WO2022024350A1 - Mounting method and mounting device - Google Patents

Mounting method and mounting device Download PDF

Info

Publication number
WO2022024350A1
WO2022024350A1 PCT/JP2020/029455 JP2020029455W WO2022024350A1 WO 2022024350 A1 WO2022024350 A1 WO 2022024350A1 JP 2020029455 W JP2020029455 W JP 2020029455W WO 2022024350 A1 WO2022024350 A1 WO 2022024350A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting
substrate
detection
mounting position
Prior art date
Application number
PCT/JP2020/029455
Other languages
French (fr)
Japanese (ja)
Inventor
英俊 川合
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to CN202080102357.4A priority Critical patent/CN115769691A/en
Priority to DE112020007469.2T priority patent/DE112020007469T5/en
Priority to PCT/JP2020/029455 priority patent/WO2022024350A1/en
Priority to JP2022539947A priority patent/JPWO2022024350A1/ja
Publication of WO2022024350A1 publication Critical patent/WO2022024350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/083Quality monitoring using results from monitoring devices, e.g. feedback loops

Definitions

  • This disclosure relates to a mounting method and a mounting device for adsorbing components and mounting them on a substrate.
  • Patent Document 1 describes a mounting device for mounting a component on a substrate by lowering a suction nozzle holding the component by driving a motor.
  • the board region is divided into a first region, which is a region near the clamp and a region near the backup, and the remaining second region other than the first region, and the load at the time of mounting is acquired and acquired.
  • the descending speed of the suction nozzle is determined based on the load.
  • the descent speed of the suction nozzle is determined for the purpose of preventing damage to parts during mounting, and shortening of the mounting time is not considered.
  • the present disclosure provides a mounting method and a mounting device capable of further shortening the mounting time.
  • the mounting method of the present disclosure is a mounting method in which a component is mounted on a substrate by using a suction member capable of moving up and down by driving a drive source to suck the component, and the component is sucked.
  • a detection step for detecting that the suction member descends to the mounting position of the component on the board and touches the board via the component, and a detection section for detecting by the detection step are set for each mounting position of the component on the board. It has a configurable setting step.
  • the detection section for detecting that the suction member to which the component is attracted comes into contact with the substrate via the component can be set for each mounting position of the component on the board, that is, the component is mounted. Since the length of the detection section can be changed according to the condition of the board at the position, it is possible to further shorten the mounting time.
  • FIG. 1 It is a perspective view which shows the appearance of the mounting apparatus which concerns on one Embodiment of this disclosure. It is sectional drawing of the mounting head included in the mounting apparatus of FIG. It is a block diagram which showed the control system of the mounting apparatus of FIG. 1 simply. It is a flowchart which shows the procedure of the mounting process executed by the CPU in FIG. It is a flowchart which shows the continuation procedure of the mounting process of FIG. It is a figure which shows an example of the setting of the touchdown detection section for each mounting position. It is a figure which shows the schematic structure of another example of a mounting head.
  • FIG. 1 shows an outline of the configuration of the mounting device 10.
  • the left-right direction is the X-axis direction
  • the front-back direction is the Y-axis direction
  • the up-down direction is the Z-axis direction.
  • the mounting device 10 is a device that performs a mounting process for mounting the component P on the substrate S, and includes a base 11, a housing 12 supported by the base 11, a board transport unit 20, a backup unit 30, and a component. It includes a supply unit 40, a mounting head 50, an XY robot 60, and a control device 90 (see FIG. 3).
  • the substrate transport unit 20 includes a pair of side frames 22 arranged at predetermined intervals in the Y-axis direction, and a conveyor belt 24 provided on each of the pair of side frames 22. , The substrate S is conveyed by orbiting the conveyor belt 24. Further, the substrate transfer unit 20 is provided with a clamper (not shown) that can be raised and lowered, and by raising the clamper and pushing up the substrate S while the substrate S is mounted on the conveyor belt 24, the substrate S is pushed up. The substrate S is pressed against the holding portion 26 at the upper end of the side frame 22. As a result, the substrate S is sandwiched and clamped between the clamper and the holding portion 26.
  • the backup unit 30 includes a backup plate 32 that can be raised and lowered by an elevating device (not shown), and a plurality of backup pins 34 that are erected on the backup plate 32.
  • the backup unit 30 backs up the substrate S from the back surface side by the backup pin 34 by raising the backup plate 32 in a state where the substrate S conveyed by the substrate transport unit 20 is clamped.
  • the parts supply unit 40 includes a feeder unit 42 and a tray unit 44.
  • the feeder unit 42 sends out the carrier tape by the feeder from the reel around which the carrier tape containing a plurality of parts is wound, and supplies the parts to the supply position.
  • the carrier tape is composed of a bottom tape made of paper or the like in which component accommodating portions are formed at predetermined intervals, and a top film that covers the surface of the bottom tape and is peeled off before the supply position.
  • the tray unit 44 supplies the parts to the supply position by arranging and placing a plurality of parts on the tray made of resin or the like.
  • the XY robot 60 is bridged between a pair of left and right Y-axis guide rails 63 provided along the front-rear direction (Y-axis direction) in the upper part of the housing 12 and a pair of left and right Y-axis guide rails 63, and is Y-axis.
  • a Y-axis slider 64 that can move along the guide rail 63, a pair of upper and lower X-axis guide rails 61 provided on the side surface of the Y-axis slider 64 along the left-right direction (X-axis direction), and an X-axis guide rail. It includes an X-axis slider 62 that can move along 61.
  • the X-axis slider 62 is movable by driving the X-axis motor 66 (see FIG. 3), and the Y-axis slider 64 is movable by driving the Y-axis motor 68 (see FIG. 3).
  • a mounting head 50 is attached to the X-axis slider 62, and the control device 90 drives and controls the XY robot 60 (X-axis motor 66 and Y-axis motor 68) to drive and control the mounting head at an arbitrary position on the XY plane. 50 can be moved.
  • suction nozzles 59 can be attached to and detached from the lower surface of the mounting head 50, and the types corresponding to the component types are mounted.
  • the suction nozzle 59 is a suction member that sucks parts by using pressure.
  • the mounting head 50 raises and lowers the suction nozzle 59 in the Z direction by an elevating device 70 (see FIG. 2) driven by a Z-axis motor 55.
  • the mounting head 50 rotates (rotates) the suction nozzle 59 by the R-axis (rotation axis) motor 51, and the angle of the component sucked by the suction nozzle 59 can be adjusted.
  • the mounting head 50 includes a cover 500, a pair of front and rear elevating devices 70, a revolution portion 54, and a rotation portion 55.
  • the cover 500 constitutes the outer shell of the mounting head 50.
  • the pair of front and rear elevating devices 70 are arranged so as to face each other by 180 ° with respect to the revolution axis (the revolution axis of the eight suction nozzles 59) Q.
