WO2022027277A1 - 车载式无需光电传感器的光电和光热一体化追踪系统 - Google Patents

车载式无需光电传感器的光电和光热一体化追踪系统 Download PDF

Info

Publication number
WO2022027277A1
WO2022027277A1 PCT/CN2020/106967 CN2020106967W WO2022027277A1 WO 2022027277 A1 WO2022027277 A1 WO 2022027277A1 CN 2020106967 W CN2020106967 W CN 2020106967W WO 2022027277 A1 WO2022027277 A1 WO 2022027277A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
box
fixed
tube
photovoltaic panel
Prior art date
Application number
PCT/CN2020/106967
Other languages
English (en)
French (fr)
Inventor
李�杰
Original Assignee
李�杰
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李�杰 filed Critical 李�杰
Priority to PCT/CN2020/106967 priority Critical patent/WO2022027277A1/zh
Publication of WO2022027277A1 publication Critical patent/WO2022027277A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • B60R16/03Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
    • B60R16/033Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for characterised by the use of electrical cells or batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/40Mobile PV generator systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/20Collapsible or foldable PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention relates to the field of new energy vehicles, in particular to a vehicle-mounted photoelectric and photothermal integrated tracking system that does not require a photoelectric sensor.
  • the outdoor activity market still lacks an integrated photoelectric and photothermal system. Therefore, how to alleviate the insufficient cruising range, how to avoid the spontaneous combustion of the car body, and how to solve the problems of electricity consumption and diet when carrying out outdoor activities in areas without electricity and open flames, these are the technical problems that new energy vehicles need to solve urgently.
  • the present invention solves the above technical problems by providing a vehicle-mounted photoelectric and photothermal integrated tracking system that does not require a photoelectric sensor.
  • Photovoltaic panels are horizontally installed in two boxes. The panels are connected in series or in parallel to charge the battery.
  • the installation of photovoltaic panels is divided into two types: roof type and ground type.
  • a splitter plate with universal wheels and air resistance is installed. The splitter plate is only required when the box is bracketed on the luggage rack. The splitter plate is installed on the end of the box facing the front of the car, and on the inner side of the two boxes at the end of the splitter plate.
  • the upper and lower parts are respectively fixed with a beam, the beam is provided with bolt holes, and the bolts are used to fix the shunt plate.
  • the keel is a kind of support frame, and its shape is the same as that of the shunt plate, and it is also an arch, which includes longitudinal beams and cross beams, and the raised part in the middle of the keel is fixed on the box body through the support rod bolts. Hinge connection is adopted between them, Z beams are fixedly installed at the bottom of each box, X buckles are fixedly installed on each beam, Z polygonal or circular pipes pass through X buckles, and both ends are bolted to the bracket.
  • the installation of the photovoltaic panels in the box is to install a beam with an H-shaped cross-section on the periphery of each box.
  • the top of the beam is installed with door latches or Y latches, and the bottom of the four sides of the photovoltaic panel is supported on the beam.
  • On the bottom surface the upper four borders are flush with the short side of the beam, and Y bolts or door buckles are correspondingly installed, which are fixed together with the h-shaped beam through the door bolts.
  • the 1-dimensional tracking system is mainly composed of pillars and driving devices.
  • the pillars It is a detachable polygonal or circular hollow tube, which is divided into K sections. When K>1, each section is connected by thread.
  • a T-shaped hollow tube with a hinged member or a ring member at the top is inserted into the strut.
  • Bolt fixing, a beam with a hole at each end, the bottom of which is installed with the same hinge device as the T-shaped hollow tube, and the bottom member is hinged with the T-shaped hollow tube at the top of the pillar or the shaft is connected to form a hinge
  • the device, the driving device is bolted to the top of the column, which is a kind of intelligent electric column that can be lifted and lowered.
  • the column is mainly composed of polygonal or circular nuts, threaded shafts, and T-shaped hollow tubes. There is a hole at both ends of the top of the hollow tube, which is fixed on the nut to form a whole, and the nut moves up and down along the shaft.
  • the mobile column In the 2-dimensional sun-chasing mode, there are N pillars, one of which is fixed installation, and the rest are Mobile installation, the mobile column will rotate around the fixed column according to a circular trajectory, the mobile column is the same detachable hollow tube as above, and the bottom of the bottommost section is installed with a universal wheel or pulley, the above-mentioned T-shaped hollow tube
  • the two are in a group, which are hinged or connected to each other to form a hinged device, one end of which is inserted into the top end of the moving strut and fixed with bolts.
  • the fixed strut is a kind of intelligent
  • the electric column is mainly composed of a shaft and a hollow tube.
  • the hollow tube is fixed on the shaft and rotates with the shaft and cannot move up and down.
  • the top of the hollow tube of the intelligent electric column is bolted with the above-mentioned driving device.
  • the driving device Only in the 2-dimensional sun chasing mode, it rotates with the hollow tube of the column, and a polygonal or circular hollow tube movably installed with the N-1 group of L-shaped brackets is bolted to the top of the driving device.
  • the L-shaped bracket is provided with a hole, and a connected beam is movably installed between the fixed pillar and the movable pillar or between the two movable pillars.
  • the drive will be carried out by the combination of the motor fixed in the base and the mechanical transmission mechanism.
  • the photovoltaic panel is installed on the above-mentioned sun-chasing system to become a sun-chasing photoelectric system, and the heat-collecting device is installed to become a sun-chasing system.
  • the solar furnace is divided into two different types: multi-tube and single-tube.
  • the multi-tube type refers to multiple vacuum heat collector tubes, which are installed in the A solar furnace formed in a box, the multi-tube type solar furnace, the bottom of the box and the inner side of the wall are all panels coated with reflective materials, the bottom surface of the bottom of the box is installed with hollow tubes with interfaces, and the inner four corners of the bottom of the box are A n-type or h-type bracket is fixed and installed respectively.
  • the box is divided into multiple polygonal or circular lattices.
  • the box is divided into upper and lower layers.
  • the lower layer is fixed on the bracket.
  • the upper movable installation is called the cover.
  • the bottom of the box wall is hinged to the bottom of the box.
  • the box wall is divided into upper and lower sections. The two sections are connected by hinges.
  • the lower section is quadrilateral, and its height is the sum of the height of the bracket and the lattice box.
  • the upper section is a trapezoid or a combination of trapezoid and triangular shape. After the box wall is opened, it is supported by rods.
  • the inner tank is movably placed in the vacuum heat collector tube, and a plurality of vacuum heat collector tubes are fixed on the polygonal or circular lattice in the box.
  • the single tube solar furnace is divided into two different types: square and rectangular.
  • Type the shape of the square solar furnace vacuum heat collector tube is square, the shape of the rectangular solar furnace vacuum heat collector tube is round, the vacuum heat collector tube of the square solar furnace is installed in a box of the box, the bottom of the box and the wall of the box.
  • the structure and installation method are the same as those of the above-mentioned multi-tube type.
  • the square lattice-shaped box in the box is fixed on the above-mentioned bracket, and the cover of the box is installed on the side. One end is fastened to the wall of the box by a buckle.
  • the material of the inner tank is stainless steel or aluminum alloy. It is a polygonal or circular box with a frame without a cover.
  • the interface has a Threaded, movable connection handle
  • the inner tank is movably placed in the square vacuum heat collecting tube
