLInformationTransferMRDC from the secondary network device, and obtains the timing information of the PScell in the DLInformationTransferMRDC.
  • the secondary network device can send timing information to the terminal device through the SRB3.
  • S505 may also be included.
  • the new primary network device sends indication information to the secondary network device, where the indication information is used to instruct the secondary network device to stop sending timing information to the terminal device.
  • the secondary network device receives the indication information from the new primary network device.
  • the secondary network device stops sending timing information to the terminal device according to the instruction information.
  • the new primary network device may subsequently send timing information to the terminal device, where the timing information is the timing information of the Pcell of the new primary network device.
  • a specific embodiment of another timing method is as follows.
  • the terminal device sends MCG failure information (MCG failure information) to the secondary network device, and correspondingly, the secondary network device receives the MCG failure information from the terminal device.
  • MCG failure information MCG failure information
  • the secondary network device sends MCG failure information to the primary network device, and correspondingly, the primary network device receives the MCG failure information from the secondary network device.
  • the secondary network device may send an RRC transfer (RRC transfer) message to the primary network device, where the RRC transfer message carries the information element of the MCG failure information.
  • RRC transfer RRC transfer
  • S601 and S602 can also be replaced with S601* and S602*.
  • S601* is the same as S501*
  • S602* is the same as S502*.
  • the primary network device sends an RRC transfer message to the secondary network device, and correspondingly, the secondary network device receives the RRC transfer message from the primary network device.
  • the RRC transfer message is used to instruct the secondary network device to send timing information to the terminal device.
  • the RRC transfer message includes indication information, where the indication information is used to instruct the secondary network device to send timing information to the terminal device.
  • S601 and S602; or, S601* and S602* are optional steps. Without these optional steps, the conditions for the primary network device to trigger S603 may also be determined by the primary network device, for example, the primary network device detects that the uplink is out of synchronization, or the number of downlink HARQ retransmissions reaches a set threshold or downlink RLC retransmissions The number of times reached the set threshold.
  • the secondary network device sends timing information to the terminal device, and correspondingly, the terminal device receives the timing information from the secondary network device.
  • Timing information may be carried in DL Information Transfer MRDC (DL Information Transfer MRDC).
  • the timing information may be the timing information of the PScell, including an absolute time and the frame number of the downlink frame boundary of the PScell corresponding to the absolute time.
  • the secondary network device can send timing information to the terminal device through the SRB3.
  • the terminal equipment obtains the timing information of the PScell, so that it can obtain the high-precision timing in time and ensure the normal transmission of the service.
  • S605 may also be included.
  • a specific embodiment of another timing method is as follows.
  • the terminal device sends MCG failure information (MCG failure information) to the secondary network device, and correspondingly, the secondary network device receives the MCG failure information from the terminal device.
  • MCG failure information MCG failure information
  • the secondary network device sends timing information to the terminal device, and correspondingly, the terminal device receives the timing information from the secondary network device.
  • Timing information may be carried in DL Information Transfer MRDC (DL Information Transfer MRDC).
  • the timing information may be the timing information of the PScell, including an absolute time and the frame number of the downlink frame boundary of the PScell corresponding to the absolute time.
  • the secondary network device can send timing information to the terminal device through the SRB3.
  • the terminal equipment obtains the timing information of the PScell, so that it can obtain the high-precision timing in time and ensure the normal transmission of the service.
  • the secondary network device sends an RRC transfer message to the primary network device, where the RRC transfer message is used to notify the primary network device that the secondary network device is or will send timing information to the terminal device.
  • the primary network device receives the RRC transfer message from the secondary network device.
  • the primary network device sends an RRC transfer message to the secondary network device, and correspondingly, the secondary network device receives the RRC transfer message from the primary network device.
  • the RRC transfer message is used to indicate that the secondary network device is allowed to send timing information to the terminal device.
  • the RRC transfer message is used to indicate that the secondary network device is not allowed to send timing information to the terminal device, and can also be used to instruct to stop the secondary network device from sending timing information to the terminal device.
  • the secondary network device may determine whether to send timing information to the terminal device according to the instruction of the primary network device.
  • S704 is an optional step.
  • S705 may also be included.
  • the embodiments of the present application can ensure that the terminal device obtains high-precision timing in a timely manner, and ensures service transmission performance. It can be applied to the situation that the terminal device and the main network device fail to send the wireless link in the dual-connection or multi-connection scenario. Further, it can also be applied to the scenario where the terminal device is not configured with SRB offloading, and it can also be applied to the scenario where the terminal device is not configured with SRB for PDCP duplication and transmission. In these two scenarios, the SRB can be SRB1 or SRB2. These two scenarios The middle SRB can be recorded as SRB1/SRB2, which means SRB1 or SRB2.
  • Fig. 7b shows a scenario in which the terminal device configures SRB offloading.
  • Both SRB1 and SRB2 are used for signaling transmission between terminal equipment and main network equipment.
  • One SRB1/SRB2 corresponds to one RRC entity, one PDCP entity, and at least two RLC entities.
  • one SRB1/SRB2 corresponds to one RRC entity, one PDCP entity, and two RLC entities.
  • one RLC entity is in the primary network device (MCG)
  • MCG primary network device
  • SCG secondary network device
  • the SRB1/SRB2 signaling is generated on a PDCP entity, and the SRB1/SRB2 signaling can be sent through any one of the above RLC entities.
  • the wireless link between the terminal device and the MCG fails, for example, the RLC entity where the MCG is located fails, the signaling can be sent through the RLC entity where the SCG is located.
  • the terminal device configures the PDCP replication transmission of the SRB means that one SRB1/SRB2 corresponds to one RRC entity, one PDCP entity, and at least two RLC entities.
  • one SRB1/SRB2 corresponds to one RRC entity, one PDCP entity, and two RLC entities, wherein one RLC entity is in the MCG, and one RLC entity is in the SCG.
  • the signaling of SRB1/SRB2 is duplicated on one PDCP entity to generate two copies, one signaling is sent through one of the RLC entities, and the other signaling is sent through the other RLC entity.
  • FIG. 7c it shows a scenario in which the terminal device is not configured with SRB offloading.
  • the signaling between the terminal equipment and the main network equipment (MCG) is transmitted through SRB1/SRB2, and one SRB1/SRB2 corresponds to one RRC entity, one PDCP entity, and one RLC entity.
  • the signaling between the terminal equipment and the secondary network equipment (SCG) is transmitted through SRB3, and one SRB3 corresponds to one RRC entity, one PDCP entity, and one RLC entity.
  • the solution for sending timing information to the terminal through the SCG described in the embodiments of this application may be used. , to ensure the normal transmission of services and the reliability of data transmission when the wireless link between the terminal device and the MCG fails and has not been recovered.
  • the network device may include hardware structures and/or software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. Whether one of the above functions is performed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • an embodiment of the present application further provides a communication apparatus 800 for executing the foregoing method embodiments.
  • the communication apparatus 800 may be a network device, a device in a network device, or a device that can be matched and used with the network device.
  • the network device may be a first network device, a second network device, or a third network device.
  • the communication apparatus 800 may include modules that perform one-to-one correspondence with the methods/operations/steps/actions performed by the network device in the above method embodiments, and the modules may be hardware circuits, software, or hardware.
  • the circuit is implemented in combination with software.
  • the communication apparatus 800 may include a communication module 801 and a processing module 802 .
  • the communication module 801 may further include a receiving module 801-1 and a sending module 801-2.
  • the processing module 802 is configured to call the communication module 801 to receive and/or send signals.
  • the receiving module 801-1 is configured to receive first information from the second network device, where the first information includes: the first time and the first downlink of the primary cell Pcell in the MCG corresponding to the first time The frame number of the frame; the sending module 801-2 is configured to send timing information to the terminal device based on the first information.
  • the receiving module 801-1, the sending module 801-2, and the processing module 802 are further configured to perform other operations performed by the first network device in the method embodiment of FIG. 3a, which will not be repeated here.
  • a processing module 802 configured to acquire first information; wherein, the first information comes from a terminal device, and the first information is used to indicate that the link between the terminal device and the second network device fails, or the first information is used to request timing information; Alternatively, the first information comes from the second network device, and is used to instruct to send timing information to the terminal device; the communication module 801 is configured to send timing information to the terminal device based on the first information.
  • the communication module 801 and the processing module 802 are further configured to perform other operations performed by the first network device in the above method embodiment of FIG. 4 , which will not be repeated here.
  • the receiving module 801-1 is used to receive the first information from the first network device, the first information is used to indicate that the link between the second network device and the terminal device fails; the sending module 801-2 is used to send the first information to the first network device.
  • the network device sends second information, where the second information is used to instruct the first network device to send timing information to the terminal device, and the second information includes: the first time and the first downlink of the primary cell Pcell in the MCG corresponding to the first time The frame number of the frame.
  • the receiving module 801-1 and the sending module 801-2 are further configured to perform other operations performed by the second network device in the foregoing method embodiments, which will not be repeated here.
  • the division of modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of the present application may be integrated into one processing unit. In the device, it can also exist physically alone, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules.
  • a communication apparatus 900 provided by an embodiment of the present application is used to implement the function of the network device in the above method.
  • the device may be a network device, or a device in a network device, or a device that can be matched and used with the network device.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication apparatus 900 includes at least one processor 920, configured to implement the function of the network device in the method provided in the embodiment of the present application.
  • the network device may be a first network device, a second network device, or a third network device.
  • the communication device 900 may also include a communication interface 910 .
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces, which are used to communicate with other devices through a transmission medium.
