WO2022024414A1 - Ammonia concentration method and ammonia concentration device - Google Patents

Ammonia concentration method and ammonia concentration device Download PDF

Info

Publication number
WO2022024414A1
WO2022024414A1 PCT/JP2021/002421 JP2021002421W WO2022024414A1 WO 2022024414 A1 WO2022024414 A1 WO 2022024414A1 JP 2021002421 W JP2021002421 W JP 2021002421W WO 2022024414 A1 WO2022024414 A1 WO 2022024414A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
ammonia
space
treated
semipermeable membrane
Prior art date
Application number
PCT/JP2021/002421
Other languages
French (fr)
Japanese (ja)
Inventor
優子 梶原
明広 高田
徹 中野
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN202180061443.XA priority Critical patent/CN116133737A/en
Publication of WO2022024414A1 publication Critical patent/WO2022024414A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis

Definitions

  • the present invention relates to an ammonia concentrating method and an ammonia concentrating device for concentrating water to be treated containing ammonia.
  • a reverse osmosis method using a reverse osmosis membrane is known as a method for separating and concentrating ammonia from wastewater containing ammonia (see Patent Document 1).
  • a method of concentrating water by passing water to be treated or its concentrated water through the first space and the second space partitioned by the semipermeable membrane of the semipermeable membrane module and pressurizing the first space is known. (See Patent Document 2).
  • Such a concentration method using a semipermeable membrane concentrates wastewater at a high concentration with less energy consumption by reducing the osmotic pressure difference between the first space and the second space as compared with the general reverse osmosis method. can do.
  • a typical bactericidal agent is a chlorine-based oxidant such as hypochlorous acid, which is usually added to the water to be treated before the reverse osmosis membrane treatment for the purpose of sterilization (see Patent Document 3).
  • a chlorine-based oxidant such as hypochlorous acid
  • the ammonia in the wastewater reacts with free chlorine derived from the disinfectant to generate bound chlorine, which has a bactericidal effect. May decrease. Therefore, in order to exert a sufficient bactericidal effect, it is necessary to increase the amount of the chlorine-based oxidant added as the ammonia concentration of the water to be treated becomes higher, which leads to an increase in cost.
  • the chlorine-based oxidant may oxidatively deteriorate the polyamide-based semipermeable membrane, which is generally used as a semipermeable membrane, leading to deterioration of the treated water quality.
  • An object of the present invention is ammonia that can suppress biofouling while maintaining the recovery rate of ammonia in the concentration treatment of water to be treated using a semipermeable membrane module provided with a cellulose acetate semipermeable membrane. To provide a concentration method and an ammonia concentrator.
  • a semipermeable membrane module having a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane is used to allow water to be treated containing ammonia to pass through the first space.
  • the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the second space is filled with a part of the water to be treated or the concentrated ammonia water. 2.
  • This is an ammonia concentration method.
  • a semipermeable membrane module connected in multiple stages, which has a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane, is used to apply ammonia-containing water to be treated in the first stage.
  • Water is passed through the first space of the semipermeable membrane module of the above, and the first space is pressurized to allow the water contained in the water to be treated to permeate the semipermeable membrane to obtain ammonia-concentrated water, and the ammonia concentration thereof is obtained.
  • a part of the water to be treated or at least a part of the ammonia-concentrated water is obtained in the second space of the semipermeable membrane module of each stage while water is further obtained by using the semipermeable membrane modules of the next and subsequent stages.
  • a method for concentrating ammonia which comprises a semipermeable membrane treatment step of passing water to obtain diluted water, and in which a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is present in the water to be treated. be.
  • the stabilized hypobromous acid composition in the water to be treated so that the total chlorine concentration at at least one of the first space inlet and the first space outlet of the semipermeable membrane module becomes a predetermined value. It is preferable to adjust the amount of objects.
  • the treated water containing ammonia is preferably at least one of ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater.
  • a semipermeable membrane module having a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane is used to allow water to be treated containing ammonia to pass through the first space.
  • the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the second space is filled with a part of the water to be treated or the concentrated ammonia water.
  • a semipermeable membrane treatment means for obtaining diluted water by passing at least a part of the above water, and an addition means for adding a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to the water to be treated. It is an ammonia concentrator equipped with.
  • a semipermeable membrane module connected in multiple stages, which has a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane, is used to apply ammonia-containing water to be treated in the first stage.
  • Water is passed through the first space of the semipermeable membrane module of the above, and the first space is pressurized to allow the water contained in the water to be treated to permeate the semipermeable membrane to obtain ammonia-concentrated water, and the ammonia concentration thereof is obtained.
  • a part of the water to be treated or at least a part of the ammonia-concentrated water is obtained in the second space of the semipermeable membrane module of each stage while water is further obtained by using the semipermeable membrane modules of the next and subsequent stages.
  • a semipermeable membrane treatment means for obtaining diluted water by passing water through the water, and an addition means for adding a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to the water to be treated are provided. , Ammonia concentrator.
  • the ammonia concentrator further includes a reverse osmosis membrane treatment means for performing a reverse osmosis membrane treatment on the diluted water to obtain RO permeated water and RO concentrated water.
  • the total chlorine concentration measuring means for measuring the total chlorine concentration at at least one of the first space inlet and the first space outlet of the semipermeable membrane module, and the total measured by the total chlorine concentration measuring means. It is further preferable to further provide an adjusting means for adjusting the addition amount of the stabilized hypobromic acid composition by the adding means so that the chlorine concentration becomes a predetermined value.
  • the water to be treated containing ammonia is preferably at least one of ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater.
  • the present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.
  • ammonia concentration method and ammonia concentration device An outline of an example of the ammonia concentrator according to the embodiment of the present invention is shown in FIG. 1, and the configuration thereof will be described.
  • ammonia (NH 3 ) and ammonium ion (NH 4 + ) are collectively referred to as "ammonia”.
  • the ammonia concentrator 1 shown in FIG. 1 contains ammonia by using a semipermeable membrane module having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate.
  • Water to be treated is passed through the first space, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the water to be treated is passed through the second space.
  • a semipermeable membrane treatment means for obtaining diluted water by passing a part of the water for example, a membrane module 12 is provided.
  • the membrane module 12 has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14.
  • the ammonia concentrator 1 may include a water tank 10 to be treated to store water to be treated.
  • a pipe 22 is connected to the water inlet of the water tank 10 to be treated.
  • the outlet of the water tank 10 to be treated and the first space inlet of the membrane module 12 are connected by a pipe 24 via a pump 20, and the pipe 28 branched from the pipe 24 on the downstream side of the pump 20 in the pipe 24 is the membrane module 12. It is connected to the entrance of the second space.
  • a pipe 26 is connected to the first space outlet of the membrane module 12, and a pipe 30 is connected to the second space outlet of the membrane module 12.
  • a disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
  • the ammonia concentrating device 1 of FIG. 1 uses a membrane module 12 having a first space 16 and a second space 18 partitioned by a semipermeable membrane 14, and allows water to be treated to flow from the entrance of the first space of the membrane module 12 to the first space.
  • a membrane module 12 having a first space 16 and a second space 18 partitioned by a semipermeable membrane 14, and allows water to be treated to flow from the entrance of the first space of the membrane module 12 to the first space.
  • the water contained in the water to be treated in the first space 16 is seconded through the semipermeable membrane 14.
  • It is a device that concentrates the water to be treated by allowing it to permeate through the space 18. That is, in the ammonia concentrator 1, the water to be treated is concentrated using the semipermeable membrane 14.
  • the ammonia concentrating device 1 is a device that supplies water to be treated to both the first space 16 and the second space 18 of the membrane module 12 to perform the concentrating treatment.
  • the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22.
  • a disinfectant a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32.
  • the fungicide may be added in the pipe 22 or in the pipe 24.
  • the water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the membrane module 12 to the first space 16 and passed through the water.
  • the water to be treated is sent from the second space inlet of the membrane module 12 to the second space 18 through the pipe 28 branched from the pipe 24, and is passed through the water.
  • a part of the water contained in the pressurized water to be treated permeates from the first space 16 to the second space 18 through the semipermeable membrane 14.
  • the ammonia in the first space 16 that did not pass through the semipermeable membrane 14 is concentrated.
  • the second space 18 a part of the water to be treated passed through the pipe 28 and the permeated water having a low ammonia concentration permeated through the semipermeable membrane 14 merge, so that the diluting effect works.
  • the ammonia concentrated water obtained in the first space 16 is discharged from the first space outlet through the pipe 26, and the diluted water obtained in the second space 18 is discharged from the second space outlet through the pipe 30.
  • the first space 16 is pressurized, and the water contained in the water to be treated in the first space 16 is permeated into the second space 18 via the semipermeable membrane 14, and the first space 16 is used. (Ammonia concentrated water is obtained) and diluted water is obtained in the second space 18 (diluting step).
  • the pump 20, the pipes 24, 28, etc. function as supply means for supplying the water to be treated to both the first space 16 and the second space 18 of the semipermeable membrane module 12.
  • the ammonia concentrated water obtained in the first space 16 may be recovered and reused.
  • the ammonia-concentrated water obtained in the first space 16 may be further subjected to a distillation treatment or an electrodialysis treatment.
  • the diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 30, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. As will be described later, at least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step).
  • treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
  • a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound as a bactericidal agent is present in the water to be treated containing ammonia, and is subjected to the subject.
  • the treated water is passed through the first space 16 and the second space 18 of the membrane module 12.
  • FIG. 2 An outline of another example of the ammonia concentrator according to the embodiment of the present invention is shown in FIG. 2, and the configuration thereof will be described.
  • the ammonia concentrator 2 shown in FIG. 2 contains ammonia by using a semipermeable membrane module having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate.
  • Water to be treated is passed through the first space, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the second space is filled with concentrated ammonia water.
  • a semipermeable membrane treatment means for obtaining diluted water by passing at least a part of the above for example, a membrane module 12 is provided.
  • the membrane module 12 has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14.
  • the ammonia concentrator 2 may include a water tank 10 to be treated to store water to be treated.
  • a pipe 22 is connected to the water inlet of the water tank 10 to be treated.
  • the outlet of the water tank 10 to be treated and the first space inlet of the membrane module 12 are connected by a pipe 24 via a pump 20.
  • a pipe 26 is connected to the first space outlet of the membrane module 12.
  • the pipe 34 branched from the pipe 26 is connected to the second space entrance of the membrane module 12.
  • a pipe 36 is connected to the second space outlet of the membrane module 12.
  • a disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
  • the ammonia concentrating device 2 of FIG. 2 uses a membrane module 12 having a first space 16 and a second space 18 partitioned by a semi-permeable membrane 14, and allows water to be treated to flow from the first space inlet of the membrane module 12 to the first space. At the same time as passing water through 16, at least a part of the ammonia-concentrated water discharged from the first space outlet of the first space 16 of the membrane module 12 is passed from the second space inlet of the membrane module 12 to the second space 18. By pressurizing the first space 16, the water contained in the water to be treated in the first space 16 is permeated into the second space 18 through the semi-permeable membrane 14, and the water to be treated is concentrated.
  • the water to be treated is concentrated using the semipermeable membrane 14.
  • the ammonia concentrating device 2 supplies water to be treated to the first space 16 of the membrane module 12, and supplies at least a part of the ammonia concentrated water obtained from the outlet of the first space 16 to the second space 18 of the membrane module 12. It is a device that performs concentration processing.
  • ammonia concentrating method and the operation of the ammonia concentrating device 2 according to the present embodiment will be described.
  • the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22.
  • a disinfectant a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32.
  • the fungicide may be added in the pipe 22 or in the pipe 24.
  • the water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the membrane module 12 to the first space 16 and passed through the water.
  • a part of the water contained in the pressurized water to be treated permeates from the first space 16 to the second space 18 through the semipermeable membrane 14. At this time, since most of the ammonia cannot pass through the semipermeable membrane 14, the ammonia in the first space 16 that did not pass through the semipermeable membrane 14 is concentrated. On the other hand, in the second space 18, at least a part of the ammonia concentrated water passed through the pipe 34 and the permeated water having a low ammonia concentration permeated through the semipermeable membrane 14 merge, so that the diluting effect works.
  • the ammonia-concentrated water obtained in the first space 16 is discharged from the first space outlet through the pipe 26, and at least a part of the ammonia-concentrated water passes through the pipe 34 branched from the pipe 26 and enters the second space of the membrane module 12. Liquid is sent from to the second space 18 and water is passed through. The diluted water obtained in the second space 18 is discharged from the second space outlet through the pipe 36.
  • the first space 16 is pressurized, and the water contained in the water to be treated in the first space 16 is permeated into the second space 18 via the semipermeable membrane 14, and the first space 16 is used. (Ammonia concentrated water is obtained) and diluted water is obtained in the second space 18 (diluting step).
  • the pump 20, pipes 24, 26, 34, etc. supply the water to be treated to the first space 16 of the semipermeable membrane module 12, and at least a part of the ammonia concentrated water obtained from the outlet of the first space 16. Functions as a supply means for supplying the second space 18 of the semipermeable membrane module 12.
  • the ammonia concentrated water obtained in the first space 16 may be recovered and reused.
  • the ammonia-concentrated water obtained in the first space 16 may be further subjected to a distillation treatment or an electrodialysis treatment.
  • the diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 36, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. As will be described later, at least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step).
  • treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
  • a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound as a bactericidal agent is present in the water to be treated containing ammonia, and is subjected to the subject.
  • the treated water is passed through the first space 16 of the membrane module 12, and the obtained concentrated ammonia water is passed through the second space 18.
  • FIG. 3 shows an example of an ammonia concentrator having such a configuration.
  • the ammonia concentrator 3 shown in FIG. 3 is a semipermeable membrane module connected in a plurality of stages and having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate.
  • the water to be treated containing ammonia is passed through the first space of the semipermeable membrane module of the first stage, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane.
  • To obtain concentrated ammonia water and then use the semipermeable membrane modules of the next and subsequent stages to obtain concentrated ammonia water, and in the second space of the semipermeable membrane module of each stage, one of the water to be treated.
  • a semipermeable membrane processing means for obtaining diluted water by passing at least a part or at least a part of the ammonia concentrated water
  • a first-stage membrane module 12a and a second-stage membrane module 12b are provided.
  • Each membrane module has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14.
  • the ammonia concentrator 3 may include a water tank 10 to be treated to store water to be treated.
  • the ammonia concentrating device 3 supplies water to be treated to the first space of the first-stage membrane module, sequentially supplies the ammonia-concentrated water to the first space of the next-stage membrane module, and the ammonia-concentrated water is the final stage.
  • the ammonia concentrated water in the final stage is supplied to the second space of the semipermeable membrane module in the final stage, and the diluted water is sequentially supplied to the second space of the membrane module in the previous stage.
  • It is a device that supplies to the space and performs concentration processing.
  • water to be treated is supplied to the first space and the second space of the first-stage membrane module, respectively, and the ammonia-concentrated water and the diluted water are sequentially supplied to the first space and the second space of the next-stage membrane module. It may be a device that supplies each of the spaces to perform the concentration treatment.
  • a pipe 22 is connected to the water inlet of the water tank 10 to be treated.
  • the outlet of the water tank 10 to be treated and the first space inlet of the first stage membrane module 12a are connected by a pipe 24 via a pump 20.
  • the first space outlet of the first-stage membrane module 12a and the first space inlet of the second-stage membrane module 12b are connected by a pipe 38.
  • a pipe 40 is connected to the first space outlet of the second stage membrane module 12b.
  • the pipe 42 branched from the pipe 40 is connected to the second space entrance of the second stage membrane module 12b.
  • the second space outlet of the second stage membrane module 12b and the second space inlet of the first stage membrane module 12a are connected by a pipe 44.
  • a pipe 46 is connected to the second space outlet of the first-stage membrane module 12a.
  • a disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
  • the ammonia concentrator 3 uses a multi-stage membrane module having a first space 16 and a second space 18 partitioned by a semi-permeable membrane 14, and the water to be treated is serialized in the first space 16 of the multi-stage membrane module. At least a part of the ammonia concentrated water of the final stage membrane module is sent to the second space 18 of the final stage membrane module (second stage membrane module 12b in the example of FIG. 3), and finally.
  • the diluted water of the membrane module of the stage is passed through the second space 18 of the membrane module of the previous stage in series, and the water contained in the first space 16 is transferred to the semitransparent membrane 14 by pressurizing the first space 16. It is a device that concentrates the water to be treated by allowing it to permeate through the second space 18.
  • the water to be treated is concentrated using the semipermeable membrane 14, and the ammonia concentrated water is further concentrated using the semipermeable membrane 14 of the next stage. Then, the ammonia-concentrated water that has passed through the first space 16 of the membrane module in the final stage is passed in series to the second space 18 of the membrane module in each stage, and the first space 16 of the membrane module in each stage is added. The water contained in the first space 16 is permeated through the second space 18 by pressing.
  • the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22.
  • a disinfectant a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32.
  • the fungicide may be added in the pipe 22 or in the pipe 24.
  • the water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the first stage membrane module 12a to the first space 16a, and is passed through the water.
  • the diluted water sent through the second space 18b of the second stage membrane module 12b which will be described later, is sent to the second space 18a of the first stage membrane module 12a through the pipe 44.
  • the first space 16a is pressurized and the water contained in the first space 16a is permeated into the second space 18a (ammonia concentration step (first stage)), and the second space Diluted water is obtained at 18a (dilution step (first stage)).
  • the diluted water obtained in the second space 18a is discharged from the second space outlet through the pipe 46.
  • the ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the first space 16b of the second stage membrane module 12b through the pipe 38.
  • the ammonia-concentrated water obtained in the first space 16b is discharged from the first space outlet through the pipe 40, and at least a part of the ammonia-concentrated water is passed through the pipe 42 branched from the pipe 40 to the second stage membrane module 12b.
  • Liquid is sent from the entrance of the second space to the second space 18b, and water is passed therethrough.
  • the first space 16b is pressurized and the water contained in the first space 16b is permeated into the second space 18b (ammonia concentration step (second stage).
  • diluted water is obtained in the second space 18b (dilution step (second stage)).
  • the diluted water obtained in the second space 18b is sent from the outlet of the second space to the second space 18a of the first stage membrane module 12a through the pipe 44.
  • the pump 20, pipes 24, 38, 40, 42, 44 and the like supply water to be treated to the first space 16 of the semipermeable membrane module 12, and the ammonia concentrated water obtained from the outlet of the first space 16. It functions as a supply means for supplying at least a part of the above to the second space 18 of the semipermeable membrane module 12.
  • the ammonia concentrated water obtained in the first space 16 may be recovered and reused.
  • the ammonia-concentrated water obtained in the first space 16 may be further subjected to a distillation treatment or an electrodialysis treatment.
  • the diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 46, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. As will be described later, at least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step).
  • treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
  • a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound as a bactericidal agent is present in the water to be treated containing ammonia, and is subjected to the subject.
  • the treated water is passed through the first space 16a of the multi-stage first-stage film module 12a, and the obtained ammonia-concentrated water is further passed through the first space 16 after the next-stage film module 12b to concentrate ammonia.
  • the obtained concentrated ammonia water is passed through the second space 18 of the membrane module 12 of each stage to obtain diluted water.
  • biofouling can be performed while maintaining the recovery rate of ammonia. It can be suppressed.
  • FIG. 4 shows an example of an ammonia concentrator having such a configuration.
  • the ammonia concentrator 4 shown in FIG. 4 further includes a reverse osmosis membrane treatment device 48 as a reverse osmosis membrane treatment means for performing reverse osmosis membrane treatment on at least a part of diluted water.
  • a reverse osmosis membrane treatment apparatus 48 may be further provided as a reverse osmosis membrane treatment means for performing reverse osmosis membrane treatment on at least a part of the diluted water.
  • the second space outlet of the first stage membrane module 12a and the inlet of the reverse osmosis membrane treatment device 48 are connected by a pipe 46.
  • the RO permeated water pipe 50 is connected to the RO permeated water outlet of the reverse osmosis membrane treatment device 48, and the RO concentrated water pipe 52 is connected to the RO concentrated water outlet.
  • the diluted water obtained in the second space 18a by performing the semipermeable membrane treatment in the same manner as in the ammonia concentrator 3 of FIG. 3 is a reverse osmosis membrane treatment device from the second space outlet through the pipe 46.
  • the liquid is sent to 48.
  • the reverse osmosis membrane treatment is performed in the reverse osmosis membrane treatment apparatus 48, and RO permeated water and RO concentrated water are obtained (reverse osmosis membrane treatment step).
  • the RO permeated water is discharged through the RO permeated water pipe 50, and the RO concentrated water is discharged through the RO concentrated water pipe 52.
  • the RO concentrated water may be sent to the water tank 10 to be treated and further subjected to a semipermeable membrane treatment to be concentrated.
  • ammonia can be further concentrated by further performing a reverse osmosis membrane treatment on the diluted water obtained by the semipermeable membrane treatment.
  • a turbidifying film may be provided in front of the semipermeable membrane module.
  • FIG. 5 shows an example of an ammonia concentrator having such a configuration.
  • the ammonia concentrating device 5 shown in FIG. 5 further includes a turbid film treatment device 56 as a turbid film treatment means for performing a turbid film treatment on the water to be treated.
  • a configuration may further include a decontamination film treatment device 56 as a decontamination film treatment means for performing the decontamination film treatment on the water to be treated.
  • a pipe 22 is connected to the water inlet of the water tank 10 to be treated.
  • the outlet of the water tank 10 to be treated and the inlet of the decontamination membrane treatment device 56 are connected by a pipe 64 via a pump 60.
  • the decontamination membrane permeation water outlet of the decontamination membrane treatment device 56 and the inlet of the decontamination membrane permeation water tank 58 are connected by a pipe 66.
  • a pipe 68 is connected to the decontamination membrane concentrated water outlet of the decontamination membrane treatment device 56.
  • the outlet of the opaque membrane permeation water tank 58 and the first space inlet of the first stage membrane module 12a are connected by a pipe 70 via a pump 62.
  • a disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
  • the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22.
  • a disinfectant a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32.
  • the fungicide may be added in the pipe 22 or in the pipe 64.
  • the water to be treated to which the disinfectant is added is sent from the water tank 10 to be treated through the pipe 64 by the pump 60 to the decontamination membrane treatment device 56.
  • the turbidating membrane treatment is performed in the turbidating membrane treatment apparatus 56, and the turbidating membrane permeated water and the turbidating membrane concentrated water are obtained (the turbidating membrane treatment step).
  • the decontamination membrane permeation water is stored in the decontamination membrane permeation water tank 58 as needed through the pipe 66.
  • the decontamination membrane concentrated water is discharged through the pipe 68.
  • the opaque membrane permeated water is pressurized and sent from the opaque membrane permeated water tank 58 to the first space 16a from the first space inlet of the first stage membrane module 12a through the pipe 70 by the pump 62 as the water to be treated for the semipermeable membrane treatment.
  • the liquid is passed through, and thereafter, the semipermeable membrane treatment is performed in the same manner as in the ammonia concentrating device 3 of FIG.
  • both the sterilizing membrane treatment device 56 and the membrane module 12 can be sterilized by providing a sterilizing agent addition step in front of the sterilizing membrane, and biofouling of the sterilizing membrane and the semipermeable membrane. Can be suppressed together.
  • the amount of hypobromous acid composition may be adjusted.
  • FIG. 6 shows an example of an ammonia concentrator having such a configuration.
  • the ammonia concentrator 6 shown in FIG. 6 is used as a total chlorine concentration measuring means for measuring the total chlorine concentration at at least one of the first space inlet and the first space outlet of the membrane module 12.
  • a chlorine concentration measuring device 80 is further provided.
  • the ammonia concentrator 6 may further include a control device 82 as a control means for controlling the addition of the stabilized hypobromous acid composition to the water to be treated.
  • the concentration measuring device 80 may be further provided.
  • a total chlorine concentration measuring device 80 is installed in the pipe 26. Even if the control device 82 is connected to the total chlorine concentration measuring device 80 and the adjusting means (not shown) for adjusting the amount of the disinfectant added to the disinfectant addition pipe 32 by electrical connection or the like, respectively. good.
  • the semipermeable membrane treatment is performed in the same manner as in the ammonia concentrator 1 of FIG.
  • the total chlorine concentration at the first space outlet of the membrane module 12 is measured by the total chlorine concentration measuring device 80 (total chlorine concentration measuring step).
  • the control device 82 the flow rate of the pump installed in the sterilizing agent addition pipe 32 and the opening / closing degree of the valve are adjusted so that the total chlorine concentration in the ammonia concentrated water measured by the total chlorine concentration measuring device 80 becomes a predetermined value.
  • Etc. may be adjusted, and the amount of the bactericidal agent added to the water to be treated may be adjusted (adjustment step).
  • the amount of the disinfectant added may be automatically adjusted by the control device 82, or may be adjusted manually.
  • a total chlorine concentration measuring device 80 is installed in the pipe 24, and in the pipe 24, the total chlorine concentration at the first space inlet of the membrane module 12 is measured by the total chlorine concentration measuring device 80, and is measured by the total chlorine concentration measuring device 80.
  • the control device 82 adjusts the flow rate of the pump installed in the sterilizing agent addition pipe 32, the degree of opening and closing of the valve, and the like so that the total chlorine concentration in the water to be treated becomes a predetermined value, and then the water to be treated The amount of the bactericidal agent added may be adjusted.
  • a total chlorine concentration measuring device 80 is installed in the pipe 24 and the pipe 26, respectively, and in the pipe 24 and the pipe 26, the total chlorine in the first space inlet and the first space outlet of the membrane module 12 is provided by the total chlorine concentration measuring device 80.
  • the concentration is measured, and the total chlorine concentration in the water to be treated and the concentrated ammonia water measured by the total chlorine concentration measuring device 80 is set to a predetermined value, for example, installed in the sterilizing agent addition pipe 32 by the control device 82.
  • the flow rate of the pump, the degree of opening and closing of the valve, and the like may be adjusted, and the amount of the disinfectant added to the water to be treated may be adjusted.
  • the total chlorine concentration at the first space outlet of the membrane module 12 is measured, and the treatment is performed so that the total chlorine concentration in the ammonia-concentrated water at the first space outlet becomes a predetermined value. It is preferable that the amount of the bactericide added to the water is adjusted. For example, if the total chlorine concentration at the outlet of the first space is lower than the predetermined value, it is suggested that the amount of the disinfectant is insufficient and the risk of fouling is high. You can increase it. On the other hand, when the total chlorine concentration at the outlet of the first space is higher than a predetermined value, it is suggested that the disinfectant is excessively added, the chemical cost is high, and the risk of film deterioration is high.
  • the amount of addition may be reduced.
  • the total chlorine concentration at the first space outlet of the final stage membrane module 12 is measured, and the final stage membrane module is measured. It is preferable that the amount of the bactericide added to the water to be treated is adjusted so that the total chlorine concentration in the ammonia-concentrated water at the first space outlet of 12 becomes a predetermined value.
  • the total chlorine concentration measuring device 80 may be any as long as it can measure the total chlorine concentration, and is not particularly limited. Examples of the method for measuring the total chlorine concentration include the DPD method.
  • the total chlorine concentration in the water to be treated and the concentrated ammonia water may be automatically measured by the total chlorine concentration measuring device 80, or may be measured manually.
  • the control device 82 includes, for example, a microcomputer including a calculation means such as a CPU for calculating a program, a storage means such as a ROM and a RAM for storing the program and the calculation result, and an electronic circuit, and is composed of total chlorine. Based on the total chlorine concentration measured by the concentration measuring device 80, the flow rate of the pump installed in the sterilizing agent addition pipe 32, the opening / closing degree of the valve, etc. are adjusted to control the amount of the sterilizing agent added to the water to be treated. It has a function to do.
  • the water to be treated or the ammonia-concentrated water of the membrane module in the previous stage is used in the first space and the second space. Water may pass through.
  • FIG. 7 shows an example of an ammonia concentrator having such a configuration. Further, the ammonia-concentrated water obtained in the first space of the membrane module may be passed through its own second space.
  • FIG. 8 shows an example of an ammonia concentrator having such a configuration.
  • the ammonia concentrator 7 shown in FIG. 7 is a semipermeable membrane module connected in a plurality of stages and having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate.
  • the water to be treated containing ammonia is passed through the first space of the semipermeable membrane module of the first stage, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane.
  • To obtain concentrated ammonia water and then use the semipermeable membrane modules of the next and subsequent stages to obtain concentrated ammonia water, and in the second space of the semipermeable membrane module of each stage, one of the water to be treated.
  • a semipermeable membrane processing means for obtaining diluted water by passing at least a part or at least a part of the ammonia concentrated water
  • a first-stage membrane module 12a and a second-stage membrane module 12b are provided.
  • Each membrane module has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14.
  • the ammonia concentrator 7 may include a water tank 10 to be treated to store water to be treated.
  • the ammonia concentrator 7 supplies water to be treated to the first space and the second space of the first-stage membrane module, and sequentially supplies the ammonia-concentrated water to the first space and the second space of the next-stage membrane module. It is a device that performs concentration processing.
  • a pipe 22 is connected to the water inlet of the water tank 10 to be treated.
  • the outlet of the water tank 10 to be treated and the first space inlet of the first stage membrane module 12a are connected by a pipe 24 via a pump 20.
  • the pipe 28 branched from the pipe 24 on the downstream side of the pump 20 in the pipe 24 is connected to the second space inlet of the first stage membrane module 12a.
  • the first space outlet of the first-stage membrane module 12a and the first space inlet of the second-stage membrane module 12b are connected by a pipe 86.
  • the pipe 88 branched from the pipe 86 is connected to the second space entrance of the second stage membrane module 12b.
  • a pipe 84 is connected to the second space outlet of the first-stage membrane module 12a.
  • a pipe 90 is connected to the first space outlet of the second stage membrane module 12b.
  • a pipe 92 is connected to the second space outlet of the second stage membrane module 12b.
  • a disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
  • the ammonia concentrator 7 uses a multi-stage membrane module having a first space 16 and a second space 18 partitioned by a semipermeable membrane 14, and the water to be treated is serialized in the first space 16 of the multi-stage membrane module. At least a part of the water to be treated or the ammonia-concentrated water of the membrane module in the previous stage thereof is passed through the second space 18 of the membrane module of each stage, and the first space 16 is pressurized. It is a device that concentrates the water to be treated by allowing the water contained in the space 16 to permeate through the semipermeable membrane 14 into the second space 18.
  • the water to be treated is concentrated using the semipermeable membrane 14, and the ammonia concentrated water is further concentrated using the semipermeable membrane 14 of the next stage. Then, the ammonia-concentrated water that has passed through the first space 16 of the membrane module of each stage is passed through the second space 18 of the membrane module of the next stage, and the first space 16 of the membrane module of each stage is pressurized. The water contained in the first space 16 is allowed to permeate through the second space 18.
  • the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22.
  • a disinfectant a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32.
  • the fungicide may be added in the pipe 22 or in the pipe 24.
  • the water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the first stage membrane module 12a to the first space 16a, and is passed through the water.
  • the water to be treated to which the disinfectant is added is sent to the second space 18a of the first stage membrane module 12a through the pipe 28 branched from the pipe 24.
  • the first space 16a is pressurized and the water contained in the first space 16a is permeated into the second space 18a (ammonia concentration step (first stage)), and the second space Diluted water is obtained at 18a (dilution step (first stage)).
  • the diluted water obtained in the second space 18a is discharged from the second space outlet through the pipe 84.
  • the ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the first space 16b of the second stage membrane module 12b through the pipe 86.
  • a part of the ammonia concentrated water obtained in the first space 16a is sent from the second space inlet of the second stage membrane module 12b to the second space 18b through the pipe 88 branched from the pipe 86, and is passed through the water. ..
  • the first space 16b is pressurized and the water contained in the first space 16b is permeated into the second space 18b (ammonia concentration step (second stage).
  • diluted water is obtained in the second space 18b (dilution step (second stage)).
  • the ammonia-concentrated water obtained in the first space 16b is discharged from the first space outlet through the pipe 90.
  • the diluted water obtained in the second space 18b is discharged from the second space outlet through the pipe 92.
  • the pump 20, the pipes 24, 28, 86, 88, etc. function as a supply means for supplying a part of the water to be treated or the concentrated ammonia water to the first space 16 and the second space 18 of the semipermeable membrane module 12. do.
  • treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
  • the ammonia concentrator 8 shown in FIG. 8 is a semipermeable membrane module connected in a plurality of stages and having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate.
  • the water to be treated containing ammonia is passed through the first space of the semipermeable membrane module of the first stage, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane.
  • a semipermeable membrane processing means for passing water to obtain diluted water for example, a first-stage membrane module 12a and a second-stage membrane module 12b are provided. Each membrane module has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14.
  • the ammonia concentrator 8 may include a water tank 10 to be treated to store water to be treated.
  • the ammonia concentrator 8 supplies water to be treated to the first space of the first-stage membrane module, sequentially supplies the ammonia-concentrated water to the first space of the next-stage membrane module, and is one of its own ammonia-concentrated water. It is a device that supplies the part to the second space and performs concentration processing.
  • a pipe 22 is connected to the water inlet of the water tank 10 to be treated.
  • the outlet of the water tank 10 to be treated and the first space inlet of the first stage membrane module 12a are connected by a pipe 24 via a pump 20.
  • the first space outlet of the first-stage membrane module 12a and the first space inlet of the second-stage membrane module 12b are connected by a pipe 38.
  • the pipe 94 branched from the pipe 38 is connected to the second space entrance of the first stage membrane module 12a.
  • a pipe 46 is connected to the second space outlet of the first-stage membrane module 12a.
  • a pipe 40 is connected to the first space outlet of the second stage membrane module 12b.
  • the pipe 42 branched from the pipe 40 is connected to the second space entrance of the second stage membrane module 12b.
  • a pipe 96 is connected to the second space outlet of the second stage membrane module 12b.
  • a disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
  • the ammonia concentrator 8 uses a multi-stage membrane module having a first space 16 and a second space 18 partitioned by a semi-permeable membrane 14, and water to be treated is serialized in the first space 16 of the multi-stage membrane module.
  • water to be treated is serialized in the first space 16 of the multi-stage membrane module.
  • the water contained in the first space 16 is passed through the semi-permeable membrane 14.
  • the ammonia-concentrated water that has passed through the first space 16 of the membrane module is passed through the second space 18 of its own membrane module, and the first space 16 of the membrane module of each stage is pressurized to press the first space 16 thereof.
  • the water contained in the second space 18 is allowed to permeate through the second space 18.
  • the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22.
  • a disinfectant a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32.
  • the fungicide may be added in the pipe 22 or in the pipe 24.
  • the water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the first stage membrane module 12a to the first space 16a, and is passed through the water.
  • the ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the second space 18a of the first stage membrane module 12a through the pipe 94 branched from the pipe 38.
  • the first space 16a is pressurized and the water contained in the first space 16a is permeated into the second space 18a (ammonia concentration step (first stage)), and the second space Diluted water is obtained at 18a (dilution step (first stage)).
  • the diluted water obtained in the second space 18a is discharged from the second space outlet through the pipe 46.
  • the ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the first space 16b of the second stage membrane module 12b through the pipe 38.
  • the ammonia-concentrated water obtained in the first space 16b is discharged from the first space outlet through the pipe 40, and at least a part of the ammonia-concentrated water is passed through the pipe 42 branched from the pipe 40 to the second stage membrane module 12b.
  • Liquid is sent from the entrance of the second space to the second space 18b, and water is passed therethrough.
  • the first space 16b is pressurized and the water contained in the first space 16b is permeated into the second space 18b (ammonia concentration step (second stage).
  • diluted water is obtained in the second space 18b (dilution step (second stage)).
  • the diluted water obtained in the second space 18b is discharged through the pipe 96.
  • the pump 20, the pipes 24, 38, 40, 42, 94 and the like supply the water to be treated or the ammonia concentrated water to the first space 16 of the semipermeable membrane module 12, and are obtained from the outlet of the first space 16. It functions as a supply means for supplying at least a part of the concentrated aqueous ammonia to the second space 18 of the semipermeable membrane module 12.
  • treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
  • the number of stages of the membrane module may be determined by the ammonia concentration of the target treated water or the like. For example, when it is desired to obtain the treated water having a higher ammonia concentration from the treated water having a lower ammonia concentration, the number of stages of the membrane module unit may be increased.
  • a membrane module unit including a plurality of membrane modules connected in parallel may be used as the membrane module of each stage.
  • the number of membrane modules in each membrane module unit may be determined by the flow rate of the water to be treated or the like.
  • an ammonia concentrating water tank may be provided after the membrane module 12 in each stage. Further, a diluting water tank may be provided after the membrane module 12 in each stage.
  • the total chlorine concentration in contact with the semipermeable membrane is preferably in the range of 0.01 to 100 mg / L in terms of effective chlorine concentration, and more preferably in the range of 0.2 to 1.0 mg / L. If the total chlorine concentration in contact with the semipermeable membrane is less than 0.01 mg / L in terms of effective chlorine concentration, it may not be possible to obtain a sufficient bactericidal effect, and if it is more than 100 mg / L, it is based on cellulose acetate. Deterioration of the semipermeable membrane and corrosion of piping, etc. may occur.
  • the water to be treated may be water containing ammonia and is not particularly limited, but examples thereof include wastewater from semiconductor factories, wastewater from chemical factories, and domestic wastewater.
  • Examples of the type of water to be treated include ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater.
  • the method for concentrating ammonia according to the present embodiment is, for example, a method for treating ammonium sulfate-containing wastewater and concentrating ammonium sulfate.
  • the ammonia concentration in the water to be treated is not particularly limited, but is preferably 0.1 mg / L or more, more preferably 200 mg / L or more, and further preferably in the range of 5000 to 10000 mg / L. .. If the ammonia concentration in the water to be treated is less than 0.1 mg / L, the bactericide may decompose the ammonia and maintain a sufficient ammonia recovery rate. When the ammonia concentration is 200 mg / L or more, ammonia can be recovered with almost no decomposition regardless of the amount of the disinfectant added.
  • the ratio of the molar concentration of total chlorine to the molar concentration of ammonia during treatment is that if the total chlorine concentration is equal to or higher than the ammonia concentration, the recovery rate of ammonia may be low, so the molar concentration of total chlorine is the molar concentration of ammonia. It is preferably 0.1 times or less, more preferably 0.01 times or less with respect to the concentration.
  • the ammonia concentration in the ammonia concentrated water can be concentrated to, for example, 10,000 mg / L or more, preferably 20,000 to 40,000 mg / L.
  • the pH of the water to be treated is, for example, in the range of 3 to 8, preferably in the range of 4 to 7.
  • the lower limit of the pH of the water to be treated is preferably 5.5 or more, more preferably 6.0 or more, and even more preferably 6.5 or more.
  • the upper limit of the pH of the water to be treated is preferably 8.0 or less, more preferably 7.5 or less.
  • the stabilized hypobromous acid composition contains a bromine-based oxidizing agent and a sulfamic acid compound.
  • the "stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound” is a stabilized hypobromous acid composition containing a mixture of a "bromine-based oxidizing agent” and a “sulfamic acid compound”. It may be a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound".
  • a mixture of, for example, a "bromine-based oxidizing agent” and a “sulfamic acid compound” is present in the water to be treated containing ammonia in the semipermeable membrane treatment. It is considered that this produces a stabilized hypobromous acid composition in the water to be treated.
  • a stabilized hypobromous acid composition which is, for example, "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound" in the water to be treated containing ammonia in the semipermeable membrane treatment.
  • reaction product of bromine and sulfamic acid compound and “reaction of bromine chloride and sulfamic acid compound” in the water to be treated containing ammonia in the semitransparent film treatment.
  • Stabilization which is "product”, “reaction product of hypobromous acid and sulfamic acid compound”, or “reaction product of reaction product of sodium bromide and hypobromous acid and sulfamic acid compound”.
  • Hypobromous acid composition is present.
  • the stabilized hypobromous acid composition exhibits a bactericidal effect equal to or higher than that of a bactericidal agent such as a chlorine-based oxidant such as hypochlorous acid, it is compared with a bactericidal agent such as a chlorine-based oxidant. It is difficult to react with, and biofouling can be suppressed with a smaller amount of addition. Further, it is considered that the stabilized hypobromous acid composition has a smaller tendency of deterioration of the cellulose acetate-based semipermeable membrane than that of a bactericidal agent such as a chlorine-based oxidizing agent.
  • the stabilized hypobromous acid composition used in the ammonia concentration method according to the present embodiment is suitable as a bactericidal agent used for ammonia concentration in which a semipermeable membrane treatment is performed using a cellulose acetate-based semipermeable membrane. be.
  • a "bromine-based oxidizing agent” and a “sulfamic acid compound” may be injected into the water to be treated containing ammonia in the semipermeable membrane treatment by a chemical injection pump or the like.
  • the "bromine-based oxidizing agent” and the “sulfamic acid compound” may be added to the water to be treated separately, or the stock solutions may be mixed with each other and then added to the water to be treated.
  • reaction product of a bromine-based oxidizing agent and a sulfamic acid compound may be injected into the water to be treated containing ammonia in the semipermeable membrane treatment by a chemical injection pump or the like.
  • the disinfectant may be added continuously to the water to be treated or intermittently.
  • the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidizing agent” is preferably 1 or more, and more preferably 1 or more and 2 or less. .. If the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidant" is less than 1, the cellulose acetate-based semipermeable membrane may be deteriorated, and if it exceeds 2, the production cost increases. In some cases.
  • the bactericides for "bromine and sulfamic acid compounds (mixtures of bromine and sulfamic acid compounds)" or “reaction products of bromine and sulfamic acid compounds” using bromine are “hypochlorite and bromine compounds”.
  • the by-product of bromine acid is less, which is more preferable as a bactericidal agent.
  • bromine-based oxidizing agent examples include bromine (liquid bromine), bromine chloride, bromic acid, bromate, hypobromous acid and the like.
  • Hypobromous acid may be produced by reacting a bromine compound such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
  • bromine compound examples include sodium bromide, potassium bromide, lithium bromide, ammonium bromide, hydrobromic acid and the like. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
  • the sulfamic acid compound is a compound represented by the following general formula (1).
  • R 2 NSO 3 H (1) (In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
  • sulfamic acid compound examples include N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, and N-, in addition to sulfamic acid (amide sulfate) in which both of the two R groups are hydrogen atoms.
  • R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc.
  • Sulfamic acid one of which is a hydrogen atom and the other is an aryl group having 6 to 10 carbon atoms, such as a sulfamic acid compound and N-phenylsulfamic acid, both of which are alkyl groups having 1 to 8 carbon atoms. Examples include compounds and salts thereof.
  • sulfamate examples include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt and cobalt salt. Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned.
  • the sulfamic acid compound and salts thereof may be used alone or in combination of two or more.
  • As the sulfamic acid compound it is preferable to use sulfamic acid (amide sulfuric acid) from the viewpoint of environmental load and the like.
  • Alkali may be further present in the stabilized hypobromous acid composition in the water to be treated containing ammonia.
  • the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. Sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of low temperature product stability and the like. Further, the alkali may be used as an aqueous solution instead of being solid.
  • the ammonia concentration method according to this embodiment can be suitably applied to a cellulose acetate-based polymer membrane as a semipermeable membrane.
  • the cellulose acetate-based polymer membrane exhibits some resistance to chlorine-based oxidants, but continuous contact of free chlorine or the like with the cellulose acetate-based polymer membrane may cause deterioration of the membrane performance.
  • a stabilized hypobromous acid composition is used as a bactericide, it is considered that such a decrease in film performance hardly occurs even in a cellulose acetate-based polymer film.
  • the bactericidal agent for semipermeable membrane treatment used in the ammonia concentration method according to the present embodiment contains a stabilized hypobromous acid composition containing a "bromine-based oxidizing agent" and a “sulfamic acid compound", and further contains an alkali. It may be contained.
  • the bactericidal agent for semitransparent film treatment used in the ammonia concentration method according to the present embodiment contains a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound". , Further may contain alkali.
  • the bromine-based oxidant, bromine compound, chlorine-based oxidant and sulfamic acid compound are as described above.
  • the stabilized hypobromous acid composition according to the present embodiment contains bromine and a sulfamic acid compound (a mixture of bromine and a sulfamic acid compound) so as not to further deteriorate the cellulose acetate-based semitransparent film.
  • a sulfamic acid compound a mixture of bromine and a sulfamic acid compound and an alkali and water, or a reaction product of bromine and a sulfamic acid compound, for example, a reaction product of bromine and a sulfamic acid compound.
  • a mixture of alkali and water is preferred.
  • the stabilized hypobromous acid composition according to the present embodiment reacts with ammonia as compared with a chlorine-based oxidizing agent such as hypochlorous acid.
  • a chlorine-based oxidizing agent such as hypochlorous acid.
  • it is difficult to do so and has the effect of suppressing biofouling, it hardly causes remarkable deterioration of the cellulose acetate semitransparent film such as a chlorine-based oxidizing agent such as hypochlorous acid.
  • the effect on film deterioration is virtually negligible. Therefore, it is most suitable as a fungicide used for ammonia concentration for semipermeable membrane treatment.
  • concentration of the stabilized hypobromous acid composition according to the present embodiment can be measured on-site in the same manner as hypochlorous acid and the like, more accurate concentration control is possible.
  • the pH of the stabilized hypobromous acid composition is, for example, more than 13.0, more preferably more than 13.2.
  • the pH of the stabilized hypobromous acid composition is 13.0 or less, the effective halogen in the stabilized hypobromous acid composition may become unstable.
  • the bromic acid concentration in the stabilized hypobromous acid composition is preferably less than 5 mg / kg. When the bromic acid concentration in the stabilized hypobromous acid composition is 5 mg / kg or more, the bromic acid ion concentration in the treated water may increase.
  • the disinfectant for semipermeable membrane treatment used in the ammonia concentration method according to the present embodiment is obtained by mixing a bromine-based oxidizing agent and a sulfamic acid compound, and may be further mixed with an alkali.
  • a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere or a step of reacting the mixture or a reaction. It is preferable to include a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere.
  • the inert gas to be used is not limited, but at least one of nitrogen and argon is preferable from the viewpoint of production and the like, and nitrogen is particularly preferable from the viewpoint of production cost and the like.
  • the oxygen concentration in the reactor at the time of adding bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the reaction of bromine exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
  • the addition rate of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the stabilized hypobromous acid composition.
  • the addition rate of bromine exceeds 25% by weight based on the total amount of the stabilized hypobromous acid composition, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the bactericidal activity may be inferior.
  • the reaction temperature at the time of adding bromine is preferably controlled in the range of 0 ° C. or higher and 25 ° C. or lower, but more preferably controlled in the range of 0 ° C. or higher and 15 ° C. or lower from the viewpoint of manufacturing cost and the like. If the reaction temperature at the time of adding bromine exceeds 25 ° C, the amount of bromic acid produced in the reaction system may increase, and if it is less than 0 ° C, it may freeze.
  • the pH of the resulting solution was 14 as measured by the glass electrode method.
  • the bromine content of the resulting solution was 16.9% as measured by the method of converting bromine to iodine with potassium iodide and then using sodium thiosulfate for oxidative reduction titration, and the theoretical content (16.9%). ) was 100.0%.
  • the oxygen concentration in the reaction vessel during the bromine reaction was measured using "Oxygen Monitor JKO-02 LJDII" manufactured by Jiko Co., Ltd.
  • the bromic acid concentration was less than 5 mg / kg.
  • Electrode type Glass electrode type pH meter: Toa DKK, IOL-30 type Electrode calibration: Kanto Chemical Co., Ltd. Neutral phosphate pH (6.86) standard solution (Type 2), Borate manufactured by Kanto Chemical Co., Ltd. Measurement temperature performed by two-point calibration of salt pH (9.18) standard solution (type 2): 25 ° C. Measured value: The electrode is immersed in the measuring solution, and the value after stabilization is used as the measured value, which is the average value of three measurements.
  • a composition was prepared by mixing 12% aqueous sodium hypochlorite solution: 50% by weight, sulfamic acid: 10% by weight, sodium hydroxide: 8% by weight, and water: residue.
  • the pH of the composition was 14, and the total chlorine concentration was 6% by weight.
  • ammonium sulfate was added to pure water to prepare test water having an ammonia concentration of 10% by mass.
  • the pump was started, and the water to be treated was passed 5 L / min to the first space of the semipermeable membrane module and 1.5 L / min to the second space to pressurize the first space.
  • the ammonia concentrations of the water to be treated, the ammonia concentrated water, and the diluted water were measured by the methods shown below. The results are shown in Table 1.
  • ammonia concentration of the ammonia concentrated water with respect to the water to be treated was 1.25 times. By passing water containing ammonia through the semipermeable membrane module and pressurizing it in this way, ammonia could be concentrated.
  • Example 2 [Sterilization test] As the water to be treated, ammonium chloride was added to the bouillon solution so that the ammonia concentration was 0 mg / L, 0.1 mg / L, 1 mg / L, 10 mg / L, and 100 mg / L to prepare test water. Further, the stabilized hypobromous acid composition was added as a bactericide so that the total chlorine concentration was 1 mg / L. The ratios of the molar concentration of total chlorine to the molar concentration of ammonia are 0, 2.5, 0.25, 0.025 and 0.0025, respectively. The prepared solution was allowed to stand at 25 ° C. for 3 hours. The viable cell count and ammonia concentration were measured before and after the test. The results are shown in Table 2.
  • the total chlorine concentration was measured by an effective chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a pocket residual chlorine meter manufactured by HACH and a total chlorine reagent (HACH0582).
  • DPD diethyl-p-phenylenediamine
  • a plate for measuring the viable cell count of Petrifilm manufactured by 3M Healthcare was used.
  • the film was inoculated with 1 mL of the sample and cultured at 35 ° C. for 48 hours. The number of colonies growing on the film was measured after 48 hours.
  • Ammonia concentration was measured by an ion chromatograph method using an ion chromatograph (IntegrationRFIC manufactured by Thermo Fisher).
  • Table 2 shows the viable cell count and ammonia concentration before and after the test under each condition.
  • the viable cell count hardly increased even if the ammonia concentration increased, and the bactericidal ability could be maintained. Further, when the ammonia concentration was 1 mg / L or more, the residual rate of ammonia was 80% or more, which was a high value.
  • Example 2 From the results of Example 2 and Comparative Examples 1 and 2, when the fungicide containing the bromine-based oxidizing agent and the sulfamic acid compound had the same amount of the fungicide added, the highest fungicide ability was shown while leaving ammonia.
  • the stabilized hypobromous acid composition is present in the water to be treated to obtain the ammonia. It was found that biofouling can be suppressed while maintaining the recovery rate.
  • 1,2,3,4,5,6,7,8,9 Ammonia concentrator 10 Water tank to be treated, 12 membrane module, 12a 1st stage membrane module, 12b 2nd stage membrane module, 14, 14a, 14b and a half Transparent membrane, 16, 16a, 16b first space, 18, 18a, 18b second space, 20, 60, 62 pump, 22, 24, 26, 28, 30, 34, 36, 38, 40, 42, 44, 46,64,66,68,70,84,86,88,90,92,94,96 piping, 32 sterilizing agent addition piping, 48 reverse osmosis membrane treatment device, 50 RO permeable water piping, 52 RO concentrated water piping, 56 Decontamination membrane treatment device, 58 Decontamination membrane permeation water tank, 80 Total chlorine concentration measuring device, 82 Control device.