  • the elevating device 70 includes a Z-axis (upper and lower axis) motor 71 and a ball screw portion 72. Further, the elevating device 70 includes a Z-axis position sensor 74 (see FIG. 3).
  • the ball screw portion 72 includes a shaft portion (fixed portion) 72a and a nut portion (movable portion) 72b.
  • the Z-axis motor 71 is attached to the cover 500.
  • the shaft portion 72a is connected to the rotating shaft of the Z-axis motor 71.
  • the shaft portion 72a extends in the vertical direction.
  • the nut portion 72b is annularly mounted on the shaft portion 72a via a large number of balls (not shown).
  • a recess (power transmission portion) 72b1 is
  • the revolution portion 54 includes a Q-axis (revolution shaft) motor 52, a first gear 541 for revolution, a second gear 542 for revolution, a shaft 543 for revolution, a rotary plate 544, and eight collars 545.
  • the Q-axis motor 52 is attached to the cover 500 via a bracket (not shown).
  • the first gear 541 for public use is connected to the rotating shaft of the Q-axis motor 52.
  • the public diversion second gear 542 meshes with the public diversion first gear 541.
  • the rotary plate 544 is arranged below the second gear 542 for public rotation, separated by a predetermined interval.
  • the public rotation shaft 543 connects the public rotation second gear 542 and the rotary plate 544.
  • the eight collars 545 are arranged at intervals of 45 ° about the revolution axis Q.
  • the collar 545 has a short-axis tubular shape extending in the vertical direction.
  • the collar 545 is embedded in the rotating plate 544.
  • the rotation portion 55 includes an R-axis motor 51, a rotation first gear 551, a rotation second gear 552, and a rotation third gear 553.
  • the R-axis motor 51 is attached to the cover 500 via a bracket (not shown).
  • the rotation first gear 551 is connected to the rotating shaft of the R-axis motor 350.
  • the rotation second gear 552 meshes with the rotation first gear 551.
  • the second gear 552 for rotation has an annular shape.
  • the rotation third gear 553 is connected to the lower side of the rotation second gear 552.
  • the third gear 553 for rotation has a cylindrical shape.
  • the public rotation shaft 543 penetrates the rotation second gear 552 and the rotation third gear 553 in the vertical direction.
  • the holder 58 includes a clad portion 580 and a core portion 581.
  • the clad portion 580 can move in the vertical direction with respect to the collar 545.
  • the clad portion 580 includes an outer cylinder member 580a, a convex portion (power transmission portion) 580c, and a holder gear 580d.
  • the convex portion 580c is arranged on the outer peripheral surface of the outer cylinder member 580a.
  • the convex portion 580c can be engaged with the concave portion 72b1 in the vertical direction.
  • the holder gear 580d is arranged on the outer peripheral surface of the outer cylinder member 580a.
  • the holder gear 580d meshes with the third gear 553 for rotation.
  • the clad portion 580 can move up and down with respect to the core portion 581 by a predetermined pushing stroke.
  • the core unit 581 includes a detection unit 581a.
  • the detected portion 581a projects upward from the outer cylinder member 580a.
  • a suction unit 591 is arranged at the lower end of the suction nozzle 59.
  • the suction unit 591 can suck and release the component P by the air pressure supplied through a gas passage (not shown).
  • a photoelectric sensor 73 is arranged on the nut portion 72b.
  • the photoelectric sensor 73 can move in the vertical direction together with the nut portion 72b.
  • the photoelectric sensor 73 includes a floodlight and a light receiver (not shown).
  • the floodlight can flood the detected portion 581a.
  • the light receiver can receive the reflected light from the detected portion 581a.
  • a detection area A is set next to the photoelectric sensor 73 in the horizontal direction (on the side of the detected portion 581a).
  • the grounding (touchdown) detection method includes a reference value setting process and a grounding determination process.
  • a non-grounded state (specifically, like the holder 58 and the suction nozzle 59 on the rear side of FIG. 2, the horizontal transfer of the component P by the XY robot 31 is completed, and the holder 58 and the suction nozzle 59 are completed. Is executed in the state before the descent.
  • the control device 90 detects the light receiving rate from the light receiver of the photoelectric sensor 73.
  • the control device 90 detects the light receiving rate of the light receiver in the non-grounded state and sets the reference level a1. For example, when the light receiving rate of the light receiver in the non-grounded state is 10% with the initial state as 0% and the final state as 100%, the control device 90 sets the 10% to the reference level a1. Further, the control device 90 sets the reference level a1 as 100% and, for example, 110% as the threshold value a2.
  • the grounding determination process is executed when the non-grounded state is switched to the grounded state. That is, it is executed when the holder 58 and the suction nozzle 59 are lowered.
  • the control device 90 drives the Z-axis motor 71 and lowers the holder 58 and the suction nozzle 59 with respect to the mounting head 50 shown in FIG.
  • the control device 90 continuously detects the light reception rate from the light receiver of the photoelectric sensor 73.
  • the suction nozzle 59 and the core portion 581 immediately stop descending.
  • the clad portion 580 continues to descend together with the nut portion 72b and the photoelectric sensor 73. Therefore, the suction nozzle 59 and the core portion 581 are relatively elevated with respect to the clad portion 580.
  • the detected portion 581a relatively rises in the detection region A. Therefore, the light receiving rate of the light receiver of the photoelectric sensor 73 increases.
  • the control device 90 determines that the component P is grounded with respect to the substrate S.
  • the control device 90 stops the Z-axis motor 71, and stops the lowering of the holder 58 and the suction nozzle 59.
  • the control device 90 releases the grounded component P from the suction nozzle 59, drives the Z-axis motor 71, and raises the holder 58 and the suction nozzle 59.
  • control device 90 sets the next holder 58 and the suction nozzle 59 (part P sucked) directly above the next mounting coordinates. After that, the control device 90 executes the reference value setting step and the grounding determination step. In this way, the control device 90 repeatedly executes the above-mentioned grounding detection method for the number of components P held by the mounting head 50.
  • the control device 90 is configured as a microprocessor centered on the CPU 91, and includes a ROM 92, an HDD 93, a RAM 94, an input / output interface 95, and the like in addition to the CPU 91. These are connected via a bus 96.
  • the control device 90 includes an image signal from the parts camera 80, an image signal from the mark camera, a detection signal from the X-axis position sensor 67 that detects the position of the X-axis slider 62 in the X-axis direction, and Y of the Y-axis slider 64.
  • a detection signal or the like from the photoelectric sensor 73 to be detected is input via the input / output interface 95.
  • the control device 90 a control signal to the board transfer unit 20, a control signal to the component supply unit 40, a drive signal to the XY robot 60 (X-axis motor 66 and Y-axis motor 68), and a mounting head 50 (R).
  • Drive signals to the shaft motor 51, the Q-axis motor 52, and the Z-axis motor 71) are output via the input / output interface 95.
  • FIGS. 4 and 5 are flowcharts showing an example of the mounting process. This process is executed by the control device 90 in a state where the substrate S carried in by the substrate transfer unit 20 is clamped and backed up by the backup unit 30.