  • the communication interface 910 is used for the apparatus in the communication apparatus 900 to communicate with other devices.
  • the processor 920 uses the communication interface 910 to send and receive data, and is used to implement the methods described in the above method embodiments.
  • the processor 920 uses the communication interface 910 to: receive first information from the second network device, where the first information includes: A time and the frame number of the first downlink frame of the primary cell Pcell in the MCG corresponding to the first time. Using the communication interface 910, the processor 920 is further configured to send timing information to the terminal device based on the first information.
  • the processor 920 uses the communication interface 910 to: obtain the first information; wherein the first information comes from the terminal device, and the first information is used to indicate that the link between the terminal device and the second network device fails , or the first information is used to request timing information; or, the first information comes from the second network device and is used to instruct to send timing information to the terminal device.
  • the processor 920 is further configured to use the communication interface 910 to: send timing information to the terminal device based on the first information.
  • the processor 920 uses the communication interface 910 to: receive first information from the first network device, where the first information is used to indicate the connection between the second network device and the terminal device Link failed.
  • the processor 920 is further configured to: send second information to the first network device, the second information is used to instruct the first network device to send timing information to the terminal device, the second information includes: the first time, and the first The frame number of the first downlink frame of the primary cell Pcell in the MCG corresponding to the time.
  • the processor 920 and the communication interface 910 may also be configured to perform other corresponding steps or operations performed by the network device in the foregoing method embodiments, which will not be repeated here.
  • Communication apparatus 900 may also include at least one memory 930 for storing program instructions and/or data.
  • Memory 930 is coupled to processor 920 .
  • the coupling in the embodiments of the present application is an indirect coupling or communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 920 may cooperate with memory 930 .
  • Processor 920 may execute program instructions stored in memory 930 . At least one of the at least one memory may be integrated with the processor.
  • the specific connection medium between the communication interface 910 , the processor 920 , and the memory 930 is not limited in the embodiments of the present application.
  • the memory 930, the processor 920, and the communication interface 910 are connected through a bus 940 in FIG. 9.
  • the bus is represented by a thick line in FIG. 9.
  • the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • the communication module 801 and the communication interface 910 may output or receive baseband signals.
  • the output or reception of the communication module 801 and the communication interface 910 may be radio frequency signals.
  • the processor may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, which can implement or The methods, steps and logic block diagrams disclosed in the embodiments of this application are executed.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in conjunction with the embodiments of the present application may be directly embodied as executed by a hardware processor, or executed by a combination of hardware and software modules in the processor.
  • the memory 930 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., or a volatile memory (volatile memory), Such as random-access memory (random-access memory, RAM).
  • Memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in this embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, for storing program instructions and/or data.
  • an embodiment of the present application further provides a chip, including a processor, for supporting the communication apparatus to implement the first network device or the second network in the above method embodiment The functions involved in the device.
  • the chip is connected to a memory or the chip includes a memory for storing necessary program instructions and data of the communication device.
  • An embodiment of the present application provides a computer-readable storage medium storing a computer program, where the computer program includes instructions for executing the foregoing method embodiments.
  • the embodiments of the present application provide a computer program product containing instructions, which, when executed on a computer, cause the above method embodiments to be executed.
  • the embodiments of the present application may be provided as a method, a system, or a computer program product. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种授时方法及装置,用以在双连接或多连接场景下当主网络设备发生无线链路失败时保证终端设备的授时精度。该方法可以通过以下步骤实现:第二网络设备向第一网络设备发送第一信息,第一网络设备接收来自第二网络设备的第一信息,其中,第一网络设备管理辅小区组,第二网络设备管理主小区组,第一信息包括:第一时间,以及第一时间对应的主小区组中的主小区的第一下行帧的帧号,第一网络设备基于所述第一信息向终端设备发送授时信息。

