WO2022025283A1 - 測定処理装置、方法及びプログラム - Google Patents

測定処理装置、方法及びプログラム Download PDF

Info

Publication number
WO2022025283A1
WO2022025283A1 PCT/JP2021/028451 JP2021028451W WO2022025283A1 WO 2022025283 A1 WO2022025283 A1 WO 2022025283A1 JP 2021028451 W JP2021028451 W JP 2021028451W WO 2022025283 A1 WO2022025283 A1 WO 2022025283A1
Authority
WO
WIPO (PCT)
Prior art keywords
real space
photographed
space
coordinates
position coordinates
Prior art date
Application number
PCT/JP2021/028451
Other languages
English (en)
French (fr)
Inventor
哲吾 松尾
伸也 西元
弘樹 高田
俊二 菅谷
俊介 長沼
恵介 村田
泰章 坂田
佳雄 奥村
健太 久保
Original Assignee
松尾建設株式会社
株式会社オプティム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松尾建設株式会社, 株式会社オプティム filed Critical 松尾建設株式会社
Priority to US18/007,353 priority Critical patent/US20230281942A1/en
Publication of WO2022025283A1 publication Critical patent/WO2022025283A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/20Editing of 3D images, e.g. changing shapes or colours, aligning objects or positioning parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • G06T15/20Perspective computation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2219/00Indexing scheme for manipulating 3D models or images for computer graphics
    • G06T2219/20Indexing scheme for editing of 3D models
    • G06T2219/2016Rotation, translation, scaling