  • the rectangular solar furnace includes a light collecting mirror, a polygonal or circular vacuum heat collecting hollow tube
  • the The light collecting mirror is a plate coated with reflective material.
  • the mirror surface has two types: flat and parabolic. The two pieces are spliced together to form a triangle. Or parabolic light collecting mirror, each type of mirror has N pieces, in the skeleton of each piece, there are X skeletons protruding from the edge of the light collecting mirror, and its ends have a threaded structure, corresponding to two light collecting pieces The positions of the X skeletons in the mirror are staggered.
  • a pipe beam with a polygonal cross-section has 2X holes running through both sides, and M holes running through the upper and lower sides.
  • Each movable threaded connection of the X skeleton has Hollow tube, the hollow tube is fixed to the pipe beam in two ways: bolted or non-bolted.
  • the bolted or non-bolted hollow tube has a fixed member at the back end and a round hole or elastic fastener at the front end.
  • the fixed member The spacing between the round holes or the elastic fasteners is the same as the width of the tube beam.
  • the elastic fasteners are fixed on both sides of the tube beam.
  • the M brackets of a vacuum heat collecting hollow tube are Y-shaped. The distance between the fixing member and the round hole or the elastic fastener is the same as the thickness of the pipe beam.
  • the bolts or the elastic fasteners are fixed on the bottom of the pipe beam, and the vacuum
  • the heat collector tube is mounted on the top of the M brackets and fastened to the brackets.
  • An inner tube is inserted into the heat collector tube.
  • the two ends of each photovoltaic panel are movably installed with hollow tubes. The connection between the two photovoltaic panels adopts The door buckle or latch of the door bolt is fastened and connected as a whole.
  • the respective hollow tubes are inserted into the hinge device and the driving device.
  • the holes on the device are fixed with bolts, and the multi-tube solar furnace is fixed on a beam, and the two ends of the beam are respectively installed on the hinge device and the driving device.
  • the installation of photovoltaic panels is Insert the hollow tube into the T-shaped tube of the moving column and the hole of the L-shaped bracket on the driving device and fix it with bolts.
  • the solar furnace is fixed on a movable assembled bracket, and the bracket is placed on the photovoltaic panel and parallel to it, and is fixed on the photovoltaic
  • the angle adjustment of the photovoltaic power generation system or the photoelectric and photothermal integrated system is to adjust the angle of the photovoltaic panel, which will be controlled by a solar angle controller with an embedded angle sensor installed.
  • the solar angle control It is an intelligent control device that uses time to control the angle of photovoltaic panels to change. It mainly includes main chip, angle sensor, GPS satellite positioning or electronic compass, clock chip, Bluetooth, and motor-driven modules. Read the real-time clock and angle values, and control the change of the angle of the photovoltaic panel according to different time periods.
  • the clock chip After the solar angle controller is powered on, the clock chip will automatically use GPS or Bluetooth to calibrate the time, and the angle of the photovoltaic panel will be adjusted.
  • the working principle is that the solar angle controller and the photovoltaic panel are installed on the same level.
  • the controller receives a signal for adjusting the angle through GPS satellite positioning or electronic compass positioning, and then controls
  • the motor control module makes the angle detection module make a rotation action to make the The photovoltaic panel completes the horizontal or tilting action according to the input angle value.
  • the intelligent electric column will complete the horizontal or extending or retracting movement with the rotation of the motor, and push the photovoltaic panel to rotate to the predetermined position.
  • the amount is converted by the analog-to-digital converter and sent to the main controller.
  • the main controller determines whether the photovoltaic panel has rotated to a predetermined angle according to this input, and controls the control module of the motor accordingly, thereby completing an angle adjustment.
  • the way to adjust the inclination angle multiple times is to use the input method.
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F in the morning period; in the noon period, the inclination angle is fixed, and in the afternoon period, it is ⁇ + ⁇ /F,
  • the calculated inclination angle value that needs to be adjusted each time is input into the storage module of the controller together with the corresponding analog voltage value or adjustment time.
  • the specific implementation is that when the angle sensor is in the horizontal position, the angle is 0° When the output terminal Vo outputs an analog voltage of A volt, when the angle sensor has the maximum inclination angle ⁇ with the horizontal plane, it outputs an analog voltage of B volts. When the angle sensor is at 0° ⁇ or ⁇ When the interval of 180° changes, the output voltage of the output terminal Vo will change from A volts to B volts or B volts to an analog voltage signal of A volts, so by measuring the voltage of the output terminal Vo of the angle sensor, the The angle between the photovoltaic panel and the horizontal plane can be determined.
  • the components of the hinge device are composed of a bottom plate and a C-block polygonal vertical plate.
  • the solar angle controller is based on the time, and the azimuth angle of the photovoltaic panel is intelligently driven by controlling the intelligent electric column to move horizontally to the east or west.
  • the tilt angle is rotated from the east to the west, thereby adjusting the azimuth angle of the photovoltaic panel or the method of changing the tilt angle with the change of time.
  • the solar angle controller controls it to turn east or west according to the signal output by the GPS or electronic compass module.
  • the adjustment time is input into the storage module of the controller in advance.
  • the maximum inclination angle arithmetic average method is the method of arithmetically averaging the maximum inclination angle that the photovoltaic panel can form in the morning or afternoon period according to the number of adjustments.
  • Timekeeping is three or more times in a day, and the adjustment time period of 2-dimensional or 1-dimensional tracking with driving device is divided into three periods: morning, noon, and afternoon , three adjustments within a day, in the morning, the photovoltaic panels face east, and the inclination angle is the largest, in the noon period, the photovoltaic panels are horizontal; in the afternoon, the photovoltaic panels face west, and the inclination angle is the largest.
  • the azimuth angle is adjusted every E minutes
  • the inclination angle is adjusted F times within E minutes.
  • the angle value of each adjustment is ⁇ /F
  • the orientation of the photovoltaic panels in the three time periods is the same as the three adjustments in one day
  • the angle value of each new adjustment is ⁇ -J* ⁇ /F
  • J is an integer number series value
  • the minimum value is 1
  • the maximum value is F
  • the angle value of each new adjustment is ⁇ + ⁇ /F
  • is the angle value at the previous moment of adjustment
  • the vehicle-mounted photoelectric and photothermal integrated tracking system of the present invention does not require a photoelectric sensor, solves the problems of electricity consumption and eating in the state of no open fire and no electricity in outdoor activities, and avoids the temperature inside the car caused by the scorching sun. The occurrence of car body spontaneous combustion accidents caused by excessively high.
  • Figure 1 is a top plan view of a 1-dimensional sun-seeking ground-type assembly: symbol 1 is a photovoltaic panel, symbol 2 is a pillar, symbol 3 is a beam, symbol 4 is a door latch for a door bolt, symbol 5 is a driving device, and symbol 6 is a pipe Beam, symbol 7 is a vacuum collector tube, symbol 8 is a collector plate;
  • Figure 2 is a front view: symbol 9 is a hollow tube on a photovoltaic panel or tube beam;
  • Figure 3 is a left and right side view: symbol 10 is a T-shaped tube, symbol 11 is the hinged device formed by the hinged connection of the beam and the T-shaped tube, and the symbol 12 is the connecting beam;
  • Figure 4 is a plan view of the 2-dimensional sun-seeking ground-type assembly: symbol 1 is a driving device, symbol 2 is a moving column, symbol 3 is a belt A hollow tube with an L-shaped bracket, the symbol 4 is the L-shaped bracket, the symbol 5 is the hollow tube on the photo