Description

一种授时方法及装置 技术领域
本申请涉及通信技术领域,特别涉及一种授时方法及装置。
背景技术
移动互联网和物联网近年来称为通信发展的主要驱动力。为了实现业务的精准控制,对终端设备和网络设备的时间同步的精度要求越来越高。例如,在工业控制、智能电网、无人驾驶等多个领域,都会要求终端设备和网络设备进行高精度的时间同步。现有技术中,网络设备向终端设备授时,以使得终端设备获得与网络设备的时间同步。
在终端设备接入多个网络设备的场景中,可能会发生终端设备与其中一个或多个网络设备之间的通信链路失败的情况,这种情况下,终端设备如何获取精准的授时,是需要解决的问题。
发明内容
本申请提供一种授时方法及装置,以期在终端设备接入多个网络设备的场景中保证终端设备获取精准授时。
第一方面,提供一种授时方法,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行。该方法可以通过第一网络设备和第二网络设备实现。第一网络设备管理辅小区组SCG,或者说第一网络设备部署有SCG,第一网络设备也可以称为辅网络设备。第二网络设备管理主小区组MCG,或者说第二网络设备部署有MCG,第二网络设备也可以称为主网络设备。终端设备与第一网络设备和第二网络设备建立双连接。也可以是,终端设备与多个网络设备建立多连接,其中,第二网络设备为主网络设备,第一网络设备为多个辅网络设备中的一个。该方法可以通过以下步骤实现:第二网络设备向第一网络设备发送第一信息,第一网络设备接收来自第二网络设备的第一信息。其中,第一信息包括第一时间,第一信息还包括第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号,帧号可以是系统帧号或无线帧号。第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号,是指第一时间与MCG中的主小区Pcell的第一下行帧的帧号对应。第一网络设备基于第一信息向终端设备发送授时信息。可以看出,通过第二网络设备向第一网络设备发送第一信息,第一网络设备可以基于第一信息向终端设备发送授时信息,这样在第二网络设备与终端设备之间发生无线链路失败RLF时,就不需要等待链路恢复,而通过第一网络设备向终端设备发送授时信息,能够使得终端设备及时的获取授时信息,保证终端设备在与第二网络设备链路失败还未恢复正常期间依然能够获得高精度的授时信息,从而保证终端设备和网络的高精度的时间同步,保证了终端设备和网络之间的数据传输的可靠性。
在一个可能的设计中,授时信息包括第一时间以及所述第一时间对应的所述MCG中的Pcell的第一下行帧的帧号。即第一网络设备将第一信息包含的内容直接作为授时信息。这种情况下,可以理解为,第二网络设备将原本向终端设备发送的授时信息,通过第一网络设备来转发给终端设备,这样,保证了在第二网络设备与终端设备发生链路失败的时候, 终端设备能够及时获取高精度授时,保证业务的正常传输,保证了终端设备与网络之间的数据传输的可靠性。
在一个可能的设计中,第一网络设备可以根据第一信息,确定授时信息。例如,第一网络设备基于第一时间对应的MCG中的Pcell的第一下行帧的帧号,确定SCG中的辅助主小区PScell的第二下行帧的帧号,基于第一时间以及SCG中的PScell的第二下行帧的帧号确定授时信息。授时信息中包括第一时间以及SCG中的PScell的第二下行帧的帧号。这样,第一网络设备可以向终端设备发送自己管辖的小区的授时信息。当向终端设备发送多次授时信息时,不需要每次都从第二网络设备中获取第二网络设备管辖的小区的授时信息,可以节省信令开销。
在一个可能的设计中,第一网络设备作为辅网络设备,可以通过信令无线承载SRB3向终端设备发送授时信息。
第二方面,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行。该方法可以通过第一网络设备和第二网络设备实现。第一网络设备管理辅小区组SCG,或者说第一网络设备部署有SCG,第一网络设备也可以称为辅网络设备。第二网络设备管理主小区组MCG,或者说第二网络设备部署有MCG,第二网络设备也可以称为主网络设备。终端设备与第一网络设备和第二网络设备建立双连接。也可以是,终端设备与多个网络设备建立多连接,其中,第二网络设备为主网络设备,第一网络设备为多个辅网络设备中的一个。该方法可以通过以下步骤实现:第一网络设备获取第一信息,并基于第一信息向终端设备发送授时信息。其中,一种可能的实施方式中,第一信息来自终端设备,终端设备向第一网络设备发送第一信息,第一网络设备接收来自终端设备的第一信息,第一信息用于指示终端设备与第二网络设备之间的链路失败或第一信息用于请求授时信息;一种可能的实施方式中,第一信息来自第二网络设备,第二网络设备向第一网络设备发送第一信息,第一网络设备接收来自第二网络设备的第一信息,第一信息用于指示向终端设备发送授时信息。在第一网络设备接收到终端设备第一信息时,若第一信息用于指示终端设备与第二网络设备之间的链路失败,通过第一网络设备向终端设备发送授时信息,这样在第二网络设备与终端设备之间发送链路时,就不需要等待链路恢复,而通过第一网络设备向终端设备发送授时信息,能够使得终端设备及时的获取授时信息,保证终端设备在与第二网络设备链路未恢复正常的期间依然能够获得高精度的授时信息,从而保证终端设备和网络的高精度的时间同步,保证了终端设备和网络之间的数据传输的可靠性。若第一信息用于指示终端设备请求授时信息,则第一网络设备向终端设备发送授时信息,也能够使得终端设备及时获取授时信息,适用于第二网络设备与终端设备的链路失败未恢复正常期间,保证终端设备业务的正常传输。当然,第一网络设备也可以根据第二网络设备的指示,向终端设备发送授时信息,可以达到相同的技术效果。
在一个可能的设计中,授时信息包括第一时间,还包括第一时间对应的SCG中的辅助主小区PScell的下行帧的帧号。这样,第一网络设备可以不用从第二网络设备中获取第二网络设备管辖的小区的授时信息,也能使得终端设备获得授时,可以节省信令开销。
在一个可能的设计中,第一网络设备还可以向第二网络设备发送第二信息,第二信息用于指示终端设备与第二网络设备之间的链路失败,使得第二网络设备可以恢复与终端设备之间的链路,或者使得第二网络设备进行主网络设备的重选或切换等后续操作,保证终端设备的业务质量。
在一个可能的设计中,第一网络设备还可以向第二网络设备通知:第一网络设备向终端设备发送授时信息。
在一个可能的设计中,第二网络设备在接收到来自第一网络设备的上述通知后,可以向第一网络设备发送第三信息,第一网络设备接收来自第二网络设备的第三信息,第三信息用于指示第一网络设备停止向终端设备发送授时信息。比如在第一网络设备已经恢复终端设备的链路之后,通过第三信息,能够及时的切换为第二网络设备通知授时信息,保证授时的高精度。
在一个可能的设计中,还可能存在第三网络设备向第一网络设备发送第四信息,第一网络设备还可能接收来自第三网络设备的第四信息,第四信息用于指示第一网络设备停止向终端设备发送授时信息,第三网络设备管理第二MCG。第三网络设备可以是终端设备接入的新的主网络设备。
在一个可能的设计中,第一网络设备可以通过信令无线承载SRB3向终端设备发送授时信息。
第三方面,该方法可以由网络设备执行,也可以由网络设备的部件(例如处理器、芯片、或芯片系统等)执行。该方法可以通过第一网络设备和第二网络设备实现。第一网络设备管理辅小区组SCG,或者说第一网络设备部署有SCG,第一网络设备也可以称为辅网络设备。第二网络设备管理主小区组MCG,或者说第二网络设备部署有MCG,第二网络设备也可以称为主网络设备。终端设备与第一网络设备和第二网络设备建立双连接。也可以是,终端设备与多个网络设备建立多连接,其中,第二网络设备为主网络设备,第一网络设备为多个辅网络设备中的一个。该方法可以通过以下步骤实现:第一网络设备向第二网络设备发送第一信息,第二网络设备接收来自第一网络设备的第一信息,第一信息用于指示第二网络设备与终端设备之间的链路失败。第二网络设备向第一网络设备发送第二信息,第二信息用于指示第一网络设备向终端设备发送授时信息,第二信息包括:第一时间以及第一时间对应的所述MCG中的主小区Pcell的第一下行帧的帧号。通过第二网络设备向第一网络设备发送第一信息,第一网络设备可以基于第一信息向终端设备发送授时信息,这样在第二网络设备与终端设备之间发送RLF时,就不需要等待链路恢复,而通过第一网络设备向终端设备发送授时信息,能够使得终端设备及时的获取授时信息,保证终端设备在与第二网络设备链路失败还未恢复正常期间依然能够获得高精度的授时信息,从而保证终端设备和网络的高精度的时间同步,保证了终端设备和网络之间的数据传输的可靠性。
在一个可能的设计中,授时信息包括第一时间以及第一时间对应的所述MCG中的Pcell的第一下行帧的帧号。
在一个可能的设计中,第二网络设备还可以向第一网络设备发送第三信息,第三信息用于指示第一网络设备停止向终端设备发送授时信息。比如在第一网络设备已经恢复终端设备的链路之后,通过第三信息,能够及时的切换为第二网络设备通知授时信息,保证授时的高精度。
第四方面,提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种设计中,该通信装置可以包括执行第一方面中所描述的第一网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。处理模块用于调 用通信模块执行接收和/或发送的功能。进一步地,通信模块还可以包括接收模块和发送模块。示例性地:
接收模块,用于接收来自第二网络设备的第一信息,第一信息包括:第一时间以及第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号;发送模块,用于基于第一信息向终端设备发送授时信息。
在一个可能的设计中,授时信息包括:第一时间,以及第一时间对应的MCG中的Pcell的第一下行帧的帧号。
在一个可能的设计中,处理模块,用于基于第一时间对应的MCG中的Pcell的第一下行帧的帧号,确定SCG中的辅助主小区PScell的第二下行帧的帧号;以及用于基于第一时间以及SCG中的PScell的第二下行帧的帧号,确定授时信息。
在一个可能的设计中,在向终端设备发送授时信息时,发送模块具体用于:通过信令无线承载SRB3发送授时信息。
第四方面的有益效果可以参考第一方面的对应描述,在此不再赘述。
第五方面,提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种设计中,该通信装置可以包括执行第二方面中所描述的第一网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。进一步地,通信模块还可以包括接收模块和发送模块。示例性地:
处理模块,用于获取第一信息;其中,第一信息来自终端设备,第一信息用于指示终端设备与第二网络设备之间的链路失败,或者第一信息用于请求授时信息;或者,第一信息来自第二网络设备,用于指示向终端设备发送授时信息;通信模块,用于基于第一信息,向终端设备发送授时信息。
在一个可能的设计中,授时信息包括:第一时间,以及第一时间对应的SCG中的辅助主小区PScell的下行帧的帧号。
在一个可能的设计中,通信模块还用于:向第二网络设备发送第二信息,第二信息用于指示终端设备与第二网络设备之间的链路失败。
在一个可能的设计中,通信模块还用于:向第二网络设备通知:第一网络设备向终端设备发送授时信息。
在一个可能的设计中,通信模块还用于:接收来自第二网络设备的第三信息,第三信息用于指示第一网络设备停止向终端设备发送授时信息。
在一个可能的设计中,通信模块还用于:接收来自第三网络设备的第四信息,第四信息用于指示第一网络设备停止向终端设备发送授时信息,第三网络设备管理第二MCG。
在一个可能的设计中,在向终端设备发送授时信息时,通信模块用于:通过信令无线承载SRB3发送授时信息。