Definitions

  • Patent Document 1 a photographic surveying technique in which a known singular point is present in a photograph
  • Patent Document 2 a laser surveying technique in which the location of a laser surveying instrument that irradiates a laser
  • the present invention has a camera unit that captures a real space, an extended reality display unit that displays the captured real space and a virtual space that displays the captured real space in three-dimensional data, and a latitude.
  • the position coordinate acquisition unit that acquires the measurement point from the position identification device that measures the longitude and altitude, and the position coordinates in the virtual space of the position identification device that was photographed by shooting the position identification device, in the acquired real space.
  • a measurement processing device including a coordinate conversion unit that converts the coordinates of three-dimensional data into position coordinates in real space by a predetermined conversion formula in association with the position coordinates of the measurement points.
  • a real space is photographed, the photographed real space and the virtual space in which the photographed real space is photographed are superimposed and displayed, and the latitude, longitude, and altitude are measured.
  • a measurement point is acquired from the position-specific device to be used, the position-specific device is photographed, and the position coordinates in the virtual space of the photographed position-specific device are associated with the acquired position coordinates of the measurement point in the real space to determine a predetermined value.
  • the conversion formula of 3D data is converted into the position coordinates in the real space.
  • the position coordinates of the virtual space composed of 3D data can be easily generated in the real space. It can be accurately replaced with latitude / longitude / altitude information.
  • FIG. 1 An example of a photographing screen by the measurement processing apparatus of one Embodiment of this invention is shown. It is a block diagram which shows the hardware configuration and the functional configuration of the measurement processing apparatus of the said embodiment. It is a figure which shows an example of the correspondence table of the said embodiment. It is a flowchart which shows an example of the measurement process by the said Embodiment. Another example of the photographing screen by the measurement processing apparatus of the said embodiment is shown.
  • a position in which a real space is photographed, the photographed real space and the virtual space in which the photographed real space is photographed are superimposed and displayed, and the latitude, longitude, and altitude are measured.
  • a measurement point is acquired from a specific device, the position-specific device is photographed, and the position coordinates in the virtual space of the photographed position-specific device are associated with the position coordinates of the acquired measurement points in the real space to perform a predetermined conversion.
  • the equation converts the coordinates of the three-dimensional data into the position coordinates in the real space.
  • the sofa in the real space 40 is photographed.
  • the three-dimensional data will be described below as three-dimensional point cloud data, but may be three-dimensional mesh data, three-dimensional TIN (Triangulated irregular network) data, or similar data.
  • the three-dimensional point cloud data is composed of a large number of triangles, and the sides constituting each triangle are composed of a large number of three-dimensional point clouds.
  • This three-dimensional point cloud has an X coordinate, a Y coordinate, and a Z coordinate, respectively.
  • LIDAR Laser Imaging Detection and Ranging
  • LIDR is one of the remote sensing technologies using light, which measures scattered light for laser irradiation emitted in a pulse shape, and analyzes the distance to an object at a long distance and the property of the object.
  • the GNSS device is used in this embodiment.
  • a GNSS (Global Navigation Satellite System) device is a worldwide positioning system device that uses an artificial satellite (positioning satellite). Although the positioning method using GNSS equipment is known, the distances between the GNSS equipment and the four positioning satellites are calculated respectively, the four distances are obtained, and the point where these four distances intersect into one is mathematically determined. By doing so, I define it as my position. Since the specific calculation negative method is known, the description thereof will be omitted.
  • the display unit 30 shows only one position measuring device 50, but using a plurality of (at least 4 points) measuring points, Helmart conversion or procrustes analysis is used. You may make the conversion that was done.
  • the Helmart transformation is one of the coordinate transformations
  • the Procrustes analysis is a point cloud under the transformation of translation, rotation, and uniform scaling for two point clouds that correspond to each other. It is a process of superimposing so that the squared error between them is minimized. Since these techniques are known, detailed description thereof will be omitted.
  • the measurement processing device 10 photographs the position specifying device 50, associates the photographed position coordinates in the virtual space with the acquired position coordinates of the measurement points in the real space, and uses a predetermined conversion formula.
  • the coordinates of the data are converted into the position coordinates of the actual section by the three-dimensional point cloud.
  • the memory 14 stores a program to be executed by the processor 12, and is composed of, for example, a ROM (ReadOnlyMemory) or a RAM (RandomAccessMemory).
  • a ROM ReadOnlyMemory
  • RAM RandomAccessMemory
  • an augmented reality display unit 34, a position coordinate acquisition unit 36, and a coordinate conversion unit 38, which will be described later, are stored.
  • the storage 16 stores, for example, acquired shooting data 18, three-dimensional point cloud data 20, measurement point data 22, correspondence table 24, conversion data 26, a control program (not shown), and the like.
  • the shooting data 18 is data taken by the camera unit 32, and the three-dimensional point cloud data 20 is three-dimensional point cloud data generated from the shooting data.