  • FIG. 1 ⁇ 3 it is a ground-mounted 1-dimensional photoelectric and solar-thermal integrated sun chasing system.
  • it can be charged all the time on the way to the destination, and the solar furnace on the roof can also work all the time.
  • After reaching the outdoor venue unload the box as a whole or unload the photovoltaic panel 1 separately, and reassemble it into a sun-seeking system.
  • the top is inserted into the T-shaped tube 10 to fix the bolts, and the top of the T-shaped tube 10 is hinged or connected to the beam 3.
  • a hinged device 11 is formed, the driving device 5 and the pillar 2 are arranged in an east-west direction to install the connecting beam 12, the two ends of the photovoltaic panel 1 are installed with hollow tubes 9, and the door latches 4 of the door bolts are used to fasten the two joints.
  • the skeleton of the solar furnace The ends are inserted into the holes on both sides of the tube beam 6, and then the door buckles or latches 4 of the door bolts on both sides of the tube beam 6 are used to pass through the components and fasten on the tube beam 6, and the components at the bottom of the vacuum heat collecting hollow tube 7 bracket are inserted into the tube beam.
  • the door buckle or the latch 4 of the door bolt on the bottom surface of the tube beam 6 is used to fasten the tube beam 6 through the component, the vacuum heat collector 7 is placed on the top of the bracket, and the two terminals are fastened on the bracket.
  • an inner tube is inserted inside the heat collecting tube, the hollow tube 9 of the photovoltaic panel 1 and the tube beam 6 is movably installed, and the hollow tube 9 is inserted into the hole of the beam 3 and the driving device 5 respectively and bolted, and the solar furnace is installed at both ends, thus a 1-dimensional The tracking photoelectric and photothermal system is completed.
  • FIG. 4 to 9 it is a 2-dimensional photoelectric and photothermal integrated sun-seeking system assembled on the ground.
  • the moving pillar 2 When installing the multi-tube solar furnace, open the box walls 14 and 15, and fasten the support rods 20 between the bottom of the box and the box walls 14 and 15, so that the installation of the multi-tube solar furnace is completed. , insert the hollow tube 5 at both ends of the photovoltaic panel and the solar furnace into the T-shaped tube 9 of the moving pillar 2 or the L-shaped bracket 4 on the driving device and fix it with bolts, thus constructing a 2-dimensional tracking device, the moving pillar 2 will Make a compass movement around the fixed post 12 .
  • the electricity generated by the roof-mounted photovoltaic charging system of the present invention is used to solve the problems of the battery charging of the new energy vehicle and the insufficient power supply of the in-vehicle air conditioner, which can alleviate the problem of cruising range and avoid the interior of the vehicle caused by the hot sun in summer.
  • the car body spontaneous combustion accident caused by excessive temperature, this charging method is also applicable to the current fuel vehicles.
  • the automatic switch converter has the function of self-switching and self-recovery, which is divided into integrated automatic transfer switch and plastic case circuit breaker.
  • the automatic switching converter is preferably powered by a battery powered by solar cells, that is, the solar cell power supply is the main power supply, and the vehicle battery is the backup power supply.
  • the main power supply When the voltage or current Q of the main power supply is higher than the set threshold value When the voltage or current Q value is lower than the set threshold value, the main power supply is automatically put into use, and the backup power supply is standby; when the main power supply fails or the voltage or current of the main power supply is lower than the set threshold voltage or current I value, the backup power supply is put into use; when the main power supply voltage When the voltage or current Q value of the set threshold is restored, the backup power supply will be automatically stopped and switched to the main power supply again. It will also automatically power off. When using battery power supply, it will supply power for K minutes every W minutes, K ⁇ W.
  • the adjustment of the angle is three or more times in a day.
  • the adjustment time period of 2-dimensional or 1-dimensional tracking with driving device is divided into three periods: morning, noon, and afternoon. Three times of adjustment within a day, morning period, photovoltaic The panel faces east, and the inclination angle is the largest. During noon, the photovoltaic panel is horizontal; in the afternoon, the photovoltaic panel faces west, and the inclination angle is the largest.
  • the azimuth angle is adjusted at an interval of E minutes, and the inclination angle is adjusted F times within E minutes.
  • the angle value of the maximum inclination angle ⁇ of the photovoltaic panel in the input method is divided into F times according to the arithmetic mean, and the angle value of each adjustment is ⁇ // F, the orientation of the photovoltaic panels in the three time periods is the same as the three adjustment in one day, in the morning period, the angle value of each new adjustment is ⁇ -J* ⁇ /F, J is an integer number series value, the minimum The value is 1, and the maximum value is F; in the afternoon period, the newly adjusted angle value is ⁇ + ⁇ /F, ⁇ is the angle value at the previous moment of adjustment, each time the azimuth angle is adjusted, the inclination angle has been reset To the initial position, the 1-dimensional tracking solar angle controller without driving device is installed horizontally, the inclination angle is fixed, and the number of azimuth angle adjustment is the sum of all adjustment times in one day, calculated at every interval of D minutes .
  • the adjustment of the angle of the photoelectric and solar furnace is to adjust the inclination of the photovoltaic panel, and the solar angle controller is installed at the bottom of the photovoltaic panel 1.
  • the adjustment of the inclination of the photovoltaic panel 1 adopts the arithmetic average method of the maximum inclination angle.
  • the time control is divided into three stages. Refer to section 0012 for details. After the angle adjustment is completed, turn off the power and return the photovoltaic panel to a horizontal state. Remove the solar furnace and connect the support rods of the photovoltaic panel on both sides of the pillar and the driving device. Since then, the chasing system has been transformed into a picnic table.
  • the angle adjustment of the photoelectric and photothermal devices is to adjust the angle of the photovoltaic panel 7, which is controlled by the solar angle controller, which is installed horizontally at the bottom of the photovoltaic panel in the middle.
  • the intelligent electric column 12 is controlled by the solar angle controller to rotate, and the moving column 2 is driven to move by the connecting beam 6, then the azimuth angle of the photovoltaic panel 7 is adjusted in place, and then the controller starts the driving device 1 to adjust the inclination of the photovoltaic panel 7.
  • the specific adjustment method please refer to paragraph 0012.
  • the power is turned off, the photovoltaic panel is returned to a horizontal state, the solar furnace is removed, and the support rods connected to the photovoltaic panels on both sides of the pillar and the driving device are supported, and the sun chasing system is transformed into a picnic table.
  • the vehicle-mounted photoelectric and photothermal integrated tracking system without photoelectric sensors of the present invention provides a tracking technology for 1 latitude or 2 latitudes without photoelectric sensors, which is different from the known fixed bracket technology and inductive tracking technology.
  • Photoelectricity and photothermal are integrated into one. While the solar furnace is working, the photoelectric system can directly supply power to the battery. It is easy to carry, simple in technology, low in cost and high in cost performance. It solves the spontaneous combustion accident of the car body caused by the high temperature inside the car caused by the hot sun, and more importantly, solves the technical problems that need to be solved in the field of photoelectric and photothermal systems, that is, photoelectric and photothermal systems must not only be able to Chasing the sun, but also easy to carry, but also has practical value problems. Compared with the photoelectric and photothermal systems without the sun-following function, the present invention increases the power generation and heat collection efficiency by about 60% on average, and the present invention has good economic and ecological benefits.