Abstract

The present invention provides an ammonia concentration method and an ammonia concentration device, each of which is capable of suppressing biofouling, while maintaining the recovery rate of ammonia in a concentration process of water to be processed containing ammonia, said concentration process using a semipermeable membrane module that is provided with a cellulose acetate semipermeable membrane. An ammonia concentration method which comprises a semipermeable membrane processing step wherein, with use of a semipermeable membrane module that has a first space (16) and a second space (18) separated from each other by means of a cellulose acetate semipermeable membrane (14), ammonia concentrated water is obtained by flowing water to be processed containing ammonia into the first space (16) and applying a pressure to the first space (16), thereby causing water contained in the water to be processed to permeate through the semipermeable membrane (14), while dilute water is obtained by flowing some of the water to be processed or at least some of the ammonia concentrated water into the second space (18). With respect to this ammonia concentration method, the water to be processed is caused to contain a stabilized hypobromite composition that contains a bromine-based oxidant and a sulfamic acid compound.

Description

アンモニア濃縮方法およびアンモニア濃縮装置Ammonia concentration method and ammonia concentrator
 本発明は、アンモニアを含む被処理水の濃縮処理を行うアンモニア濃縮方法およびアンモニア濃縮装置に関する。 The present invention relates to an ammonia concentrating method and an ammonia concentrating device for concentrating water to be treated containing ammonia.
 アンモニアを含む排水からアンモニアを分離、濃縮する方法として、逆浸透膜を用いる逆浸透法が知られている(特許文献1参照)。また、半透膜モジュールの半透膜で仕切られた第一空間と第二空間に被処理水またはその濃縮水を通水し、第一空間を加圧することによって、水を濃縮する方法が知られている(特許文献2参照)。このような半透膜を用いる濃縮方法は、一般的な逆浸透法と比較し、第一空間と第二空間との浸透圧差を小さくすることによって、より少ない消費エネルギーで排水を高濃度に濃縮することができる。 A reverse osmosis method using a reverse osmosis membrane is known as a method for separating and concentrating ammonia from wastewater containing ammonia (see Patent Document 1). In addition, a method of concentrating water by passing water to be treated or its concentrated water through the first space and the second space partitioned by the semipermeable membrane of the semipermeable membrane module and pressurizing the first space is known. (See Patent Document 2). Such a concentration method using a semipermeable membrane concentrates wastewater at a high concentration with less energy consumption by reducing the osmotic pressure difference between the first space and the second space as compared with the general reverse osmosis method. can do.
 さらに逆浸透膜を用いる水処理方法において、バイオファウリング対策として殺菌剤を使用することが一般的である。代表的な殺菌剤は次亜塩素酸等の塩素系酸化剤であり、通常は殺菌目的で逆浸透膜処理の前段において被処理水に添加される(特許文献3参照)。 Furthermore, in water treatment methods that use reverse osmosis membranes, it is common to use a disinfectant as a measure against biofouling. A typical bactericidal agent is a chlorine-based oxidant such as hypochlorous acid, which is usually added to the water to be treated before the reverse osmosis membrane treatment for the purpose of sterilization (see Patent Document 3).
 アンモニア含有排水の処理において、殺菌剤として次亜塩素酸等の塩素系酸化剤を用いると、排水中のアンモニアと殺菌剤由来の遊離塩素とが反応し、結合塩素が生成して、殺菌効果が低下する可能性がある。そのため、十分な殺菌効果を発揮するためには、被処理水のアンモニア濃度が高濃度になるほど、塩素系酸化剤の添加量を増やす必要があり、コストの増大につながる。 When a chlorine-based oxidant such as hypochlorous acid is used as a disinfectant in the treatment of wastewater containing ammonia, the ammonia in the wastewater reacts with free chlorine derived from the disinfectant to generate bound chlorine, which has a bactericidal effect. May decrease. Therefore, in order to exert a sufficient bactericidal effect, it is necessary to increase the amount of the chlorine-based oxidant added as the ammonia concentration of the water to be treated becomes higher, which leads to an increase in cost.
 一方で、アンモニア含有排水からアンモニアを回収することを目的とする場合、排水中のアンモニアと遊離塩素とが反応すると、排水中のアンモニア量が減少し、アンモニアの回収率が低下する可能性がある。そのため、アンモニアの回収率を高くするためには、塩素系酸化剤の添加量を抑制する必要がある。 On the other hand, when the purpose is to recover ammonia from ammonia-containing wastewater, when ammonia in the wastewater reacts with free chlorine, the amount of ammonia in the wastewater may decrease and the recovery rate of ammonia may decrease. .. Therefore, in order to increase the recovery rate of ammonia, it is necessary to suppress the amount of chlorine-based oxidizing agent added.
 また、塩素系酸化剤は半透膜として一般的なポリアミド系の半透膜を酸化劣化させる可能性があり、処理水水質の悪化につながる。 In addition, the chlorine-based oxidant may oxidatively deteriorate the polyamide-based semipermeable membrane, which is generally used as a semipermeable membrane, leading to deterioration of the treated water quality.
特開2012-125745号公報Japanese Unexamined Patent Publication No. 2012-125745 特開2018-069198号公報Japanese Unexamined Patent Publication No. 2018-069198 特許第5978959号公報Japanese Patent No. 5978959
 本発明の目的は、酢酸セルロース系の半透膜を備える半透膜モジュールを用いるアンモニアを含む被処理水の濃縮処理において、アンモニアの回収率を維持しながらバイオファウリングを抑制することができるアンモニア濃縮方法およびアンモニア濃縮装置を提供することにある。 An object of the present invention is ammonia that can suppress biofouling while maintaining the recovery rate of ammonia in the concentration treatment of water to be treated using a semipermeable membrane module provided with a cellulose acetate semipermeable membrane. To provide a concentration method and an ammonia concentrator.
 本発明は、酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、アンモニアを含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得るとともに、前記第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理工程を含み、前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させる、アンモニア濃縮方法である。 In the present invention, a semipermeable membrane module having a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane is used to allow water to be treated containing ammonia to pass through the first space. The first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the second space is filled with a part of the water to be treated or the concentrated ammonia water. 2. This is an ammonia concentration method.
 本発明は、酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する、複数段に接続された半透膜モジュールを用いて、アンモニアを含む被処理水を第1段の半透膜モジュールの第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得て、そのアンモニア濃縮水をさらに次段以降の半透膜モジュールを用いてアンモニア濃縮水を得るとともに、各段の半透膜モジュールの第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理工程を含み、前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させる、アンモニア濃縮方法である。 In the present invention, a semipermeable membrane module connected in multiple stages, which has a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane, is used to apply ammonia-containing water to be treated in the first stage. Water is passed through the first space of the semipermeable membrane module of the above, and the first space is pressurized to allow the water contained in the water to be treated to permeate the semipermeable membrane to obtain ammonia-concentrated water, and the ammonia concentration thereof is obtained. A part of the water to be treated or at least a part of the ammonia-concentrated water is obtained in the second space of the semipermeable membrane module of each stage while water is further obtained by using the semipermeable membrane modules of the next and subsequent stages. A method for concentrating ammonia, which comprises a semipermeable membrane treatment step of passing water to obtain diluted water, and in which a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is present in the water to be treated. be.
 前記アンモニア濃縮方法において、前記希釈水について逆浸透膜処理を行いRO透過水とRO濃縮水とを得る逆浸透膜処理工程をさらに含むことが好ましい。 In the ammonia concentration method, it is preferable to further include a reverse osmosis membrane treatment step of performing a reverse osmosis membrane treatment on the diluted water to obtain RO permeated water and RO concentrated water.
 前記アンモニア濃縮方法において、前記半透膜モジュールの第一空間入口および第一空間出口の少なくとも1つにおける全塩素濃度が所定の値になるように前記被処理水中の前記安定化次亜臭素酸組成物の量を調整することが好ましい。 In the ammonia concentration method, the stabilized hypobromous acid composition in the water to be treated so that the total chlorine concentration at at least one of the first space inlet and the first space outlet of the semipermeable membrane module becomes a predetermined value. It is preferable to adjust the amount of objects.
 前記アンモニア濃縮方法において、前記アンモニアを含む被処理水は、硫酸アンモニウム含有排水、フッ化アンモニウム含有排水、塩化アンモニウム含有排水のうちの少なくとも1つであることが好ましい。 In the ammonia concentration method, the treated water containing ammonia is preferably at least one of ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater.
 本発明は、酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、アンモニアを含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得るとともに、前記第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段と、前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と、を備える、アンモニア濃縮装置である。 In the present invention, a semipermeable membrane module having a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane is used to allow water to be treated containing ammonia to pass through the first space. The first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the second space is filled with a part of the water to be treated or the concentrated ammonia water. A semipermeable membrane treatment means for obtaining diluted water by passing at least a part of the above water, and an addition means for adding a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to the water to be treated. It is an ammonia concentrator equipped with.
 本発明は、酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する、複数段に接続された半透膜モジュールを用いて、アンモニアを含む被処理水を第1段の半透膜モジュールの第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得て、そのアンモニア濃縮水をさらに次段以降の半透膜モジュールを用いてアンモニア濃縮水を得るとともに、各段の半透膜モジュールの第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段と、前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と、を備える、アンモニア濃縮装置である。 In the present invention, a semipermeable membrane module connected in multiple stages, which has a first space and a second space partitioned by a cellulose acetate-based semipermeable membrane, is used to apply ammonia-containing water to be treated in the first stage. Water is passed through the first space of the semipermeable membrane module of the above, and the first space is pressurized to allow the water contained in the water to be treated to permeate the semipermeable membrane to obtain ammonia-concentrated water, and the ammonia concentration thereof is obtained. A part of the water to be treated or at least a part of the ammonia-concentrated water is obtained in the second space of the semipermeable membrane module of each stage while water is further obtained by using the semipermeable membrane modules of the next and subsequent stages. A semipermeable membrane treatment means for obtaining diluted water by passing water through the water, and an addition means for adding a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to the water to be treated are provided. , Ammonia concentrator.
 前記アンモニア濃縮装置において、前記希釈水について逆浸透膜処理を行いRO透過水とRO濃縮水とを得る逆浸透膜処理手段をさらに備えることが好ましい。 It is preferable that the ammonia concentrator further includes a reverse osmosis membrane treatment means for performing a reverse osmosis membrane treatment on the diluted water to obtain RO permeated water and RO concentrated water.
 前記アンモニア濃縮装置において、前記半透膜モジュールの第一空間入口および第一空間出口の少なくとも1つにおける全塩素濃度を測定する全塩素濃度測定手段と、前記全塩素濃度測定手段により測定された全塩素濃度が所定の値になるように前記添加手段による前記安定化次亜臭素酸組成物の添加量を調整する調整手段と、をさらに備えることが好ましい。 In the ammonia concentrator, the total chlorine concentration measuring means for measuring the total chlorine concentration at at least one of the first space inlet and the first space outlet of the semipermeable membrane module, and the total measured by the total chlorine concentration measuring means. It is further preferable to further provide an adjusting means for adjusting the addition amount of the stabilized hypobromic acid composition by the adding means so that the chlorine concentration becomes a predetermined value.
 前記アンモニア濃縮装置において、前記アンモニアを含む被処理水は、硫酸アンモニウム含有排水、フッ化アンモニウム含有排水、塩化アンモニウム含有排水のうちの少なくとも1つであることが好ましい。 In the ammonia concentrator, the water to be treated containing ammonia is preferably at least one of ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater.
 本発明により、酢酸セルロース系の半透膜を備える半透膜モジュールを用いるアンモニアを含む被処理水の濃縮処理において、アンモニアの回収率を維持しながらバイオファウリングを抑制することができるアンモニア濃縮方法およびアンモニア濃縮装置を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, in the concentration treatment of water to be treated containing ammonia using a semipermeable membrane module provided with a cellulose acetate semipermeable membrane, biofouling can be suppressed while maintaining the recovery rate of ammonia. And an ammonia concentrator can be provided.
本発明の実施形態に係るアンモニア濃縮装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the ammonia concentrator which concerns on embodiment of this invention. 本発明の実施形態に係るアンモニア濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the ammonia concentrator which concerns on embodiment of this invention. 本発明の実施形態に係るアンモニア濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the ammonia concentrator which concerns on embodiment of this invention. 本発明の実施形態に係るアンモニア濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the ammonia concentrator which concerns on embodiment of this invention. 本発明の実施形態に係るアンモニア濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the ammonia concentrator which concerns on embodiment of this invention. 本発明の実施形態に係るアンモニア濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the ammonia concentrator which concerns on embodiment of this invention. 本発明の実施形態に係るアンモニア濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the ammonia concentrator which concerns on embodiment of this invention. 本発明の実施形態に係るアンモニア濃縮装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the ammonia concentrator which concerns on embodiment of this invention. 実施例で用いたアンモニア濃縮装置の概略構成図である。It is a schematic block diagram of the ammonia concentrator used in an Example.
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。 An embodiment of the present invention will be described below. The present embodiment is an example of carrying out the present invention, and the present invention is not limited to the present embodiment.
<アンモニア濃縮方法およびアンモニア濃縮装置>
 本発明の実施形態に係るアンモニア濃縮装置の一例の概略を図1に示し、その構成について説明する。なお、本明細書において、アンモニア(NH)、アンモニウムイオン(NH )を総称して「アンモニア」と呼ぶ。
<Ammonia concentration method and ammonia concentration device>
An outline of an example of the ammonia concentrator according to the embodiment of the present invention is shown in FIG. 1, and the configuration thereof will be described. In this specification, ammonia (NH 3 ) and ammonium ion (NH 4 + ) are collectively referred to as "ammonia".
 図1に示すアンモニア濃縮装置1は、酢酸セルロース系の半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する半透膜モジュールを用いて、アンモニアを含む被処理水を第一空間に通水し、第一空間を加圧して被処理水に含まれる水を半透膜を透過させることによってアンモニア濃縮水を得るとともに、第二空間に、被処理水の一部を通水して希釈水を得る半透膜処理手段として、例えば、膜モジュール12を備える。膜モジュール12は、半透膜14で仕切られた第一空間16および第二空間18を有する。アンモニア濃縮装置1は、被処理水を貯留する被処理水槽10を備えてもよい。 The ammonia concentrator 1 shown in FIG. 1 contains ammonia by using a semipermeable membrane module having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate. Water to be treated is passed through the first space, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the water to be treated is passed through the second space. As a semipermeable membrane treatment means for obtaining diluted water by passing a part of the water, for example, a membrane module 12 is provided. The membrane module 12 has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The ammonia concentrator 1 may include a water tank 10 to be treated to store water to be treated.
 図1に示すアンモニア濃縮装置1において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と膜モジュール12の第一空間入口とは、ポンプ20を介して配管24により接続され、配管24におけるポンプ20の下流側で配管24から分岐した配管28が膜モジュール12の第二空間入口に接続されている。膜モジュール12の第一空間出口には配管26が接続され、膜モジュール12の第二空間出口には配管30が接続されている。被処理水槽10の殺菌剤入口には、殺菌剤添加配管32が接続されている。 In the ammonia concentrator 1 shown in FIG. 1, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the first space inlet of the membrane module 12 are connected by a pipe 24 via a pump 20, and the pipe 28 branched from the pipe 24 on the downstream side of the pump 20 in the pipe 24 is the membrane module 12. It is connected to the entrance of the second space. A pipe 26 is connected to the first space outlet of the membrane module 12, and a pipe 30 is connected to the second space outlet of the membrane module 12. A disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
 図1のアンモニア濃縮装置1は、半透膜14で仕切られた第一空間16および第二空間18を有する膜モジュール12を用い、被処理水を膜モジュール12の第一空間入口から第一空間16と第二空間入口から第二空間18とに通水し、第一空間16を加圧することによって、その第一空間16の被処理水に含まれる水を半透膜14を介して第二空間18に透過させて被処理水を濃縮する装置である。すなわち、アンモニア濃縮装置1において、半透膜14を用いて被処理水が濃縮される。アンモニア濃縮装置1は、膜モジュール12の第一空間16と第二空間18の両方に被処理水を供給して濃縮処理を行う装置である。 The ammonia concentrating device 1 of FIG. 1 uses a membrane module 12 having a first space 16 and a second space 18 partitioned by a semipermeable membrane 14, and allows water to be treated to flow from the entrance of the first space of the membrane module 12 to the first space. By passing water from the 16 and the entrance of the second space to the second space 18 and pressurizing the first space 16, the water contained in the water to be treated in the first space 16 is seconded through the semipermeable membrane 14. It is a device that concentrates the water to be treated by allowing it to permeate through the space 18. That is, in the ammonia concentrator 1, the water to be treated is concentrated using the semipermeable membrane 14. The ammonia concentrating device 1 is a device that supplies water to be treated to both the first space 16 and the second space 18 of the membrane module 12 to perform the concentrating treatment.
 アンモニア濃縮装置1において、アンモニアを含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留される。ここで、殺菌剤として、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物が殺菌剤添加配管32を通して被処理水に添加される。殺菌剤は、配管22において添加されてもよいし、配管24において添加されてもよい。殺菌剤が添加された被処理水は、被処理水槽10からポンプ20により配管24を通して、膜モジュール12の第一空間入口から第一空間16へ加圧送液され、通水される。また、被処理水は、配管24から分岐した配管28を通して、膜モジュール12の第二空間入口から第二空間18へ送液され、通水される。加圧された被処理水に含まれる水の一部は半透膜14を介して第一空間16から第二空間18に向かって透過する。このとき、アンモニアの大部分は半透膜14を透過することができないので、半透膜14を透過しなかった第一空間16内のアンモニアが濃縮される。一方、第二空間18では、配管28を通して通水された被処理水の一部と、半透膜14を透過したアンモニア濃度の低い透過水とが合流するため、希釈効果が働く。第一空間16で得られたアンモニア濃縮水は、第一空間出口から配管26を通して排出され、第二空間18で得られた希釈水は、第二空間出口から配管30を通して排出される。ここで、膜モジュール12において、第一空間16が加圧されてその第一空間16の被処理水に含まれる水が半透膜14を介して第二空間18に透過され、第一空間16でアンモニア濃縮水が得られる(アンモニア濃縮工程)とともに、第二空間18で希釈水が得られる(希釈工程)。 In the ammonia concentrator 1, the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22. Here, as a disinfectant, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32. The fungicide may be added in the pipe 22 or in the pipe 24. The water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the membrane module 12 to the first space 16 and passed through the water. Further, the water to be treated is sent from the second space inlet of the membrane module 12 to the second space 18 through the pipe 28 branched from the pipe 24, and is passed through the water. A part of the water contained in the pressurized water to be treated permeates from the first space 16 to the second space 18 through the semipermeable membrane 14. At this time, since most of the ammonia cannot pass through the semipermeable membrane 14, the ammonia in the first space 16 that did not pass through the semipermeable membrane 14 is concentrated. On the other hand, in the second space 18, a part of the water to be treated passed through the pipe 28 and the permeated water having a low ammonia concentration permeated through the semipermeable membrane 14 merge, so that the diluting effect works. The ammonia concentrated water obtained in the first space 16 is discharged from the first space outlet through the pipe 26, and the diluted water obtained in the second space 18 is discharged from the second space outlet through the pipe 30. Here, in the membrane module 12, the first space 16 is pressurized, and the water contained in the water to be treated in the first space 16 is permeated into the second space 18 via the semipermeable membrane 14, and the first space 16 is used. (Ammonia concentrated water is obtained) and diluted water is obtained in the second space 18 (diluting step).
 ここで、ポンプ20、配管24,28等が、半透膜モジュール12の第一空間16と第二空間18の両方に被処理水を供給する供給手段として機能する。 Here, the pump 20, the pipes 24, 28, etc. function as supply means for supplying the water to be treated to both the first space 16 and the second space 18 of the semipermeable membrane module 12.
 第一空間16で得られたアンモニア濃縮水は、回収して再利用されてもよい。第一空間16で得られたアンモニア濃縮水について、さらに蒸留処理や電気透析処理を行ってもよい。 The ammonia concentrated water obtained in the first space 16 may be recovered and reused. The ammonia-concentrated water obtained in the first space 16 may be further subjected to a distillation treatment or an electrodialysis treatment.
 第二空間18で得られた希釈水は、配管30を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよい。希釈水の少なくとも一部は、被処理水槽10に送液され、被処理水槽10において被処理水と混合されてもよい。後述するように、希釈水の少なくとも一部は、さらに逆浸透膜処理装置へ送液され、逆浸透膜処理装置において、逆浸透膜処理が行われてもよい(逆浸透膜処理工程)。 The diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 30, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. As will be described later, at least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step).
 以上のようにして、処理対象である、アンモニアを含む被処理水から、アンモニアが濃縮された処理水(アンモニア濃縮水)と、希釈水とが得られ、アンモニアを含む被処理水の濃縮が行われる。 As described above, treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置1では、アンモニアを含む被処理水中に、殺菌剤として臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させ、被処理水を膜モジュール12の第一空間16および第二空間18に通水する。これによって、酢酸セルロース系の半透膜を備える半透膜モジュールを用いるアンモニアを含む被処理水の濃縮処理において、アンモニアの回収率を維持しながらバイオファウリングを抑制することができる。 In the ammonia concentrating method and the ammonia concentrating device 1 according to the present embodiment, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound as a bactericidal agent is present in the water to be treated containing ammonia, and is subjected to the subject. The treated water is passed through the first space 16 and the second space 18 of the membrane module 12. Thereby, in the concentration treatment of the water to be treated containing ammonia using the semipermeable membrane module provided with the cellulose acetate-based semipermeable membrane, biofouling can be suppressed while maintaining the recovery rate of ammonia.
 本発明の実施形態に係るアンモニア濃縮装置の他の例の概略を図2に示し、その構成について説明する。 An outline of another example of the ammonia concentrator according to the embodiment of the present invention is shown in FIG. 2, and the configuration thereof will be described.
 図2に示すアンモニア濃縮装置2は、酢酸セルロース系の半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する半透膜モジュールを用いて、アンモニアを含む被処理水を第一空間に通水し、第一空間を加圧して被処理水に含まれる水を半透膜を透過させることによってアンモニア濃縮水を得るとともに、第二空間に、アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段として、例えば、膜モジュール12を備える。膜モジュール12は、半透膜14で仕切られた第一空間16および第二空間18を有する。アンモニア濃縮装置2は、被処理水を貯留する被処理水槽10を備えてもよい。 The ammonia concentrator 2 shown in FIG. 2 contains ammonia by using a semipermeable membrane module having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate. Water to be treated is passed through the first space, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane to obtain concentrated ammonia water, and the second space is filled with concentrated ammonia water. As a semipermeable membrane treatment means for obtaining diluted water by passing at least a part of the above, for example, a membrane module 12 is provided. The membrane module 12 has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The ammonia concentrator 2 may include a water tank 10 to be treated to store water to be treated.