  • the measurement point data 22 is a measurement point acquired by the position specifying device 50, and the corresponding table 24 sets the position coordinates in the virtual space of the photographed position specifying device 50 as the position coordinates of the acquired measurement points in the real space. It is associated.
  • FIG. 3 shows an example of the corresponding table.
  • the corresponding table 24 has the position coordinates (X-axis, Y-axis, Z-axis) in the virtual space 42 of the photographed position-specific device 50 and the position coordinates (X-axis, Y-axis, Z-axis) of the acquired measurement points in the real space. It is associated with (latitude, longitude, altitude).
  • the conversion data 26 is obtained by converting the coordinates of the three-dimensional point cloud data into the position coordinates in the real space by a predetermined conversion formula using the corresponding table 24.
  • the communication unit 28 performs various data communications with the position specifying device 50 and other external devices and servers via a network (not shown).
  • the display unit 30 is, for example, a touch panel
  • the camera unit 32 is, for example, a camera provided in the measurement processing device 10.
  • the measurement processing device 10 includes an augmented reality display unit 34, a position coordinate acquisition unit 36, and a coordinate conversion unit 38.
  • Each of these parts may be realized together with a plurality of computers communicably connected to the measurement processing device 10 via a network. That is, each of these parts may be realized by connecting a single or a plurality of server-side computers and the measurement processing device 10 to perform communication.
  • the augmented reality display unit 34 superimposes and displays the real space 40 being photographed and the virtual space 42 showing the actual space being photographed as three-dimensional point cloud data.
  • the real space 40 and the virtual space 42 (mesh data composed of three-dimensional point cloud data) are superimposed and displayed on the display unit 30.
  • the point cloud processing for example, LIDAR processing is performed.
  • the position coordinate acquisition unit 36 acquires measurement points from the position specifying device 50 that measures latitude, longitude, and altitude.
  • the position coordinates in the real space acquired by the position coordinate acquisition unit 36 referred to here are measured values of the GNSS device.
  • the number of measurement points is not limited to one, and for example, by acquiring a plurality of measurement points (at least 4 points), conversion using Helmart conversion or Procrustes analysis may be performed.
  • the measurement processing device 10 acquires a measurement point from the position specifying device 50 via the communication unit 28.
  • the coordinate conversion unit 38 photographs the position specifying device 50, associates the photographed position coordinates in the virtual space 42 of the position specifying device 50 with the acquired position coordinates of the measurement points in the real space 40, and performs predetermined conversion.
  • the equation converts the coordinates of the three-dimensional point group data into the position coordinates in the real space.
  • FIG. 4 is a flowchart showing an example of the position measurement process according to the present embodiment.
  • the position coordinate acquisition unit 36 acquires the measurement point (step S14).
  • the position coordinate acquisition unit 6 acquires measurement points from the position specifying device 50 that measures latitude, longitude, and altitude via the communication unit 28.
  • the acquired measurement points are stored in the storage 16 as measurement point data 22.
  • the position coordinates of the virtual space composed of 3D data can be easily generated in the real space. It can be accurately replaced with latitude / longitude / altitude information.
  • the above-described embodiment is an example, and can be appropriately changed within a range in which the same effect is obtained.
  • the real space 40 and the virtual space 42 shown in the above embodiment are examples, and the present invention can be applied to any place such as an outdoor building, a mountain, or a river.
  • the number of measurement points shown in the above embodiment is an example, and may be increased or decreased as necessary.
  • the Helmart conversion and the conversion using the Procrustes analysis shown in the above embodiment are also examples, and various known conversion methods may be applied as long as the same effect is obtained.
  • the position specifying device 50 shown in the above embodiment is also an example, and in the illustrated example, a small one was used, but when shooting outdoors, a measurement point is set on a stake that serves as a reference point.
  • a GNSS surveying instrument held at the tip may be piled up, or a suitable GNSS instrument may be used depending on the measurement target.
  • the three-dimensional point cloud processing is performed by LIDAR, but it does not prevent the point cloud processing from being performed by various other known methods.
  • a real space is photographed, and the photographed real space and the virtual space shown by the three-dimensional point cloud data are superimposed and displayed, and the latitude, longitude, and altitude are displayed.
  • the measurement point is acquired from the position-specific device to measure, the position-specific device is photographed, and the position coordinates in the virtual space of the photographed position-specific device are associated with the position coordinates of the acquired measurement points in the real space.
  • the coordinates of the 3D point cloud data are converted into the position coordinates in the real space by a predetermined conversion formula.
  • the position coordinates of the virtual space composed of 3D data can be easily generated in the real space. It is suitable for use in measurement processing equipment because it can be accurately replaced with latitude / longitude / altitude information.
  • Measurement processing device 12 Processor 14: Memory 16: Storage 18: Shooting data 20: Three-dimensional point cloud data 22: Measurement point data 24: Correspondence table 26: Conversion data 28: Communication unit 30: Display unit 32: Camera unit 34: Extended reality display unit 36: Position coordinate acquisition unit 38: Coordinate conversion unit 40: Real space 42: Virtual space 50: Position identification device