第五方面的有益效果可以参考第二方面的对应描述,在此不再赘述。
第六方面,提供一种通信装置,该通信装置可以是网络设备,也可以是网络设备中的装置(例如,芯片,或者芯片系统,或者电路),或者是能够和网络设备匹配使用的装置。一种设计中,该通信装置可以包括执行第三方面中所描述的第二网络设备执行的方法/操作 /步骤/动作所一一对应的模块,该模块可以是硬件电路,也可是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置可以包括处理模块和通信模块。处理模块用于调用通信模块执行接收和/或发送的功能。进一步地,通信模块还可以包括接收模块和发送模块。示例性地:接收模块,用于接收来自第一网络设备的第一信息,第一信息用于指示第二网络设备与终端设备之间的链路失败;发送模块,用于向第一网络设备发送第二信息,第二信息用于指示第一网络设备向终端设备发送授时信息,第二信息包括:第一时间,以及第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号。
在一个可能的设计中,授时信息包括:第一时间,以及第一时间对应的MCG中的Pcell的第一下行帧的帧号。
在一个可能的设计中,发送模块还用于:向第一网络设备发送第三信息,第三信息用于指示第一网络设备停止向终端设备发送授时信息。
第六方面的有益效果可以参考第三方面的对应描述,在此不再赘述。
第七方面,提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该通信装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。处理器用于调用一组程序、指令或数据,执行上述第一方面或第二方面所描述的方法。
可选的,该通信装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的、指令或数据时,可以实现上述第一方面或第二方面所描述的第一网络设备执行的方法。
第八方面,提供一种通信装置,所述通信装置包括通信接口和处理器,所述通信接口用于该通信装置与其它设备进行通信,例如数据或信号的收发。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。处理器用于调用一组程序、指令或数据,执行上述第三方面所描述的第二网络设备执行的方法。
可选的,该通信装置还可以包括存储器,用于存储处理器调用的程序、指令或数据。该存储器与该处理器耦合,该处理器执行该存储器中存储的、指令或数据时,可以实现上述第三方面所描述的方法。
第九方面,本申请实施例中还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在计算机上运行时,使得如第一方面至第三方面任一方面所描述的方法被执行。
第十方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现上述如第一方面至第三方面任一方面所描述的方法。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
第十一方面,本申请实施例提供了一种通信系统,所述通信系统包括如第四方面所述的通信装置或如第五方面所述的通信装置,以及包括如第六方面所述的通信装置。
第十二方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得如第一方面至第三方面任一方面所描述的方法被执行。
附图说明
图1为本申请实施例中通信系统架构的示意图;
图2a为本申请实施例中主网络设备管理主小区组的示意图;
图2b为本申请实施例中辅网络设备管理辅小区组的示意图;
图3a为本申请实施例中授时方法的流程示意图之一;
图3b为本申请实施例中授时信息的确定方法示意图;
图4为本申请实施例中授时方法的流程示意图之二;
图5为本申请实施例中授时方法的具体实施例流程示意图之一;
图6为本申请实施例中授时方法的具体实施例流程示意图之二;
图7a为本申请实施例中授时方法的具体实施例流程示意图之三;
图7b为本申请实施例中SRB1和SRB2分流场景示意图;
图7c为本申请实施例中SRB1和SRB2没有分流场景示意图;
图8为本申请实施例中通信装置结构示意图之一;
图9为本申请实施例中通信装置结构示意图之二。
具体实施方式
本申请实施例提供一种授时方法及装置。其中,方法和装置是基于同一技术构思的,由于方法及装置解决问题的原理相似,因此装置与方法的实施可以相互参见,重复之处不再赘述。本申请实施例的描述中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。本申请中所涉及的至少一个是指一个或多个;多个,是指两个或两个以上。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
本申请实施例提供的授时方法可以应用于第四代(4th generation,4G)通信系统,例如长期演进(long term evolution,LTE)通信系统,也可以应用于第五代(5th generation,5G)通信系统,例如5G新空口(new radio,NR)通信系统,或应用于未来的各种通信系统,例如第六代(6th generation,6G)通信系统。本申请实施例提供的技术方案可以应用于各种通信场景,例如可以应用于以下通信场景中的一种或多种:增强移动宽带(enhanced mobile broadband,eMBB)、超可靠低时延通信(ultra-reliable low-latency communication,URLLC)、机器类型通信(machine type communication,MTC)、大规模机器类型通信(massive machine type communications,mMTC)、设备到设备(device-to-device,D2D)、车辆外联(vehicle to everything,V2X)、车辆到车辆(vehicle to vehicle,V2V)、和物联网(internet of things,IoT)等。下面将结合附图,对本申请实施例进行详细描述。
本申请实施例中,涉及到终端设备和网络设备两种设备,下面先对这两种设备进行介绍。
网络设备,为无线接入网(radio access network,RAN)中的节点,又可以称为基站,还可以称为RAN节点(或设备)。目前,一些接入网设备的举例为:gNB/NR-NB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP),卫星设备,或5G通信系统中的网络设备,或 者未来可能的通信系统中的网络设备。网络设备还可以是其他具有网络设备功能的设备,例如,网络设备还可以是设备到设备(device to device,D2D)通信、车联网通信、机器通信中担任网络设备功能的设备。网络设备还可以是未来可能的通信系统中的网络设备。本申请中将具有无线收发功能的网络设备及可设置于前述网络设备的芯片统称为网络设备。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
终端设备,又可以称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音或数据连通性的设备,也可以是物联网设备。例如,终端设备包括具有无线连接功能的手持式设备、车载设备等。目前,终端设备可以是:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备(例如智能手表、智能手环、计步器等),车载设备(例如,汽车、自行车、电动车、飞机、船舶、火车、高铁等)、虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制中的无线终端、智能家居设备(例如,冰箱、电视、空调、电表等)、智能机器人、车间设备、无人驾驶中的无线终端、远程手术中的无线终端、智能电网(smart grid)中的无线终端、运输安全中的无线终端、智慧城市中的无线终端,或智慧家庭中的无线终端、飞行设备(例如,智能机器人、热气球、无人机、飞机)等。终端设备还可以是其他具有终端功能的设备,例如,终端设备还可以是D2D通信中担任终端功能的设备。本申请中将具有无线收发功能的终端设备及可设置于前述终端设备的芯片统称为终端设备。
本申请实施例中,一个终端设备可以接入一个或多个网络设备。终端设备接入多个网络设备可以称为多连接。以终端设备接入两个网络设备为例,终端设备连接到两个网络设备可以称为双连接(dual connection,DC)。在DC场景中,其中一个网络设备为主网络设备或主节点,另外一个网络设备为辅网络设备、辅节点、从网络设备、或从节点。每个网络设备下都可以有若干个为终端设备服务的小区。如果主网络设备为LTE基站,辅网络设备为NR基站,则双连接称为EN-DC。如果主网络设备为NR基站,辅网络设备为LTE基站,则双连接称为NE-DC。如果主网络设备和辅网络设备均为NR基站,则双连接称为NR-DC。
以图1所示的通信系统架构为例对本申请使用的双连接的应用场景进行说明。参阅图1所示,通信系统100包括网络设备101-1、网络设备101-2和终端设备102。网络设备101-1和网络设备101-2可以通过接口进行通信,例如接口可以是Xn接口或X2接口,还可以是其它名称的接口。可以理解的是,图1仅示出了本申请实施例可以应用的双连接的一种可能的通信系统架构,当应用到其它场景中时,通信系统架构中也可以包括更多或更少的设 备。
基于以上描述,下面对本申请实施例提供的授时方法做详细说明。为例更好的理解本申请实施例提供的授时方法,下面以双连接为例进行介绍,可以理解的是,本领域技术人员可以将双连接的方案应用到其它场景中。
如图2a所示,主网络设备管理主小区组(master cell group,MCG),MCG包括可以为终端设备提供服务的一组小区。MCG可以包括一个或多个小区。其中,MCG包括主小区(primary cell,Pcell),还可以包括一个或多个辅小区。PCell为终端设备进行初始无线资源控制(radio resource control,RRC)连接建立或RRC连接重建的小区。
如图2b所示,辅网络设备管理辅小区组(secondary cell group,SCG),SCG包括可以为终端设备提供服务的一组小区。SCG可以包括一个或多个小区。其中,SCG包括辅小区组的主小区(primary SCG cell,PScell),还可以包括一个或多个辅小区。PScell也可以称为辅助主小区。
终端设备需要从网络设备获取授时信息,以使得终端设备与网络设备实现高精度的时间同步。在DC场景下,一般由主网络设备向终端设备发送授时信息,例如可以通过PCell向终端设备发送授时信息。实际应用中,可能会发生终端设备与主网络设备之间的无线链路失败(radio link failure,RLF)的情况,在这种情况下,终端设备如何获取授时信息。一种实现方式中,终端设备检测到与主网络设备之间的RLF,会向主网络设备上报RLF,主网络设备会进行链路恢复,在链路恢复后,继续由主网络设备向终端设备发送授时信息。但是这种实现方式,在主网络设备链路恢复的这段时间里,终端设备是无法获取授时信息的。例如从终端设备检测到RLF,到链路恢复大约需要1秒的时间,对于时钟晶振的精度是0.1百万分之一(part per million,ppm)的终端设备,表示1秒大概会产生100纳秒的误差量。这样会影响终端设备的授时精度,进而影响业务的传输。
基于此,本申请实施例提供一种授时方法,以期在双连接或多连接场景下当主网络设备发生RLF时保证终端设备的授时精度。以下方法描述中,第一网络设备为辅网络设备,第二网络设备为主网络设备。第一网络设备管理SCG,第二网络设备管理MCG。
如图3a所示,本申请实施例提供的授时方法的具体流程如下所述。
S301、第二网络设备向第一网络设备发送第一信息,对应的,第一网络设备接收来自第二网络设备的该第一信息。
其中,第一信息包括第一时间、以及第一时间对应的MCG中的Pcell的第一下行帧的帧号。这里第一时间对应的MCG中的Pcell的第一下行帧的帧号,是指第一时间与MCG中的Pcell的第一下行帧的帧号对应。