 図2のアンモニア濃縮装置2において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と膜モジュール12の第一空間入口とは、ポンプ20を介して配管24により接続されている。膜モジュール12の第一空間出口には配管26が接続されている。配管26から分岐した配管34が膜モジュール12の第二空間入口に接続されている。膜モジュール12の第二空間出口には配管36が接続されている。被処理水槽10の殺菌剤入口には、殺菌剤添加配管32が接続されている。 In the ammonia concentrator 2 of FIG. 2, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the first space inlet of the membrane module 12 are connected by a pipe 24 via a pump 20. A pipe 26 is connected to the first space outlet of the membrane module 12. The pipe 34 branched from the pipe 26 is connected to the second space entrance of the membrane module 12. A pipe 36 is connected to the second space outlet of the membrane module 12. A disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
 図2のアンモニア濃縮装置2は、半透膜14で仕切られた第一空間16および第二空間18を有する膜モジュール12を用い、被処理水を膜モジュール12の第一空間入口から第一空間16に通水するとともに、膜モジュール12の第一空間16の第一空間出口から排出されたアンモニア濃縮水の少なくとも一部を膜モジュール12の第二空間入口から第二空間18に通水し、第一空間16を加圧することによって、その第一空間16の被処理水に含まれる水を半透膜14を介して第二空間18に透過させて被処理水を濃縮する装置である。すなわち、アンモニア濃縮装置2において、半透膜14を用いて被処理水が濃縮される。アンモニア濃縮装置2は、膜モジュール12の第一空間16に被処理水を供給し、第一空間16の出口から得られたアンモニア濃縮水の少なくとも一部を膜モジュール12の第二空間18に供給して濃縮処理を行う装置である。 The ammonia concentrating device 2 of FIG. 2 uses a membrane module 12 having a first space 16 and a second space 18 partitioned by a semi-permeable membrane 14, and allows water to be treated to flow from the first space inlet of the membrane module 12 to the first space. At the same time as passing water through 16, at least a part of the ammonia-concentrated water discharged from the first space outlet of the first space 16 of the membrane module 12 is passed from the second space inlet of the membrane module 12 to the second space 18. By pressurizing the first space 16, the water contained in the water to be treated in the first space 16 is permeated into the second space 18 through the semi-permeable membrane 14, and the water to be treated is concentrated. That is, in the ammonia concentrator 2, the water to be treated is concentrated using the semipermeable membrane 14. The ammonia concentrating device 2 supplies water to be treated to the first space 16 of the membrane module 12, and supplies at least a part of the ammonia concentrated water obtained from the outlet of the first space 16 to the second space 18 of the membrane module 12. It is a device that performs concentration processing.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置2の動作について説明する。 The ammonia concentrating method and the operation of the ammonia concentrating device 2 according to the present embodiment will be described.
 アンモニア濃縮装置2において、アンモニアを含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留される。ここで、殺菌剤として、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物が殺菌剤添加配管32を通して被処理水に添加される。殺菌剤は、配管22において添加されてもよいし、配管24において添加されてもよい。殺菌剤が添加された被処理水は、被処理水槽10からポンプ20により配管24を通して、膜モジュール12の第一空間入口から第一空間16へ加圧送液され、通水される。加圧された被処理水に含まれる水の一部は半透膜14を介して第一空間16から第二空間18に向かって透過する。このとき、アンモニアの大部分は半透膜14を透過することができないので、半透膜14を透過しなかった第一空間16内のアンモニアが濃縮される。一方、第二空間18では、配管34を通して通水されたアンモニア濃縮水の少なくとも一部と、半透膜14を透過したアンモニア濃度の低い透過水とが合流するため、希釈効果が働く。第一空間16で得られたアンモニア濃縮水は、第一空間出口から配管26を通して排出され、アンモニア濃縮水の少なくとも一部は、配管26から分岐した配管34を通して、膜モジュール12の第二空間入口から第二空間18へ送液され、通水される。第二空間18で得られた希釈水は、第二空間出口から配管36を通して排出される。ここで、膜モジュール12において、第一空間16が加圧されてその第一空間16の被処理水に含まれる水が半透膜14を介して第二空間18に透過され、第一空間16でアンモニア濃縮水が得られる(アンモニア濃縮工程)とともに、第二空間18で希釈水が得られる(希釈工程)。 In the ammonia concentrator 2, the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22. Here, as a disinfectant, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32. The fungicide may be added in the pipe 22 or in the pipe 24. The water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the membrane module 12 to the first space 16 and passed through the water. A part of the water contained in the pressurized water to be treated permeates from the first space 16 to the second space 18 through the semipermeable membrane 14. At this time, since most of the ammonia cannot pass through the semipermeable membrane 14, the ammonia in the first space 16 that did not pass through the semipermeable membrane 14 is concentrated. On the other hand, in the second space 18, at least a part of the ammonia concentrated water passed through the pipe 34 and the permeated water having a low ammonia concentration permeated through the semipermeable membrane 14 merge, so that the diluting effect works. The ammonia-concentrated water obtained in the first space 16 is discharged from the first space outlet through the pipe 26, and at least a part of the ammonia-concentrated water passes through the pipe 34 branched from the pipe 26 and enters the second space of the membrane module 12. Liquid is sent from to the second space 18 and water is passed through. The diluted water obtained in the second space 18 is discharged from the second space outlet through the pipe 36. Here, in the membrane module 12, the first space 16 is pressurized, and the water contained in the water to be treated in the first space 16 is permeated into the second space 18 via the semipermeable membrane 14, and the first space 16 is used. (Ammonia concentrated water is obtained) and diluted water is obtained in the second space 18 (diluting step).
 ここで、ポンプ20、配管24,26,34等が、半透膜モジュール12の第一空間16に被処理水を供給し、第一空間16の出口から得られたアンモニア濃縮水の少なくとも一部を半透膜モジュール12の第二空間18に供給する供給手段として機能する。 Here, the pump 20, pipes 24, 26, 34, etc. supply the water to be treated to the first space 16 of the semipermeable membrane module 12, and at least a part of the ammonia concentrated water obtained from the outlet of the first space 16. Functions as a supply means for supplying the second space 18 of the semipermeable membrane module 12.
 第一空間16で得られたアンモニア濃縮水は、回収して再利用されてもよい。第一空間16で得られたアンモニア濃縮水について、さらに蒸留処理や電気透析処理を行ってもよい。 The ammonia concentrated water obtained in the first space 16 may be recovered and reused. The ammonia-concentrated water obtained in the first space 16 may be further subjected to a distillation treatment or an electrodialysis treatment.
 第二空間18で得られた希釈水は、配管36を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよい。希釈水の少なくとも一部は、被処理水槽10に送液され、被処理水槽10において被処理水と混合されてもよい。後述するように、希釈水の少なくとも一部は、さらに逆浸透膜処理装置へ送液され、逆浸透膜処理装置において、逆浸透膜処理が行われてもよい(逆浸透膜処理工程)。 The diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 36, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. As will be described later, at least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step).
 以上のようにして、処理対象である、アンモニアを含む被処理水から、アンモニアが濃縮された処理水(アンモニア濃縮水)と、希釈水とが得られ、アンモニアを含む被処理水の濃縮が行われる。 As described above, treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置2では、アンモニアを含む被処理水中に、殺菌剤として臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させ、被処理水を膜モジュール12の第一空間16に通水し、得られたアンモニア濃縮水を第二空間18に通水する。これによって、酢酸セルロース系の半透膜を備える半透膜モジュールを用いるアンモニアを含む被処理水の濃縮処理において、アンモニアの回収率を維持しながらバイオファウリングを抑制することができる。 In the ammonia concentrating method and the ammonia concentrating device 2 according to the present embodiment, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound as a bactericidal agent is present in the water to be treated containing ammonia, and is subjected to the subject. The treated water is passed through the first space 16 of the membrane module 12, and the obtained concentrated ammonia water is passed through the second space 18. Thereby, in the concentration treatment of the water to be treated containing ammonia using the semipermeable membrane module provided with the cellulose acetate-based semipermeable membrane, biofouling can be suppressed while maintaining the recovery rate of ammonia.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置において、直列に接続された多段式の半透膜モジュールを用いてもよい。このような構成のアンモニア濃縮装置の一例を図3に示す。 In the ammonia concentrating method and the ammonia concentrating device according to the present embodiment, a multi-stage semipermeable membrane module connected in series may be used. FIG. 3 shows an example of an ammonia concentrator having such a configuration.
 図3に示すアンモニア濃縮装置3は、酢酸セルロース系の半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する、複数段に接続された半透膜モジュールを用いて、アンモニアを含む被処理水を第1段の半透膜モジュールの第一空間に通水し、第一空間を加圧して被処理水に含まれる水を半透膜を透過させることによってアンモニア濃縮水を得て、そのアンモニア濃縮水をさらに次段以降の半透膜モジュールを用いてアンモニア濃縮水を得るとともに、各段の半透膜モジュールの第二空間に、被処理水の一部またはアンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュール12a、2段目膜モジュール12bを備える。それぞれの膜モジュールは、半透膜14で仕切られた第一空間16および第二空間18を有する。アンモニア濃縮装置3は、被処理水を貯留する被処理水槽10を備えてもよい。アンモニア濃縮装置3は、第1段の膜モジュールの第一空間に被処理水を供給し、そのアンモニア濃縮水を順次次段の膜モジュールの第一空間に供給し、アンモニア濃縮水が最終段の半透膜モジュールの第一空間を通過した後に最終段のアンモニア濃縮水の少なくとも一部を最終段の半透膜モジュールの第二空間に供給し、その希釈水を順次前段の膜モジュールの第二空間に供給して濃縮処理を行う装置である。アンモニア濃縮装置3において、第1段の膜モジュールの第一空間および第二空間に被処理水をそれぞれ供給し、そのアンモニア濃縮水および希釈水を順次次段の膜モジュールの第一空間および第二空間にそれぞれ供給して濃縮処理を行う装置としてもよい。 The ammonia concentrator 3 shown in FIG. 3 is a semipermeable membrane module connected in a plurality of stages and having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate. The water to be treated containing ammonia is passed through the first space of the semipermeable membrane module of the first stage, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane. To obtain concentrated ammonia water, and then use the semipermeable membrane modules of the next and subsequent stages to obtain concentrated ammonia water, and in the second space of the semipermeable membrane module of each stage, one of the water to be treated. As a semipermeable membrane processing means for obtaining diluted water by passing at least a part or at least a part of the ammonia concentrated water, for example, a first-stage membrane module 12a and a second-stage membrane module 12b are provided. Each membrane module has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The ammonia concentrator 3 may include a water tank 10 to be treated to store water to be treated. The ammonia concentrating device 3 supplies water to be treated to the first space of the first-stage membrane module, sequentially supplies the ammonia-concentrated water to the first space of the next-stage membrane module, and the ammonia-concentrated water is the final stage. After passing through the first space of the semipermeable membrane module, at least a part of the ammonia concentrated water in the final stage is supplied to the second space of the semipermeable membrane module in the final stage, and the diluted water is sequentially supplied to the second space of the membrane module in the previous stage. It is a device that supplies to the space and performs concentration processing. In the ammonia concentrator 3, water to be treated is supplied to the first space and the second space of the first-stage membrane module, respectively, and the ammonia-concentrated water and the diluted water are sequentially supplied to the first space and the second space of the next-stage membrane module. It may be a device that supplies each of the spaces to perform the concentration treatment.
 図3に示すアンモニア濃縮装置3において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と1段目膜モジュール12aの第一空間入口とは、ポンプ20を介して配管24により接続されている。1段目膜モジュール12aの第一空間出口と2段目膜モジュール12bの第一空間入口とは、配管38により接続されている。2段目膜モジュール12bの第一空間出口には配管40が接続されている。配管40から分岐した配管42が2段目膜モジュール12bの第二空間入口に接続されている。2段目膜モジュール12bの第二空間出口と1段目膜モジュール12aの第二空間入口とは、配管44により接続されている。1段目膜モジュール12aの第二空間出口には配管46が接続されている。被処理水槽10の殺菌剤入口には、殺菌剤添加配管32が接続されている。 In the ammonia concentrator 3 shown in FIG. 3, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the first space inlet of the first stage membrane module 12a are connected by a pipe 24 via a pump 20. The first space outlet of the first-stage membrane module 12a and the first space inlet of the second-stage membrane module 12b are connected by a pipe 38. A pipe 40 is connected to the first space outlet of the second stage membrane module 12b. The pipe 42 branched from the pipe 40 is connected to the second space entrance of the second stage membrane module 12b. The second space outlet of the second stage membrane module 12b and the second space inlet of the first stage membrane module 12a are connected by a pipe 44. A pipe 46 is connected to the second space outlet of the first-stage membrane module 12a. A disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
 アンモニア濃縮装置3は、半透膜14で仕切られた第一空間16および第二空間18を有する多段式の膜モジュールを用い、被処理水を多段式の膜モジュールの第一空間16に直列的に通水し、最終段の膜モジュール(図3の例では、2段目膜モジュール12b)の第二空間18にその最終段の膜モジュールのアンモニア濃縮水の少なくとも一部を送液し、最終段の膜モジュールの希釈水をその前段の膜モジュールの第二空間18に直列的に通水し、第一空間16を加圧することによってその第一空間16に含まれる水を半透膜14を介して第二空間18に透過させて被処理水を濃縮する装置である。すなわち、アンモニア濃縮装置3において、半透膜14を用いて被処理水が濃縮され、そのアンモニア濃縮水がさらに次の段の半透膜14を用いて濃縮される。そして、最終段の膜モジュールの第一空間16を通過したアンモニア濃縮水を、各段の膜モジュールの第二空間18に直列的に通水し、各段の膜モジュールの第一空間16を加圧してその第一空間16に含まれる水を第二空間18に透過させる。 The ammonia concentrator 3 uses a multi-stage membrane module having a first space 16 and a second space 18 partitioned by a semi-permeable membrane 14, and the water to be treated is serialized in the first space 16 of the multi-stage membrane module. At least a part of the ammonia concentrated water of the final stage membrane module is sent to the second space 18 of the final stage membrane module (second stage membrane module 12b in the example of FIG. 3), and finally. The diluted water of the membrane module of the stage is passed through the second space 18 of the membrane module of the previous stage in series, and the water contained in the first space 16 is transferred to the semitransparent membrane 14 by pressurizing the first space 16. It is a device that concentrates the water to be treated by allowing it to permeate through the second space 18. That is, in the ammonia concentrating device 3, the water to be treated is concentrated using the semipermeable membrane 14, and the ammonia concentrated water is further concentrated using the semipermeable membrane 14 of the next stage. Then, the ammonia-concentrated water that has passed through the first space 16 of the membrane module in the final stage is passed in series to the second space 18 of the membrane module in each stage, and the first space 16 of the membrane module in each stage is added. The water contained in the first space 16 is permeated through the second space 18 by pressing.
 アンモニア濃縮装置3において、アンモニアを含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留される。ここで、殺菌剤として、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物が殺菌剤添加配管32を通して被処理水に添加される。殺菌剤は、配管22において添加されてもよいし、配管24において添加されてもよい。殺菌剤が添加された被処理水は、被処理水槽10からポンプ20により配管24を通して、1段目膜モジュール12aの第一空間入口から第一空間16aへ加圧送液され、通水される。一方、後述する2段目膜モジュール12bの第二空間18bを経由して送液された希釈水が配管44を通して、1段目膜モジュール12aの第二空間18aへ送液される。1段目膜モジュール12aにおいて、第一空間16aが加圧されてその第一空間16aに含まれる水が第二空間18aに透過される(アンモニア濃縮工程(1段目))とともに、第二空間18aで希釈水が得られる(希釈工程(1段目))。第二空間18aで得られた希釈水は、第二空間出口から配管46を通して排出される。 In the ammonia concentrator 3, the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22. Here, as a disinfectant, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32. The fungicide may be added in the pipe 22 or in the pipe 24. The water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the first stage membrane module 12a to the first space 16a, and is passed through the water. On the other hand, the diluted water sent through the second space 18b of the second stage membrane module 12b, which will be described later, is sent to the second space 18a of the first stage membrane module 12a through the pipe 44. In the first-stage membrane module 12a, the first space 16a is pressurized and the water contained in the first space 16a is permeated into the second space 18a (ammonia concentration step (first stage)), and the second space Diluted water is obtained at 18a (dilution step (first stage)). The diluted water obtained in the second space 18a is discharged from the second space outlet through the pipe 46.
 1段目膜モジュール12aの第一空間16aで得られたアンモニア濃縮水は、配管38を通して、2段目膜モジュール12bの第一空間16bへ送液される。第一空間16bで得られたアンモニア濃縮水は、第一空間出口から配管40を通して排出され、アンモニア濃縮水の少なくとも一部は、配管40から分岐した配管42を通して、2段目膜モジュール12bの第二空間入口から第二空間18bへ送液され、通水される。1段目と同様にして、2段目膜モジュール12bにおいて、第一空間16bが加圧されてその第一空間16bに含まれる水が第二空間18bに透過される(アンモニア濃縮工程(2段目))とともに、第二空間18bで希釈水が得られる(希釈工程(2段目))。第二空間18bで得られた希釈水は、第二空間出口から配管44を通して、1段目膜モジュール12aの第二空間18aへ送液される。 The ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the first space 16b of the second stage membrane module 12b through the pipe 38. The ammonia-concentrated water obtained in the first space 16b is discharged from the first space outlet through the pipe 40, and at least a part of the ammonia-concentrated water is passed through the pipe 42 branched from the pipe 40 to the second stage membrane module 12b. Liquid is sent from the entrance of the second space to the second space 18b, and water is passed therethrough. In the same manner as in the first stage, in the second stage membrane module 12b, the first space 16b is pressurized and the water contained in the first space 16b is permeated into the second space 18b (ammonia concentration step (second stage). Along with (eyes)), diluted water is obtained in the second space 18b (dilution step (second stage)). The diluted water obtained in the second space 18b is sent from the outlet of the second space to the second space 18a of the first stage membrane module 12a through the pipe 44.
 ここで、ポンプ20、配管24,38,40,42,44等が、半透膜モジュール12の第一空間16に被処理水を供給し、第一空間16の出口から得られたアンモニア濃縮水の少なくとも一部を半透膜モジュール12の第二空間18に供給する供給手段として機能する。 Here, the pump 20, pipes 24, 38, 40, 42, 44 and the like supply water to be treated to the first space 16 of the semipermeable membrane module 12, and the ammonia concentrated water obtained from the outlet of the first space 16. It functions as a supply means for supplying at least a part of the above to the second space 18 of the semipermeable membrane module 12.
 第一空間16で得られたアンモニア濃縮水は、回収して再利用されてもよい。第一空間16で得られたアンモニア濃縮水について、さらに蒸留処理や電気透析処理を行ってもよい。 The ammonia concentrated water obtained in the first space 16 may be recovered and reused. The ammonia-concentrated water obtained in the first space 16 may be further subjected to a distillation treatment or an electrodialysis treatment.
 第二空間18で得られた希釈水は、配管46を通して系外へ排出されてもよいし、必要に応じて希釈水槽へ送液されて貯留された後、系外へ排出されてもよい。希釈水の少なくとも一部は、被処理水槽10に送液され、被処理水槽10において被処理水と混合されてもよい。後述するように、希釈水の少なくとも一部は、さらに逆浸透膜処理装置へ送液され、逆浸透膜処理装置において、逆浸透膜処理が行われてもよい(逆浸透膜処理工程)。 The diluted water obtained in the second space 18 may be discharged to the outside of the system through the pipe 46, or may be discharged to the diluted water tank as necessary, stored, and then discharged to the outside of the system. At least a part of the diluted water may be sent to the water tank 10 to be treated and mixed with the water to be treated in the water tank 10 to be treated. As will be described later, at least a part of the diluted water may be further sent to the reverse osmosis membrane treatment apparatus, and the reverse osmosis membrane treatment may be performed in the reverse osmosis membrane treatment apparatus (reverse osmosis membrane treatment step).
 以上のようにして、処理対象である、アンモニアを含む被処理水から、アンモニアが濃縮された処理水(アンモニア濃縮水)と、希釈水とが得られ、アンモニアを含む被処理水の濃縮が行われる。 As described above, treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置3では、アンモニアを含む被処理水中に、殺菌剤として臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させ、被処理水を多段式の第1段の膜モジュール12aの第一空間16aに通水し、得られたアンモニア濃縮水をさらに次段の膜モジュール12b以降の第一空間16に通水してアンモニア濃縮水を得るとともに、各段の膜モジュール12の第二空間18に、得られたアンモニア濃縮水を通水して希釈水を得る。これによって、酢酸セルロース系の半透膜を備える複数段に接続された多段式の半透膜モジュールを用いるアンモニアを含む被処理水の濃縮処理において、アンモニアの回収率を維持しながらバイオファウリングを抑制することができる。 In the ammonia concentrating method and the ammonia concentrating device 3 according to the present embodiment, a stabilized hypobromic acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound as a bactericidal agent is present in the water to be treated containing ammonia, and is subjected to the subject. The treated water is passed through the first space 16a of the multi-stage first-stage film module 12a, and the obtained ammonia-concentrated water is further passed through the first space 16 after the next-stage film module 12b to concentrate ammonia. While obtaining water, the obtained concentrated ammonia water is passed through the second space 18 of the membrane module 12 of each stage to obtain diluted water. As a result, in the concentration treatment of water to be treated containing ammonia using a multi-stage semipermeable membrane module connected in multiple stages equipped with a cellulose acetate-based semipermeable membrane, biofouling can be performed while maintaining the recovery rate of ammonia. It can be suppressed.
 上記の通り、本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置において、希釈水の少なくとも一部について、さらに逆浸透膜処理を行ってもよい。このような構成のアンモニア濃縮装置の一例を図4に示す。 As described above, in the ammonia concentrating method and the ammonia concentrating device according to the present embodiment, at least a part of the diluted water may be further subjected to reverse osmosis membrane treatment. FIG. 4 shows an example of an ammonia concentrator having such a configuration.
 図4に示すアンモニア濃縮装置4は、図3の構成に加えて、希釈水の少なくとも一部について逆浸透膜処理を行う逆浸透膜処理手段として、逆浸透膜処理装置48をさらに備える。図1または図2の構成に加えて、希釈水の少なくとも一部について逆浸透膜処理を行う逆浸透膜処理手段として、逆浸透膜処理装置48をさらに備える構成としてもよい。 In addition to the configuration of FIG. 3, the ammonia concentrator 4 shown in FIG. 4 further includes a reverse osmosis membrane treatment device 48 as a reverse osmosis membrane treatment means for performing reverse osmosis membrane treatment on at least a part of diluted water. In addition to the configuration of FIG. 1 or 2, a reverse osmosis membrane treatment apparatus 48 may be further provided as a reverse osmosis membrane treatment means for performing reverse osmosis membrane treatment on at least a part of the diluted water.
 アンモニア濃縮装置4において、1段目膜モジュール12aの第二空間出口と逆浸透膜処理装置48の入口とは、配管46により接続されている。逆浸透膜処理装置48のRO透過水出口には、RO透過水配管50が接続され、RO濃縮水出口には、RO濃縮水配管52が接続されている。 In the ammonia concentrator 4, the second space outlet of the first stage membrane module 12a and the inlet of the reverse osmosis membrane treatment device 48 are connected by a pipe 46. The RO permeated water pipe 50 is connected to the RO permeated water outlet of the reverse osmosis membrane treatment device 48, and the RO concentrated water pipe 52 is connected to the RO concentrated water outlet.