Abstract

【課題】特別な測量技術を必要とすることなく、測量対象となる3次元データを容易に生成するために、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換する。 【解決手段】測定処理装置10は、現実空間をカメラ部で撮影し、撮影されている現実空間40と、当該撮影されている現実空間40を3次元データで示した仮想空間42と重ね合わせて表示し、緯度・経度・高度を計測する位置特定機器50から測定点を取得し、前記位置特定機器50を撮影し、撮影された位置特定機器50の仮想空間42内の位置座標を、取得した現実空間40の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換する。これにより、3次元データで構成する仮想空間42の位置座標を、現実空間40の緯度・経度・高度情報に正確に置換する。

Description

測定処理装置、方法及びプログラム
 本発明は、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換する測定処理装置、方法及びプログラムに関する。
 近年、従来の測量技術としては、写真の中に既知の特異点がある写真測量の技術(特許文献1)や、レーザー照射するレーザー測量機の場所を既知として測量するレーザー測量技術(特許文献2)が知られている。
特開2020-196977号公報 特開2020-12750号公報
 しかしながら、上述した従来技術は、いずれも専門的な測量技術が必要であるため、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換することができない。
 そこで、本発明では、特別な測量技術を必要とすることなく、測量対象となる3次元データを容易に生成するために、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換することを目的とする。
 本発明は、現実空間を撮影するカメラ部と、撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示する拡張現実表示部と、緯度・経度・高度を計測する位置特定機器から測定点を取得する位置座標取得部と、前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換する座標変換部と、を備える測定処理装置を提供する。
 また、本発明は、現実空間を撮影するステップと、撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示するステップと、緯度・経度・高度を計測する位置特定機器から測定点を取得するステップと、前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換するステップと、を備える測定処理方法を提供する。
 更に、本発明は、コンピュータに、現実空間を撮影するステップと、撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示するステップと、緯度・経度・高度を計測する位置特定機器から測定点を取得するステップと、前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置材表と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換するステップと、を実行させるための測定処理プログラムを提供する。
 本発明によれば、現実空間を撮影し、撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示し、緯度・経度・高度を計測する位置特定機器から測定点を取得し、前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換する。
 このため、特別な測量技術を必要とすることなく、測量対象となる3次元データを容易に生成するために、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換することができる。
本発明の一実施形態の測定処理装置による撮影画面の一例を示す。 前記実施形態の測定処理装置のハードウェア構成及び機能構成を示すブロック図である。 前記実施形態の対応テーブルの一例を示す図である。 前記実施形態による測定処理の一例を示すフローチャートである。 前記実施形態の測定処理装置による撮影画面の他の一例を示す。
 本発明は、現実空間を撮影し、撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示し、緯度・経度・高度を計測する位置特定機器から測定点を取得し、前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換するものである。
 このため、特別な測量技術を必要とすることなく、測量対象となる3次元データを容易に生成するために、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換することができるシステム、方法及びプログラムである。以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。
 <全体構成>・・・図1には、本実施形態の測定処理装置による撮影画面の一例が示されている。撮影画面は、静止画であってもよいし、動画であってもよい。また、図示の例では、測定処理装置10は、スマートフォンであるが、タブレットやPCなどの他の端末であってもよい。測定処理装置10の表示部30には、実際に撮影されている現実空間40と、当該撮影されている現実空間40を3次元データで示した仮想空間42とが重ね合わせて表示されている。また、位置特定機器50が測定処理装置10によって撮影される。