  • the step is referred to as "S".
  • the CPU 91 of the control device 90 first sets the touchdown detection section for each mounting position to the initial value (S10).
  • the touch-down detection section means that the holder 58 and the suction nozzle 59 are lowered when the component P is detected to touch down on the substrate S, that is, when the grounding is determined in the grounding determination step. This is the section where the speed is reduced.
  • the mounting time of the component P can be shortened by increasing the speed at which the holder 58 and the suction nozzle 59 are lowered.
  • the speed at which the holder 58 and the suction nozzle 59 are lowered is reduced so that the touchdown can be detected successfully.
  • FIG. 6A shows an example of a touchdown detection section for each mounting position of the substrate S0 in which the surface of the substrate S is an ideal flat surface.
  • the horizontal direction indicates the mounting position and the vertical direction indicates the height.
  • the mounting positions P1 to P5 in the horizontal direction indicate different mounting positions.
  • the height H0 in the vertical direction indicates a target value for grounding the component P on the substrate S.
  • the height H1 indicates the start point of the touchdown detection section for each mounting position. That is, on the board S0, the same section H1-H0 is set as the initial value for the touchdown detection section for each mounting position for any of the mounting positions P1 to P5. This is because the target height H0 at each mounting position P1 to P5 and the grounding height on the substrate S0 are the same.
  • FIG. 6B shows an example of a touchdown detection section for each mounting position of the substrate S1 having a warp on the surface of the substrate S.
  • the height H0 indicates a target value for grounding the component P on the substrate S.
  • the substrate S1 has a warp of a height H2 higher than the target height H0 at the mounting position P2, and a warp of a height H3 lower than the target height H0 at the mounting position P4. Therefore, in order to provide a touchdown detection section having the same length as or longer than the substrate S0 in FIG. 5A for any of the mounting positions P1 to P5, only the sections H1-H0 are added to the height H2.
  • the height H4 is set as the starting point of the touchdown detection section for each mounting position. Therefore, on the substrate S1, the same section H4-H0 is set as the initial value for the touchdown detection section for each mounting position for any of the mounting positions P1 to P5.
  • the CPU 91 lowers the suction nozzle 59 and controls the mounting head 50 so as to suck the component P supplied to the supply position by the component supply unit 40 (S12).
  • the XY robot 60 moves the mounting head 50 onto the substrate S, lowers the suction nozzle 59, and places the component P at the mounting position of the substrate S.
  • the mounting head 50 is controlled so as to be mounted (S14).
  • the CPU 91 detects the touchdown height, associates the detected touchdown height with the current mounting position, and stores it in, for example, the RAM 94 (S16). Specifically, the touchdown height is detected when the light receiving rate of the light receiver of the photoelectric sensor 73 reaches the threshold value a2, that is, the control device 90 (CPU 91) grounds the component P to the substrate S. Is determined by detecting the detection signal from the Z-axis position sensor 74.
  • the CPU 91 determines whether or not the mounting of all the components is completed (S18). In this determination, if it is determined that there are still components to be mounted (S18: NO), the CPU 91 selects the component to be mounted next, and then returns the process to S12. On the other hand, when it is determined in this determination that the mounting of all the components is completed (S18: YES), the CPU 91 advances the process to S20.
  • the CPU 91 determines whether or not the mounting of a predetermined number of boards has been completed. In this determination, if it is determined that the mounting of the predetermined number of boards has not been completed (S20: NO), the CPU 91 proceeds to the process of S40 in FIG. On the other hand, if it is determined in this determination that the mounting of a predetermined number of boards has been completed (S20: YES), the CPU 91 advances the process to S22.
  • the "predetermined number of boards" is the number of some boards among all the boards scheduled to be mounted. In the present embodiment, for example, three sheets (boards S1 to S3 in FIG. 6C) are given as an example of the predetermined number of sheets, but the number is not limited to this.
  • the CPU 91 determines whether or not the mounting of all the boards is completed. In this determination, if it is determined that the mounting of all the boards has not been completed (S40: NO), the CPU 91 waits until the board to be mounted next is backed up by the backup unit 30, and then performs the processing. Return to S12 of 4. On the other hand, if it is determined in this determination that the mounting of all the boards has been completed (S40: YES), the CPU 91 ends the mounting process.
  • the CPU 91 calculates the average value of the touchdown height for each mounting position.
  • the average value is calculated by taking the average value of the touchdown height stored in association with each mounting position over a predetermined number of substrates.
  • the CPU 91 calculates the variation from the average value of the touchdown height for each mounting position (S24).
  • the touchdown height is stored for a predetermined number of boards.
  • one average value of the touchdown height is calculated for one fixed mounting position. Therefore, in S24, the difference from the average value of the touchdown heights is calculated for each of the touchdown heights of a predetermined number of substrates, and the variation is set for one fixed mounting position. Then, this variation is calculated for all mounting positions.
  • the variation from the average value of the touchdown height for each mounting position calculated in S22 and the average value of the touchdown height for each mounting position calculated in S24 are temporarily stored in the RAM 94, for example. I will do it.
  • the mounting position counter is a software counter that counts to indicate the mounting position, that is, in the present embodiment, any of the mounting positions P1 to P5. Therefore, in the present embodiment, the mounting position counter counts any of 1 to 5, and the initialization means that the mounting position counter is set to "1".
  • the CPU 91 determines whether or not the variation in the mounting position indicated by the mounting position counter exceeds a predetermined range (S28 in FIG. 5). Since the variation is calculated as a difference from the average value of the touchdown height as described above in the present embodiment, the CPU 91 determines whether or not the variation exceeds a predetermined range among the calculated differences. Judgment is made based on whether or not the maximum value of is exceeded the predetermined range.
  • the CPU 91 sets a predetermined margin in the average value of the touchdown heights. After adding and storing in the RAM 94 (S32) in association with the mounting position, the process proceeds to S34.
  • the CPU 91 determines whether or not the mounting position counter is counting the last mounting position. In this determination, when it is determined that the mounting position counter does not count the last mounting position (S34: NO), the CPU 91 increments the mounting position counter by "1" (S36), and then performs processing in the above S28. Return to. On the other hand, in this determination, when it is determined that the mounting position counter is counting the last mounting position (S34: YES), the CPU 91 advances the process to S38.
  • the CPU 91 updates the touchdown detection section for each mounting position with a stored value. After that, the CPU 91 advances the process to S40. Since the processing of S40 has been described above, the description thereof will be omitted.
  • the CPU 91 then holds the holder 58 and the holder 58 based on the updated touchdown detection section for each mounting position until the mounting of all the boards is completed.
  • the speed at which the suction nozzle 59 is lowered is determined. That is, the CPU 91 speeds up the lowering of the holder 58 and the suction nozzle 59 at a position higher than the touchdown detection section for each mounting position, and slows down within the touchdown detection section for each mounting position.