 アンモニア濃縮装置4において、図3のアンモニア濃縮装置3と同様にして半透膜処理が行われて第二空間18aで得られた希釈水は、第二空間出口から配管46を通して逆浸透膜処理装置48へ送液される。逆浸透膜処理装置48において逆浸透膜処理が行われ、RO透過水とRO濃縮水とが得られる(逆浸透膜処理工程)。RO透過水は、RO透過水配管50を通して排出され、RO濃縮水は、RO濃縮水配管52を通して排出される。RO濃縮水は、被処理水槽10へ送液して、さらに半透膜処理を行って濃縮してもよい。 In the ammonia concentrator 4, the diluted water obtained in the second space 18a by performing the semipermeable membrane treatment in the same manner as in the ammonia concentrator 3 of FIG. 3 is a reverse osmosis membrane treatment device from the second space outlet through the pipe 46. The liquid is sent to 48. The reverse osmosis membrane treatment is performed in the reverse osmosis membrane treatment apparatus 48, and RO permeated water and RO concentrated water are obtained (reverse osmosis membrane treatment step). The RO permeated water is discharged through the RO permeated water pipe 50, and the RO concentrated water is discharged through the RO concentrated water pipe 52. The RO concentrated water may be sent to the water tank 10 to be treated and further subjected to a semipermeable membrane treatment to be concentrated.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置4では、半透膜処理で得られた希釈水についてさらに逆浸透膜処理を行うことによって、さらにアンモニアを濃縮することができる。 In the ammonia concentrating method and the ammonia concentrating device 4 according to the present embodiment, ammonia can be further concentrated by further performing a reverse osmosis membrane treatment on the diluted water obtained by the semipermeable membrane treatment.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置において、半透膜モジュールの前段に除濁膜を設けてもよい。このような構成のアンモニア濃縮装置の一例を図5に示す。 In the ammonia concentrating method and the ammonia concentrating device according to the present embodiment, a turbidifying film may be provided in front of the semipermeable membrane module. FIG. 5 shows an example of an ammonia concentrator having such a configuration.
 図5に示すアンモニア濃縮装置5は、図3の構成に加えて、被処理水について除濁膜処理を行う除濁膜処理手段として、除濁膜処理装置56をさらに備える。図1、図2または図4の構成に加えて、被処理水について除濁膜処理を行う除濁膜処理手段として、除濁膜処理装置56をさらに備える構成としてもよい。 In addition to the configuration of FIG. 3, the ammonia concentrating device 5 shown in FIG. 5 further includes a turbid film treatment device 56 as a turbid film treatment means for performing a turbid film treatment on the water to be treated. In addition to the configuration of FIG. 1, FIG. 2 or FIG. 4, a configuration may further include a decontamination film treatment device 56 as a decontamination film treatment means for performing the decontamination film treatment on the water to be treated.
 アンモニア濃縮装置5において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と除濁膜処理装置56の入口とは、ポンプ60を介して配管64により接続されている。除濁膜処理装置56の除濁膜透過水出口と除濁膜透過水槽58の入口とは、配管66により接続されている。除濁膜処理装置56の除濁膜濃縮水出口には、配管68が接続されている。除濁膜透過水槽58の出口と1段目膜モジュール12aの第一空間入口とは、ポンプ62を介して配管70により接続されている。被処理水槽10の殺菌剤入口には、殺菌剤添加配管32が接続されている。 In the ammonia concentrator 5, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the inlet of the decontamination membrane treatment device 56 are connected by a pipe 64 via a pump 60. The decontamination membrane permeation water outlet of the decontamination membrane treatment device 56 and the inlet of the decontamination membrane permeation water tank 58 are connected by a pipe 66. A pipe 68 is connected to the decontamination membrane concentrated water outlet of the decontamination membrane treatment device 56. The outlet of the opaque membrane permeation water tank 58 and the first space inlet of the first stage membrane module 12a are connected by a pipe 70 via a pump 62. A disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
 アンモニア濃縮装置5において、アンモニアを含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留される。ここで、殺菌剤として、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物が殺菌剤添加配管32を通して被処理水に添加される。殺菌剤は、配管22において添加されてもよいし、配管64において添加されてもよい。殺菌剤が添加された被処理水は、被処理水槽10からポンプ60により配管64を通して、除濁膜処理装置56へ送液される。除濁膜処理装置56において除濁膜処理が行われ、除濁膜透過水と除濁膜濃縮水とが得られる(除濁膜処理工程)。除濁膜透過水は、配管66を通して、必要に応じて除濁膜透過水槽58に貯留される。除濁膜濃縮水は、配管68を通して排出される。除濁膜透過水は、半透膜処理の被処理水として、除濁膜透過水槽58からポンプ62により配管70を通して、1段目膜モジュール12aの第一空間入口から第一空間16aへ加圧送液、通水され、以降、図3のアンモニア濃縮装置3と同様にして半透膜処理が行われる。 In the ammonia concentrator 5, the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22. Here, as a disinfectant, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32. The fungicide may be added in the pipe 22 or in the pipe 64. The water to be treated to which the disinfectant is added is sent from the water tank 10 to be treated through the pipe 64 by the pump 60 to the decontamination membrane treatment device 56. The turbidating membrane treatment is performed in the turbidating membrane treatment apparatus 56, and the turbidating membrane permeated water and the turbidating membrane concentrated water are obtained (the turbidating membrane treatment step). The decontamination membrane permeation water is stored in the decontamination membrane permeation water tank 58 as needed through the pipe 66. The decontamination membrane concentrated water is discharged through the pipe 68. The opaque membrane permeated water is pressurized and sent from the opaque membrane permeated water tank 58 to the first space 16a from the first space inlet of the first stage membrane module 12a through the pipe 70 by the pump 62 as the water to be treated for the semipermeable membrane treatment. The liquid is passed through, and thereafter, the semipermeable membrane treatment is performed in the same manner as in the ammonia concentrating device 3 of FIG.
 アンモニア濃縮装置5では、除濁膜の前段に殺菌剤添加工程を設けることによって、除濁膜処理装置56と膜モジュール12をともに殺菌することができ、除濁膜および半透膜のバイオファウリングをともに抑制することができる。 In the ammonia concentrator 5, both the sterilizing membrane treatment device 56 and the membrane module 12 can be sterilized by providing a sterilizing agent addition step in front of the sterilizing membrane, and biofouling of the sterilizing membrane and the semipermeable membrane. Can be suppressed together.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置において、半透膜モジュールの第一空間入口および第一空間出口の少なくとも1つにおける全塩素濃度が所定の値になるように被処理水中の安定化次亜臭素酸組成物の量を調整してもよい。このような構成のアンモニア濃縮装置の一例を図6に示す。 In the ammonia concentrating method and the ammonia concentrating device according to the present embodiment, stabilization of the water to be treated so that the total chlorine concentration at at least one of the first space inlet and the first space outlet of the semipermeable membrane module becomes a predetermined value. The amount of hypobromous acid composition may be adjusted. FIG. 6 shows an example of an ammonia concentrator having such a configuration.
 図6に示すアンモニア濃縮装置6は、図1の構成に加えて、膜モジュール12の第一空間入口および第一空間出口の少なくとも1つにおける全塩素濃度を測定する全塩素濃度測定手段として、全塩素濃度測定装置80をさらに備える。アンモニア濃縮装置6は、被処理水への安定化次亜臭素酸組成物の添加を制御する制御手段として、制御装置82をさらに備えてもよい。図2、図3、図4または図5の構成に加えて、膜モジュール12の第一空間入口および第一空間出口の少なくとも1つにおける全塩素濃度を測定する全塩素濃度測定手段として、全塩素濃度測定装置80をさらに備える構成としてもよい。 In addition to the configuration of FIG. 1, the ammonia concentrator 6 shown in FIG. 6 is used as a total chlorine concentration measuring means for measuring the total chlorine concentration at at least one of the first space inlet and the first space outlet of the membrane module 12. A chlorine concentration measuring device 80 is further provided. The ammonia concentrator 6 may further include a control device 82 as a control means for controlling the addition of the stabilized hypobromous acid composition to the water to be treated. As a total chlorine concentration measuring means for measuring the total chlorine concentration at at least one of the first space inlet and the first space outlet of the membrane module 12, in addition to the configuration of FIG. 2, FIG. 3, FIG. 4 or FIG. The concentration measuring device 80 may be further provided.
 アンモニア濃縮装置6において、配管26には、全塩素濃度測定装置80が設置されている。制御装置82は、全塩素濃度測定装置80と、殺菌剤添加配管32に設置された殺菌剤の添加量を調整する調整手段(図示せず)と、それぞれ電気的接続等によって接続されていてもよい。 In the ammonia concentrator 6, a total chlorine concentration measuring device 80 is installed in the pipe 26. Even if the control device 82 is connected to the total chlorine concentration measuring device 80 and the adjusting means (not shown) for adjusting the amount of the disinfectant added to the disinfectant addition pipe 32 by electrical connection or the like, respectively. good.
 アンモニア濃縮装置6において、図1のアンモニア濃縮装置1と同様にして半透膜処理が行われる。ここで、配管26において、全塩素濃度測定装置80によって、膜モジュール12の第一空間出口における全塩素濃度が測定される(全塩素濃度測定工程)。全塩素濃度測定装置80によって測定されたアンモニア濃縮水中の全塩素濃度が所定の値になるように、例えば、制御装置82によって、殺菌剤添加配管32に設置されたポンプの流量やバルブの開閉度等が調整され、被処理水への殺菌剤の添加量が調整されればよい(調整工程)。殺菌剤の添加量は、制御装置82によって自動で調整してもよいし、手動で調整してもよい。 In the ammonia concentrator 6, the semipermeable membrane treatment is performed in the same manner as in the ammonia concentrator 1 of FIG. Here, in the pipe 26, the total chlorine concentration at the first space outlet of the membrane module 12 is measured by the total chlorine concentration measuring device 80 (total chlorine concentration measuring step). For example, by the control device 82, the flow rate of the pump installed in the sterilizing agent addition pipe 32 and the opening / closing degree of the valve are adjusted so that the total chlorine concentration in the ammonia concentrated water measured by the total chlorine concentration measuring device 80 becomes a predetermined value. Etc. may be adjusted, and the amount of the bactericidal agent added to the water to be treated may be adjusted (adjustment step). The amount of the disinfectant added may be automatically adjusted by the control device 82, or may be adjusted manually.
 配管24に全塩素濃度測定装置80を設置し、配管24において、全塩素濃度測定装置80によって、膜モジュール12の第一空間入口における全塩素濃度が測定され、全塩素濃度測定装置80によって測定された被処理水中の全塩素濃度が所定の値になるように、例えば、制御装置82によって、殺菌剤添加配管32に設置されたポンプの流量やバルブの開閉度等が調整され、被処理水への殺菌剤の添加量が調整されてもよい。また、配管24および配管26に全塩素濃度測定装置80をそれぞれ設置し、配管24および配管26において、全塩素濃度測定装置80によって、膜モジュール12の第一空間入口および第一空間出口における全塩素濃度が測定され、全塩素濃度測定装置80によって測定された被処理水中およびアンモニア濃縮水中の全塩素濃度が所定の値になるように、例えば、制御装置82によって、殺菌剤添加配管32に設置されたポンプの流量やバルブの開閉度等が調整され、被処理水への殺菌剤の添加量が調整されてもよい。殺菌剤による殺菌能力の確認のため、少なくとも膜モジュール12の第一空間出口における全塩素濃度が測定され、第一空間出口におけるアンモニア濃縮水中の全塩素濃度が所定の値になるように、被処理水への殺菌剤の添加量が調整されることが好ましい。例えば、第一空間出口の全塩素濃度が所定の値より低い場合、殺菌剤の量が不足し、ファウリングのリスクが高いことが示唆されるため、被処理水への殺菌剤の添加量を増やせばよい。一方、第一空間出口の全塩素濃度が所定の値より高い場合、過剰に殺菌剤が添加され、薬剤コストが高く、膜劣化リスクが高いことが示唆されるため、被処理水への殺菌剤の添加量を減らせばよい。なお、図3~5のように直列に接続された多段式の半透膜モジュールを用いる場合は、最終段の膜モジュール12の第一空間出口における全塩素濃度が測定され、最終段の膜モジュール12の第一空間出口におけるアンモニア濃縮水中の全塩素濃度が所定の値になるように、被処理水への殺菌剤の添加量が調整されることが好ましい。 A total chlorine concentration measuring device 80 is installed in the pipe 24, and in the pipe 24, the total chlorine concentration at the first space inlet of the membrane module 12 is measured by the total chlorine concentration measuring device 80, and is measured by the total chlorine concentration measuring device 80. For example, the control device 82 adjusts the flow rate of the pump installed in the sterilizing agent addition pipe 32, the degree of opening and closing of the valve, and the like so that the total chlorine concentration in the water to be treated becomes a predetermined value, and then the water to be treated The amount of the bactericidal agent added may be adjusted. Further, a total chlorine concentration measuring device 80 is installed in the pipe 24 and the pipe 26, respectively, and in the pipe 24 and the pipe 26, the total chlorine in the first space inlet and the first space outlet of the membrane module 12 is provided by the total chlorine concentration measuring device 80. The concentration is measured, and the total chlorine concentration in the water to be treated and the concentrated ammonia water measured by the total chlorine concentration measuring device 80 is set to a predetermined value, for example, installed in the sterilizing agent addition pipe 32 by the control device 82. The flow rate of the pump, the degree of opening and closing of the valve, and the like may be adjusted, and the amount of the disinfectant added to the water to be treated may be adjusted. In order to confirm the sterilizing ability of the bactericide, at least the total chlorine concentration at the first space outlet of the membrane module 12 is measured, and the treatment is performed so that the total chlorine concentration in the ammonia-concentrated water at the first space outlet becomes a predetermined value. It is preferable that the amount of the bactericide added to the water is adjusted. For example, if the total chlorine concentration at the outlet of the first space is lower than the predetermined value, it is suggested that the amount of the disinfectant is insufficient and the risk of fouling is high. You can increase it. On the other hand, when the total chlorine concentration at the outlet of the first space is higher than a predetermined value, it is suggested that the disinfectant is excessively added, the chemical cost is high, and the risk of film deterioration is high. The amount of addition may be reduced. When a multi-stage semipermeable membrane module connected in series as shown in FIGS. 3 to 5 is used, the total chlorine concentration at the first space outlet of the final stage membrane module 12 is measured, and the final stage membrane module is measured. It is preferable that the amount of the bactericide added to the water to be treated is adjusted so that the total chlorine concentration in the ammonia-concentrated water at the first space outlet of 12 becomes a predetermined value.
 全塩素濃度測定装置80としては、全塩素濃度を測定することができるものであればよく、特に制限はない。全塩素濃度の測定方法としては、DPD法等が挙げられる。 The total chlorine concentration measuring device 80 may be any as long as it can measure the total chlorine concentration, and is not particularly limited. Examples of the method for measuring the total chlorine concentration include the DPD method.
 被処理水中およびアンモニア濃縮水中の全塩素濃度は、全塩素濃度測定装置80によって、自動で測定してもよいし、手動で測定してもよい。 The total chlorine concentration in the water to be treated and the concentrated ammonia water may be automatically measured by the total chlorine concentration measuring device 80, or may be measured manually.
 制御装置82は、例えば、プログラムを演算するCPU等の演算手段、プログラムや演算結果を記憶するROMおよびRAM等の記憶手段等を含んで構成されるマイクロコンピュータと電子回路等で構成され、全塩素濃度測定装置80により測定された全塩素濃度に基づいて、殺菌剤添加配管32に設置されたポンプの流量やバルブの開閉度等を調整して、被処理水への殺菌剤の添加量を制御する機能を有するものである。 The control device 82 includes, for example, a microcomputer including a calculation means such as a CPU for calculating a program, a storage means such as a ROM and a RAM for storing the program and the calculation result, and an electronic circuit, and is composed of total chlorine. Based on the total chlorine concentration measured by the concentration measuring device 80, the flow rate of the pump installed in the sterilizing agent addition pipe 32, the opening / closing degree of the valve, etc. are adjusted to control the amount of the sterilizing agent added to the water to be treated. It has a function to do.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置において、直列に接続された多段式の半透膜モジュールを用いる場合、第一空間および第二空間に被処理水または前段の膜モジュールのアンモニア濃縮水を通水してもよい。このような構成のアンモニア濃縮装置の一例を図7に示す。また、膜モジュールの第一空間で得られるアンモニア濃縮水を自身の第二空間に通水してもよい。このような構成のアンモニア濃縮装置の一例を図8に示す。 When a multi-stage semipermeable membrane module connected in series is used in the ammonia concentration method and the ammonia concentrator according to the present embodiment, the water to be treated or the ammonia-concentrated water of the membrane module in the previous stage is used in the first space and the second space. Water may pass through. FIG. 7 shows an example of an ammonia concentrator having such a configuration. Further, the ammonia-concentrated water obtained in the first space of the membrane module may be passed through its own second space. FIG. 8 shows an example of an ammonia concentrator having such a configuration.
 図7に示すアンモニア濃縮装置7は、酢酸セルロース系の半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する、複数段に接続された半透膜モジュールを用いて、アンモニアを含む被処理水を第1段の半透膜モジュールの第一空間に通水し、第一空間を加圧して被処理水に含まれる水を半透膜を透過させることによってアンモニア濃縮水を得て、そのアンモニア濃縮水をさらに次段以降の半透膜モジュールを用いてアンモニア濃縮水を得るとともに、各段の半透膜モジュールの第二空間に、被処理水の一部またはアンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュール12a、2段目膜モジュール12bを備える。それぞれの膜モジュールは、半透膜14で仕切られた第一空間16および第二空間18を有する。アンモニア濃縮装置7は、被処理水を貯留する被処理水槽10を備えてもよい。アンモニア濃縮装置7は、第1段の膜モジュールの第一空間および第二空間に被処理水を供給し、そのアンモニア濃縮水を順次次段の膜モジュールの第一空間および第二空間に供給して濃縮処理を行う装置である。 The ammonia concentrator 7 shown in FIG. 7 is a semipermeable membrane module connected in a plurality of stages and having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate. The water to be treated containing ammonia is passed through the first space of the semipermeable membrane module of the first stage, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane. To obtain concentrated ammonia water, and then use the semipermeable membrane modules of the next and subsequent stages to obtain concentrated ammonia water, and in the second space of the semipermeable membrane module of each stage, one of the water to be treated. As a semipermeable membrane processing means for obtaining diluted water by passing at least a part or at least a part of the ammonia concentrated water, for example, a first-stage membrane module 12a and a second-stage membrane module 12b are provided. Each membrane module has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The ammonia concentrator 7 may include a water tank 10 to be treated to store water to be treated. The ammonia concentrator 7 supplies water to be treated to the first space and the second space of the first-stage membrane module, and sequentially supplies the ammonia-concentrated water to the first space and the second space of the next-stage membrane module. It is a device that performs concentration processing.
 図7に示すアンモニア濃縮装置7において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と1段目膜モジュール12aの第一空間入口とは、ポンプ20を介して配管24により接続されている。配管24におけるポンプ20の下流側で配管24から分岐した配管28が1段目膜モジュール12aの第二空間入口に接続されている。1段目膜モジュール12aの第一空間出口と2段目膜モジュール12bの第一空間入口とは、配管86により接続されている。配管86から分岐した配管88が2段目膜モジュール12bの第二空間入口に接続されている。1段目膜モジュール12aの第二空間出口には配管84が接続されている。2段目膜モジュール12bの第一空間出口には配管90が接続されている。2段目膜モジュール12bの第二空間出口には配管92が接続されている。被処理水槽10の殺菌剤入口には、殺菌剤添加配管32が接続されている。 In the ammonia concentrator 7 shown in FIG. 7, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the first space inlet of the first stage membrane module 12a are connected by a pipe 24 via a pump 20. The pipe 28 branched from the pipe 24 on the downstream side of the pump 20 in the pipe 24 is connected to the second space inlet of the first stage membrane module 12a. The first space outlet of the first-stage membrane module 12a and the first space inlet of the second-stage membrane module 12b are connected by a pipe 86. The pipe 88 branched from the pipe 86 is connected to the second space entrance of the second stage membrane module 12b. A pipe 84 is connected to the second space outlet of the first-stage membrane module 12a. A pipe 90 is connected to the first space outlet of the second stage membrane module 12b. A pipe 92 is connected to the second space outlet of the second stage membrane module 12b. A disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
 アンモニア濃縮装置7は、半透膜14で仕切られた第一空間16および第二空間18を有する多段式の膜モジュールを用い、被処理水を多段式の膜モジュールの第一空間16に直列的に通水し、各段の膜モジュールの第二空間18に被処理水またはその前段の膜モジュールのアンモニア濃縮水の少なくとも一部を通水し、第一空間16を加圧することによってその第一空間16に含まれる水を半透膜14を介して第二空間18に透過させて被処理水を濃縮する装置である。すなわち、アンモニア濃縮装置7において、半透膜14を用いて被処理水が濃縮され、そのアンモニア濃縮水がさらに次の段の半透膜14を用いて濃縮される。そして、各段の膜モジュールの第一空間16を通過したアンモニア濃縮水を、次段の膜モジュールの第二空間18に通水し、各段の膜モジュールの第一空間16を加圧してその第一空間16に含まれる水を第二空間18に透過させる。 The ammonia concentrator 7 uses a multi-stage membrane module having a first space 16 and a second space 18 partitioned by a semipermeable membrane 14, and the water to be treated is serialized in the first space 16 of the multi-stage membrane module. At least a part of the water to be treated or the ammonia-concentrated water of the membrane module in the previous stage thereof is passed through the second space 18 of the membrane module of each stage, and the first space 16 is pressurized. It is a device that concentrates the water to be treated by allowing the water contained in the space 16 to permeate through the semipermeable membrane 14 into the second space 18. That is, in the ammonia concentrating device 7, the water to be treated is concentrated using the semipermeable membrane 14, and the ammonia concentrated water is further concentrated using the semipermeable membrane 14 of the next stage. Then, the ammonia-concentrated water that has passed through the first space 16 of the membrane module of each stage is passed through the second space 18 of the membrane module of the next stage, and the first space 16 of the membrane module of each stage is pressurized. The water contained in the first space 16 is allowed to permeate through the second space 18.
 アンモニア濃縮装置7において、アンモニアを含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留される。ここで、殺菌剤として、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物が殺菌剤添加配管32を通して被処理水に添加される。殺菌剤は、配管22において添加されてもよいし、配管24において添加されてもよい。殺菌剤が添加された被処理水は、被処理水槽10からポンプ20により配管24を通して、1段目膜モジュール12aの第一空間入口から第一空間16aへ加圧送液され、通水される。一方、殺菌剤が添加された被処理水は配管24から分岐した配管28を通して、1段目膜モジュール12aの第二空間18aへ送液される。1段目膜モジュール12aにおいて、第一空間16aが加圧されてその第一空間16aに含まれる水が第二空間18aに透過される(アンモニア濃縮工程(1段目))とともに、第二空間18aで希釈水が得られる(希釈工程(1段目))。第二空間18aで得られた希釈水は、第二空間出口から配管84を通して排出される。 In the ammonia concentrator 7, the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22. Here, as a disinfectant, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32. The fungicide may be added in the pipe 22 or in the pipe 24. The water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the first stage membrane module 12a to the first space 16a, and is passed through the water. On the other hand, the water to be treated to which the disinfectant is added is sent to the second space 18a of the first stage membrane module 12a through the pipe 28 branched from the pipe 24. In the first-stage membrane module 12a, the first space 16a is pressurized and the water contained in the first space 16a is permeated into the second space 18a (ammonia concentration step (first stage)), and the second space Diluted water is obtained at 18a (dilution step (first stage)). The diluted water obtained in the second space 18a is discharged from the second space outlet through the pipe 84.
 1段目膜モジュール12aの第一空間16aで得られたアンモニア濃縮水は、配管86を通して、2段目膜モジュール12bの第一空間16bへ送液される。第一空間16aで得られたアンモニア濃縮水の一部は、配管86から分岐した配管88を通して、2段目膜モジュール12bの第二空間入口から第二空間18bへ送液され、通水される。1段目と同様にして、2段目膜モジュール12bにおいて、第一空間16bが加圧されてその第一空間16bに含まれる水が第二空間18bに透過される(アンモニア濃縮工程(2段目))とともに、第二空間18bで希釈水が得られる(希釈工程(2段目))。第一空間16bで得られたアンモニア濃縮水は、第一空間出口から配管90を通して排出される。第二空間18bで得られた希釈水は、第二空間出口から配管92を通して排出される。 The ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the first space 16b of the second stage membrane module 12b through the pipe 86. A part of the ammonia concentrated water obtained in the first space 16a is sent from the second space inlet of the second stage membrane module 12b to the second space 18b through the pipe 88 branched from the pipe 86, and is passed through the water. .. In the same manner as in the first stage, in the second stage membrane module 12b, the first space 16b is pressurized and the water contained in the first space 16b is permeated into the second space 18b (ammonia concentration step (second stage). Along with (eyes)), diluted water is obtained in the second space 18b (dilution step (second stage)). The ammonia-concentrated water obtained in the first space 16b is discharged from the first space outlet through the pipe 90. The diluted water obtained in the second space 18b is discharged from the second space outlet through the pipe 92.