 本実施例では、現実空間40のソファを撮影している。また、3次元データは、3次元点群データとして以下では説明するが、3次元メッシュデータ、3次元TIN(Triangulated irregular network)データ、又は、それに類するデータであってもよい。3次元点群データは、多数の三角形からなる構成となっており、各三角形を構成する辺が、多数の3次元点群から構成されている。この3次元点群は、それぞれ、X座標、Y座標、Z座標を有している。点群処理は、例えば、LIDAR(Laser Imaging Detection and Ranging:レーザー画像検出と測距)が用いられる。LIDRは、光を用いたリモートセンシング技術の一つで、パルス状に発光するレーザー照射に対する散乱光を測定し、遠距離にある対象までの距離やその対象の性質を分析するものである。
 また、位置特定機器50は、本実施例では、GNSS機器を用いている。GNSS(Global Navigation Satellite System)機器とは、人工衛星(測位衛星)を利用した全世界測位システム機器である。GNSS機器による測位の手法は公知であるが、GNSS機器と、4機の測位衛星との距離をそれぞれ計算し、4つの距離を求め、これら4つの距離が一つに交わる点を数学的に割り出すことで、そこを自己の位置と定める。具体的な計算負方法は公知のため、説明を省略する。
 更に、本実施例では、前記表示部30には、1つの位置測定機器50のみが示されているが、複数(少なくとも4点)の測定点を用いて、ヘルマート変換またはプロクラステス分析を用いた変換をしてもよい。ヘルマート変換は、座標変換の一つであり、プロクラステス分析は、点同士の対応がとれた2つの点群に対して、並進・回転・一様なスケーリングの変換のもとで、点群間の二乗誤差が最小になるように重ね合わせる処理である。これらの技術は公知のため、詳細な説明は省略する。
 測定処理装置10は、位置特定機器50を撮影し、撮影された位置特定機器50の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元点群でデータの座標を現実区間の位置座標に変換する。これにより、特別な測量技術を必要とすることなく、測量対象となる3次元データを容易に生成するために、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換することができる。
 <測定処理装置の構成>・・・次に、図2及び図3を参照して、測定処理装置10の構成を説明する。図2は、本実施形態の測定処理装置10のハードウェア構成及び機能構成を示すブロック図である。測定処理装置10は、ハードウェアとして、プロセッサ12、メモリ14、ストレージ16、通信部28、表示部30、カメラ部32を備えている。これらは、図示しないバスにより接続されている。なお、測定処理装置10は、単体のコンピュータではなく、測定処理装置10と通信可能なコンピュータがネットワークに接続され実現されるシステムであってもよい。
 プロセッサ12は、例えば、CPU(Central Processing Unit)により構成され、メモリ14に記憶された各種プログラムを読み出して実行することで、各種処理を行う。
 前記メモリ14は、プロセッサ12により実行させるプログラムを記憶するものであり、例えば、ROM(Read Only Memory)やRAM(Random Access Memory)により構成される。例えば、後述する拡張現実表示部34、位置座標取得部36、座標変換部38が記憶されている。
 ストレージ16は、例えば、取得した撮影データ18、3次元点群データ20、測定点データ22、対応テーブル24、変換データ26や、図示しない制御プログラムなどを記憶するものである。
 撮影データ18は、カメラ部32によって撮影されたデータであり、3次元点群データ20は、撮影データから生成された3次元点群データである。測定点データ22は、位置特定機器50によって取得した測定点であり、対応テーブル24は、撮影された位置特定機器50の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けたものである。
 図3には、対応テーブルの一例が示されている。図3に示すように、対応テーブル24は、撮影された位置特定機器50の仮想空間42内の位置座標(X軸、Y軸、Z軸)と、取得した現実空間の測定点の位置座標(緯度、経度、高度)とを対応付けたものである。
 変換データ26は、前記対応テーブル24を用いて、所定の変換式で、3次元点群データの座標を現実空間の位置座標に変換したものである。
 通信部28は、図示しないネットワークを介して、位置特定機器50や、その他の外部装置やサーバと各種データ通信を行うものである。
 表示部30は、例えば、タッチパネルであり、カメラ部32は、例えば、測定処理装置10に設けられたカメラである。
 次に、測定処理装置10の機能構成について説明すると、測定処理装置10は、拡張現実表示部34、位置座標取得部36、座標変換部38を備えている。これらの各部は、測定処理装置10とネットワークで通信可能に接続された複数のコンピュータとともに実現されてもよい。すなわち、単数又は複数のサーバ側のコンピュータと測定処理装置10が接続されて通信を行う事でこれらの各部が実現されてもよい。
 拡張現実表示部34は、撮影されている現実空間40と、当該撮影されている現実空間を3次元点群データで示した仮想空間42とを重ね合わせて表示するものである。例えば、図1のように、表示部30に、現実空間40と仮想空間42(3次元点群データからなるメッシュデータ)が重ね合わせて表示される。点群処理は、例えば、LIDAR処理が行われる。
 次に、位置座標取得部36は、緯度・経度・高度を計測する位置特定機器50から測定点を取得するものである。なお、ここでいう位置座標取得部36が取得する現実空間の位置座標とは、GNSS機器の測定値である。測定点は、一つに限らず、例えば、複数(少なくとも4点)取得することで、ヘルマート変換またはプロクラステス分析を用いた変換を行ってもよい。測定処理装置10は、通信部28を介して、前記位置特定機器50から測定点を取得する。