  • FIG. 6C shows an example of the touchdown detection section for each mounting position updated by the process of S38.
  • the substrate S1 shows the board first mounted by the mounting process
  • the board S2 shows the board second mounted by the mounting process
  • the board S3 is the third board mounted by the mounting process. The second mounted board is shown.
  • the mounting position P2 although there is a warp in any of the boards S1 to S3, there is little variation.
  • the average value of the touchdown height is the height of the mounting position P2 on the board S2 and the maximum value of the variation is within a predetermined range
  • the touchdown detection section for each mounting position at the mounting position P2 is ,
  • the initial value H4-H0 is updated to the value H5-H0.
  • the height H5 is a value obtained by adding a "predetermined margin", that is, the values H1-H0 to the height of the mounting position P2 on the substrate S2, and H5> H4.
  • the mounting position P4 there is a warp in any of the boards S1 to S3, and there is a lot of variation.
  • the touchdown for each mounting position at the mounting position P4 The detection section is updated from the initial value H4-H0 to the value H6-H0.
  • the height H6 is obtained by adding the maximum value of variation to the height H0 of the mounting position P2 on the board S3, that is, the difference between the height of the mounting position P2 on the board S2 and the height H0 of the mounting position P2 on the board S3.
  • the touchdown detection section for each mounting position after the update is longer than the initial value at the mounting positions P2 and P4, but shorter than the initial value at the mounting positions P1, P3 and P5. It is shorter than the initial value of the touchdown detection section for each mounting position. This makes it possible to shorten the mounting time.
  • the touchdown detection section for each mounting position is a value obtained by adding a predetermined margin to the average value of the touchdown height, that is, mounting.
  • the center value of the touchdown detection section for each position is updated to the section shifted to the average value of the touchdown height.
  • the touchdown detection section for each mounting position is obtained by adding the average value of the touchdown height to the maximum value of the variation and further determining. It is updated to the value with the margin added. In this way, the touchdown detection section for each mounting position is set to the optimum section according to the state of the touchdown height on each board S, so that the touchdown can be accurately detected on any board S. Is possible.
  • FIG. 7 shows a mounting head 140 having a configuration different from that of the mounting head 50 of FIG.
  • the mounting head 140 includes a head body 142 in which a plurality of nozzle holders 165 (only two are shown in FIG. 7) are arranged at predetermined angular intervals (for example, 30 degree intervals) in a circumferential direction coaxial with the rotation axis, and each nozzle holder. It is provided with a suction nozzle 160 that is detachably attached to the lower end of the 165.
  • the mounting head 140 includes an R-axis motor (not shown) that rotates (revolves) a plurality of nozzle holders 165 by rotating the head body 142, and a Q-axis motor 146 that rotates (rotates) a plurality of nozzle holders 165. And an elevating device (not shown) for elevating and lowering the nozzle holder 165. Further, the mounting head 140 includes a negative pressure supply device 170 that supplies a negative pressure to the suction unit 161 and a positive pressure supply device 180 that supplies a positive pressure to the nozzle holder 165.
  • a plurality of head main bodies 142 are formed into a frame 141 attached to the X-axis slider 62 (see FIG. 1), a shaft portion 142a rotatably supported by the frame 141, and a cylindrical shape having a diameter larger than that of the shaft portion 142a. It is provided with a holder holding portion 142b for holding the nozzle holder 165 of the above so as to be movable in the Z-axis direction.
  • the shaft portion 142a and the holder holding portion 142b rotate, whereby the plurality of nozzle holders 165 rotate (revolve).
  • the head main body 142 has a gear 143 coaxially with the shaft portion 142a and rotatably supported relative to the shaft portion 142a, and a gear 147 that rotates with the rotation of the gear 143.
  • the gear 143 meshes with the gear 145 attached to the rotating shaft of the Q-axis motor 146, and the gear 147 meshes with the gear 165b attached to each nozzle holder 165.
  • each nozzle holder 165 and the suction nozzle 160 mounted on each nozzle holder 165 rotate (rotate) by the same rotation amount (rotation angle) in the same rotation direction.
  • a spring 165a is arranged between the lower surface of the gear 165b and the upper surface of the holder holding portion 142b. The spring 165a urges the nozzle holder 165 upward in the Z-axis direction.
  • the nozzle holder 165 is configured as a cylindrical member extending in the Z-axis direction, and a first gas passage 166a and a second gas passage 167a are formed inside the nozzle holder 165. Further, the nozzle holder 165 is formed with a horizontal portion 165c extending in the radial direction at the upper end portion thereof.
  • the negative pressure supply device 170 is a device that independently supplies negative pressure from the same negative pressure source 171 to a plurality of suction nozzles 160 mounted on each of the plurality of nozzle holders 165.
  • the negative pressure supply device 170 includes a negative pressure source 171 such as a vacuum pump, a frame passage 172, a head passage 173, a negative pressure introduction passage 174, an atmosphere introduction passage 175, a spool hole 177, a spool 178, and a spool. It is equipped with a drive mechanism (not shown).
  • the frame passage 172 is formed in the frame 141 of the mounting head 140 and is connected to the negative pressure source 171.
  • the head passage 173 communicates with the frame passage 172 and is formed so as to extend along the central axis of the mounting head 140.
  • a plurality of negative pressure introduction passages 174 are formed so as to communicate with the head passage 173 and extend radially from the central axis of the holder holding portion 142b.
  • a plurality of atmosphere introduction passages 175 are formed in correspondence with the negative pressure introduction passage 174 so as to communicate with the positive pressure source (here, the atmosphere).
  • the spool 178 is a switching valve for selectively communicating either the corresponding negative pressure introduction passage 174 or the atmosphere introduction passage 175 to the first gas passage 166a provided in each of the plurality of nozzle holders 165. Is.
  • the first gas passage 166a communicates with the suction port at the tip of the suction portion 161 of the suction nozzle 160.
  • the spool 178 is a tubular member that is inserted into each of the spool holes 177 formed in the holder holding portion 142b corresponding to each of the plurality of nozzle holders 165.
  • the spool 178 has a substantially central portion reduced in diameter, and the circumference of the reduced diameter portion of the space in the spool hole 177 serves as a path for negative pressure from the negative pressure source 171.
  • the spool 178 communicates with the first gas passage 166a and the negative pressure introduction passage 174 and also communicates with the first gas passage 166a and the atmosphere introduction passage 175 when the spool 178 is moving upward (the state shown in FIG. 7). To shut off. On the other hand, when the spool 178 is moving downward, the spool 178 blocks the communication between the first gas passage 166a and the negative pressure introduction passage 174 and communicates with the first gas passage 166a and the atmosphere introduction passage 175.
  • the spool drive mechanism outputs a driving force to move the spool 178 up and down, so that the spool 178 switches between the negative pressure introduction passage 174 and the atmosphere introduction passage 175 to communicate with the first gas passage 166a.