 ここで、ポンプ20、配管24,28,86,88等が、半透膜モジュール12の第一空間16および第二空間18に被処理水またはアンモニア濃縮水の一部を供給する供給手段として機能する。 Here, the pump 20, the pipes 24, 28, 86, 88, etc. function as a supply means for supplying a part of the water to be treated or the concentrated ammonia water to the first space 16 and the second space 18 of the semipermeable membrane module 12. do.
 以上のようにして、処理対象である、アンモニアを含む被処理水から、アンモニアが濃縮された処理水(アンモニア濃縮水)と、希釈水とが得られ、アンモニアを含む被処理水の濃縮が行われる。 As described above, treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
 図8に示すアンモニア濃縮装置8は、酢酸セルロース系の半透膜で仕切られた第一空間(濃縮側)と第二空間(透過側)とを有する、複数段に接続された半透膜モジュールを用いて、アンモニアを含む被処理水を第1段の半透膜モジュールの第一空間に通水し、第一空間を加圧して被処理水に含まれる水を半透膜を透過させることによってアンモニア濃縮水を得て、そのアンモニア濃縮水をさらに次段以降の半透膜モジュールを用いてアンモニア濃縮水を得るとともに、自身の半透膜モジュールの第二空間にアンモニア濃縮水の一部を通水して希釈水を得る半透膜処理手段として、例えば、1段目膜モジュール12a、2段目膜モジュール12bを備える。それぞれの膜モジュールは、半透膜14で仕切られた第一空間16および第二空間18を有する。アンモニア濃縮装置8は、被処理水を貯留する被処理水槽10を備えてもよい。アンモニア濃縮装置8は、第1段の膜モジュールの第一空間に被処理水を供給し、そのアンモニア濃縮水を順次次段の膜モジュールの第一空間に供給し、自身のアンモニア濃縮水の一部を第二空間に供給して濃縮処理を行う装置である。 The ammonia concentrator 8 shown in FIG. 8 is a semipermeable membrane module connected in a plurality of stages and having a first space (concentration side) and a second space (permeation side) partitioned by a semipermeable membrane based on cellulose acetate. The water to be treated containing ammonia is passed through the first space of the semipermeable membrane module of the first stage, and the first space is pressurized to allow the water contained in the water to be treated to permeate through the semipermeable membrane. Obtain concentrated water with ammonia, and then use the semipermeable membrane module of the next stage or later to obtain concentrated water with ammonia, and put a part of the concentrated water with ammonia into the second space of its own semipermeable membrane module. As a semipermeable membrane processing means for passing water to obtain diluted water, for example, a first-stage membrane module 12a and a second-stage membrane module 12b are provided. Each membrane module has a first space 16 and a second space 18 partitioned by a semipermeable membrane 14. The ammonia concentrator 8 may include a water tank 10 to be treated to store water to be treated. The ammonia concentrator 8 supplies water to be treated to the first space of the first-stage membrane module, sequentially supplies the ammonia-concentrated water to the first space of the next-stage membrane module, and is one of its own ammonia-concentrated water. It is a device that supplies the part to the second space and performs concentration processing.
 図8に示すアンモニア濃縮装置8において、被処理水槽10の被処理水入口には、配管22が接続されている。被処理水槽10の出口と1段目膜モジュール12aの第一空間入口とは、ポンプ20を介して配管24により接続されている。1段目膜モジュール12aの第一空間出口と2段目膜モジュール12bの第一空間入口とは、配管38により接続されている。配管38から分岐した配管94が1段目膜モジュール12aの第二空間入口に接続されている。1段目膜モジュール12aの第二空間出口には配管46が接続されている。2段目膜モジュール12bの第一空間出口には配管40が接続されている。配管40から分岐した配管42が2段目膜モジュール12bの第二空間入口に接続されている。2段目膜モジュール12bの第二空間出口には配管96が接続されている。被処理水槽10の殺菌剤入口には、殺菌剤添加配管32が接続されている。 In the ammonia concentrator 8 shown in FIG. 8, a pipe 22 is connected to the water inlet of the water tank 10 to be treated. The outlet of the water tank 10 to be treated and the first space inlet of the first stage membrane module 12a are connected by a pipe 24 via a pump 20. The first space outlet of the first-stage membrane module 12a and the first space inlet of the second-stage membrane module 12b are connected by a pipe 38. The pipe 94 branched from the pipe 38 is connected to the second space entrance of the first stage membrane module 12a. A pipe 46 is connected to the second space outlet of the first-stage membrane module 12a. A pipe 40 is connected to the first space outlet of the second stage membrane module 12b. The pipe 42 branched from the pipe 40 is connected to the second space entrance of the second stage membrane module 12b. A pipe 96 is connected to the second space outlet of the second stage membrane module 12b. A disinfectant addition pipe 32 is connected to the disinfectant inlet of the water tank 10 to be treated.
 アンモニア濃縮装置8は、半透膜14で仕切られた第一空間16および第二空間18を有する多段式の膜モジュールを用い、被処理水を多段式の膜モジュールの第一空間16に直列的に通水し、自身の第二空間18にアンモニア濃縮水の一部を通水し、第一空間16を加圧することによってその第一空間16に含まれる水を半透膜14を介して第二空間18に透過させて被処理水を濃縮する装置である。すなわち、アンモニア濃縮装置8において、半透膜14を用いて被処理水が濃縮され、そのアンモニア濃縮水がさらに次の段の半透膜14を用いて濃縮される。そして、膜モジュールの第一空間16を通過したアンモニア濃縮水を、自身の膜モジュールの第二空間18に通水し、各段の膜モジュールの第一空間16を加圧してその第一空間16に含まれる水を第二空間18に透過させる。 The ammonia concentrator 8 uses a multi-stage membrane module having a first space 16 and a second space 18 partitioned by a semi-permeable membrane 14, and water to be treated is serialized in the first space 16 of the multi-stage membrane module. By passing a part of the ammonia concentrated water through its own second space 18 and pressurizing the first space 16, the water contained in the first space 16 is passed through the semi-permeable membrane 14. It is a device that concentrates the water to be treated by allowing it to permeate through the two spaces 18. That is, in the ammonia concentrating device 8, the water to be treated is concentrated using the semipermeable membrane 14, and the ammonia concentrated water is further concentrated using the semipermeable membrane 14 of the next stage. Then, the ammonia-concentrated water that has passed through the first space 16 of the membrane module is passed through the second space 18 of its own membrane module, and the first space 16 of the membrane module of each stage is pressurized to press the first space 16 thereof. The water contained in the second space 18 is allowed to permeate through the second space 18.
 アンモニア濃縮装置8において、アンモニアを含む被処理水は、配管22を通して、必要に応じて被処理水槽10に貯留される。ここで、殺菌剤として、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物が殺菌剤添加配管32を通して被処理水に添加される。殺菌剤は、配管22において添加されてもよいし、配管24において添加されてもよい。殺菌剤が添加された被処理水は、被処理水槽10からポンプ20により配管24を通して、1段目膜モジュール12aの第一空間入口から第一空間16aへ加圧送液され、通水される。一方、1段目膜モジュール12aの第一空間16aで得られたアンモニア濃縮水が配管38から分岐した配管94を通して、1段目膜モジュール12aの第二空間18aへ送液される。1段目膜モジュール12aにおいて、第一空間16aが加圧されてその第一空間16aに含まれる水が第二空間18aに透過される(アンモニア濃縮工程(1段目))とともに、第二空間18aで希釈水が得られる(希釈工程(1段目))。第二空間18aで得られた希釈水は、第二空間出口から配管46を通して排出される。 In the ammonia concentrator 8, the water to be treated containing ammonia is stored in the water tank 10 to be treated as needed through the pipe 22. Here, as a disinfectant, a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound is added to the water to be treated through the disinfectant addition pipe 32. The fungicide may be added in the pipe 22 or in the pipe 24. The water to be treated to which the disinfectant is added is pressurized and sent from the water tank 10 to be treated through the pipe 24 by the pump 20 from the inlet of the first space of the first stage membrane module 12a to the first space 16a, and is passed through the water. On the other hand, the ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the second space 18a of the first stage membrane module 12a through the pipe 94 branched from the pipe 38. In the first-stage membrane module 12a, the first space 16a is pressurized and the water contained in the first space 16a is permeated into the second space 18a (ammonia concentration step (first stage)), and the second space Diluted water is obtained at 18a (dilution step (first stage)). The diluted water obtained in the second space 18a is discharged from the second space outlet through the pipe 46.
 1段目膜モジュール12aの第一空間16aで得られたアンモニア濃縮水は、配管38を通して、2段目膜モジュール12bの第一空間16bへ送液される。第一空間16bで得られたアンモニア濃縮水は、第一空間出口から配管40を通して排出され、アンモニア濃縮水の少なくとも一部は、配管40から分岐した配管42を通して、2段目膜モジュール12bの第二空間入口から第二空間18bへ送液され、通水される。1段目と同様にして、2段目膜モジュール12bにおいて、第一空間16bが加圧されてその第一空間16bに含まれる水が第二空間18bに透過される(アンモニア濃縮工程(2段目))とともに、第二空間18bで希釈水が得られる(希釈工程(2段目))。第二空間18bで得られた希釈水は、配管96を通して排出される。 The ammonia concentrated water obtained in the first space 16a of the first stage membrane module 12a is sent to the first space 16b of the second stage membrane module 12b through the pipe 38. The ammonia-concentrated water obtained in the first space 16b is discharged from the first space outlet through the pipe 40, and at least a part of the ammonia-concentrated water is passed through the pipe 42 branched from the pipe 40 to the second stage membrane module 12b. Liquid is sent from the entrance of the second space to the second space 18b, and water is passed therethrough. In the same manner as in the first stage, in the second stage membrane module 12b, the first space 16b is pressurized and the water contained in the first space 16b is permeated into the second space 18b (ammonia concentration step (second stage). Along with (eyes)), diluted water is obtained in the second space 18b (dilution step (second stage)). The diluted water obtained in the second space 18b is discharged through the pipe 96.
 ここで、ポンプ20、配管24,38,40,42,94等が、半透膜モジュール12の第一空間16に被処理水またはアンモニア濃縮水を供給し、第一空間16の出口から得られたアンモニア濃縮水の少なくとも一部を半透膜モジュール12の第二空間18に供給する供給手段として機能する。 Here, the pump 20, the pipes 24, 38, 40, 42, 94 and the like supply the water to be treated or the ammonia concentrated water to the first space 16 of the semipermeable membrane module 12, and are obtained from the outlet of the first space 16. It functions as a supply means for supplying at least a part of the concentrated aqueous ammonia to the second space 18 of the semipermeable membrane module 12.
 以上のようにして、処理対象である、アンモニアを含む被処理水から、アンモニアが濃縮された処理水(アンモニア濃縮水)と、希釈水とが得られ、アンモニアを含む被処理水の濃縮が行われる。 As described above, treated water containing ammonia (ammonia concentrated water) and diluted water are obtained from the water to be treated containing ammonia, which is the target of treatment, and the water to be treated containing ammonia is concentrated. Will be.
 アンモニア濃縮装置3,4,5,7,8のように多段式の膜モジュールを用いる場合、膜モジュールの段数は、目的の処理水のアンモニア濃度等によって決めればよい。例えば、より薄いアンモニア濃度の被処理水からより濃いアンモニア濃度の処理水を得たい場合には、膜モジュールユニットの段数を増やせばよい。 When a multi-stage membrane module such as the ammonia concentrator 3, 4, 5, 7, 8 is used, the number of stages of the membrane module may be determined by the ammonia concentration of the target treated water or the like. For example, when it is desired to obtain the treated water having a higher ammonia concentration from the treated water having a lower ammonia concentration, the number of stages of the membrane module unit may be increased.
 各段の膜モジュールとして、並列的に接続された複数本の膜モジュールを備える膜モジュールユニットを用いてもよい。各膜モジュールユニットにおける膜モジュールの本数は、被処理水の流量等によって決めればよい。 As the membrane module of each stage, a membrane module unit including a plurality of membrane modules connected in parallel may be used. The number of membrane modules in each membrane module unit may be determined by the flow rate of the water to be treated or the like.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置において、各段の膜モジュール12の後段にアンモニア濃縮水槽を設けてもよい。また、各段の膜モジュール12の後段に希釈水槽を設けてもよい。 In the ammonia concentrating method and the ammonia concentrating device according to the present embodiment, an ammonia concentrating water tank may be provided after the membrane module 12 in each stage. Further, a diluting water tank may be provided after the membrane module 12 in each stage.
 半透膜に接触する全塩素濃度は、有効塩素濃度換算で0.01~100mg/Lの範囲であることが好ましく、0.2~1.0mg/Lの範囲であることがより好ましい。半透膜に接触する全塩素濃度が有効塩素濃度換算で0.01mg/L未満であると、十分な殺菌効果を得ることができない可能性があり、100mg/Lより多いと、酢酸セルロース系の半透膜の劣化、配管等の腐食が起きる可能性がある。 The total chlorine concentration in contact with the semipermeable membrane is preferably in the range of 0.01 to 100 mg / L in terms of effective chlorine concentration, and more preferably in the range of 0.2 to 1.0 mg / L. If the total chlorine concentration in contact with the semipermeable membrane is less than 0.01 mg / L in terms of effective chlorine concentration, it may not be possible to obtain a sufficient bactericidal effect, and if it is more than 100 mg / L, it is based on cellulose acetate. Deterioration of the semipermeable membrane and corrosion of piping, etc. may occur.
 被処理水としては、アンモニアを含む水であればよく、特に制限はないが、例えば、半導体工場の排水、化学工場の排水、生活排水等が挙げられる。被処理水の種類としては、硫酸アンモニウム含有排水、フッ化アンモニウム含有排水、塩化アンモニウム含有排水等が挙げられる。本実施形態に係るアンモニア濃縮方法は、例えば、硫酸アンモニウム含有排水を処理し、硫酸アンモニウムを濃縮する方法である。 The water to be treated may be water containing ammonia and is not particularly limited, but examples thereof include wastewater from semiconductor factories, wastewater from chemical factories, and domestic wastewater. Examples of the type of water to be treated include ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater. The method for concentrating ammonia according to the present embodiment is, for example, a method for treating ammonium sulfate-containing wastewater and concentrating ammonium sulfate.
 被処理水中のアンモニア濃度は、特に制限はないが、0.1mg/L以上であることが好ましく、200mg/L以上であることがより好ましく、5000~10000mg/Lの範囲であることがさらに好ましい。被処理水中のアンモニア濃度が0.1mg/L未満であると、殺菌剤によりアンモニアが分解され、十分なアンモニア回収率を維持できない可能性がある。アンモニア濃度が200mg/L以上であると、いずれの殺菌剤添加量でもアンモニアはほとんど分解されずに、回収することができる。 The ammonia concentration in the water to be treated is not particularly limited, but is preferably 0.1 mg / L or more, more preferably 200 mg / L or more, and further preferably in the range of 5000 to 10000 mg / L. .. If the ammonia concentration in the water to be treated is less than 0.1 mg / L, the bactericide may decompose the ammonia and maintain a sufficient ammonia recovery rate. When the ammonia concentration is 200 mg / L or more, ammonia can be recovered with almost no decomposition regardless of the amount of the disinfectant added.
 被処理中のアンモニアのモル濃度に対する全塩素のモル濃度の比は、全塩素濃度がアンモニア濃度と同等量以上ではアンモニアの回収率が低くなる場合があるため、全塩素のモル濃度がアンモニアのモル濃度に対して0.1倍以下であることが好ましく、0.01倍以下であることがより好ましい。 The ratio of the molar concentration of total chlorine to the molar concentration of ammonia during treatment is that if the total chlorine concentration is equal to or higher than the ammonia concentration, the recovery rate of ammonia may be low, so the molar concentration of total chlorine is the molar concentration of ammonia. It is preferably 0.1 times or less, more preferably 0.01 times or less with respect to the concentration.
 本実施形態に係るアンモニア濃縮方法およびアンモニア濃縮装置によって、アンモニア濃縮水中のアンモニア濃度を、例えば、10000mg/L以上、好ましくは20000~40000mg/Lの範囲にまで濃縮することができる。 By the ammonia concentrating method and the ammonia concentrating device according to the present embodiment, the ammonia concentration in the ammonia concentrated water can be concentrated to, for example, 10,000 mg / L or more, preferably 20,000 to 40,000 mg / L.
 被処理水のpHは、例えば、3~8の範囲であり、4~7の範囲であることが好ましい。被処理水のpHの下限は、5.5以上であることが好ましく、6.0以上であることがより好ましく、6.5以上であることがさらに好ましい。被処理水のpHの上限は、8.0以下であることが好ましく、7.5以下であることがより好ましい。 The pH of the water to be treated is, for example, in the range of 3 to 8, preferably in the range of 4 to 7. The lower limit of the pH of the water to be treated is preferably 5.5 or more, more preferably 6.0 or more, and even more preferably 6.5 or more. The upper limit of the pH of the water to be treated is preferably 8.0 or less, more preferably 7.5 or less.
 安定化次亜臭素酸組成物は、臭素系酸化剤とスルファミン酸化合物とを含むものである。「臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物」は、「臭素系酸化剤」と「スルファミン酸化合物」との混合物を含む安定化次亜臭素酸組成物であってもよいし、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物であってもよい。 The stabilized hypobromous acid composition contains a bromine-based oxidizing agent and a sulfamic acid compound. The "stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound" is a stabilized hypobromous acid composition containing a mixture of a "bromine-based oxidizing agent" and a "sulfamic acid compound". It may be a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound".
 すなわち、本実施形態に係るアンモニア濃縮方法では、半透膜処理におけるアンモニアを含む被処理水中に、例えば「臭素系酸化剤」と「スルファミン酸化合物」との混合物を存在させる。これにより、被処理水中で、安定化次亜臭素酸組成物が生成すると考えられる。 That is, in the ammonia concentration method according to the present embodiment, a mixture of, for example, a "bromine-based oxidizing agent" and a "sulfamic acid compound" is present in the water to be treated containing ammonia in the semipermeable membrane treatment. It is considered that this produces a stabilized hypobromous acid composition in the water to be treated.
 また、本実施形態に係るアンモニア濃縮方法では、半透膜処理におけるアンモニアを含む被処理水中に、例えば「臭素系酸化剤とスルファミン酸化合物との反応生成物」である安定化次亜臭素酸組成物を存在させる。 Further, in the ammonia concentration method according to the present embodiment, a stabilized hypobromous acid composition which is, for example, "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound" in the water to be treated containing ammonia in the semipermeable membrane treatment. Make things exist.
 具体的には本実施形態に係るアンモニア濃縮方法では、半透膜処理におけるアンモニアを含む被処理水中に、例えば、「臭素」、「塩化臭素」、「次亜臭素酸」または「臭化ナトリウムと次亜塩素酸との反応物」と、「スルファミン酸化合物」との混合物を存在させる。 Specifically, in the ammonia concentration method according to the present embodiment, in the water to be treated containing ammonia in the semitransparent film treatment, for example, "bromine", "bromine chloride", "hypobromous acid" or "sodium bromide" is used. A mixture of "reactant with hypochlorous acid" and "sulfamic acid compound" is present.
 また、本実施形態に係るアンモニア濃縮方法では、半透膜処理におけるアンモニアを含む被処理水中に、例えば、「臭素とスルファミン酸化合物との反応生成物」、「塩化臭素とスルファミン酸化合物との反応生成物」、「次亜臭素酸とスルファミン酸化合物との反応生成物」、または「臭化ナトリウムと次亜塩素酸との反応物と、スルファミン酸化合物と、の反応生成物」である安定化次亜臭素酸組成物を存在させる。 Further, in the ammonia concentration method according to the present embodiment, for example, "reaction product of bromine and sulfamic acid compound" and "reaction of bromine chloride and sulfamic acid compound" in the water to be treated containing ammonia in the semitransparent film treatment. Stabilization which is "product", "reaction product of hypobromous acid and sulfamic acid compound", or "reaction product of reaction product of sodium bromide and hypobromous acid and sulfamic acid compound". Hypobromous acid composition is present.
 安定化次亜臭素酸組成物は次亜塩素酸等の塩素系酸化剤等の殺菌剤と同等以上の殺菌効果を発揮するにも関わらず、塩素系酸化剤等の殺菌剤と比較すると、アンモニアと反応しにくく、より少ない添加量でバイオファウリングを抑制することができる。また、安定化次亜臭素酸組成物は塩素系酸化剤等の殺菌剤と比較すると、酢酸セルロース系の半透膜の劣化傾向が小さいと考えられる。このため、本実施形態に係るアンモニア濃縮方法で用いられる安定化次亜臭素酸組成物は、酢酸セルロース系の半透膜を用いて半透膜処理を行うアンモニア濃縮で用いる殺菌剤としては好適である。 Although the stabilized hypobromous acid composition exhibits a bactericidal effect equal to or higher than that of a bactericidal agent such as a chlorine-based oxidant such as hypochlorous acid, it is compared with a bactericidal agent such as a chlorine-based oxidant. It is difficult to react with, and biofouling can be suppressed with a smaller amount of addition. Further, it is considered that the stabilized hypobromous acid composition has a smaller tendency of deterioration of the cellulose acetate-based semipermeable membrane than that of a bactericidal agent such as a chlorine-based oxidizing agent. Therefore, the stabilized hypobromous acid composition used in the ammonia concentration method according to the present embodiment is suitable as a bactericidal agent used for ammonia concentration in which a semipermeable membrane treatment is performed using a cellulose acetate-based semipermeable membrane. be.
 本実施形態に係るアンモニア濃縮方法のうち、「臭素系酸化剤」が臭素である場合、塩素系酸化剤が存在しないため、酢酸セルロース系の半透膜への劣化影響が著しく低い。 Among the ammonia concentration methods according to the present embodiment, when the "bromine-based oxidant" is bromine, the effect of deterioration of the cellulose acetate-based semipermeable membrane is extremely low because the chlorine-based oxidant does not exist.
 本実施形態に係るアンモニア濃縮方法では、半透膜処理におけるアンモニアを含む被処理水中に、例えば、「臭素系酸化剤」と「スルファミン酸化合物」とを薬注ポンプ等により注入すればよい。「臭素系酸化剤」と「スルファミン酸化合物」とは別々に被処理水に添加してもよく、または、原液同士で混合させてから被処理水に添加してもよい。 In the ammonia concentration method according to the present embodiment, for example, a "bromine-based oxidizing agent" and a "sulfamic acid compound" may be injected into the water to be treated containing ammonia in the semipermeable membrane treatment by a chemical injection pump or the like. The "bromine-based oxidizing agent" and the "sulfamic acid compound" may be added to the water to be treated separately, or the stock solutions may be mixed with each other and then added to the water to be treated.
 また、半透膜処理におけるアンモニアを含む被処理水中に、例えば、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を薬注ポンプ等により注入してもよい。 Further, for example, "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound" may be injected into the water to be treated containing ammonia in the semipermeable membrane treatment by a chemical injection pump or the like.
 殺菌剤は、被処理水に連続的に添加されてもよいし、間欠的に添加されてもよい。 The disinfectant may be added continuously to the water to be treated or intermittently.
 安定化次亜臭素酸組成物において、「臭素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比は、1以上であることが好ましく、1以上2以下の範囲であることがより好ましい。「臭素系酸化剤」の当量に対する「スルファミン酸化合物」の当量の比が1未満であると、酢酸セルロース系の半透膜を劣化させる可能性があり、2を超えると、製造コストが増加する場合がある。 In the stabilized hypobromous acid composition, the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidizing agent" is preferably 1 or more, and more preferably 1 or more and 2 or less. .. If the ratio of the equivalent of the "sulfamic acid compound" to the equivalent of the "bromine-based oxidant" is less than 1, the cellulose acetate-based semipermeable membrane may be deteriorated, and if it exceeds 2, the production cost increases. In some cases.
 これらのうち、臭素を用いた「臭素とスルファミン酸化合物(臭素とスルファミン酸化合物の混合物)」または「臭素とスルファミン酸化合物との反応生成物」の殺菌剤は、「次亜塩素酸と臭素化合物とスルファミン酸」の殺菌剤および「塩化臭素とスルファミン酸」の殺菌剤等に比べて、臭素酸の副生が少なく、殺菌剤としてはより好ましい。 Of these, the bactericides for "bromine and sulfamic acid compounds (mixtures of bromine and sulfamic acid compounds)" or "reaction products of bromine and sulfamic acid compounds" using bromine are "hypochlorite and bromine compounds". Compared with the bactericidal agent of "and sulfamic acid" and the bactericidal agent of "bromine chloride and sulfamic acid", the by-product of bromine acid is less, which is more preferable as a bactericidal agent.
 臭素系酸化剤としては、臭素(液体臭素)、塩化臭素、臭素酸、臭素酸塩、次亜臭素酸等が挙げられる。次亜臭素酸は、臭化ナトリウム等の臭素化合物と次亜塩素酸等の塩素系酸化剤とを反応させて生成させたものであってもよい。 Examples of the bromine-based oxidizing agent include bromine (liquid bromine), bromine chloride, bromic acid, bromate, hypobromous acid and the like. Hypobromous acid may be produced by reacting a bromine compound such as sodium bromide with a chlorine-based oxidizing agent such as hypochlorous acid.
 臭素化合物としては、臭化ナトリウム、臭化カリウム、臭化リチウム、臭化アンモニウムおよび臭化水素酸等が挙げられる。これらのうち、製剤コスト等の点から、臭化ナトリウムが好ましい。 Examples of the bromine compound include sodium bromide, potassium bromide, lithium bromide, ammonium bromide, hydrobromic acid and the like. Of these, sodium bromide is preferable from the viewpoint of formulation cost and the like.
 スルファミン酸化合物は、以下の一般式(1)で示される化合物である。
  RNSOH   (1)
(式中、Rは独立して水素原子または炭素数1~8のアルキル基である。)
The sulfamic acid compound is a compound represented by the following general formula (1).
R 2 NSO 3 H (1)
(In the formula, R is independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.)