Abstract

一种车载式无需光电传感器的光电和光热一体化追踪系统,涉及新能源汽车领域,分别采用箱体、智能电动柱(12)、支柱(2)、固定或活动的支架(4)的不同组合体,构建一个车载光伏充电系统及一个1维度或2维度的非感应式光电和光热追踪系统。解决了目前市场上车载式的光电和光热系统不能追日,导致发电及集热效率的低下,也无法解决新能源车续航里程的问题。光电和光热系统一体化的技术,在光电转化率短期内难于有效提高的当下,让车载式光电和光热系统不仅能够追日而且具有实用价值,发电及集热效率平均增加了60%左右。

Description

车载式无需光电传感器的光电和光热一体化追踪系统 技术领域
本发明涉及新能源汽车领域,具体为车载式无需光电传感器的光电和光热一体化追踪系统。
背景技术
随着新能源汽车技术的发展进步,未来新能源汽车将会替代燃油汽车得到广泛的普及,但续航里程的不足却又是个困扰纯电动汽车得以顺利发展的技术难题,虽然一些新能源汽车将采用薄膜太阳能电池来增加续航里程,但由于其发电量低、无法追日的缺陷,难以满足新能源汽车的要求,而感应追踪技术由于成本高、技术复杂和体积大的缺陷,也无法应用于新能源汽车上,另外,夏日停车遭到暴晒的汽车车内温度极高,容易造成车内设施的损坏甚至是导致车体自燃,户外活动市场还缺少一款光电和光热一体化的系统,因此,如何缓解续航里程不足、如何避免车体自燃,以及在无电无明火的区域开展户外活动时,用电及饮食问题如何解决,这些都是新能源汽车所亟待解决的技术难题。
技术问题
在光电转化率短期内难于有效提高的当下,在太阳能板装机容量同等的状态下,如何提高车载太阳能的发电量,以缓解新能源汽车续航里程不足,解决了户外活动中,无明火和无电状态下的用电和吃饭的难题,以及如何防止夏日暴晒所引起汽车自燃的问题,这些都是新能源汽车所亟待解决的技术难题。
技术解决方案
针对上述缺陷,本发明通过提供车载式无需光电传感器的光电和光热一体化追踪系统,使得上述的技术难题得到了解决。
为实现上述目的,本发明的技术方案为如下。
车载式无需光电传感器的光电和光热一体化追踪系统,包含太阳能角度控制器、光伏板、集热装置、支柱、驱动装置、蓄电池、箱子,光伏板是水平状安装在两个箱子内,光伏板串联或并联为蓄电池充电,光伏板安装分为车顶式和地面式两种类型,所述车顶式是指箱体采用支架活动式地安装在车顶的行李架上,箱子活动式的安装有万向轮、空气阻力的分流板,分流板是把箱子托架在行李架上时才需安装,分流板安装在朝向车头的箱体一端,在安装分流板一端的两个箱子的内侧,上下部分分别固定安装有一根横梁,横梁上开有螺栓孔,螺栓固定分流板,所述分流板为拱形状,中间高两端低,截面为带弧形的多边形,分流板固定在箱体或龙骨上,所述龙骨是一种支撑架,其形状与分流板相同也为拱形,其包含纵梁和横梁,龙骨中部凸起部分是通过支撑杆螺栓固定在箱体上,两个箱子之间采用合页连接,各箱子底部固定安装有Z根梁,每根梁上固定安装有X个扣环,Z根多边形或圆形的管穿过X个扣环,两端螺栓固定在支架上,箱子内光伏板的安装是在每个箱子的周边固定安装有截面为h型的梁,梁的上面上安装有门栓的门扣或插销Y个,光伏板的四边底部托在梁的底面上,上部的四边框与梁的短边齐平,也对应地安装有Y个门栓的插销或门扣,通过门栓与h型的梁固定为一体,所述地面式安装是指到达目的地车挺稳后,把箱子卸载下来,在地面上重新组装的模式,其分为1维度或2维度追日的两种不同模式,1维度追踪系统主要由支柱和驱动装置所构成,支柱是可分拆的多边形或圆形的空心管,分为K段,当K>1时候,每段之间采用螺纹连接,一个顶端带有铰接构件或圆环构件的T型空心管插入支柱后螺栓固定,一根梁,其两端各有一个孔,其底部安装有与T型空心管相同的铰接装置的构件,其底部的构件与支柱顶端的T型空心管铰接连接或轴连接形成铰接装置,所述驱动装置螺栓固定在支柱顶端,其是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管的顶部两端各有一个孔,其固定在螺母上形成一体,螺母沿着轴上下移动,在2维度追日的模式当中,支柱共有N根,其中一根是固定安装,其余都为移动式安装,移动支柱将围绕固定支柱按圆形轨迹转动,移动支柱是与上述相同的可分拆的空心管,其最底层一段的底部安装有万向轮或滑轮,上述的T型空心管两根为一组,彼此铰接或轴连接形成一个铰接装置,其中一端插入移动支柱的顶端螺栓固定,所述固定支柱是一种智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,智能电动柱的柱体空心管顶端螺栓固定有上述的驱动装置,驱动装置只有在2维度追日模式当中随着柱体的空心管一同转动,一根活动式安装有N-1组的L型支架的多边形或圆形的空心管套在驱动装置顶端螺栓固定连接,所述L型支架上开有孔,固定支柱和移动支柱之间或者两根移动支柱之间活动式安装有连接的梁,上述所有的智能电动柱的柱体都是固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,在上述的追日系统上安装了光伏板就成为一个追日型光电系统,安装了集热装置就成为一个追日型太阳能炉,两者同时安装就成为一个光电光热一体化系统,所述太阳能炉,其分为多管和单管两种不同类型,多管型的是指多根真空集热管,安装在一个箱子内所形成的太阳能炉,所述多管型太阳能炉,箱底和壁的内侧都是涂有反光材料的板,箱底的底面安装有带有接口的空心管,箱底的内侧四个角上分别固定安装一个n型或h型的托架,盒子内分隔成多个多边形或圆形的格子,盒子分为上下两层,下层固定在托架上,上层活动式安装称为盖子,上下层采用合页连接,箱壁的底部是铰接在箱底上,箱壁分为上下两段,两段之间采用合页连接,下段为四边形、其高度是托架和格子状盒子的高度之和,上段是梯形或梯形和三角形的组合体,箱壁打开后由杆支撑,杆的两端分别连接在箱壁的上段以及格子状的盒子上,使得箱壁与箱底形成倾斜的状态,有盖子的内胆是活动式安放于真空集热管内,多根真空集热管架在盒子内的多边形或圆形的格子上固定,所述单管型太阳能炉,其分为四方形和长方形两种不同的类型,四方形太阳能炉真空集热管的形状为四方形,长方形太阳能炉真空集热管的形状为圆形,所述四方形太阳能炉的真空集热管是安装在一个箱子的盒子内,箱底和箱壁的结构及安装方式都与上述多管型的相同,箱子内四方形格子状的盒子固定在上述的托架上,盒子的盖子是安装在侧面,其一端通过合页与盒子壁铰接连接,另一端通过卡扣扣紧在盒子壁上,内胆的材质为不锈钢或铝合金,其为多边形或圆形的带有边框的无盖的盒子,其侧边有个圆形的接口,接口内带有螺纹,活动式连接把手,内胆是活动式的安放于四方形真空集热管内,所述长方形的太阳能炉,其包含有集光镜、多边形或圆形的真空集热空心管,所述集光镜是涂有反光材料的板,镜面有平板型和抛物线型两种,两块拼接合为一体形成一块三角形或抛物面形的集光镜,每种类型的镜面有N块,每块的骨架中,有X根骨架凸出于集光镜边缘外,其端头带有螺纹结构,相对应两块集光镜中的X根骨架位置是相错的,一根截面为多边形的管梁,两侧各贯穿有2X个孔,上下面贯穿有M个孔,所述X根骨架每根活动式螺纹连接有空心管,空心管固定在管梁的方式有螺栓固定或非螺栓固定两种,螺栓固定或非螺栓固定方式的空心管后端带有固定构件,前端带有圆孔或弹性扣件,固定构件与圆孔或弹性扣件之间的间距与管梁的宽度相同,两块集光镜拼接时,两种不同固定方式的空心管是分别插入管梁每侧的2X个孔后,螺栓固定或弹性扣件固定在管梁的两侧上,一根真空集热空心管的M个支架为Y型,其底部空心管的结构以及与管梁固定的方式与X根骨架的空心管相同,但固定构件与圆孔或弹性扣件之间的间距是与管梁的厚度相同,支架空心管插入管梁面上的M个孔内后,螺栓固定或弹性扣件固定在管梁底部上,真空集热管架在M个支架的顶端,扣紧在支架上,集热管内部插有一根内管,每块光伏板两端各自活动式地安装有空心管,两块光伏板之间的连接处采用门栓的门扣或插销扣紧连为一体,光伏板或单管型太阳能炉安装在支柱和驱动装置上时,在1维度追日的模式当中,是把各自的空心管插入铰接装置和驱动装置上的孔内螺栓固定,多管型太阳能炉则是固定在一根梁上,梁的两端分别安装在铰接装置和驱动装置上,在2维度的追日模式当中,光伏板的安装是把空心管插入移动支柱的T型管和驱动装置上的L型支架的孔内螺栓固定,太阳能炉是固定在一个活动式组装的支架上,支架架在光伏板上并且与其平行,固定在光伏板的边框上,光伏发电系统或光电和光热一体化系统的角度调节,是调节光伏板的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制光伏板的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制光伏板角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