  • the positive pressure supply device 180 is a device that supplies positive pressure to the second gas passage 167a provided in each of the plurality of nozzle holders 165.
  • the positive pressure supply device 180 includes a positive pressure source 181 such as a compressor, a flow rate sensor 181a, a frame passage 182, a head passage 183, and a positive pressure introduction passage 184.
  • the flow rate sensor 181a is connected to the positive pressure source 181 and detects the flow rate of the gas (here, air) supplied from the positive pressure source 181 and flowing through the second gas passage 167a.
  • the frame passage 182 is formed at a position different from the frame passage 172 in the frame 141 of the mounting head 140, and is connected to the flow rate sensor 181a and the positive pressure source 181.
  • the head passage 183 communicates with the frame passage 182 and is formed so as to extend along the central axis direction of the mounting head 140.
  • the head passage 183 has a ring-shaped shape centered on the head passage 173 in a top view, and extends in the vertical direction so as to surround the head passage 173 while being separated from the head passage 173.
  • a plurality of positive pressure introduction passages 184 are formed so as to communicate with the head passage 183 and extend from the central axis side of the holder holding portion 142b toward the outside of the holder holding portion 142b.
  • Each of the plurality of positive pressure introduction passages 184 is formed corresponding to each of the plurality of nozzle holders 165 and communicates with the second gas passage 167a of the corresponding nozzle holder 165.
  • the plurality of positive pressure introduction passages 184 are all formed so as to avoid the negative pressure introduction passage 174 and the spool hole 177.
  • the frame passage 182, the head passage 183, the positive pressure introduction passage 184 and the second gas passage 167a are all frame passage 172, head passage 173, negative pressure introduction passage 174, atmosphere introduction passage 175, spool hole 177, and It does not communicate with any of the first gas passages 166a. That is, the negative pressure path and the positive pressure (atmosphere) path of the negative pressure supply device 170 and the positive pressure path of the positive pressure supply device 180 are independent of each other.
  • the CPU 91 When the component P is mounted on the board S by the mounting head 140, the CPU 91 starts the lowering of the target nozzle by the elevating device. Then, the CPU 91 waits until the flow rate detected by the flow rate sensor 181a exceeds a predetermined threshold value, that is, until the pushing amount reaches a predetermined amount. When it is determined that the pushing amount has reached a predetermined amount, the CPU 91 switches the spool 178 corresponding to the target nozzle by the spool drive mechanism and applies a positive pressure (atmosphere) to the suction portion 161 to release the negative pressure and move up and down. The suction unit 161 is raised by the device. In this way, when the CPU 91 determines that the pushing amount has reached a predetermined amount based on the flow rate detected by the flow rate sensor 181a, the CPU 91 releases and increases the negative pressure of the suction unit 161.
  • the mounting head 50 of FIG. 2 detects the touchdown based on the light receiving rate of the light detected by the light receiver of the photoelectric sensor 73, whereas the mounting head 140 of FIG. 7 detects the touchdown. Is different in that the flow rate sensor 181a is used based on the flow rate detected. However, even if the process of setting the touchdown detection section for each mounting position, that is, the processing other than the processing of S12 and S14 during the mounting processing of FIGS. 4 and 5, the mounting head 50 is changed to the mounting head 140. Since there is no difference, the explanation is omitted.
  • the mounting method of the present embodiment is a mounting method in which the component P is mounted on the substrate S by using the mounting head 50 capable of moving up and down by driving the Z-axis motor 71 to attract the component P.
  • the Z-axis motor 71 is an example of a “drive source”.
  • the mounting heads 50 and 140 are examples of "suction members".
  • the detection section for detecting that the mounting heads 50, 140 to which the component P is attracted comes into contact with the substrate S via the component P is set as the detection section of the component P on the substrate S. Since it can be set for each mounting position, that is, the length of the detection section can be changed according to the situation of the board S at the position where the component P is mounted, the mounting time can be further shortened.
  • the RAM 94 is an example of a "memory”.
  • the detection section is determined based on the history of the height of the mounting head 50 actually mounted in the past, so that an appropriate detection section can be set.
  • the range of the detection section is determined according to the degree of variation in the height of the mounting head 50 included in the history information.
  • the detection section is determined by shifting the center value of the detection section to the average value of the heights.
  • the length of the detection section is shifted as it is, so that it is possible to suppress the lengthening of the detection section.
  • the mounting head 50 projects light onto the detection region A in which the detection portion 581a relatively moves in conjunction with the contact between the suction portion 591 that attracts the component P and the component P with respect to the substrate S, and the detection region.
  • a photoelectric sensor 73 that receives light from A is provided, and the detection step (S16) detects that the component P has come into contact with the mounting position on the substrate S based on the output signal from the photoelectric sensor 73.
  • the suction portion 591 is an example of the "nozzle portion”.
  • the mounting head 140 includes a suction unit 161 for sucking the component P, and a frame passage 182 in which the flow rate or pressure of the flowing gas fluctuates according to the pushing amount of the suction unit 161.
  • the contact of the component P with the mounting position on the substrate S is detected by detecting at least one of the flow rate and the pressure of the gas flowing through the frame passage 182.
  • the suction portion 161 is an example of a “nozzle portion”.
  • the frame passage 182 is an example of a “gas passage”.
  • the number of suction nozzles 59 in the mounting head 50 of FIG. 2 is eight, and the number of suction nozzles 160 in the mounting head 140 of FIG. 7 is twelve. Not limited to these.
  • the same "predetermined margin" is added in any of the processes of S30 and S32 in FIG. 5, but the present invention is not limited to this, and the process of S30 and the process of S32 are not limited to this.
  • the value of the margin to be added may be different. Further, the value of the margin may be set to "0" or a value close to "0". In this case, the mounting time can be further shortened.

Abstract

A mounting method for mounting parts on a substrate using a suction member that can suction parts and that is raised and lowered as a result of driving by a driving source, said method comprising: a detection step in which the suction member that has suctioned a part descends to the mounting position for the part on the substrate, and contact of the suction member on the substrate with the part therebetween is detected; and a setting step in which a detection interval for the detection performed at the detection step can be set for each part mounting position on the substrate.

Description

実装方法及び実装装置Mounting method and mounting device
 本開示は、部品を吸着して基板に実装する実装方法及び実装装置に関するものである。 This disclosure relates to a mounting method and a mounting device for adsorbing components and mounting them on a substrate.
 特許文献1には、部品を保持した吸着ノズルを、モータの駆動により下降させて、基板に部品を実装する実装装置が記載されている。この実装装置では、基板の領域をクランプの近傍領域やバックアップの近傍領域である第1領域と、第1領域以外の残りの第2領域とに分けて、実装時の荷重を取得し、取得した荷重に基づいて吸着ノズルの下降速度を決定するようにしている。 Patent Document 1 describes a mounting device for mounting a component on a substrate by lowering a suction nozzle holding the component by driving a motor. In this mounting device, the board region is divided into a first region, which is a region near the clamp and a region near the backup, and the remaining second region other than the first region, and the load at the time of mounting is acquired and acquired. The descending speed of the suction nozzle is determined based on the load.