 スルファミン酸化合物としては、例えば、2個のR基の両方が水素原子であるスルファミン酸(アミド硫酸)の他に、N-メチルスルファミン酸、N-エチルスルファミン酸、N-プロピルスルファミン酸、N-イソプロピルスルファミン酸、N-ブチルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数1~8のアルキル基であるスルファミン酸化合物、N,N-ジメチルスルファミン酸、N,N-ジエチルスルファミン酸、N,N-ジプロピルスルファミン酸、N,N-ジブチルスルファミン酸、N-メチル-N-エチルスルファミン酸、N-メチル-N-プロピルスルファミン酸等の2個のR基の両方が炭素数1~8のアルキル基であるスルファミン酸化合物、N-フェニルスルファミン酸等の2個のR基の一方が水素原子であり、他方が炭素数6~10のアリール基であるスルファミン酸化合物、またはこれらの塩等が挙げられる。スルファミン酸塩としては、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、ストロンチウム塩、バリウム塩等のアルカリ土類金属塩、マンガン塩、銅塩、亜鉛塩、鉄塩、コバルト塩、ニッケル塩等の他の金属塩、アンモニウム塩およびグアニジン塩等が挙げられる。スルファミン酸化合物およびこれらの塩は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。スルファミン酸化合物としては、環境負荷等の点から、スルファミン酸(アミド硫酸)を用いるのが好ましい。 Examples of the sulfamic acid compound include N-methylsulfamic acid, N-ethylsulfamic acid, N-propylsulfamic acid, and N-, in addition to sulfamic acid (amide sulfate) in which both of the two R groups are hydrogen atoms. Sulfamic acid compounds, N, N-dimethylsulfamic acid, N, where one of the two R groups such as isopropylsulfamic acid and N-butylsulfamic acid is a hydrogen atom and the other is an alkyl group having 1 to 8 carbon atoms. Two R groups such as N-diethylsulfamic acid, N, N-dipropylsulfamic acid, N, N-dibutylsulfamic acid, N-methyl-N-ethylsulfamic acid, N-methyl-N-propylsulfamic acid, etc. Sulfamic acid, one of which is a hydrogen atom and the other is an aryl group having 6 to 10 carbon atoms, such as a sulfamic acid compound and N-phenylsulfamic acid, both of which are alkyl groups having 1 to 8 carbon atoms. Examples include compounds and salts thereof. Examples of sulfamate include alkali metal salts such as sodium salt and potassium salt, alkaline earth metal salts such as calcium salt, strontium salt and barium salt, manganese salt, copper salt, zinc salt, iron salt and cobalt salt. Other metal salts such as nickel salts, ammonium salts, guanidine salts and the like can be mentioned. The sulfamic acid compound and salts thereof may be used alone or in combination of two or more. As the sulfamic acid compound, it is preferable to use sulfamic acid (amide sulfuric acid) from the viewpoint of environmental load and the like.
 アンモニアを含む被処理水中に、安定化次亜臭素酸組成物にさらにアルカリを存在させてもよい。アルカリとしては、水酸化ナトリウム、水酸化カリウム等の水酸化アルカリ等が挙げられる。低温の製品安定性等の点から、水酸化ナトリウムと水酸化カリウムとを併用してもよい。また、アルカリは、固形でなく、水溶液として用いてもよい。 Alkali may be further present in the stabilized hypobromous acid composition in the water to be treated containing ammonia. Examples of the alkali include alkali hydroxides such as sodium hydroxide and potassium hydroxide. Sodium hydroxide and potassium hydroxide may be used in combination from the viewpoint of low temperature product stability and the like. Further, the alkali may be used as an aqueous solution instead of being solid.
 本実施形態に係るアンモニア濃縮方法は、半透膜として酢酸セルロース系高分子膜に好適に適用することができる。酢酸セルロース系高分子膜は、塩素系酸化剤に対してある程度の耐性を示すが、遊離塩素等を酢酸セルロース系高分子膜に連続的に接触させると、膜性能の低下が起こる場合がある。しかしながら、殺菌剤として安定化次亜臭素酸組成物を用いると、酢酸セルロース系高分子膜においても、このような膜性能の低下はほとんど起こらないと考えられる。 The ammonia concentration method according to this embodiment can be suitably applied to a cellulose acetate-based polymer membrane as a semipermeable membrane. The cellulose acetate-based polymer membrane exhibits some resistance to chlorine-based oxidants, but continuous contact of free chlorine or the like with the cellulose acetate-based polymer membrane may cause deterioration of the membrane performance. However, when a stabilized hypobromous acid composition is used as a bactericide, it is considered that such a decrease in film performance hardly occurs even in a cellulose acetate-based polymer film.
<半透膜処理用殺菌剤>
 本実施形態に係るアンモニア濃縮方法で用いられる半透膜処理用殺菌剤は、「臭素系酸化剤」と「スルファミン酸化合物」とを含む安定化次亜臭素酸組成物を含有し、さらにアルカリを含有してもよい。
<Fungicide for semipermeable membrane treatment>
The bactericidal agent for semipermeable membrane treatment used in the ammonia concentration method according to the present embodiment contains a stabilized hypobromous acid composition containing a "bromine-based oxidizing agent" and a "sulfamic acid compound", and further contains an alkali. It may be contained.
 また、本実施形態に係るアンモニア濃縮方法で用いられる半透膜処理用殺菌剤は、「臭素系酸化剤とスルファミン酸化合物との反応生成物」を含む安定化次亜臭素酸組成物を含有し、さらにアルカリを含有してもよい。 Further, the bactericidal agent for semitransparent film treatment used in the ammonia concentration method according to the present embodiment contains a stabilized hypobromous acid composition containing "a reaction product of a bromine-based oxidizing agent and a sulfamic acid compound". , Further may contain alkali.
 臭素系酸化剤、臭素化合物、塩素系酸化剤およびスルファミン酸化合物については、上述した通りである。 The bromine-based oxidant, bromine compound, chlorine-based oxidant and sulfamic acid compound are as described above.
 本実施形態に係る安定化次亜臭素酸組成物としては、酢酸セルロース系の半透膜をより劣化させないため、臭素と、スルファミン酸化合物とを含有するもの(臭素とスルファミン酸化合物の混合物を含有するもの)、例えば、臭素とスルファミン酸化合物とアルカリと水との混合物、または、臭素とスルファミン酸化合物との反応生成物を含有するもの、例えば、臭素とスルファミン酸化合物との反応生成物と、アルカリと、水との混合物が好ましい。 The stabilized hypobromous acid composition according to the present embodiment contains bromine and a sulfamic acid compound (a mixture of bromine and a sulfamic acid compound) so as not to further deteriorate the cellulose acetate-based semitransparent film. For example, a mixture of bromine and a sulfamic acid compound and an alkali and water, or a reaction product of bromine and a sulfamic acid compound, for example, a reaction product of bromine and a sulfamic acid compound. A mixture of alkali and water is preferred.
 本実施形態に係る安定化次亜臭素酸組成物、特に臭素とスルファミン酸化合物とを含む安定化次亜臭素酸組成物は、次亜塩素酸等の塩素系酸化剤と比較すると、アンモニアと反応しにくく、バイオファウリング抑制効果を有しながらも、次亜塩素酸等の塩素系酸化剤のような著しい酢酸セルロース系の半透膜の膜劣化をほとんど引き起こすことがない。通常の使用濃度では、膜劣化への影響は実質的に無視することができる。このため、半透膜処理を行うアンモニア濃縮で用いる殺菌剤としては最適である。 The stabilized hypobromous acid composition according to the present embodiment, particularly the stabilized hypobromous acid composition containing bromine and a sulfamic acid compound, reacts with ammonia as compared with a chlorine-based oxidizing agent such as hypochlorous acid. Although it is difficult to do so and has the effect of suppressing biofouling, it hardly causes remarkable deterioration of the cellulose acetate semitransparent film such as a chlorine-based oxidizing agent such as hypochlorous acid. At normal working concentrations, the effect on film deterioration is virtually negligible. Therefore, it is most suitable as a fungicide used for ammonia concentration for semipermeable membrane treatment.
 本実施形態に係る安定化次亜臭素酸組成物は、次亜塩素酸等と同様に現場で濃度を測定することができるため、より正確な濃度管理が可能である。 Since the concentration of the stabilized hypobromous acid composition according to the present embodiment can be measured on-site in the same manner as hypochlorous acid and the like, more accurate concentration control is possible.
 安定化次亜臭素酸組成物のpHは、例えば、13.0超であり、13.2超であることがより好ましい。安定化次亜臭素酸組成物のpHが13.0以下であると安定化次亜臭素酸組成物中の有効ハロゲンが不安定になる場合がある。 The pH of the stabilized hypobromous acid composition is, for example, more than 13.0, more preferably more than 13.2. When the pH of the stabilized hypobromous acid composition is 13.0 or less, the effective halogen in the stabilized hypobromous acid composition may become unstable.
 安定化次亜臭素酸組成物中の臭素酸濃度は、5mg/kg未満であることが好ましい。安定化次亜臭素酸組成物中の臭素酸濃度が5mg/kg以上であると、処理水の臭素酸イオン濃度が高くなる場合がある。 The bromic acid concentration in the stabilized hypobromous acid composition is preferably less than 5 mg / kg. When the bromic acid concentration in the stabilized hypobromous acid composition is 5 mg / kg or more, the bromic acid ion concentration in the treated water may increase.
<半透膜処理用殺菌剤の製造方法>
 本実施形態に係るアンモニア濃縮方法で用いられる半透膜処理用殺菌剤は、臭素系酸化剤とスルファミン酸化合物とを混合することにより得られ、さらにアルカリを混合してもよい。
<Manufacturing method of fungicide for semipermeable membrane treatment>
The disinfectant for semipermeable membrane treatment used in the ammonia concentration method according to the present embodiment is obtained by mixing a bromine-based oxidizing agent and a sulfamic acid compound, and may be further mixed with an alkali.
 臭素とスルファミン酸化合物とを含む半透膜処理用殺菌剤の製造方法としては、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加して反応させる工程、または、水、アルカリおよびスルファミン酸化合物を含む混合液に臭素を不活性ガス雰囲気下で添加する工程を含むことが好ましい。不活性ガス雰囲気下で添加して反応させる、または、不活性ガス雰囲気下で添加することにより、安定化次亜臭素酸組成物中の臭素酸イオン濃度が低くなる。 As a method for producing a bactericidal agent for semitransparent film treatment containing bromine and a sulfamic acid compound, a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere, or a step of reacting the mixture or a reaction. It is preferable to include a step of adding bromine to a mixed solution containing water, an alkali and a sulfamic acid compound under an inert gas atmosphere. By adding and reacting in an inert gas atmosphere or by adding in an inert gas atmosphere, the concentration of bromate ion in the stabilized hypobromous acid composition is lowered.
 用いる不活性ガスとしては限定されないが、製造等の面から窒素およびアルゴンのうち少なくとも1つが好ましく、特に製造コスト等の面から窒素が好ましい。 The inert gas to be used is not limited, but at least one of nitrogen and argon is preferable from the viewpoint of production and the like, and nitrogen is particularly preferable from the viewpoint of production cost and the like.
 臭素の添加の際の反応器内の酸素濃度は6%以下が好ましいが、4%以下がより好ましく、2%以下がさらに好ましく、1%以下が特に好ましい。臭素の反応の際の反応器内の酸素濃度が6%を超えると、反応系内の臭素酸の生成量が増加する場合がある。 The oxygen concentration in the reactor at the time of adding bromine is preferably 6% or less, more preferably 4% or less, further preferably 2% or less, and particularly preferably 1% or less. If the oxygen concentration in the reactor during the reaction of bromine exceeds 6%, the amount of bromic acid produced in the reaction system may increase.
 臭素の添加率は、安定化次亜臭素酸組成物全体の量に対して25重量%以下であることが好ましく、1重量%以上20重量%以下であることがより好ましい。臭素の添加率が安定化次亜臭素酸組成物全体の量に対して25重量%を超えると、反応系内の臭素酸の生成量が増加する場合がある。1重量%未満であると、殺菌力が劣る場合がある。 The addition rate of bromine is preferably 25% by weight or less, more preferably 1% by weight or more and 20% by weight or less, based on the total amount of the stabilized hypobromous acid composition. When the addition rate of bromine exceeds 25% by weight based on the total amount of the stabilized hypobromous acid composition, the amount of bromic acid produced in the reaction system may increase. If it is less than 1% by weight, the bactericidal activity may be inferior.
 臭素添加の際の反応温度は、0℃以上25℃以下の範囲に制御することが好ましいが、製造コスト等の面から、0℃以上15℃以下の範囲に制御することがより好ましい。臭素添加の際の反応温度が25℃を超えると、反応系内の臭素酸の生成量が増加する場合があり、0℃未満であると、凍結する場合がある。 The reaction temperature at the time of adding bromine is preferably controlled in the range of 0 ° C. or higher and 25 ° C. or lower, but more preferably controlled in the range of 0 ° C. or higher and 15 ° C. or lower from the viewpoint of manufacturing cost and the like. If the reaction temperature at the time of adding bromine exceeds 25 ° C, the amount of bromic acid produced in the reaction system may increase, and if it is less than 0 ° C, it may freeze.
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[安定化次亜臭素酸組成物の調製]
 窒素雰囲気下で、液体臭素:16.9重量%(wt%)、スルファミン酸:10.7重量%、水酸化ナトリウム:12.9重量%、水酸化カリウム:3.94重量%、水:残分を混合して、安定化次亜臭素酸組成物を調製した。安定化次亜臭素酸組成物のpHは14、全塩素濃度は7.5重量%であった。全塩素濃度は、HACH社の多項目水質分析計DR/4000を用いて、全塩素測定法(DPD(ジエチル-p-フェニレンジアミン)法)により測定した値(mg-Cl/L)である。安定化次亜臭素酸組成物の詳細な調製方法は以下の通りである。
[Preparation of stabilized hypobromous acid composition]
Liquid bromine: 16.9% by weight (wt%), sulfamic acid: 10.7% by weight, sodium hydroxide: 12.9% by weight, potassium hydroxide: 3.94% by weight, water: residue under a nitrogen atmosphere. The minutes were mixed to prepare a stabilized hypobromous acid composition. The pH of the stabilized hypobromous acid composition was 14, and the total chlorine concentration was 7.5% by weight. The total chlorine concentration is a value (mg-Cl 2 / L) measured by a total chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a multi-item water quality analyzer DR / 4000 manufactured by HACH. .. The detailed preparation method of the stabilized hypobromous acid composition is as follows.
 反応容器内の酸素濃度が1%に維持されるように、窒素ガスの流量をマスフローコントローラでコントロールしながら連続注入で封入した2Lの4つ口フラスコに1436gの水、361gの水酸化ナトリウムを加え混合し、次いで300gのスルファミン酸を加え混合した後、反応液の温度が0~15℃になるように冷却を維持しながら、473gの液体臭素を加え、さらに48%水酸化カリウム溶液230gを加え、組成物全体の量に対する重量比でスルファミン酸10.7%、臭素16.9%、臭素の当量に対するスルファミン酸の当量比が1.04である、目的の安定化次亜臭素酸組成物を得た。生じた溶液のpHは、ガラス電極法にて測定したところ、14であった。生じた溶液の臭素含有率は、臭素をヨウ化カリウムによりヨウ素に転換後、チオ硫酸ナトリウムを用いて酸化還元滴定する方法により測定したところ16.9%であり、理論含有率(16.9%)の100.0%であった。また、臭素反応の際の反応容器内の酸素濃度は、株式会社ジコー製の「酸素モニタJKO-02 LJDII」を用いて測定した。なお、臭素酸濃度は5mg/kg未満であった。 To maintain the oxygen concentration in the reaction vessel at 1%, add 1436 g of water and 361 g of sodium hydroxide to a 2 L 4-port flask filled with continuous injection while controlling the flow rate of nitrogen gas with a mass flow controller. After mixing, add 300 g of sulfamic acid and mix, then add 473 g of liquid bromine and 230 g of 48% potassium hydroxide solution while maintaining cooling so that the temperature of the reaction solution becomes 0 to 15 ° C. The desired stabilized hypobromous acid composition, wherein the weight ratio of sulfamic acid to the total amount of the composition is 10.7%, bromine 16.9%, and the equivalent ratio of sulfamic acid to the equivalent of bromine is 1.04. Obtained. The pH of the resulting solution was 14 as measured by the glass electrode method. The bromine content of the resulting solution was 16.9% as measured by the method of converting bromine to iodine with potassium iodide and then using sodium thiosulfate for oxidative reduction titration, and the theoretical content (16.9%). ) Was 100.0%. The oxygen concentration in the reaction vessel during the bromine reaction was measured using "Oxygen Monitor JKO-02 LJDII" manufactured by Jiko Co., Ltd. The bromic acid concentration was less than 5 mg / kg.
 なお、pHの測定は、以下の条件で行った。
  電極タイプ:ガラス電極式
  pH測定計:東亜ディーケーケー社製、IOL-30型
  電極の校正:関東化学社製中性リン酸塩pH(6.86)標準液(第2種)、同社製ホウ酸塩pH(9.18)標準液(第2種)の2点校正で行った
  測定温度:25℃
  測定値:測定液に電極を浸漬し、安定後の値を測定値とし、3回測定の平均値
The pH was measured under the following conditions.
Electrode type: Glass electrode type pH meter: Toa DKK, IOL-30 type Electrode calibration: Kanto Chemical Co., Ltd. Neutral phosphate pH (6.86) standard solution (Type 2), Borate manufactured by Kanto Chemical Co., Ltd. Measurement temperature performed by two-point calibration of salt pH (9.18) standard solution (type 2): 25 ° C.
Measured value: The electrode is immersed in the measuring solution, and the value after stabilization is used as the measured value, which is the average value of three measurements.
[安定化次亜塩素酸組成物の調製]
 12%次亜塩素酸ナトリウム水溶液:50重量%、スルファミン酸:10重量%、水酸化ナトリウム:8重量%、水:残分を混合して、組成物を調製した。組成物のpHは14、全塩素濃度は6重量%であった。
[Preparation of stabilized hypochlorous acid composition]
A composition was prepared by mixing 12% aqueous sodium hypochlorite solution: 50% by weight, sulfamic acid: 10% by weight, sodium hydroxide: 8% by weight, and water: residue. The pH of the composition was 14, and the total chlorine concentration was 6% by weight.
<実施例1>
 図9に示すフローで半透膜処理を実施した。図9に示すアンモニア濃縮装置9では、配管26および配管30を被処理水槽10に接続し、アンモニア濃縮水および希釈水を被処理水槽に循環させた。半透膜モジュールは、酢酸セルロース系の半透膜を備える東洋紡社製の「HP5255S3SI」を使用した。
<Example 1>
Semipermeable membrane treatment was performed according to the flow shown in FIG. In the ammonia concentrator 9 shown in FIG. 9, the pipe 26 and the pipe 30 were connected to the water tank 10 to be treated, and the ammonia concentrated water and the diluted water were circulated in the water tank to be treated. As the semipermeable membrane module, "HP5255S3SI" manufactured by Toyobo Co., Ltd., which has a cellulose acetate-based semipermeable membrane, was used.
 被処理水として、純水に硫酸アンモニウムを添加してアンモニア濃度が10質量%の試験水を調製した。ポンプを起動し、被処理水を半透膜モジュールの第一空間に5L/min、第二空間に1.5L/min通水し、第一空間を加圧した。このときの被処理水とアンモニア濃縮水、希釈水のアンモニア濃度を下記に示す方法で測定した。結果を表1に示す。 As the water to be treated, ammonium sulfate was added to pure water to prepare test water having an ammonia concentration of 10% by mass. The pump was started, and the water to be treated was passed 5 L / min to the first space of the semipermeable membrane module and 1.5 L / min to the second space to pressurize the first space. At this time, the ammonia concentrations of the water to be treated, the ammonia concentrated water, and the diluted water were measured by the methods shown below. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 被処理水に対するアンモニア濃縮水のアンモニア濃度は1.25倍となった。このように半透膜モジュールにアンモニア含有水を通水し加圧することで、アンモニアを濃縮することができた。 The ammonia concentration of the ammonia concentrated water with respect to the water to be treated was 1.25 times. By passing water containing ammonia through the semipermeable membrane module and pressurizing it in this way, ammonia could be concentrated.
<実施例2>
[殺菌試験]
 被処理水として、ブイヨン溶液に、アンモニア濃度が0mg/L、0.1mg/L、1mg/L、10mg/L、100mg/Lとなるように、塩化アンモニウムを添加して試験水を調製した。さらに全塩素濃度が1mg/Lとなるように、殺菌剤として上記安定化次亜臭素酸組成物を添加した。アンモニアのモル濃度に対する全塩素のモル濃度の比は、それぞれ0、2.5、0.25、0.025、0.0025である。調製した溶液を25℃で3時間静置した。試験前と試験後の生菌数とアンモニア濃度を測定した。結果を表2に示す。
<Example 2>
[Sterilization test]
As the water to be treated, ammonium chloride was added to the bouillon solution so that the ammonia concentration was 0 mg / L, 0.1 mg / L, 1 mg / L, 10 mg / L, and 100 mg / L to prepare test water. Further, the stabilized hypobromous acid composition was added as a bactericide so that the total chlorine concentration was 1 mg / L. The ratios of the molar concentration of total chlorine to the molar concentration of ammonia are 0, 2.5, 0.25, 0.025 and 0.0025, respectively. The prepared solution was allowed to stand at 25 ° C. for 3 hours. The viable cell count and ammonia concentration were measured before and after the test. The results are shown in Table 2.
 全塩素濃度は、HACH社のポケット残留塩素計および全塩素試薬(HACH0582)を用いて、有効塩素測定法(DPD(ジエチル-p-フェニレンジアミン)法)により測定した。 The total chlorine concentration was measured by an effective chlorine measurement method (DPD (diethyl-p-phenylenediamine) method) using a pocket residual chlorine meter manufactured by HACH and a total chlorine reagent (HACH0582).
 生菌数測定は、ペトリフィルム生菌数測定用プレート(スリーエムヘルスケア社製)を使用した。フィルムにサンプルを1mL接種し、35℃で48時間培養した。48時間経過後にフィルム上に生えたコロニーの数を測定した。 For the viable cell count measurement, a plate for measuring the viable cell count of Petrifilm (manufactured by 3M Healthcare) was used. The film was inoculated with 1 mL of the sample and cultured at 35 ° C. for 48 hours. The number of colonies growing on the film was measured after 48 hours.
 アンモニア濃度は、イオンクロマトグラフ(ThermoFisher製、IntegrionRFIC)を使用して、イオンクロマトグラフ法により測定した。 Ammonia concentration was measured by an ion chromatograph method using an ion chromatograph (IntegrationRFIC manufactured by Thermo Fisher).
<比較例1>
 被処理水として、ブイヨン溶液に、アンモニア濃度が0mg/L、0.1mg/L、1mg/L、10mg/L、100mg/Lとなるように、塩化アンモニウムを添加して試験水を調製した。さらに全塩素濃度が1mg/Lとなるように、殺菌剤として次亜塩素酸ナトリウムを添加した。アンモニアのモル濃度に対する全塩素のモル濃度の比は、それぞれ0、2.5、0.25、0.025、0.0025である。調製した溶液を25℃で3時間静置した。試験前と試験後の生菌数とアンモニア濃度を測定した。結果を表2に示す。
<Comparative Example 1>
As the water to be treated, ammonium chloride was added to the bouillon solution so that the ammonia concentration was 0 mg / L, 0.1 mg / L, 1 mg / L, 10 mg / L, and 100 mg / L to prepare test water. Further, sodium hypochlorite was added as a bactericidal agent so that the total chlorine concentration became 1 mg / L. The ratios of the molar concentration of total chlorine to the molar concentration of ammonia are 0, 2.5, 0.25, 0.025 and 0.0025, respectively. The prepared solution was allowed to stand at 25 ° C. for 3 hours. The viable cell count and ammonia concentration were measured before and after the test. The results are shown in Table 2.
<比較例2>
 被処理水として、ブイヨン溶液に、アンモニア濃度が0mg/L、0.1mg/L、1mg/L、10mg/L、100mg/Lとなるように、塩化アンモニウムを添加して試験水を調製した。さらに全塩素濃度が1mg/Lとなるように、殺菌剤として塩素系酸化剤(次亜塩素酸ナトリウム)とスルファミン酸化合物とを含む上記安定化次亜塩素酸組成物を添加した。アンモニアのモル濃度に対する全塩素のモル濃度の比は、それぞれ0、2.5、0.25、0.025、0.0025である。調製した溶液を25℃で3時間静置した。試験前と試験後の生菌数とアンモニア濃度を測定した。結果を表2に示す。
<Comparative Example 2>
As the water to be treated, ammonium chloride was added to the bouillon solution so that the ammonia concentration was 0 mg / L, 0.1 mg / L, 1 mg / L, 10 mg / L, and 100 mg / L to prepare test water. Further, the stabilized hypochlorous acid composition containing a chlorine-based oxidizing agent (sodium hypochlorite) and a sulfamic acid compound was added as a bactericidal agent so that the total chlorine concentration was 1 mg / L. The ratios of the molar concentration of total chlorine to the molar concentration of ammonia are 0, 2.5, 0.25, 0.025 and 0.0025, respectively. The prepared solution was allowed to stand at 25 ° C. for 3 hours. The viable cell count and ammonia concentration were measured before and after the test. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2は、各条件での試験前後の生菌数とアンモニア濃度を示したものである。このように臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤の場合、アンモニア濃度が増加しても生菌数はほとんど増加せず、殺菌能力を維持することができた。また、アンモニア濃度が1mg/L以上のとき、アンモニアの残存率は80%以上であり、高い値となった。 Table 2 shows the viable cell count and ammonia concentration before and after the test under each condition. As described above, in the case of the bactericidal agent containing the bromine-based oxidizing agent and the sulfamic acid compound, the viable cell count hardly increased even if the ammonia concentration increased, and the bactericidal ability could be maintained. Further, when the ammonia concentration was 1 mg / L or more, the residual rate of ammonia was 80% or more, which was a high value.
 一方、次亜塩素酸ナトリウムの場合、アンモニア濃度が1mg/Lのとき、高いアンモニア残存率を示したが、アンモニア濃度が0mg/Lのときと比較して、100mg/Lのときは生菌数が約1.6倍に増加し、殺菌力が低下した。 On the other hand, in the case of sodium hypochlorite, when the ammonia concentration was 1 mg / L, a high ammonia residual rate was shown, but when the ammonia concentration was 100 mg / L, the viable cell count was compared with when the ammonia concentration was 0 mg / L. Increased about 1.6 times, and the bactericidal activity decreased.
 また、塩素系酸化剤とスルファミン酸化合物とを含む殺菌剤の場合、アンモニア濃度は保持されたが、殺菌力が弱く、サンプル水中の菌がほとんど殺菌されなかった。 In the case of a bactericidal agent containing a chlorine-based oxidant and a sulfamic acid compound, the ammonia concentration was maintained, but the bactericidal activity was weak, and the bacteria in the sample water were hardly sterilized.
 実施例2と比較例1,2の結果から、臭素系酸化剤とスルファミン酸化合物とを含む殺菌剤が、同じ殺菌剤添加量の場合、アンモニアを残存させつつ、最も高い殺菌能力を示した。 From the results of Example 2 and Comparative Examples 1 and 2, when the fungicide containing the bromine-based oxidizing agent and the sulfamic acid compound had the same amount of the fungicide added, the highest fungicide ability was shown while leaving ammonia.
 このように、酢酸セルロース系の半透膜を備える半透膜モジュールを用いるアンモニアを含む被処理水の濃縮処理において、被処理水中に安定化次亜臭素酸組成物を存在させることによって、アンモニアの回収率を維持しながらバイオファウリングを抑制することができることがわかった。 As described above, in the concentration treatment of the water to be treated containing ammonia using the semipermeable membrane module provided with the cellulose acetate-based semipermeable membrane, the stabilized hypobromous acid composition is present in the water to be treated to obtain the ammonia. It was found that biofouling can be suppressed while maintaining the recovery rate.
 1,2,3,4,5,6,7,8,9 アンモニア濃縮装置、10 被処理水槽、12 膜モジュール、12a 1段目膜モジュール、12b 2段目膜モジュール、14,14a,14b 半透膜、16,16a,16b 第一空間、18,18a,18b 第二空間、20,60,62 ポンプ、22,24,26,28,30,34,36,38,40,42,44,46,64,66,68,70,84,86,88,90,92,94,96 配管、32 殺菌剤添加配管、48 逆浸透膜処理装置、50 RO透過水配管、52 RO濃縮水配管、56 除濁膜処理装置、58 除濁膜透過水槽、80 全塩素濃度測定装置、82 制御装置。 1,2,3,4,5,6,7,8,9 Ammonia concentrator, 10 Water tank to be treated, 12 membrane module, 12a 1st stage membrane module, 12b 2nd stage membrane module, 14, 14a, 14b and a half Transparent membrane, 16, 16a, 16b first space, 18, 18a, 18b second space, 20, 60, 62 pump, 22, 24, 26, 28, 30, 34, 36, 38, 40, 42, 44, 46,64,66,68,70,84,86,88,90,92,94,96 piping, 32 sterilizing agent addition piping, 48 reverse osmosis membrane treatment device, 50 RO permeable water piping, 52 RO concentrated water piping, 56 Decontamination membrane treatment device, 58 Decontamination membrane permeation water tank, 80 Total chlorine concentration measuring device, 82 Control device.