,光伏板角度调节的工作原理为,太阳能角度控制器与光伏板安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作以使得光伏板按输入的角度值完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动光伏板转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定光伏板是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就能够确定光伏板与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=1或2时候,是活动式或螺栓的固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用箱体、智能电动柱、支柱、固定或活动的支架的不同组合体,构建一个车载光伏充电系统及一个1维度或2维度的非感应式光电和光热追踪系统;光伏板的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制,所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱智能驱动光伏板方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节光伏板的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角算术平均法是对上午或下午的时段内,光伏板所能形成的最大倾角,按调节的次数进行算术平均的方法,所述时间计时是一日之内三次或多次,2维度或有驱动装置的1维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,上午时段,光伏板面朝东面,倾角最大,正午时段,光伏板是水平状;下午时段,光伏板面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的光伏板的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
有益效果
本发明的车载式无需光电传感器的光电和光热一体化追踪系统,解决了户外活动中,无明火和无电状态下的用电和吃饭的难题,避免了烈日暴晒下所引发的车内温度过高而产生的车体自燃事故的发生。
附图说明
图1是1维度追日地面式组装的平面俯视图:符号1为光伏板,符号2为支柱,符号3是梁,符号4为门栓的门扣插销,符号5为驱动装置,符号6为管梁,符号7为真空集热管,符号8为集热板;图2为正视图:符号9为光伏板或管梁上的空心管;图3 为左右侧视图:符号10是T型管,符号11为梁与T型管铰接所形成的铰接装置,符号12为连接梁;图4是2维度追日地面式组装的平面俯视图:符号1为驱动装置,符号2为移动支柱,符号3是带有L型支架的空心管,符号4为L型支架,符号5为光伏板或太阳能炉管梁上的空心管,符号6为固定支柱和移动支柱以及移动支柱间的连接梁,符号7为光伏板,符号8为太阳能炉,符号9为T型管;图5为2维度追日地面式组装的正视图;图6为2维度追日地面式组装的左右侧视图:符号10为T型管间的铰接装置,符号11为万向轮或滑轮,符号12为固定支柱即智能电动柱,图7为为多管型太阳能炉收纳时的平面俯视图:符号15是上层为梯形状的箱壁,符号14是上层为三角形状的箱壁;图8为多管型太阳能炉工作时的平面俯视图:符号16为盒子中的盖子,符号17为盖子的纵梁,符号18为盖子的横梁,符号19为真空集热管,图9为多管型太阳能炉工作状态的正视图:符号20是箱壁的支撑杆,符号21为固定安装托架上的盒子底层,符号22为托架。
本发明的最佳实施方式
参阅图1~3,是地面式组装的1维度光电和光热一体化追日系统,去户外活动时,在去目的地的路上也能一直充电,车顶上的太阳能炉也可以一直在工作,达到户外场地后,把箱子整体卸载或单独卸载光伏板1,重新组装成追日系统,支柱2拼接成形后顶端插入T型管10螺栓固定,T型管10顶端再铰接或轴接梁3形成一个铰接装置11,驱动装置5与支柱2按东西方向排列安装连接梁12,光伏板1两端安装空心管9,两块连接处采用门栓的门扣插销4扣紧,太阳能炉的骨架端头插入管梁6两侧的孔内,再采用管梁6两侧门栓的门扣或插销4穿过构件扣紧在管梁6上,真空集热空心管7支架底部的构件插入管梁6面上的孔内,再采用管梁6底面的门栓的门扣或插销4穿过构件扣紧在管梁6上,真空集热管7架在支架的顶端,两终端扣紧在支架上,集热管内部插有一根内管,光伏板1及管梁6活动式安装的空心管9分别插入梁3和驱动装置5的孔内螺栓固定,太阳能炉安装在两端,由此一个1维度追踪的光电和光热系统组建完成。
参阅图4~9,是地面式组装的2维度光电和光热一体化追日系统,首先把智能电动柱12固定在地基上,组装移动支柱2.把连接梁6安装在各支柱的构件上螺栓固定,每根移动支柱2的顶端采用两个T型管9相互铰接形成铰接装置,驱动装置1螺栓固定在智能电动柱的顶端,L型支架4螺栓固定在空心管3上再把空心管3套在驱动装置1上螺栓固定,多管型太阳能炉安装时,打开箱壁14、15,把箱底与箱壁14、15间的支撑杆20扣好,由此多管型太阳能炉安装完成,把光伏板和太阳能炉两端的空心管5插入移动支柱2的T型管9或驱动装置上的L型支架4孔内螺栓固定,由此构建成一个2维度追踪的装置,移动支柱2将绕着固定支柱12做圆规运动。
本发明的车顶式光伏充电系统所产生的电,用来解决新能源车蓄电池充电及车内空调供电不足的问题,这能缓解续航里程问题,以及避免夏日里烈日暴晒所引发的车内温度过高而产生的车体自燃事故,这种充电方式同样适用于目前的燃油汽车。当蓄电池给汽车空调供电时,将通过一个自动开关转换器与汽车空调相连为汽车空调提供电力,自动开关转换器是具有自投自复的功能,分为一体化自动转换开关类和塑壳断路器类这两种类型,所述的自动开关转换器优先使用太阳能电池发电的蓄电池供电,即太阳能电池发电供电为主电源,车载电池为备用电源,当主电源的电压或电流Q高于设定阈值的电压或电流Q值时,主电源自动投入,备用电源备用;当主电源发生故障或主电源的电压或电流低于设定阈值的电压或电流I值时,备用电源投入使用;当主电源的电压恢复到设定阈值的电压或电流Q值时,自动停掉备用电源,再次切换到主电源供电,Q值>I值,但备用电源低于设定保护的阈值时,即使Q值<I值也会自动断电,当使用蓄电池供电时,是每隔W分钟供电K分钟,K<W。
本发明的实施方式
角度的调节是一日之内三次或多次,2维度或有驱动装置的1维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,上午时段,光伏板面朝东面,倾角最大,正午时段,光伏板是水平状;下午时段,光伏板面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的光伏板的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
在1维度追踪模式当中,光电和太阳能炉角度的调节是调节光伏板的倾角,将太阳能角度控制器安装在光伏板1的底部,光伏板1倾角的调节采用最大倾角算术平均法,倾角调节分为时间的控制分为三个阶段,具体参照0012段,角度调节结束后关闭电源,光伏板又归位成水平状态,取下太阳能炉,把支柱及驱动装置两侧连接光伏板的支撑杆撑起,则追日系统就转变成了一张野餐桌子。
在2维度追踪模式当中,光电和光热装置的角度调节是调节光伏板7的角度,采用太阳能角度控制器来控制,其是水平安装在中间的光伏板底部,首先调节光伏板7的方位角,由太阳能角度控制器控制智能电动柱12转动,通过连接梁6带动移动支柱2发生移动,则光伏板7的方位角调整到位,然后控制器启动驱动装置1对光伏板7的倾角进行调节。具体的调节方式参照0012段。角度调节结束后关闭电源,光伏板又归位成水平状态,取下太阳能炉,把支柱及驱动装置两侧连接光伏板的支撑杆撑起,则追日系统就转变成了一张野餐桌子。
工业实用性
本发明的车载式无需光电传感器的光电和光热一体化追踪系统,提供的1纬度或2纬度无需光电传感器的追踪技术,是一种有别于公知固定支架技术和感应式追踪技术的,把光电和光热集合为一体,太阳能炉工作的同时,光电系统能够直接给蓄电池供电,其携带方便、技术简单、成本低、性价比高,解决了户外活动中用电和吃饭难的问题、不仅避免了烈日暴晒下所引发的车内温度过高而产生的车体自燃事故的发生,更重要的是解决了光电和光热系统领域内亟待解决的技术难题,即光电和光热系统不仅要能够追日,而且能够方便携带、还要具有实用价值的难题。本发明比不具有追日功能的光电和光热系统的发电和集热的效率平均多增加了60%左右,本发明具有很好的经济效益和生态效益。