S302、第一网络设备基于该第一信息,向终端设备发送授时信息。
可以看出,通过主网络设备向辅网络设备发送第一信息,辅网络设备可以基于第一信息向终端设备发送授时信息,这样在主网络设备与终端设备之间发送RLF时,就不需要等待链路恢复,而通过辅网络设备向终端设备发送授时信息,能够使得终端设备及时的获取授时信息,在与主网络设备RLF期间保证高精度的授时信息,从而保证终端设备和网络的高精度的时间同步,保证业务的正常传输,保证了终端设备和网络之间的数据传输的可靠性。
下面对图3a实施例的一些可选的实现方式进行详细介绍。
触发第二网络设备向第一网络设备发送第一信息的条件或时机可以包括以下几种情 况。例如,第二网络设备确定与终端设备发生RLF。又例如,第二网络设备负荷较重,需要第一网络设备辅助向终端设备发送授时信息,以减轻第二网络设备的负荷。还可以有其它的触发条件。
若第二网络设备基于在确定与终端设备发生RLF时,触发向第一网络设备发送第一信息,则在S301之前,还可以包括S300。
S300、第二网络设备确定与终端设备发生RLF。
一种方式中,第二网络设备通过自身检测确定发生RLF。例如,第二网络设备可能在检测到终端设备的上行失步时,确定与终端设备发生RLF。第二网络设备可以在发送参考信号或者向终端设备发送数据,没有收到终端设备的反馈信息时,确定上行失步。又例如,第二网络设备可以在下行重传次数到达设定门限时,确定与终端设备发生RLF。下行重传可以是混合自动重传请求(hybrid automatic repeat request,HARQ)重传,还可以是无线链路控制(radio link control,RLC)层重传。
另一种方式中,第二网络设备通过第一网络设备的上报消息,确定发生RLF。这种情况下,可以通过S300-1和S300-2实现。
S300-1、终端设备向第一网络设备发送第二信息,对应的,第一网络设备接收来自终端设备的第二信息。
该第二信息用于指示该终端设备与第二网络设备之间发生RLF。第二信息可以是MCG失败信息(MCG failure information)。
S300-2、第一网络设备向第二网络设备发送第三信息,对应的,第二网络设备接收来自第一网络设备的第三信息。
第三信息用于指示终端设备与第二网络设备之间发生RLF。第三信息可以是RRC传输(RRC transfer)消息。第三信息中可以携带或包括第二信息。例如,RRC transfer消息中包括或携带MCG failure information。
第二网络设备根据第三信息,确定与终端设备发生RLF。
本申请中,RRC transfer消息为网络设备之间的消息种类,例如,第一网络设备和第二网络设备通过Xn接口传输RRC transfer消息。
S301中,第一信息包括第一时间、以及第一时间对应的MCG中的Pcell的第一下行帧的帧号。其中,第一时间可以是一个绝对时间。第二网络设备可以从连接的时钟源获取第一时间,第二网络设备确定第一时间对应的Pcell的下行帧的帧号,Pcell的下行帧的帧号可以是指Pcell的下行帧边界的帧号。
比如,绝对时间可以是全球卫星定位系统无线网络(global positioning system,GPS)时间。预设GPS起始时间,该绝对时间为相对GPS起始时间的时间。例如,该GPS起始时间点可以为:阳历1980年1月6日00:00:00。绝对时间可以是UTC时间,即根据该GPS时间减去闰秒(leap seconds),计算得到协调世界时(coordinated universal time,UTC)。绝对时间可以是本地时间,该本地时间为相对本地起始时间(预设时间)的时间。该本地起始时间点的取值取决于上层的实现。比如,可以根据同步时钟源的本地时钟来决定。
S302中第一网络设备基于该第一信息向终端设备发送授时信息。其中,该授时信息可以包括第一时间以及第一时间对应的MCG中的Pcell的第一下行帧的帧号。即第一网络设备将从第一信息中获取的第一时间以及第一时间对应的MCG中的Pcell的第一下行帧的帧号,作为授时信息发送给终端设备。
可选的,第一网络设备也可以根据第一信息生成授时信息。具体地,基于第一时间对应的MCG中的Pcell的第一下行帧的帧号,确定SCG中的PScell的第二下行帧的帧号,基于第一时间以及SCG中的PScell的第二下行帧的帧号,确定授时信息。其中,MCG中的Pcell的第一下行帧与SCG中的PScell的第二下行帧之间存在定时差。第一网络设备可以根据定时差确定第一时间对应的SCG中的PScell的第二下行帧的帧号。比如,如图3b所示,MCG的Pcell的第一下行帧SFN=5的帧尾时刻对应第一时间t1,SCG的PScell的第二下行帧SFN=105的帧尾时刻对应第一时间t2=t1+D1。第一下行帧和第二下行帧的定时差D1如图3b所示。可以理解,第二下行帧可以选择SFN=105外的其他帧,相应地,t2对应第二下行帧的帧尾时刻=t1+D1+N*10ms,N为第二下行帧和第一下行帧的间隔无线帧个数。授时信息包括第一时间、以及第一时间对应的SCG中的PScell的第二下行帧的帧号。
在一种可能的实施例中,第二网络设备也可以直接向第一网络设备发送授时信息,授时信息包括第一时间、以及第一时间对应的SCG中的PScell的第二下行帧的帧号。第二网络设备也可以根据前述定时差确定第一时间对应的SCG中的PScell的第二下行帧的帧号。第一网络设备收到来自第二网络设备的该授时信息后,可以直接将该授时信息发送给终端设备。
S301中所述的第一信息可以是下行信息传输(DL information transfer)消息。S301中所述的第一信息也可以是RRC transfer消息,RRC transfer消息中携带DL information transfer信元,或者,第一信息携带于RRC transfer消息中,第一信息为DL information transfer信元。
S302中所述的授时信息可以是携带在DL information transfer MRDC,其中,MRDC为多模双链接(multi-radio dual connectivity,MRDC)。或者,S302中所述的授时信息可以携带于DL information transfer MRDC中,授时信息为DL information transfer信元。
本申请实施例中,网络设备可以通过信令无线承载(signaling radio bearer,SRB)向终端设备传输RRC信令和非接入层(non access stratum,NAS)信令。SRB包括SRB0、SRB1、SRB2和SRB3。SRB0使用公共控制信道(common control channel,CCCH),SRB1、SRB2和SRB3均使用专用控制信道(dedicated control channel,DCCH)。SRB2用于承载NAS信令,SRB1在SRB2建立之前也可以传输NAS信令。SRB0、SRB1和SRB2均用于终端设备和主网络设备之间的信令传输。SRB3用于终端设备和辅网络设备之间的信令传输。
第一网络设备作为辅网络设备,在S302中第一网络设备可以通过SRB3向终端设备发送授时信息。
如图4所示,本申请实施例还提供了一种授时方法,具体流程如下所述。
S401、第一网络设备获取第四信息。
一种可能的实施例1中,第四信息来自终端设备。则,终端设备向第一网络设备发送第四信息,对应的,第一网络设备接收来自终端设备的第四信息。第四信息用于指示终端设备与第二网络设备之间的链路失败;或者第四信息用于请求授时信息;或者第四信息用于指示终端设备感兴趣的授时信息,换句话说,第四信息用于指示终端设备优选的网络设备提供用于5G内部系统时钟的定时信息。
可以理解,第一网络设备可以通过以下方式获取第四信息。方式1,终端设备直接向第一网络设备发送第四信息。方式2,终端设备向第二网络设备发送第四信息,第二网络 设备向第一网络设备转发第四信息,其中转发的第四信息可以是第二网络设备处理过的,即可以不同于从终端设备收到的原始第四信息。
一种可能的实施例2中,第四信息来自第二网络设备。则,第二网络设备向第一网络设备发送第四信息,对应的,第一网络设备接收来自第二网络设备的第四信息。第四信息用于指示第一网络设备向终端设备发送授时信息。
S402、第一网络设备基于该第四信息,向终端设备发送授时信息。
该授时信息包括第一时间、以及该第一时间对应的SCG中的PScell的下行帧的帧号。这里授时信息可以对应于图3a实施例中:授时信息包括第一时间、以及第一时间对应的SCG中的PScell的第二下行帧的帧号。
若第二网络未接收到S401,即,第一网络设备可通过其他方式确定是否向终端发送第四信息。
基于上述可能的实施例1,终端设备可以通过与第一网络设备之间建立的SRB3,向第一网络设备发送第四信息,对应的,第一网络设备通过SRB3接收来自终端设备的第四信息。第四信息可以是RRC消息,还可以是媒体接入层控制单元(medium access control element,MAC CE),还可以是物理层信令。终端设备可以在满足以下条件时,触发向第一网络设备发送第四信息,该条件可以是:终端设备的T310定时器启动或T316定时器启动。一般情况下,终端设备当检测到Pcell的物理层问题时,即从低层(lower layer)接收到N310个连续失步指示时,会启动T310定时器。其中,N为失步计数器的计数值,N310表示失步计数器的计数值为310,N310为失步计数器的预设门限,当预设门限到达时启动T310定时器,当T316定时器启动时,触发终端设备向第一网络设备发送第四信息。终端设备在发送MCG失败信息(MCG failure information)时会启动T316定时器,终端设备在与MCG发生无线链路失败时,会向MCG所在的第二网络设备发送MCG失败信息,此时终端设备的T316定时器启动,当T316定时器启动时,触发终端设备向第一网络设备发送第四信息。
第一网络设备接收到来自终端设备的第四信息之后,若第四信息用于指示终端设备与第二网络设备之间的链路失败,则第一网络设备可以通知第二网络设备该链路失败的信息,具体可以参考S300-2。进一步地,在第一网络设备通知第二网络设备该链路失败的信息之后,第二网络设备向第一网络设备发送第一信息,第一网络设备接收来自第二网络设备的该第一信息,具体可以参考S301。第一网络设备根据第一信息确定授时信息,并执行S402。
基于上述可能的实施例1,在S402之后,还可以包括S403。S403和S402没有严格的执行顺序,可以交换执行顺序也可以并行执行。S403、第一网络设备向第二网络设备发送第五信息,第二网络设备接收来自第一网络设备的第五信息。第五信息用于向第二网络设备通知:第一网络设备向终端设备发送授时信息。第二网络设备根据第五信息可以确定,第一网络设备已经正在或将要向终端设备发送授时信息。第二网络设备还可以根据第五信息获知可能与终端设备之间发生链路失败。
进一步地,在S403之后还可以包括S404。
S404、第二网络设备向第一网络设备发送第六信息,对应的,第一网络设备接收来自第二网络设备的第六信息。第六信息用于指示第一网络设备停止向终端设备发送授时信息。第六信息也可以是第五信息的拒绝响应消息。第二网络设备接收到第五信息之后,比如确定与终端设备之间的链路恢复,或者基于一些其他原因,都可以向第一网络设备发送第六 信息。
基于上述可能的实施例2,第二网络设备向第一网络设备发送第四信息,第四信息用于指示第一网络设备向终端设备发送授时信息。第二网络设备发送第四信息的触发条件类似于图3a实施例中第二网络设备发送第一信息的条件,可以参考上文中“触发第二网络设备向第一网络设备发送第一信息的条件或时机”。
S402中的授时信息可以是DL information transfer MRDC。或者,S302中的授时信息可以携带于DL information transfer MRDC中,授时信息为DL information transfer信元。
第一网络设备作为辅网络设备,在S402中第一网络设备可以通过SRB3向终端设备发送授时信息。