Claims (10)

  1.  酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、アンモニアを含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得るとともに、前記第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理工程を含み、
     前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させることを特徴とするアンモニア濃縮方法。
    Using a semi-permeable membrane module having a first space and a second space partitioned by a cellulose acetate-based semi-permeable film, water to be treated containing ammonia is passed through the first space, and the first space is passed through. An ammonia-concentrated water is obtained by pressurizing the water contained in the water to be treated to permeate the semi-permeable film, and at the same time, a part of the water to be treated or at least a part of the ammonia-concentrated water is formed in the second space. Including a semi-transmissive treatment step of passing water to obtain diluted water,
    A method for concentrating ammonia, which comprises allowing a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to be present in the water to be treated.
  2.  酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する、複数段に接続された半透膜モジュールを用いて、アンモニアを含む被処理水を第1段の半透膜モジュールの第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得て、そのアンモニア濃縮水をさらに次段以降の半透膜モジュールを用いてアンモニア濃縮水を得るとともに、各段の半透膜モジュールの第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理工程を含み、
     前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を存在させることを特徴とするアンモニア濃縮方法。
    Using a semipermeable membrane module connected in multiple stages, which has a first space and a second space separated by a cellulose acetate-based semipermeable membrane, the water to be treated containing ammonia is transferred to the first stage semipermeable membrane. Water is passed through the first space of the module, the first space is pressurized, and the water contained in the water to be treated is permeated through the semipermeable membrane to obtain ammonia-concentrated water, and the ammonia-concentrated water is further next. A semipermeable membrane module after the stage is used to obtain concentrated water for ammonia, and a part of the water to be treated or at least a part of the concentrated water for ammonia is passed through the second space of the semipermeable membrane module of each stage. Includes a semipermeable membrane treatment step to obtain diluted water
    A method for concentrating ammonia, which comprises allowing a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to be present in the water to be treated.
  3.  請求項1または2に記載のアンモニア濃縮方法であって、
     前記希釈水について逆浸透膜処理を行いRO透過水とRO濃縮水とを得る逆浸透膜処理工程をさらに含むことを特徴とするアンモニア濃縮方法。
    The method for concentrating ammonia according to claim 1 or 2.
    A method for concentrating ammonia, further comprising a reverse osmosis membrane treatment step of performing a reverse osmosis membrane treatment on the diluted water to obtain RO permeated water and RO concentrated water.
  4.  請求項1~3のいずれか1項に記載のアンモニア濃縮方法であって、
     前記半透膜モジュールの第一空間入口および第一空間出口の少なくとも1つにおける全塩素濃度が所定の値になるように前記被処理水中の前記安定化次亜臭素酸組成物の量を調整することを特徴とするアンモニア濃縮方法。
    The method for concentrating ammonia according to any one of claims 1 to 3.
    The amount of the stabilized hypobromous acid composition in the water to be treated is adjusted so that the total chlorine concentration at at least one of the first space inlet and the first space outlet of the semipermeable membrane module becomes a predetermined value. Ammonia concentration method characterized by that.
  5.  請求項1~4のいずれか1項に記載のアンモニア濃縮方法であって、
     前記アンモニアを含む被処理水は、硫酸アンモニウム含有排水、フッ化アンモニウム含有排水、塩化アンモニウム含有排水のうちの少なくとも1つであることを特徴とするアンモニア濃縮方法。
    The method for concentrating ammonia according to any one of claims 1 to 4.
    The method for concentrating ammonia, wherein the water to be treated containing ammonia is at least one of ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater.
  6.  酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する半透膜モジュールを用いて、アンモニアを含む被処理水を前記第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得るとともに、前記第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段と、
     前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と、
     を備えることを特徴とするアンモニア濃縮装置。
    Using a semi-permeable membrane module having a first space and a second space partitioned by a cellulose acetate-based semi-permeable film, water to be treated containing ammonia is passed through the first space, and the first space is passed through. An ammonia-concentrated water is obtained by pressurizing the water contained in the water to be treated to permeate the semi-permeable film, and at the same time, a part of the water to be treated or at least a part of the ammonia-concentrated water is formed in the second space. Semi-transmissive treatment means to obtain diluted water by passing water,
    An addition means for adding a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to the water to be treated.
    Ammonia concentrator, characterized in that it comprises.
  7.  酢酸セルロース系の半透膜で仕切られた第一空間と第二空間とを有する、複数段に接続された半透膜モジュールを用いて、アンモニアを含む被処理水を第1段の半透膜モジュールの第一空間に通水し、前記第一空間を加圧して前記被処理水に含まれる水を前記半透膜を透過させることによってアンモニア濃縮水を得て、そのアンモニア濃縮水をさらに次段以降の半透膜モジュールを用いてアンモニア濃縮水を得るとともに、各段の半透膜モジュールの第二空間に、前記被処理水の一部または前記アンモニア濃縮水の少なくとも一部を通水して希釈水を得る半透膜処理手段と、
     前記被処理水中に、臭素系酸化剤とスルファミン酸化合物とを含む安定化次亜臭素酸組成物を添加する添加手段と、
     を備えることを特徴とするアンモニア濃縮装置。
    Using a semipermeable membrane module connected in multiple stages, which has a first space and a second space separated by a cellulose acetate-based semipermeable membrane, the water to be treated containing ammonia is transferred to the first stage semipermeable membrane. Water is passed through the first space of the module, the first space is pressurized, and the water contained in the water to be treated is permeated through the semipermeable membrane to obtain ammonia-concentrated water, and the ammonia-concentrated water is further next. A semipermeable membrane module after the stage is used to obtain concentrated ammonia water, and a part of the water to be treated or at least a part of the concentrated ammonia water is passed through the second space of the semipermeable membrane module of each stage. Semipermeable membrane treatment means to obtain diluted water, and
    An addition means for adding a stabilized hypobromous acid composition containing a bromine-based oxidizing agent and a sulfamic acid compound to the water to be treated.
    Ammonia concentrator, characterized in that it comprises.
  8.  請求項6または7に記載のアンモニア濃縮装置であって、
     前記希釈水について逆浸透膜処理を行いRO透過水とRO濃縮水とを得る逆浸透膜処理手段をさらに備えることを特徴とするアンモニア濃縮装置。
    The ammonia concentrator according to claim 6 or 7.
    An ammonia concentrating device further comprising a reverse osmosis membrane treating means for performing a reverse osmosis membrane treatment on the diluted water to obtain RO permeated water and RO concentrated water.
  9.  請求項6~8のいずれか1項に記載のアンモニア濃縮装置であって、
     前記半透膜モジュールの第一空間入口および第一空間出口の少なくとも1つにおける全塩素濃度を測定する全塩素濃度測定手段と、
     前記全塩素濃度測定手段により測定された全塩素濃度が所定の値になるように前記添加手段による前記安定化次亜臭素酸組成物の添加量を調整する調整手段と、
     をさらに備えることを特徴とするアンモニア濃縮装置。
    The ammonia concentrator according to any one of claims 6 to 8.
    A total chlorine concentration measuring means for measuring the total chlorine concentration at at least one of the first space inlet and the first space outlet of the semipermeable membrane module, and
    An adjusting means for adjusting the addition amount of the stabilized hypobromous acid composition by the addition means so that the total chlorine concentration measured by the total chlorine concentration measuring means becomes a predetermined value.
    Ammonia concentrator, characterized in that it further comprises.
  10.  請求項6~9のいずれか1項に記載のアンモニア濃縮装置であって、
     前記アンモニアを含む被処理水は、硫酸アンモニウム含有排水、フッ化アンモニウム含有排水、塩化アンモニウム含有排水のうちの少なくとも1つであることを特徴とするアンモニア濃縮装置。
    The ammonia concentrator according to any one of claims 6 to 9.
    The ammonia concentrating device, wherein the treated water containing ammonia is at least one of ammonium sulfate-containing wastewater, ammonium fluoride-containing wastewater, and ammonium chloride-containing wastewater.
PCT/JP2021/002421 2020-07-31 2021-01-25 Ammonia concentration method and ammonia concentration device WO2022024414A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180061443.XA CN116133737A (en) 2020-07-31 2021-01-25 Ammonia concentration method and ammonia concentration device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020130682A JP2022026961A (en) 2020-07-31 2020-07-31 Ammonia concentration method and ammonia concentration apparatus
JP2020-130682 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022024414A1 true WO2022024414A1 (en) 2022-02-03