Claims (3)

  1. 车载式无需光电传感器的光电和光热一体化追踪系统,包含太阳能角度控制器、光伏板、集热装置、支柱、驱动装置、蓄电池、箱子,光伏板是水平状安装在两个箱子内,光伏板串联或并联为蓄电池充电,光伏板安装分为车顶式和地面式两种类型,所述车顶式是指箱体采用支架活动式地安装在车顶的行李架上,箱子活动式的安装有万向轮、空气阻力的分流板,分流板是把箱子托架在行李架上时才需安装,分流板安装在朝向车头的箱体一端,在安装分流板一端的两个箱子的内侧,上下部分分别固定安装有一根横梁,横梁上开有螺栓孔,螺栓固定分流板,所述分流板为拱形状,中间高两端低,截面为带弧形的多边形,分流板固定在箱体或龙骨上,所述龙骨是一种支撑架,其形状与分流板相同也为拱形,其包含纵梁和横梁,龙骨中部凸起部分是通过支撑杆螺栓固定在箱体上,两个箱子之间采用合页连接,各箱子底部固定安装有Z根梁,每根梁上固定安装有X个扣环,Z根多边形或圆形的管穿过X个扣环,两端螺栓固定在支架上,箱子内光伏板的安装是在每个箱子的周边固定安装有截面为h型的梁,梁的上面上安装有门栓的门扣或插销Y个,光伏板的四边底部托在梁的底面上,上部的四边框与梁的短边齐平,也对应地安装有Y个门栓的插销或门扣,通过门栓与h型的梁固定为一体,所述地面式安装是指到达目的地车挺稳后,把箱子卸载下来,在地面上重新组装的模式,其分为1维度或2维度追日的两种不同模式,1维度追踪系统主要由支柱和驱动装置所构成,支柱是可分拆的多边形或圆形的空心管,分为K段,当K>1时候,每段之间采用螺纹连接,一个顶端带有铰接构件或圆环构件的T型空心管插入支柱后螺栓固定,一根梁,其两端各有一个孔,其底部安装有与T型空心管相同的铰接装置的构件,其底部的构件与支柱顶端的T型空心管铰接连接或轴连接形成铰接装置,所述驱动装置螺栓固定在支柱顶端,其是一种可升降的智能电动柱,其柱体主要由多边形或圆形的螺母、带有螺纹的轴、T型空心管所构成,T型空心管的顶部两端各有一个孔,其固定在螺母上形成一体,螺母沿着轴上下移动,在2维度追日的模式当中,支柱共有N根,其中一根是固定安装,其余都为移动式安装,移动支柱将围绕固定支柱按圆形轨迹转动,移动支柱是与上述相同的可分拆的空心管,其最底层一段的底部安装有万向轮或滑轮,上述的T型空心管两根为一组,彼此铰接或轴连接形成一个铰接装置,其中一端插入移动支柱的顶端螺栓固定,所述固定支柱是一种智能电动柱,其柱体主要由轴、空心管所构成,空心管固定在轴上随轴一起旋转而不能上下移动,智能电动柱的柱体空心管顶端螺栓固定有上述的驱动装置,驱动装置只有在2维度追日模式当中随着柱体的空心管一同转动,一根活动式安装有N-1组的L型支架的多边形或圆形的空心管套在驱动装置顶端螺栓固定连接,所述L型支架上开有孔,固定支柱和移动支柱之间或者两根移动支柱之间活动式安装有连接的梁,上述所有的智能电动柱的柱体都是固定在机座上,其的驱动将采用固定在机座内的电机和机械传动机构的组合体来进行,在上述的追日系统上安装了光伏板就成为一个追日型光电系统,安装了集热装置就成为一个追日型太阳能炉,两者同时安装就成为一个光电光热一体化系统,所述太阳能炉,其分为多管和单管两种不同类型,多管型的是指多根真空集热管,安装在一个箱子内所形成的太阳能炉,所述多管型太阳能炉,箱底和壁的内侧都是涂有反光材料的板,箱底的底面安装有带有接口的空心管,箱底的内侧四个角上分别固定安装一个n型或h型的托架,盒子内分隔成多个多边形或圆形的格子,盒子分为上下两层,下层固定在托架上,上层活动式安装称为盖子,上下层采用合页连接,箱壁的底部是铰接在箱底上,箱壁分为上下两段,两段之间采用合页连接,下段为四边形、其高度是托架和格子状盒子的高度之和,上段是梯形或梯形和三角形的组合体,箱壁打开后由杆支撑,杆的两端分别连接在箱壁的上段以及格子状的盒子上,使得箱壁与箱底形成倾斜的状态,有盖子的内胆是活动式安放于真空集热管内,多根真空集热管架在盒子内的多边形或圆形的格子上固定,所述单管型太阳能炉,其分为四方形和长方形两种不同的类型,四方形太阳能炉真空集热管的形状为四方形,长方形太阳能炉真空集热管的形状为圆形,所述四方形太阳能炉的真空集热管是安装在一个箱子的盒子内,箱底和箱壁的结构及安装方式都与上述多管型的相同,箱子内四方形格子状的盒子固定在上述的托架上,盒子的盖子是安装在侧面,其一端通过合页与盒子壁铰接连接,另一端通过卡扣扣紧在盒子壁上,内胆的材质为不锈钢或铝合金,其为多边形或圆形的带有边框的无盖的盒子,其侧边有个圆形的接口,接口内带有螺纹,活动式连接把手,内胆是活动式的安放于四方形真空集热管内,所述长方形的太阳能炉,其包含有集光镜、多边形或圆形的真空集热空心管,所述集光镜是涂有反光材料的板,镜面有平板型和抛物线型两种,两块拼接合为一体形成一块三角形或抛物面形的集光镜,每种类型的镜面有N块,每块的骨架中,有X根骨架凸出于集光镜边缘外,其端头带有螺纹结构,相对应两块集光镜中的X根骨架位置是相错的,一根截面为多边形的管梁,两侧各贯穿有2X个孔,上下面贯穿有M个孔,所述X根骨架每根活动式螺纹连接有空心管,空心管固定在管梁的方式有螺栓固定或非螺栓固定两种,螺栓固定或非螺栓固定方式的空心管后端带有固定构件,前端带有圆孔或弹性扣件,固定构件与圆孔或弹性扣件之间的间距与管梁的宽度相同,两块集光镜拼接时,两种不同固定方式的空心管是分别插入管梁每侧的2X个孔后,螺栓固定或弹性扣件固定在管梁的两侧上,一根真空集热空心管的M个支架为Y型,其底部空心管的结构以及与管梁固定的方式与X根骨架的空心管相同,但固定构件与圆孔或弹性扣件之间的间距是与管梁的厚度相同,支架空心管插入管梁面上的M个孔内后,螺栓固定或弹性扣件固定在管梁