 座標変換部38は、位置特定機器50を撮影し、撮影された位置特定機器50の仮想空間42内の位置座標を、取得した現実空間40の測定点の位置座標と対応付けて、所定の変換式で、3次元点群データの座標を現実空間の位置座標に変換するものである。
 <位置測定処理>・・・次に、図4も参照しながら、本実施形態の位置測定装置10による位置計測処理の一例を説明する。図4は、本実施形態による位置計測処理の一例を示すフローチャートである。
 まず、カメラ部32で現実空間40を撮影する(ステップS10)。撮影されたデータは、ストレージ16に撮影データ18として格納される。そして、拡張現実表示部34によって、撮影されている現実空間40と、当該撮影されている現実空間40を3次元点群データで示した仮想空間42と重ね合わせて表示する(ステップS12)。3次元点群データは、ストレージ16に記憶される。例えば、図1には、位置測定装置10の表示部30に、現実空間40であるソファと、その仮想空間42を示す3次元点群データからなるメッシュデータが重ね合わせて表示されている。
 次に、位置座標取得部36が、測定点を取得する(ステップS14)。位置座標取得部6は、通信部28を介して、緯度・経度・高度を計測する位置特定機器50から測定点を取得する。取得した測定点は、ストレージ16に測定点データ22として記憶される。
 そして、座標変換部38は、位置特定機器50を撮影し、撮影された位置特定機器50の仮想空間42内の位置座標を、取得した現実空間40の測定点と対応付ける。このような対応テーブル24が、ストレージ16に記憶される。そして、座標変換部38は、所定の変換式で、3次元点群データの座標を現実空間の位置座標に変換する(ステップS16)。変換データ26は、ストレージ16に記憶される。
 なお、本実施形態においては、検証点をプロットすることにより、誤差確認できるようにしてもよい。誤差が一定以内であることを確認できれば、工事現場でも使用することができ、また、ICT(Information and Communication Technology)建機のデータに利用することも可能である。
 更に、本実施形態において、位置特定機器50を画像認識などにより自動検出して、座標を取得するようにしてもよい。
 更に、本実施形態において、位置特定機器50が写り込むようにして動画を撮影してもよい。例えば、図5に示すように、住宅の建築現場(現実空間40)の動画を撮影した場合、現実空間40に3次元点群データで示した仮想空間42を重ね合わせて表示し、静止画の場合と同様に処理を行って、3次元点群データの座標を現実空間の位置座標に変換してもよい。
 <効果>・・・このように、本実施形態によれば、カメラ部32によって現実空間40を撮影し、拡張現実表示部34によって、撮影されている現実空間40と、当該撮影されている現実空間40を3次元点群データで示した仮想空間42と重ね合わせて表示する。そして、位置座標取得部36によって、緯度・経度・高度を計測する位置特定機器50から測定点を取得し、座標変換部38によって、前記位置特定機器50を撮影し、撮影された位置特定機器50の仮想空間42内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元点群データの座標を現実空間の位置座標に変換することとした。
 このため、特別な測量技術を必要とすることなく、測量対象となる3次元データを容易に生成するために、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換することができる。
 上述した実施形態は一例であり、同様の効果を奏する範囲内で適宜変更が可能である。
  (1)前記実施形態で示した現実空間40と仮想空間42は一例であり、屋外の建物や山や河川等の任意の場所について、本発明は適用可能である。
  (2)前記実施形態で示した測定点の数は、一例であり、必要に応じて適宜増減してよい。
  (3)前記実施形態で示したヘルマート変換やプロクラステス分析を用いた変換も一例であり、同様の効果を奏する限り、公知の各種の変換方法を適用してよい。
 (4)前記実施形態で示した位置特定機器50も一例であり、図示の例では、小型のものが使用されたが、屋外の撮影の際には、基準点となる杭に、計測点を先端に有するGNSS測量機器を杭打ちしたものを用いてもよく、測定対象に応じて、適したGNSS機器を使用してよい。
  (5)前記実施形態では、3次元点群処理を、LIDARにより行うこととしたが、他の公知の各種の手法で点群処理を行うことを妨げるものではない。
 (6)前記実施形態では、例えば、スマートフォンなどの測定処理装置10で全ての処理を行うこととしたが、これも一例であり、一部の機能を外部のデバイスやサーバで行うようにしてもよい。
  (7)本発明は、測定処理装置10で実行されるプログラムとして提供されてもよい。このプログラムは、コンピュータが読取可能な記録媒体に記録された状態で提供されていてもよいし、ネットワークを介してダウンロード可能としてもよい。また、本発明は、方法の発明として提供されてもよい。
 本発明によれば、現実空間を撮影し、撮影されている現実空間と、当該撮影されている現実空間を3次元点群データで示した仮想空間と重ね合わせて表示し、緯度・経度・高度を計測する位置特定機器から測定点を取得し、前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元点群データの座標を現実空間の位置座標に変換する。
 このため、特別な測量技術を必要とすることなく、測量対象となる3次元データを容易に生成するために、容易な操作で、3次元データで構成する仮想空間の位置座標を、現実空間の緯度・経度・高度情報に正確に置換することができるため、測定処理装置の用途に好適である。
 10:測定処理装置
 12:プロセッサ
 14:メモリ
 16:ストレージ
 18:撮影データ
 20:3次元点群データ
 22:測定点データ
 24:対応テーブル
 26:変換データ
 28:通信部
 30:表示部
 32:カメラ部
 34:拡張現実表示部
 36:位置座標取得部
 38:座標変換部
 40:現実空間
 42:仮想空間
 50:位置特定機器
 