Family

ID=80037886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002421 WO2022024414A1 (en) 2020-07-31 2021-01-25 Ammonia concentration method and ammonia concentration device

Country Status (4)

Country Link
JP (1) JP2022026961A (en)
CN (1) CN116133737A (en)
TW (1) TW202216599A (en)
WO (1) WO2022024414A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069124A (en) * 2016-10-25 2018-05-10 オルガノ株式会社 Water treatment apparatus and method using reverse osmosis membrane
JP2018202358A (en) * 2017-06-08 2018-12-27 株式会社神鋼環境ソリューション Concentration treatment method and apparatus
JP2019098205A (en) * 2017-11-29 2019-06-24 オルガノ株式会社 Method and apparatus for recovering ammonia
WO2020071177A1 (en) * 2018-10-05 2020-04-09 オルガノ株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018069124A (en) * 2016-10-25 2018-05-10 オルガノ株式会社 Water treatment apparatus and method using reverse osmosis membrane
JP2018202358A (en) * 2017-06-08 2018-12-27 株式会社神鋼環境ソリューション Concentration treatment method and apparatus
JP2019098205A (en) * 2017-11-29 2019-06-24 オルガノ株式会社 Method and apparatus for recovering ammonia
WO2020071177A1 (en) * 2018-10-05 2020-04-09 オルガノ株式会社 Water treatment device, water treatment method, forward osmosis membrane treatment method, forward osmosis membrane treatment system, and water treatment system

Also Published As

Publication number Publication date
CN116133737A (en) 2023-05-16
JP2022026961A (en) 2022-02-10
TW202216599A (en) 2022-05-01

Similar Documents

Publication Publication Date Title
JP6533056B2 (en) Filtration treatment system and filtration treatment method
WO2015029504A1 (en) Method for producing stabilized hypobromous acid composition, stabilized hypobromous acid composition, and slime inhibition method for separation membrane
KR101990231B1 (en) A method of reforming a reverse osmosis membrane, a reverse osmosis membrane, a method of treating boron-containing water, and a method of operating a separation membrane
JP6622424B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
CN107531523B (en) Method for treating wastewater containing ammonia nitrogen and ammonia nitrogen decomposer
WO2018092852A1 (en) Reverse osmosis membrane treatment system and reverse osmosis membrane treatment method
WO2016104356A1 (en) Method for controlling slime on separation membrane
KR102101320B1 (en) Process for treating reverse-osmosis with an on-site producing biocide and apparatus thereof
JP6513424B2 (en) Method of sterilizing separation membrane
JP6688381B2 (en) Water treatment system and water treatment method using reverse osmosis membrane
JP6837301B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
WO2022024414A1 (en) Ammonia concentration method and ammonia concentration device
JP7013141B2 (en) Water treatment method using reverse osmosis membrane
JP7008470B2 (en) Reverse osmosis membrane treatment method and reverse osmosis membrane treatment system
JP7144922B2 (en) Reverse osmosis membrane operation method and reverse osmosis membrane device
JP7050414B2 (en) Water treatment method using reverse osmosis membrane
CN109562963B (en) Method and system for treating water containing low-molecular organic matter
JP6974936B2 (en) Water treatment method using reverse osmosis membrane
WO2020179789A1 (en) Water treatment method and water treatment device using reverse osmosis membrane
JP7141919B2 (en) Reverse osmosis membrane treatment method, reverse osmosis membrane treatment system, water treatment method, and water treatment system
JP6422765B2 (en) Membrane separation treatment system and membrane separation treatment method
JP7471143B2 (en) Water treatment method and water treatment device
JP2018153749A (en) Water treatment method and water treatment system using reverse osmosis membrane
WO2018037582A1 (en) Water processing method using reverse-osmosis membrane
JP6933902B2 (en) Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849932

Country of ref document: EP

Kind code of ref document: A1