基于图3a和图4实施例,在S302之后,或在S402之后,还可以包括以下步骤。第三网络设备向第一网络设备发送指示信息,第一网络设备接收来自第三网络设备的指示信息。该指示信息用于指示第一网络设备停止向终端设备发送授时信息。第三网络设备为终端设备接入的新的主网络设备,第三网络设备可以管理MCG,为作区分,第一网络设备管理的MCG记为第一MCG,第三网络设备管理的MCG记为第二MCG。当终端设备接入第三网络设备之后,或者当终端设备接入第二MCG之后,可以由第三网络设备向终端设备发送授时信息,该授时信息可以包括第二时间以及该第二时间对应的第二MCG中的Pcell的第三下行帧的帧号。可选的,可以由第二网络设备向第三网络设备通知,当前由第一网络设备向终端设备发送授时信息,第三网络设备基于来自第二网络设备的通知,向第一网络设备发送该指示信息。
本申请实施例中,当涉及到第一网络设备接收或发送信息时,可以是指第一网络设备管理的SCG接收或发送信息,更具体地,可以是指SCG中的小区接收或发送信息。类似地,当涉及到第二网络设备接收或发送信息时,可以是指第二网络设备管理的MCG接收或发送信息,更具体地,可以是指MCG中的小区接收或发送信息。
基于上述实施例的描述,以下结合具体的应用场景,对本申请实施例提供的授时方法做进一步详细的描述。
如图5所示,一种授时方法的具体实施例如下所述。
终端设备连接主网络设备和辅网络设备,主网络设备管理MCG,辅网络设备管理SCG。MCG中的主小区为Pcell。SCG中的主小区为PScell。
S501、终端设备向辅网络设备发送MCG失败信息(MCG failure information),对应的,辅网络设备接收来自终端设备的MCG失败信息。
S502、辅网络设备向主网络设备发送MCG失败信息,主网络设备接收来自辅网络设备的MCG失败信息。
可选的,辅网络设备可以向主网络设备发送RRC transfer消息,RRC transfer消息中携带MCG失败信息的信元。
S501和S502也可以替换为S501*和S502*。
S501*、终端设备向辅网络设备发送RRC消息,RRC消息用于请求授时信息或用于指示感兴趣授时信息;辅网络设备接收来自终端设备的RRC消息。
终端设备可以通过SRB3发送该RRC消息。其中,RRC消息可以替换成MAC CE或物理层信令。终端设备发送RRC消息的触发条件可以是终端设备的T310定时器启动或T316定时器启动。T310定时器和T316定时器的启动时机可以参考图4实施例的相关描述, 在此不再赘述。
S502*、辅网络设备向主网络设备发送请求消息,对应的,主网络设备接收来自辅网络设备的请求消息。该请求消息用于请求授时信息。
S503、主网络设备向辅网络设备发送DL信息传输(DLInformationTransfer)消息/信息,对应的,辅网络设备接收来自主网络设备的该DLInformationTransfer消息/信息。
S501和S502;或者,S501*和S502*,是可选的步骤。如果没有这些可选步骤,主网络设备触发S503的条件也可以是主网络设备自行确定的,例如,主网络设备检测到上行失步,或者下行HARQ重传次数达到设定门限或者下行RLC重传次数达到设定门限。
可选的,主网络设备可以向辅网络设备发送RRC transfer消息,RRC transfer消息中携带该DLInformationTransfer信元。
本步骤中,DLInformationTransfer消息或DLInformationTransfer信元中可以携带Pcell的授时信息,Pcell的授时信息包含一个绝对时间、以及该绝对时间对应的Pcell的下行帧边界的帧号。Pcell的下行帧边界的帧号可以是Pcell的下行帧边界的系统帧号(system frame number,SFN)。
S504、辅网络设备向终端设备发送授时信息,对应的,终端设备从辅网络设备接收授时信息。
一种方式中,辅网络设备从主网络设备接收DLInformationTransfer后,将DLInformationTransfer携带于DL信息传输MRDC(DLInformationTransferMRDC)中,将DLInformationTransferMRDC发送给终端设备,终端设备接收来自辅网络设备的DLInformationTransferMRDC,获取DLInformationTransferMRDC中的Pcell的授时信息。
另一种方式中,辅网络设备从主网络设备接收DLInformationTransfer后,根据DLInformationTransfer中的Pcell的授时信息,确定PScell的授时信息。其中,辅网络设备可以根据Pcell的SFN和PSCell的SFN间的定时差来获得PSCell的SFN。PScell的授时信息包括一个绝对时间、以及该绝对时间对应PScell的下行帧边界的帧号(帧号例如可以是SFN)。辅网络设备在DLInformationTransfer中携带PScell的授时信息。辅网络设备向终端设备发送PScell的授时信息可以通过以下方式实现:辅网络设备向终端设备发送DLInformationTransferMRDC,DLInformationTransferMRDC中包括DLInformationTransfer,DLInformationTransfer中携带PScell的授时信息。终端设备接收来自辅网络设备的DLInformationTransferMRDC,获取DLInformationTransferMRDC中的PScell的授时信息。
辅网络设备可以通过SRB3向终端设备发送授时信息。
可选的,如果终端设备接入了新的主网络设备,还可能包括S505。
S505、新的主网络设备向辅网络设备发送指示信息,指示信息用于指示辅网络设备停止向终端设备发送授时信息。对应的,辅网络设备接收来自新的主网络设备的指示信息。
辅网络设备根据指示信息停止向终端设备发送授时信息。可能后续由该新的主网络设备向终端设备发送授时信息,授时信息为该新的主网络设备的Pcell的授时信息。
如图6所示,另一种授时方法的具体实施例如下所述。
S601、终端设备向辅网络设备发送MCG失败信息(MCG failure information),对应的,辅网络设备接收来自终端设备的MCG失败信息。
S602、辅网络设备向主网络设备发送MCG失败信息,对应的,主网络设备接收来自辅网络设备的MCG失败信息。
可选的,辅网络设备可以向主网络设备发送RRC传输(RRC transfer)消息,RRC transfer消息中携带MCG失败信息的信元。
可选的,S601和S602也可以替换为S601*和S602*。S601*同S501*,S602*同S502*。
S603、主网络设备向辅网络设备发送RRC transfer消息,对应的,辅网络设备接收来自主网络设备的该RRC transfer消息。RRC transfer消息用于指示辅网络设备向终端设备发送授时信息。可选的,RRC transfer消息包含指示信息,指示信息用于指示辅网络设备向终端设备发送授时信息。
S601和S602;或者,S601*和S602*,是可选的步骤。如果没有这些可选步骤,主网络设备触发S603的条件也可以是主网络设备自行确定的,例如,主网络设备检测到上行失步,或者下行HARQ重传次数达到设定门限或者下行RLC重传次数达到设定门限。
S604、辅网络设备向终端设备发送授时信息,对应的,终端设备接收来自辅网络设备的授时信息。
授时信息可以携带于DL信息传输MRDC(DLInformationTransferMRDC)中。授时信息可以是PScell的授时信息,包括一个绝对时间以及该绝对时间对应的PScell的下行帧边界的帧号。
辅网络设备可以通过SRB3向终端设备发送授时信息。
终端设备获取PScell的授时信息,从而能够及时获得高精度授时,保证业务的正常传输。
可选的,如果终端设备接入了新的主网络设备,还可能包括S605。
S605、同S505。
如图7a所示,再一种授时方法的具体实施例如下所述。
S701、终端设备向辅网络设备发送MCG失败信息(MCG failure information),对应的,辅网络设备接收来自终端设备的MCG失败信息。
S702、辅网络设备向终端设备发送授时信息,对应的,终端设备接收来自辅网络设备的授时信息。
授时信息可以携带于DL信息传输MRDC(DLInformationTransferMRDC)中。授时信息可以是PScell的授时信息,包括一个绝对时间以及该绝对时间对应的PScell的下行帧边界的帧号。
辅网络设备可以通过SRB3向终端设备发送授时信息。
终端设备获取PScell的授时信息,从而能够及时获得高精度授时,保证业务的正常传输。
S703、辅网络设备向主网络设备发送RRC transfer消息,RRC transfer消息用于通知主网络设备:该辅网络设备正在或者将要向终端设备发送授时信息。
对应地,主网络设备接收来自辅网络设备的该RRC transfer消息。
S704、主网络设备向辅网络设备发送RRC transfer消息,对应的,辅网络设备接收来自主网络设备的该RRC transfer消息。RRC transfer消息用于指示允许该辅网络设备向终端设备发送授时信息。或者,该RRC transfer消息用于指示不允许该辅网络设备向终端设备发送授时信息,也可以用于指示停止该辅网络设备向终端设备发送授时信息。辅网络设备可以根据主网络设备的指示,确定是否向终端设备发送授时信息。
S704是可选的步骤。
可选的,如果终端设备接入了新的主网络设备,还可能包括S705。
S705、同S505。
综上所述,本申请实施例能够保证终端设备及时获取高精度授时,保证业务的传输性能。可以适用于双连接或多连接场景下,终端设备与主网络设备发送无线链路失败的情况。进一步地,还可以适用于终端设备没有配置SRB分流的场景,还可以适用于终端设备没有配置SRB的PDCP复制发送的场景,这两种场景中SRB可以是SRB1也可以是SRB2,这两种场景中SRB可以记为SRB1/SRB2,表示SRB1或SRB2。
为了理解终端设备没有配置SRB分流的场景,首先介绍一下终端设备配置SRB分流的场景。如图7b所示,示出了终端设备配置SRB分流的场景。SRB1和SRB2均用于终端设备和主网络设备之间的信令传输。一个SRB1/SRB2对应一个RRC实体、一个PDCP实体,和至少2个RLC实体。示例性地,一个SRB1/SRB2对应一个RRC实体、一个PDCP实体,和2个RLC实体。其中,一个RLC实体在主网络设备(MCG),一个RLC实体在辅网络设备(SCG)。SRB1/SRB2的信令在一个PDCP实体上产生,该SRB1/SRB2的信令可通过上述任意一个RLC实体发送。当终端设备与MCG发生无线链路失败时,例如,MCG所在的RLC实体发生故障,则可以通过SCG所在的RLC实体发送信令。
此外,终端设备配置SRB的PDCP复制发送是指,一个SRB1/SRB2对应一个RRC实体、一个PDCP实体,和至少2个RLC实体。示例性地,一个SRB1/SRB2对应一个RRC实体、一个PDCP实体,和2个RLC实体,其中,一个RLC实体在MCG,一个RLC实体在SCG。SRB1/SRB2的信令在一个PDCP实体上复制产生2份,一份信令通过其中一个RLC实体发送,另一份信令通过另一个RLC实体发送。
如图7c所示,示出了终端设备没有配置SRB分流的场景。终端设备和主网络设备(MCG)之间的信令通过SRB1/SRB2传输,一个SRB1/SRB2对应于一个RRC实体、一个PDCP实体,和一个RLC实体。终端设备和辅网络设备(SCG)之间的信令通过SRB3传输,一个SRB3对应于一个RRC实体、一个PDCP实体,和一个RLC实体。
在终端设备没有配置SRB1和SRB2分流的场景或终端设备没有配置SRB的PDCP复制发送的场景中,当MCG与终端设备发生RLF,可以通过本申请实施例所描述的SCG向终端发送授时信息的方案,保证业务正常传输,保证在终端设备与MCG无线链路失败还未恢复时数据传输的可靠性。
需要说明的是,本申请中的各个应用场景中的举例仅仅表现了一些可能的实现方式,是为了对本申请的方法更好的理解和说明。本领域技术人员可以根据申请提供的侧行链路通信方法,得到一些演变形式的举例。
为了实现上述本申请实施例提供的方法中的各功能,网络设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