 

Claims (5)

  1.  現実空間を撮影するカメラ部と、
     撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示する拡張現実表示部と、
     緯度・経度・高度を計測する位置特定機器から測定点を取得する位置座標取得部と、
     前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換する座標変換部と、
    を備える測定処理装置。
  2.  前記測定点が複数であって、ヘルマート変換またはプロクラステス分析を用いた変換又は、これに類する3次元レジストレーション手法を用いた変換をする請求項1に記載の測定処理装置。
  3.  前記位置座標取得部が取得する現実空間の位置座標とは、GNSS(全世界測位システム)による測定値である請求項1に記載の測定処理装置。
  4.  現実空間を撮影するステップと、
     撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示するステップと、
     緯度・経度・高度を計測する位置特定機器から測定点を取得するステップと、
     前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換するステップと、
    を備える測定処理方法。
  5.  コンピュータに、
     現実空間を撮影するステップと、
     撮影されている現実空間と、当該撮影されている現実空間を3次元データで示した仮想空間と重ね合わせて表示するステップと、
     緯度・経度・高度を計測する位置特定機器から測定点を取得するステップと、
     前記位置特定機器を撮影し、撮影された位置特定機器の仮想空間内の位置座標を、取得した現実空間の測定点の位置座標と対応付けて、所定の変換式で、3次元データの座標を現実空間の位置座標に変換するステップと、
    を実行させるための測定処理プログラム。
     
PCT/JP2021/028451 2020-07-31 2021-07-30 測定処理装置、方法及びプログラム WO2022025283A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/007,353 US20230281942A1 (en) 2020-07-31 2021-07-30 Measurement processing device, method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-130913 2020-07-31
JP2020130913A JP6928217B1 (ja) 2020-07-31 2020-07-31 測定処理装置、方法及びプログラム

Publications (1)

Publication Number Publication Date
WO2022025283A1 true WO2022025283A1 (ja) 2022-02-03

Family

ID=77456420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028451 WO2022025283A1 (ja) 2020-07-31 2021-07-30 測定処理装置、方法及びプログラム

Country Status (3)