国際公開番号 WO2018/061146 A1International publication number WO2018 / 061146 A1
 しかし、特許文献1に記載の実装装置では、吸着ノズルの下降速度の決定は、実装時の部品の損傷を防止する目的でなされており、実装時間の短縮化は考慮されていない。 However, in the mounting device described in Patent Document 1, the descent speed of the suction nozzle is determined for the purpose of preventing damage to parts during mounting, and shortening of the mounting time is not considered.
 本開示は、実装時間のさらなる短縮化を図ることが可能となる実装方法及び実装装置を提供することを説明とする。 It is explained that the present disclosure provides a mounting method and a mounting device capable of further shortening the mounting time.
 上記目的を達成するため、本開示の実装方法は、駆動源の駆動により昇降して部品を吸着可能な吸着部材を用いて、部品を基板に実装する実装方法であって、部品の吸着された吸着部材が基板上の部品の実装位置まで下降して、部品を介して基板上に接触したことを検出する検出ステップと、検出ステップによる検出を行う検出区間を基板上の部品の実装位置毎に設定可能な設定ステップと、を有する。 In order to achieve the above object, the mounting method of the present disclosure is a mounting method in which a component is mounted on a substrate by using a suction member capable of moving up and down by driving a drive source to suck the component, and the component is sucked. A detection step for detecting that the suction member descends to the mounting position of the component on the board and touches the board via the component, and a detection section for detecting by the detection step are set for each mounting position of the component on the board. It has a configurable setting step.
 本開示によれば、部品の吸着された吸着部材が部品を介して基板上に接触したことを検出する検出区間を、基板上の部品の実装位置毎に設定できるので、つまり、部品を実装する位置の基板の状況に応じて検出区間の長さを変えることができるので、実装時間のさらなる短縮化を図ることが可能となる。 According to the present disclosure, the detection section for detecting that the suction member to which the component is attracted comes into contact with the substrate via the component can be set for each mounting position of the component on the board, that is, the component is mounted. Since the length of the detection section can be changed according to the condition of the board at the position, it is possible to further shorten the mounting time.
本開示の一実施形態に係る実装装置の外観を示す斜視図である。It is a perspective view which shows the appearance of the mounting apparatus which concerns on one Embodiment of this disclosure. 図1の実装装置に含まれる実装ヘッドの断面図である。It is sectional drawing of the mounting head included in the mounting apparatus of FIG. 図1の実装装置の制御システムを簡易的に示したブロック図である。It is a block diagram which showed the control system of the mounting apparatus of FIG. 1 simply. 図3内のCPUが実行する実装処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the mounting process executed by the CPU in FIG. 図4の実装処理の続きの手順を示すフローチャートである。It is a flowchart which shows the continuation procedure of the mounting process of FIG. 実装位置毎のタッチダウン検出区間の設定の一例を示す図である。It is a figure which shows an example of the setting of the touchdown detection section for each mounting position. 実装ヘッドの他の一例の概略構成を示す図である。It is a figure which shows the schematic structure of another example of a mounting head.
 以下、本開示の実施形態を図面に基づいて詳細に説明する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings.
 図1は、実装装置10の構成の概略を示している。なお、図1において、左右方向がX軸方向であり、前後方向がY軸方向であり、上下方向がZ軸方向である。 FIG. 1 shows an outline of the configuration of the mounting device 10. In FIG. 1, the left-right direction is the X-axis direction, the front-back direction is the Y-axis direction, and the up-down direction is the Z-axis direction.
 実装装置10は、部品Pを基板Sに実装する実装処理を行う装置であり、基台11と、基台11に支持された筐体12と、基板搬送ユニット20と、バックアップユニット30と、部品供給ユニット40と、実装ヘッド50と、XYロボット60と、制御装置90(図3参照)とを備えている。 The mounting device 10 is a device that performs a mounting process for mounting the component P on the substrate S, and includes a base 11, a housing 12 supported by the base 11, a board transport unit 20, a backup unit 30, and a component. It includes a supply unit 40, a mounting head 50, an XY robot 60, and a control device 90 (see FIG. 3).
 基板搬送ユニット20は、図1に示すように、Y軸方向に所定の間隔を隔てて配置された一対のサイドフレーム22と、一対のサイドフレーム22の各々に設けられたコンベアベルト24とを備え、コンベアベルト24を周回駆動することにより基板Sを搬送する。また、基板搬送ユニット20は、昇降可能なクランパ(図示せず)を備えており、基板Sがコンベアベルト24上に載置されている状態で、クランパを上昇させて基板Sを押し上げることにより、基板Sをサイドフレーム22の上端の押さえ部26に押し付ける。これにより、基板Sは、クランパと押さえ部26との間に挟まれてクランプされる。 As shown in FIG. 1, the substrate transport unit 20 includes a pair of side frames 22 arranged at predetermined intervals in the Y-axis direction, and a conveyor belt 24 provided on each of the pair of side frames 22. , The substrate S is conveyed by orbiting the conveyor belt 24. Further, the substrate transfer unit 20 is provided with a clamper (not shown) that can be raised and lowered, and by raising the clamper and pushing up the substrate S while the substrate S is mounted on the conveyor belt 24, the substrate S is pushed up. The substrate S is pressed against the holding portion 26 at the upper end of the side frame 22. As a result, the substrate S is sandwiched and clamped between the clamper and the holding portion 26.
 バックアップユニット30は、図示しない昇降装置により昇降可能に設置されたバックアッププレート32と、バックアッププレート32に立設された複数のバックアップピン34とを備える。このバックアップユニット30は、基板搬送ユニット20により搬送された基板Sがクランプされた状態で、バックアッププレート32を上昇させることでバックアップピン34により基板Sを裏面側からバックアップする。 The backup unit 30 includes a backup plate 32 that can be raised and lowered by an elevating device (not shown), and a plurality of backup pins 34 that are erected on the backup plate 32. The backup unit 30 backs up the substrate S from the back surface side by the backup pin 34 by raising the backup plate 32 in a state where the substrate S conveyed by the substrate transport unit 20 is clamped.
 部品供給ユニット40は、フィーダユニット42と、トレイユニット44とを備える。フィーダユニット42は、複数の部品が収容されたキャリアテープが巻き付けられたリールから、フィーダによりキャリアテープを送り出して供給位置に部品を供給する。キャリアテープは、所定間隔で部品の収容部が形成された紙製などのボトムテープと、ボトムテープの表面を覆い供給位置の手前で剥離されるトップフィルムとにより構成される。また、トレイユニット44は、樹脂などからなるトレイ上に、部品を複数配列して載置することで供給位置に部品を供給する。 The parts supply unit 40 includes a feeder unit 42 and a tray unit 44. The feeder unit 42 sends out the carrier tape by the feeder from the reel around which the carrier tape containing a plurality of parts is wound, and supplies the parts to the supply position. The carrier tape is composed of a bottom tape made of paper or the like in which component accommodating portions are formed at predetermined intervals, and a top film that covers the surface of the bottom tape and is peeled off before the supply position. Further, the tray unit 44 supplies the parts to the supply position by arranging and placing a plurality of parts on the tray made of resin or the like.