如图8所示,基于同一技术构思,本申请实施例还提供了一种通信装置800,用于执行上述方法实施例。该通信装置800可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。网络设备可以是第一网络设备,也可以是第二网络设备,还可以是第三网络设备。一种设计中,该通信装置800可以包括执行上述方法实施例中网络设备执行的方法/操作/步骤/动作所一一对应的模块,该模块可以是硬件电路,也可 是软件,也可以是硬件电路结合软件实现。一种设计中,该通信装置800可以包括通信模块801和处理模块802。进一步地,通信模块801又可以包括接收模块801-1和发送模块801-2。处理模块802用于调用通信模块801进行接收和/或发送信号。
当通信装置800执行第一网络设备的操作时:
在一个实施例中,接收模块801-1,用于接收来自第二网络设备的第一信息,第一信息包括:第一时间以及第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号;发送模块801-2,用于基于第一信息向终端设备发送授时信息。
接收模块801-1、发送模块801-2以及处理模块802还用于执行上述图3a方法实施例中第一网络设备执行其它操作,在此不再一一赘述。
在另一个实施例中:
处理模块802,用于获取第一信息;其中,第一信息来自终端设备,第一信息用于指示终端设备与第二网络设备之间的链路失败,或者第一信息用于请求授时信息;或者,第一信息来自第二网络设备,用于指示向终端设备发送授时信息;通信模块801,用于基于第一信息,向终端设备发送授时信息。
通信模块801以及处理模块802还用于执行上述图4方法实施例中第一网络设备执行其它操作,在此不再一一赘述。
当通信装置800执行第二网络设备的操作时:
接收模块801-1,用于接收来自第一网络设备的第一信息,第一信息用于指示第二网络设备与终端设备之间的链路失败;发送模块801-2,用于向第一网络设备发送第二信息,第二信息用于指示第一网络设备向终端设备发送授时信息,第二信息包括:第一时间,以及第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号。
接收模块801-1以及发送模块801-2还用于执行上述方法实施例中第二网络设备执行其它操作,在此不再一一赘述。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
如图9所示为本申请实施例提供的通信装置900,用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置,或者是能够和网络设备匹配使用的装置。其中,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。通信装置900包括至少一个处理器920,用于实现本申请实施例提供的方法中网络设备的功能。网络设备可以是第一网络设备,也可以是第二网络设备,还可以是第三网络设备。通信装置900还可以包括通信接口910。在本申请实施例中,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口,用于通过传输介质和其它设备进行通信。例如,通信接口910用于通信装置900中的装置可以和其它设备进行通信。处理器920利用通信接口910收发数据,并用于实现上述方法实施例所述的方法。
示例性地,当通信装置900执行第一网络设备的操作时:在一个实施例中,处理器920利用通信接口910用于:接收来自第二网络设备的第一信息,第一信息包括:第一时间以及第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号。处理器920利用通信接口 910还用于基于第一信息向终端设备发送授时信息。
在另一个实施例中,处理器920利用通信接口910用于:获取第一信息;其中,第一信息来自终端设备,第一信息用于指示终端设备与第二网络设备之间的链路失败,或者第一信息用于请求授时信息;或者,第一信息来自第二网络设备,用于指示向终端设备发送授时信息。处理器920利用通信接口910还用于:基于第一信息,向终端设备发送授时信息。
当通信装置900执行第二网络设备的操作时:处理器920利用通信接口910用于:接收来自第一网络设备的第一信息,第一信息用于指示第二网络设备与终端设备之间的链路失败。处理器920利用通信接口910还用于:向第一网络设备发送第二信息,第二信息用于指示第一网络设备向终端设备发送授时信息,第二信息包括:第一时间,以及第一时间对应的MCG中的主小区Pcell的第一下行帧的帧号。
处理器920和通信接口910还可以用于执行上述方法实施例网络设备执行的其它对应的步骤或操作,在此不再一一赘述。
通信装置900还可以包括至少一个存储器930,用于存储程序指令和/或数据。存储器930和处理器920耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器920可能和存储器930协同操作。处理器920可能执行存储器930中存储的程序指令。所述至少一个存储器中的至少一个可以与处理器集成在一起。
本申请实施例中不限定上述通信接口910、处理器920以及存储器930之间的具体连接介质。本申请实施例在图9中以存储器930、处理器920以及通信接口910之间通过总线940连接,总线在图9中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信装置800和通信装置900具体是芯片或者芯片系统时,通信模块801和通信接口910所输出或接收的可以是基带信号。通信装置800和通信装置900具体是设备时,通信模块801和通信接口910所输出或接收的可以是射频信号。在本申请实施例中,处理器可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器930可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
本申请上述方法实施例描述的第一网络设备或第二网络设备所执行的操作和功能中的部分或全部,或者第一网络设备或第二网络设备所执行的操作和功能中的部分或全部,可以用芯片或集成电路来完成。
为了实现上述图8或图9所述的通信装置的功能,本申请实施例还提供一种芯片,包括处理器,用于支持该通信装置实现上述方法实施例中第一网络设备或第二网络设备所涉及的功能。在一种可能的设计中,该芯片与存储器连接或者该芯片包括存储器,该存储器用于保存该通信装置必要的程序指令和数据。
本申请实施例提供了一种计算机可读存储介质,存储有计算机程序,该计算机程序包括用于执行上述方法实施例的指令。
本申请实施例提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述方法实施例被执行。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的精神和范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (37)

  1. 一种授时方法,其特征在于,所述方法应用于第一网络设备,包括:
    接收来自第二网络设备的第一信息;其中,所述第一网络设备管理辅小区组SCG,所述第二网络设备管理主小区组MCG,所述第一信息包括:第一时间,以及所述第一时间对应的所述MCG中的主小区Pcell的第一下行帧的帧号;
    基于所述第一信息,向终端设备发送授时信息。
  2. 如权利要求1所述的方法,其特征在于,所述授时信息包括:所述第一时间,以及所述第一时间对应的所述MCG中的Pcell的第一下行帧的帧号。
  3. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    基于所述第一时间对应的所述MCG中的Pcell的第一下行帧的帧号,确定所述SCG中的辅助主小区PScell的第二下行帧的帧号;
    基于所述第一时间以及所述SCG中的PScell的第二下行帧的帧号,确定所述授时信息。
  4. 如权利要求1~3任一项所述的方法,其特征在于,所述向终端设备发送授时信息,包括:通过信令无线承载SRB3向所述终端设备发送所述授时信息。
  5. 一种授时方法,其特征在于,所述方法应用于第一网络设备,包括:
    获取第一信息;其中,所述第一信息来自终端设备,所述第一信息用于指示所述终端设备与第二网络设备之间的无线链路失败,或者所述第一信息用于请求授时信息;或者,所述第一信息来自第二网络设备,所述第一信息用于指示向所述终端设备发送所述授时信息;所述第一网络设备管理辅小区组SCG,所述第二网络设备管理第一主小区组MCG;
    基于所述第一信息,向所述终端设备发送所述授时信息。
  6. 如权利要求5所述的方法,其特征在于,所述授时信息包括:第一时间,以及所述第一时间对应的所述SCG中的辅助主小区PScell的下行帧的帧号。
  7. 如权利要求5或6所述的方法,其特征在于,所述方法还包括:
    向所述第二网络设备发送第二信息,所述第二信息用于指示所述终端设备与所述第二网络设备之间的无线链路失败。
  8. 如权利要求5或6所述的方法,其特征在于,所述方法还包括:
    向所述第二网络设备通知:所述第一网络设备向所述终端设备发送所述授时信息。
  9. 如权利要求8所述的方法,其特征在于,所述方法还包括:
    接收来自所述第二网络设备的第三信息,所述第三信息用于指示所述第一网络设备停止向所述终端设备发送所述授时信息。
  10. 如权利要求5~9任一项所述的方法,其特征在于,所述方法还包括:
    接收来自第三网络设备的第四信息,所述第四信息用于指示所述第一网络设备停止向所述终端设备发送所述授时信息,所述第三网络设备管理第二MCG。
  11. 如权利要求5~10任一项所述的方法,其特征在于,所述向终端设备发送所述授时信息,包括:通过信令无线承载SRB3向所述终端设备发送所述授时信息。
  12. 一种授时方法,其特征在于,所述方法应用于第二网络设备,包括:
    接收来自第一网络设备的第一信息,所述第一信息用于指示所述第二网络设备与终端设备之间的链路失败;其中,所述第一网络设备管理辅小区组SCG,所述第二网络设备管 理主小区组MCG;
    向所述第一网络设备发送第二信息,所述第二信息用于指示所述第一网络设备向所述终端设备发送授时信息,所述第二信息包括:第一时间,以及所述第一时间对应的所述MCG中的主小区Pcell的第一下行帧的帧号。
  13. 如权利要求12所述的方法,其特征在于,所述授时信息包括:所述第一时间,以及所述第一时间对应的所述MCG中的Pcell的第一下行帧的帧号。
  14. 如权利要求12或13所述的方法,其特征在于,所述方法还包括:
    向所述第一网络设备发送第三信息,所述第三信息用于指示所述第一网络设备停止向所述终端设备发送所述授时信息。
  15. 一种通信装置,其特征在于,应用于第一网络设备,包括:
    接收模块,用于接收来自第二网络设备的第一信息;其中,所述第一网络设备管理辅小区组SCG,所述第二网络设备管理主小区组MCG,所述第一信息包括:第一时间,以及所述第一时间对应的所述MCG中的主小区Pcell的第一下行帧的帧号;
    发送模块,用于基于所述第一信息,向终端设备发送授时信息。
  16. 如权利要求15所述的装置,其特征在于,所述授时信息包括:所述第一时间,以及所述第一时间对应的所述MCG中的Pcell的第一下行帧的帧号。
  17. 如权利要求15所述的装置,其特征在于,所述装置还包括:
    处理模块,用于基于所述第一时间对应的所述MCG中的Pcell的第一下行帧的帧号,确定所述SCG中的辅助主小区PScell的第二下行帧的帧号;
    以及用于基于所述第一时间以及所述SCG中的PScell的第二下行帧的帧号,确定所述授时信息。
  18. 如权利要求15~17任一项所述的装置,其特征在于,在向终端设备发送授时信息时,所述发送模块具体用于:通过信令无线承载SRB3向所述终端设备发送所述授时信息。
  19. 一种授时装置,其特征在于,应用于第一网络设备,包括:
    处理模块,用于获取第一信息;其中,所述第一信息来自终端设备,所述第一信息用于指示所述终端设备与第二网络设备之间的无线链路失败,或者所述第一信息用于请求授时信息;或者,所述第一信息来自第二网络设备,所述第一信息用于指示向所述终端设备发送所述授时信息;所述第一网络设备管理辅小区组SCG,所述第二网络设备管理第一主小区组MCG;
    通信模块,用于基于所述第一信息,向所述终端设备发送所述授时信息。
  20. 如权利要求19所述的装置,其特征在于,所述授时信息包括:第一时间,以及所述第一时间对应的所述SCG中的辅助主小区PScell的下行帧的帧号。
  21. 如权利要求19或20所述的装置,其特征在于,所述通信模块还用于:
    向所述第二网络设备发送第二信息,所述第二信息用于指示所述终端设备与所述第二网络设备之间的无线链路失败。
  22. 如权利要求19或20所述的装置,其特征在于,所述通信模块还用于:
    向所述第二网络设备通知:所述第一网络设备向所述终端设备发送所述授时信息。
  23. 如权利要求22所述的装置,其特征在于,所述通信模块还用于:
    接收来自所述第二网络设备的第三信息,所述第三信息用于指示所述第一网络设备停止向所述终端设备发送所述授时信息。
  24. 如权利要求19~23任一项所述的装置,其特征在于,所述通信模块还用于:
    接收来自第三网络设备的第四信息,所述第四信息用于指示所述第一网络设备停止向所述终端设备发送所述授时信息,所述第三网络设备管理第二MCG。
  25. 如权利要求19~24任一项所述的装置,其特征在于,在向终端设备发送所述授时信息时,所述通信模块用于:通过信令无线承载SRB3向所述终端设备发送所述授时信息。
  26. 一种授时装置,其特征在于,应用于第二网络设备,包括:
    接收模块,用于接收来自第一网络设备的第一信息,所述第一信息用于指示所述第二网络设备与终端设备之间的链路失败;其中,所述第一网络设备管理辅小区组SCG,所述第二网络设备管理主小区组MCG;
    发送模块,用于向所述第一网络设备发送第二信息,所述第二信息用于指示所述第一网络设备向所述终端设备发送授时信息,所述第二信息包括:第一时间,以及所述第一时间对应的所述MCG中的主小区Pcell的第一下行帧的帧号。
  27. 如权利要求26所述的装置,其特征在于,所述授时信息包括:所述第一时间,以及所述第一时间对应的所述MCG中的Pcell的第一下行帧的帧号。
  28. 如权利要求26或27所述的装置,其特征在于,所述发送模块还用于:
    向所述第一网络设备发送第三信息,所述第三信息用于指示所述第一网络设备停止向所述终端设备发送所述授时信息。
  29. 一种通信装置,其特征在于,包括用于执行如权利要求1至4或权利要求5至11中任一项所述方法的模块。
  30. 一种通信装置,其特征在于,包括用于执行如权利要求12至14中任一项所述方法的模块。
  31. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求1至4或权利要求5至11中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器耦合,所述处理器用于控制所述装置实现如权利要求12至14中任一项所述的方法。
  33. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1至4或权利要求5至11中任一项所述的方法。
  34. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求12至14中任一项所述的方法。
  35. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1至4或权利要求5至11中任一项所述的方法,或,实现如权利要求12至14中任一项所述的方法。
  36. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被运行时,实现如权利要求1至4或权利要求5至11中任一项所述的方法,或,实现如权利要求12至14中任一项所述的方法。
  37. 一种通信系统,其特征在于,包括如权利要求15至25、29、31或33中任一项所述的通信装置,和如权利要求26至28、30、32或34中任一项所述的通信装置。
PCT/CN2020/113570 2020-09-04 2020-09-04 一种授时方法及装置 WO2022047746A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113570 WO2022047746A1 (zh) 2020-09-04 2020-09-04 一种授时方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/113570 WO2022047746A1 (zh) 2020-09-04 2020-09-04 一种授时方法及装置

Publications (1)

Publication Number Publication Date
WO2022047746A1 true WO2022047746A1 (zh) 2022-03-10

Family

ID=80492450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113570 WO2022047746A1 (zh) 2020-09-04 2020-09-04 一种授时方法及装置

Country Status (1)

Country Link
WO (1) WO2022047746A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058356A1 (zh) * 2013-10-22 2015-04-30 华为技术有限公司 一种数据传输方法和设备
WO2016182527A1 (en) * 2015-05-14 2016-11-17 Intel IP Corporation Measurement gap configuration in dual connectivity enhancement
CN110913428A (zh) * 2018-09-14 2020-03-24 电信科学技术研究院有限公司 一种信息上报方法、信息获取方法、终端及网络设备
CN110944379A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 时间校准的方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015058356A1 (zh) * 2013-10-22 2015-04-30 华为技术有限公司 一种数据传输方法和设备
WO2016182527A1 (en) * 2015-05-14 2016-11-17 Intel IP Corporation Measurement gap configuration in dual connectivity enhancement
CN110913428A (zh) * 2018-09-14 2020-03-24 电信科学技术研究院有限公司 一种信息上报方法、信息获取方法、终端及网络设备
CN110944379A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 时间校准的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT SHANGHAI BELL, ALCATEL-LUCENT: "Radio link monitoring immediately after SCG configuration", 3GPP DRAFT; R2-144507 RLM, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Shanghai, China; 20141006 - 20141010, 5 October 2014 (2014-10-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050876689 *

Similar Documents

Publication Publication Date Title
CN113286331B (zh) 重建立的方法和通信装置
TWI733083B (zh) 與基地台處理一雙連結的裝置及方法
WO2021185259A1 (zh) 通信方法及装置
US11700553B2 (en) Method of apparatus for monitoring for a radio link failure associated with a secondary cell of a secondary base station
US20190159084A1 (en) Information Transmission Method and Apparatus and Communication System
US20230026332A1 (en) Wireless communication method and communication apparatus
WO2022236484A1 (zh) Sdt失败上报的方法、终端设备和网络设备
US20240015703A1 (en) User equipment and resource monitoring method in sidelink communication
WO2022040873A1 (zh) 一种通信方法、设备和装置
WO2020228821A1 (zh) 管理链路的方法和装置
US20230199600A1 (en) Method and communications apparatus for configuring assistance information
WO2022047746A1 (zh) 一种授时方法及装置
WO2020198961A1 (zh) 链路失败的恢复方法和设备
WO2022067796A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022028409A1 (en) User equipment and resource selection method in sidelink communication
WO2023123229A1 (zh) 无线通信的方法、终端设备和网络设备
WO2022036611A1 (zh) 一种数据传输方法及通信装置
WO2022222893A1 (zh) 通信方法及装置
WO2023207229A1 (zh) 一种会话建立方法及装置
US20230284113A1 (en) Methods and apparatuses for processing a radio link failure (rlf) during a dual active protocol stack (daps) handover procedure
WO2023160706A1 (zh) 一种通信方法及装置
US20230388873A1 (en) Method and apparatus for determining daps handover failure type
WO2022206874A1 (en) User equipment and resource monitoring method in sidelink communication
WO2023201521A1 (zh) 失败信息的发送方法、接收方法、装置以及系统
WO2023159492A1 (zh) 无线通信的方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20951990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20951990

Country of ref document: EP

Kind code of ref document: A1