Country Link
US (1) US20230281942A1 (ja)
JP (1) JP6928217B1 (ja)
WO (1) WO2022025283A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074852A1 (ja) * 2021-10-29 2023-05-04 株式会社Nttドコモ 情報処理装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7406904B2 (ja) * 2021-07-30 2023-12-28 株式会社オプティム 測量システム、測量装置、測量方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040913A (ja) * 2006-08-08 2008-02-21 Canon Inc 情報処理方法、情報処理装置
JP2009204615A (ja) * 2007-02-16 2009-09-10 Mitsubishi Electric Corp 道路地物計測装置、地物識別装置、道路地物計測方法、道路地物計測プログラム、計測装置、計測方法、計測端末装置、計測サーバ装置、作図装置、作図方法、作図プログラムおよび作図データ
JP2012063866A (ja) * 2010-09-14 2012-03-29 Topcon Corp 点群位置データ処理装置、点群位置データ処理方法、点群位置データ処理システム、および点群位置データ処理プログラム
JP2012088114A (ja) * 2010-10-18 2012-05-10 Topcon Corp 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム
JP2013089123A (ja) * 2011-10-20 2013-05-13 National Institute Of Information & Communication Technology 個人モデルデータの生成方法、生成プログラム、および生成システム
JP2017142204A (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 点群位置合わせ装置および点群位置合わせプログラム
JP2018534698A (ja) * 2015-11-20 2018-11-22 マジック リープ, インコーポレイテッドMagic Leap,Inc. Rgbdカメラ姿勢のラージスケール判定のための方法およびシステム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040913A (ja) * 2006-08-08 2008-02-21 Canon Inc 情報処理方法、情報処理装置
JP2009204615A (ja) * 2007-02-16 2009-09-10 Mitsubishi Electric Corp 道路地物計測装置、地物識別装置、道路地物計測方法、道路地物計測プログラム、計測装置、計測方法、計測端末装置、計測サーバ装置、作図装置、作図方法、作図プログラムおよび作図データ
JP2012063866A (ja) * 2010-09-14 2012-03-29 Topcon Corp 点群位置データ処理装置、点群位置データ処理方法、点群位置データ処理システム、および点群位置データ処理プログラム
JP2012088114A (ja) * 2010-10-18 2012-05-10 Topcon Corp 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム
JP2013089123A (ja) * 2011-10-20 2013-05-13 National Institute Of Information & Communication Technology 個人モデルデータの生成方法、生成プログラム、および生成システム
JP2018534698A (ja) * 2015-11-20 2018-11-22 マジック リープ, インコーポレイテッドMagic Leap,Inc. Rgbdカメラ姿勢のラージスケール判定のための方法およびシステム
JP2017142204A (ja) * 2016-02-12 2017-08-17 三菱電機株式会社 点群位置合わせ装置および点群位置合わせプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023074852A1 (ja) * 2021-10-29 2023-05-04 株式会社Nttドコモ 情報処理装置

Also Published As

Publication number Publication date
US20230281942A1 (en) 2023-09-07
JP2022027111A (ja) 2022-02-10
JP6928217B1 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
CN110296691B (zh) 融合imu标定的双目立体视觉测量方法与系统
CN113570721B (zh) 三维空间模型的重建方法、装置和存储介质
Verykokou et al. UAV-based 3D modelling of disaster scenes for Urban Search and Rescue
WO2019127445A1 (zh) 三维建图方法、装置、系统、云端平台、电子设备和计算机程序产品
Zhang et al. A UAV-based panoramic oblique photogrammetry (POP) approach using spherical projection
KR20130138247A (ko) 신속 3d 모델링
WO2022025283A1 (ja) 測定処理装置、方法及びプログラム
WO2022078240A1 (zh) 一种应用于电子地图中的摄像头精准定位方法及处理终端
CN113345028B (zh) 一种确定目标坐标变换信息的方法与设备
WO2018214778A1 (zh) 一种虚拟对象的展示方法及装置
CN111815759B (zh) 一种可量测实景图片的生成方法、装置、计算机设备
CN112312113A (zh) 用于生成三维模型的方法、装置和系统
KR20220085142A (ko) 확장현실 기반 지능형 건설현장 관리 지원 시스템 및 방법
CN115601496A (zh) Ar辅助三维地图尺度恢复的方法和系统
US8509522B2 (en) Camera translation using rotation from device
KR102475790B1 (ko) 지도제작플랫폼장치 및 이를 이용한 지도제작방법
CN112669392A (zh) 一种应用于室内视频监控系统的地图定位方法及系统
KR102458559B1 (ko) 휴대용 단말기를 이용한 건설 분야 시공 관리 시스템 및 방법
JP2008203991A (ja) 画像処理装置
JP5230354B2 (ja) 位置特定装置及び異動建物検出装置
CN104567812A (zh) 空间位置测量方法及装置
CN111145095B (zh) 一种带尺度测量的vr图生成方法及数据采集装置
Khosravani et al. Coregistration of kinect point clouds based on image and object space observations
US11776148B1 (en) Multi-view height estimation from satellite images
CN116704138B (zh) 倾斜摄影三维模型的建立方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848795

Country of ref document: EP

Kind code of ref document: A1