 XYロボット60は、筐体12の上段部に前後方向(Y軸方向)に沿って設けられた左右一対のY軸ガイドレール63と、左右一対のY軸ガイドレール63に架け渡され、Y軸ガイドレール63に沿って移動が可能なY軸スライダ64と、Y軸スライダ64の側面に左右方向(X軸方向)に沿って設けられた上下一対のX軸ガイドレール61と、X軸ガイドレール61に沿って移動が可能なX軸スライダ62と、を備える。X軸スライダ62は、X軸モータ66(図3参照)の駆動によって移動可能であり、Y軸スライダ64は、Y軸モータ68(図3参照)の駆動によって移動可能である。X軸スライダ62には実装ヘッド50が取り付けられており、制御装置90がXYロボット60(X軸モータ66及びY軸モータ68)を駆動制御することにより、XY平面上の任意の位置に実装ヘッド50を移動可能である。 The XY robot 60 is bridged between a pair of left and right Y-axis guide rails 63 provided along the front-rear direction (Y-axis direction) in the upper part of the housing 12 and a pair of left and right Y-axis guide rails 63, and is Y-axis. A Y-axis slider 64 that can move along the guide rail 63, a pair of upper and lower X-axis guide rails 61 provided on the side surface of the Y-axis slider 64 along the left-right direction (X-axis direction), and an X-axis guide rail. It includes an X-axis slider 62 that can move along 61. The X-axis slider 62 is movable by driving the X-axis motor 66 (see FIG. 3), and the Y-axis slider 64 is movable by driving the Y-axis motor 68 (see FIG. 3). A mounting head 50 is attached to the X-axis slider 62, and the control device 90 drives and controls the XY robot 60 (X-axis motor 66 and Y-axis motor 68) to drive and control the mounting head at an arbitrary position on the XY plane. 50 can be moved.
 実装ヘッド50の下面には、1つ以上(本実施形態では、8つ)の吸着ノズル59が着脱可能であり、部品種に応じた種類のものが装着される。吸着ノズル59は、圧力を利用して部品を吸着する吸着部材である。また、実装ヘッド50は、Z軸モータ55を駆動源とする昇降装置70(図2参照)によって、Z方向に吸着ノズル59を昇降させる。また、実装ヘッド50は、R軸(自転軸)モータ51によって吸着ノズル59を回転(自転)させ、吸着ノズル59に吸着された部品の角度を調整可能となっている。 One or more (8 in this embodiment) suction nozzles 59 can be attached to and detached from the lower surface of the mounting head 50, and the types corresponding to the component types are mounted. The suction nozzle 59 is a suction member that sucks parts by using pressure. Further, the mounting head 50 raises and lowers the suction nozzle 59 in the Z direction by an elevating device 70 (see FIG. 2) driven by a Z-axis motor 55. Further, the mounting head 50 rotates (rotates) the suction nozzle 59 by the R-axis (rotation axis) motor 51, and the angle of the component sucked by the suction nozzle 59 can be adjusted.
 図2に示すように、実装ヘッド50は、カバー500と、前後一対の昇降装置70と、公転部54と、自転部55と、を備えている。 As shown in FIG. 2, the mounting head 50 includes a cover 500, a pair of front and rear elevating devices 70, a revolution portion 54, and a rotation portion 55.
 カバー500は、実装ヘッド50の外殻を構成している。前後一対の昇降装置70は、公転軸(8つの吸着ノズル59の公転軸)Qを中心に、180°対向して配置されている。昇降装置70は、Z軸(上下軸)モータ71と、ボールねじ部72と、を備えている。また、昇降装置70は、Z軸位置センサ74(図3参照)を備えている。ボールねじ部72は、シャフト部(固定部)72aと、ナット部(可動部)72bと、を備えている。Z軸モータ71は、カバー500に取り付けられている。シャフト部72aは、Z軸モータ71の回転軸に連結されている。シャフト部72aは、上下方向に延在している。ナット部72bは、多数のボール(図示せず)を介して、シャフト部72aに環装されている。ナット部72bには、凹部(動力伝達部)72b1が配置されている。 The cover 500 constitutes the outer shell of the mounting head 50. The pair of front and rear elevating devices 70 are arranged so as to face each other by 180 ° with respect to the revolution axis (the revolution axis of the eight suction nozzles 59) Q. The elevating device 70 includes a Z-axis (upper and lower axis) motor 71 and a ball screw portion 72. Further, the elevating device 70 includes a Z-axis position sensor 74 (see FIG. 3). The ball screw portion 72 includes a shaft portion (fixed portion) 72a and a nut portion (movable portion) 72b. The Z-axis motor 71 is attached to the cover 500. The shaft portion 72a is connected to the rotating shaft of the Z-axis motor 71. The shaft portion 72a extends in the vertical direction. The nut portion 72b is annularly mounted on the shaft portion 72a via a large number of balls (not shown). A recess (power transmission portion) 72b1 is arranged in the nut portion 72b.
 公転部54は、Q軸(公転軸)モータ52と、公転用第1ギア541と、公転用第2ギア542と、公転用シャフト543と、回転板544と、8つのカラー545と、を備えている。Q軸モータ52は、ブラケット(図示せず)を介して、カバー500に取り付けられている。公転用第1ギア541は、Q軸モータ52の回転軸に連結されている。公転用第2ギア542は、公転用第1ギア541に噛合している。回転板544は、所定間隔だけ離間して、公転用第2ギア542の下側に配置されている。公転用シャフト543は、公転用第2ギア542と回転板544とを連結している。8つのカラー545は、公転軸Qを中心に、45°ずつ離間して配置されている。カラー545は、上下方向に延在する短軸の筒状を呈している。カラー545は、回転板544に埋設されている。 The revolution portion 54 includes a Q-axis (revolution shaft) motor 52, a first gear 541 for revolution, a second gear 542 for revolution, a shaft 543 for revolution, a rotary plate 544, and eight collars 545. ing. The Q-axis motor 52 is attached to the cover 500 via a bracket (not shown). The first gear 541 for public use is connected to the rotating shaft of the Q-axis motor 52. The public diversion second gear 542 meshes with the public diversion first gear 541. The rotary plate 544 is arranged below the second gear 542 for public rotation, separated by a predetermined interval. The public rotation shaft 543 connects the public rotation second gear 542 and the rotary plate 544. The eight collars 545 are arranged at intervals of 45 ° about the revolution axis Q. The collar 545 has a short-axis tubular shape extending in the vertical direction. The collar 545 is embedded in the rotating plate 544.