底部上,真空集热管架在M个支架的顶端,扣紧在支架上,集热管内部插有一根内管,每块光伏板两端各自活动式地安装有空心管,两块光伏板之间的连接处采用门栓的门扣或插销扣紧连为一体,光伏板或单管型太阳能炉安装在支柱和驱动装置上时,在1维度追日的模式当中,是把各自的空心管插入铰接装置和驱动装置上的孔内螺栓固定,多管型太阳能炉则是固定在一根梁上,梁的两端分别安装在铰接装置和驱动装置上,在2维度的追日模式当中,光伏板的安装是把空心管插入移动支柱的T型管和驱动装置上的L型支架的孔内螺栓固定,太阳能炉是固定在一个活动式组装的支架上,支架架在光伏板上并且与其平行,固定在光伏板的边框上,光伏发电系统或光电和光热一体化系统的角度调节,是调节光伏板的角度,将由安装有嵌入式的角度传感器的太阳能角度控制器,来进行控制,所述太阳能角度控制器,是利用时间计时来控制光伏板的角度发生改变的一种智能控制装置,其主要有主芯片、角度传感器、GPS卫星定位或电子指南针、时钟芯片、蓝牙、电机驱动的模块,主芯片通过读取实时的时钟及角度数值,根据不同的时间段来控制光伏板角度的变化,时钟芯片在太阳能角度控制器接通电源后,将自动采用GPS或蓝牙进行时间的校对,光伏板角度调节的工作原理为,太阳能角度控制器与光伏板安装在同一个水平面上,当时间到达预设的时刻时,控制器通过GPS卫星定位或电子指南针的定位,接受到一个调节角度的信号,则通过控制电机控制模块来使角度检测模块做出转动动作以使得光伏板按输入的角度值完成水平或倾斜动作,此时的智能电动柱将随着电机的转动完成水平或伸或缩的运动,推动光伏板转动到预定位置的同时,角度传感器输出的模拟量经过模拟数字转换器转换后送入主控制器,主控制器再根据此输入来判定光伏板是否已经转动到预定的角度,并据此来控制电机的控制模块,由此完成一次角度的调节,倾角多次调节的方式是采用输入法,每次新调节的角度值,在上午时段为ψ-J*ψ/F;正午时段,倾角固定不变,在下午时段为γ+ψ/F,把计算出每次所需调节的倾角角度值跟与其相对应的模拟电压值或调节时刻一起预先输入到控制器的储存模块当中,具体的实施方式为,当角度传感器处于水平位置角度为0°时,输出端Vo输出的为A伏的模拟电压,当角度传感器与水平面成最大倾角的角度值ψ时,此时输出的是B伏的模拟电压,当角度传感器在0°~ψ或ψ~180°的区间变化时,输出端Vo输出的电压将从A伏依此变化到B伏或B伏依此变化到A伏的模拟电压信号,因此通过测定角度传感器输出端Vo电压的大小,就能够确定光伏板与水平面间的夹角,所述铰接装置的构件是由1块底板和C块的多边形竖板所构成,竖板带有圆弧的一端带有孔洞,另外一端焊接固定在底板上,所述铰接装置的构件,C=1或2时候,是活动式或螺栓的固定连接,当C>2时候,是铰接连接形成一个铰接装置,其特征在于:不需要光电传感装置,分别采用箱体、智能电动柱、支柱、固定或活动的支架的不同组合体,构建一个车载光伏充电系统及一个1维度或2维度的非感应式光电和光热追踪系统;光伏板的方位角和倾角的调节将采用时间计时,采用太阳能角度控制器来进行控制。
  2. 根据权利要求1所述的车载式无需光电传感器的光电和光热一体化追踪系统,其特征在于:所述太阳能角度控制器是根据时间的计时,通过控制智能电动柱智能驱动光伏板方位角水平朝东或朝西方向移动或倾角从东面到西面进行转动,由此调节光伏板的方位角或倾角跟随时间的变化而发生改变的方法,调节的顺序为方位角调节在先,倾角在后,所述方位角的调节由太阳能角度控制器根据GPS或电子指南针模块输出的信号控制其朝东或朝西转动,所述输入法是采用最大倾角算术平均法计算得出的所需调节的倾角角度值跟与其相对应的调节时刻一起预先输入到控制器的储存模块当中,所述最大倾角算术平均法是对上午或下午的时段内,光伏板所能形成的最大倾角,按调节的次数进行算术平均的方法。
  3. 根据权利要求2所述的车载式无需光电传感器的光电和光热一体化追踪系统,其特征在于:所述时间计时是一日之内三次或多次,2维度或有驱动装置的1维度追踪的调节时间段分为上午、正午、下午三个时段,一日之内的三次调节,上午时段,光伏板面朝东面,倾角最大,正午时段,光伏板是水平状;下午时段,光伏板面朝西面,倾角最大,所述的多次调节,是指在上午或下午两个时段内,每间隔E分钟进行一次方位角的调节,在E分钟内倾角调节F次,所述输入法当中的光伏板的最大倾角ψ的角度值按算术平均分成F次,每次调节的角度值为ψ/F,三个时间段内光伏板的朝向与1日之内三次调节的相同,在上午时段,每次新调节的角度值为ψ-J*ψ/F,J是整数的数字系列值,最小值为1,最大值为F;在下午时段,每次新调节的角度值为γ+ψ/F,γ是调节前一时刻的角度值,每次方位角进行调节时,倾角都已经归位到初始的位置,无驱动装置的1维度追踪的太阳能角度控制器水平安装,倾角是固定不变,方位角调节的次数,是一日之内所有调节时间的总和,按每间隔D分钟计算所得。
PCT/CN2020/106967 2020-08-05 2020-08-05 车载式无需光电传感器的光电和光热一体化追踪系统 WO2022027277A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106967 WO2022027277A1 (zh) 2020-08-05 2020-08-05 车载式无需光电传感器的光电和光热一体化追踪系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106967 WO2022027277A1 (zh) 2020-08-05 2020-08-05 车载式无需光电传感器的光电和光热一体化追踪系统

Publications (1)

Publication Number Publication Date
WO2022027277A1 true WO2022027277A1 (zh) 2022-02-10

Family

ID=80119543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106967 WO2022027277A1 (zh) 2020-08-05 2020-08-05 车载式无需光电传感器的光电和光热一体化追踪系统

Country Status (1)

Country Link
WO (1) WO2022027277A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129325A1 (en) * 2013-11-08 2015-05-14 Toyota Jidosha Kabushiki Kaisha Solar battery mounting structure for vehicle
CN105790692A (zh) * 2016-05-04 2016-07-20 张建孝 一种组合式自动跟踪太阳能光伏电站
CN107399347A (zh) * 2017-07-26 2017-11-28 谢斌 一种电动汽车用室外可移动式太阳能充电装置
CN206841325U (zh) * 2017-05-02 2018-01-05 林勇芳 一种居旅式车顶箱
CN107979335A (zh) * 2017-12-19 2018-05-01 江苏金州新能源科技有限公司 一种可伸缩和旋转型太阳能发电装置
CN108013572A (zh) * 2017-12-15 2018-05-11 芜湖酷哇机器人产业技术研究院有限公司 带太阳能充电功能的旅行箱
CN208393290U (zh) * 2018-05-23 2019-01-18 北京汽车股份有限公司 具有弹性安装的太阳能装置的车辆
CN111030575A (zh) * 2019-04-24 2020-04-17 李�杰 一种便携式的追踪型太阳能发电装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150129325A1 (en) * 2013-11-08 2015-05-14 Toyota Jidosha Kabushiki Kaisha Solar battery mounting structure for vehicle
CN105790692A (zh) * 2016-05-04 2016-07-20 张建孝 一种组合式自动跟踪太阳能光伏电站
CN206841325U (zh) * 2017-05-02 2018-01-05 林勇芳 一种居旅式车顶箱
CN107399347A (zh) * 2017-07-26 2017-11-28 谢斌 一种电动汽车用室外可移动式太阳能充电装置
CN108013572A (zh) * 2017-12-15 2018-05-11 芜湖酷哇机器人产业技术研究院有限公司 带太阳能充电功能的旅行箱
CN107979335A (zh) * 2017-12-19 2018-05-01 江苏金州新能源科技有限公司 一种可伸缩和旋转型太阳能发电装置
CN208393290U (zh) * 2018-05-23 2019-01-18 北京汽车股份有限公司 具有弹性安装的太阳能装置的车辆
CN111030575A (zh) * 2019-04-24 2020-04-17 李�杰 一种便携式的追踪型太阳能发电装置

Similar Documents

Publication Publication Date Title
CA2794602C (en) High efficiency counterbalanced dual axis solar tracking array frame system
US20130118099A1 (en) High efficiency conterbalanced dual axis solar tracking array frame system
CN107479582B (zh) 一种翻板式太阳能小车自动追光系统及控制方法
JP7281096B2 (ja) 一種な自動車用の日避けカバー
US20210194417A1 (en) Elevated dual-axis photovoltaic solar tracking assembly
Lee et al. A novel algorithm for single-axis maximum power generation sun trackers
WO2022027274A1 (zh) 便携式无需光电传感器的光电和光热一体化追踪系统
CN102841607B (zh) 光伏电站能避风的太阳跟踪装置及运动控制方法
WO2022027267A1 (zh) 太阳能房无需光电传感器的光电和光热一体化追踪系统
CN111769627A (zh) 车载型非感应式追踪的光伏发电系统
WO2022027281A1 (zh) 通信基站无需光电传感器的光伏发电追踪系统
WO2022027277A1 (zh) 车载式无需光电传感器的光电和光热一体化追踪系统
CN111735216A (zh) 户外活动型非感应式追踪的光电或光热系统
WO2022027268A1 (zh) 一种无需光电传感器追踪的太阳能充电伞
CN212457450U (zh) 一种追日型的车载式光电和光热一体化装置
US20210344298A1 (en) Auxiliary solar panel
CN111750539A (zh) 车载式非感应式追踪的光电和光热一体化系统
CN212431363U (zh) 一种追日型户外活动的光电或光热追踪装置
CN111750545A (zh) 轨道型非感应式追踪的光电和光热一体化系统
WO2022027276A1 (zh) 车载型无需光电传感器的光伏发电追踪系统
CN212457461U (zh) 一种追日型的便携式光电和光热一体化装置
CN113949338A (zh) 一种能自动跟踪可调节角度的太阳能发电装置
WO2022027272A1 (zh) 一种追日型的风光互补发电系统
WO2022027278A1 (zh) 轨道式无需光电传感器的光电和光热一体化追踪系统
CN212431366U (zh) 一种追日型的轨道式光电和光热一体化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20948649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20948649

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20948649

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/09/2023)