 自転部55は、R軸モータ51と、自転用第1ギア551と、自転用第2ギア552と、自転用第3ギア553と、を備えている。R軸モータ51は、ブラケット(図示せず)を介して、カバー500に取り付けられている。自転用第1ギア551は、R軸モータ350の回転軸に連結されている。自転用第2ギア552は、自転用第1ギア551に噛合している。自転用第2ギア552は、環状を呈している。自転用第3ギア553は、自転用第2ギア552の下側に連なっている。自転用第3ギア553は、筒状を呈している。上記公転用シャフト543は、自転用第2ギア552及び自転用第3ギア553を、上下方向に貫通している。 The rotation portion 55 includes an R-axis motor 51, a rotation first gear 551, a rotation second gear 552, and a rotation third gear 553. The R-axis motor 51 is attached to the cover 500 via a bracket (not shown). The rotation first gear 551 is connected to the rotating shaft of the R-axis motor 350. The rotation second gear 552 meshes with the rotation first gear 551. The second gear 552 for rotation has an annular shape. The rotation third gear 553 is connected to the lower side of the rotation second gear 552. The third gear 553 for rotation has a cylindrical shape. The public rotation shaft 543 penetrates the rotation second gear 552 and the rotation third gear 553 in the vertical direction.
 8つのホルダ58は、各々、カラー545に挿通されている。ホルダ58は、クラッド部580とコア部581とを備えている。クラッド部580は、カラー545に対して、上下方向に移動可能である。クラッド部580は、外筒部材580aと、凸部(動力伝達部)580cと、ホルダギア580dと、を備えている。凸部580cは、外筒部材580aの外周面に配置されている。凸部580cは、凹部72b1に対して、上下方向に係合可能である。ホルダギア580dは、外筒部材580aの外周面に配置されている。ホルダギア580dは、自転用第3ギア553に噛合している。 Each of the eight holders 58 is inserted through the collar 545. The holder 58 includes a clad portion 580 and a core portion 581. The clad portion 580 can move in the vertical direction with respect to the collar 545. The clad portion 580 includes an outer cylinder member 580a, a convex portion (power transmission portion) 580c, and a holder gear 580d. The convex portion 580c is arranged on the outer peripheral surface of the outer cylinder member 580a. The convex portion 580c can be engaged with the concave portion 72b1 in the vertical direction. The holder gear 580d is arranged on the outer peripheral surface of the outer cylinder member 580a. The holder gear 580d meshes with the third gear 553 for rotation.
 クラッド部580は、コア部581に対して、所定の押込ストロークだけ、上下方向に移動可能である。 The clad portion 580 can move up and down with respect to the core portion 581 by a predetermined pushing stroke.
 コア部581は、被検出部581aを備えている。被検出部581aは、外筒部材580aから上側に突出している。 The core unit 581 includes a detection unit 581a. The detected portion 581a projects upward from the outer cylinder member 580a.
 吸着ノズル59の下端には、吸着部591が配置されている。図示しないガス通路を介して供給される空気圧により、吸着部591は、部品Pを吸着、解放可能である。 A suction unit 591 is arranged at the lower end of the suction nozzle 59. The suction unit 591 can suck and release the component P by the air pressure supplied through a gas passage (not shown).
 ナット部72b上には、光電センサ73が配置されている。光電センサ73は、ナット部72bと共に、上下方向に移動可能である。光電センサ73は、図示しない投光器と受光器とを備えている。投光器は、被検出部581aに投光可能である。受光器は、被検出部581aからの反射光を受光可能である。光電センサ73の水平方向隣り(被検出部581a側)には、検出領域Aが設定されている。 A photoelectric sensor 73 is arranged on the nut portion 72b. The photoelectric sensor 73 can move in the vertical direction together with the nut portion 72b. The photoelectric sensor 73 includes a floodlight and a light receiver (not shown). The floodlight can flood the detected portion 581a. The light receiver can receive the reflected light from the detected portion 581a. A detection area A is set next to the photoelectric sensor 73 in the horizontal direction (on the side of the detected portion 581a).
 接地(タッチダウン)検出方法は、基準値設定工程と、接地判別工程と、を有している。非接地状態(具体的には、図2の後側のホルダ58及び吸着ノズル59のように、XYロボット31による部品Pの水平方向の搬送が完了した状態であって、ホルダ58及び吸着ノズル59が下降する前の状態)において実行される。基準値設定工程においては、制御装置90が、光電センサ73の受光器から、光の受光率を検出する。 The grounding (touchdown) detection method includes a reference value setting process and a grounding determination process. A non-grounded state (specifically, like the holder 58 and the suction nozzle 59 on the rear side of FIG. 2, the horizontal transfer of the component P by the XY robot 31 is completed, and the holder 58 and the suction nozzle 59 are completed. Is executed in the state before the descent. In the reference value setting step, the control device 90 detects the light receiving rate from the light receiver of the photoelectric sensor 73.
 検出領域Aに被検出部581aが進入していない場合、投光器からの光は、全量、受光器に入光しないことになる。この初期状態を0%とする。一方、検出領域Aの全体に被検出部581aが進入している場合、被検出部581aからの反射光は、全量、受光器に入光することになる。この終期状態を100%とする。 When the detected portion 581a does not enter the detection area A, all the light from the floodlight does not enter the light receiver. This initial state is 0%. On the other hand, when the detected portion 581a has entered the entire detection region A, the entire amount of the reflected light from the detected portion 581a enters the light receiver. This final state is 100%.
 これに対して、実際には、非接地状態において、検出領域Aに被検出部581aの上端が進入している。初期値設定工程においては、制御装置90が、非接地状態における受光器の受光率を検出し、基準レベルa1を設定する。例えば、非接地状態における受光器の受光率が、初期状態を0%、終期状態を100%として10%の場合、制御装置90は、当該10%を基準レベルa1に設定する。また、制御装置90は、基準レベルa1を100%として、例えば110%をしきい値a2に設定する。 On the other hand, in reality, the upper end of the detected portion 581a has entered the detection area A in the non-grounded state. In the initial value setting step, the control device 90 detects the light receiving rate of the light receiver in the non-grounded state and sets the reference level a1. For example, when the light receiving rate of the light receiver in the non-grounded state is 10% with the initial state as 0% and the final state as 100%, the control device 90 sets the 10% to the reference level a1. Further, the control device 90 sets the reference level a1 as 100% and, for example, 110% as the threshold value a2.
 接地判別工程は、非接地状態から接地状態に切り替わる際に実行される。すなわち、ホルダ58及び吸着ノズル59が下降する際に実行される。接地判別工程においては、制御装置90が、Z軸モータ71を駆動し、図2に示す実装ヘッド50に対して、ホルダ58及び吸着ノズル59を下降させる。並びに、制御装置90が、光電センサ73の受光器から、継続的に光の受光率を検出する。 The grounding determination process is executed when the non-grounded state is switched to the grounded state. That is, it is executed when the holder 58 and the suction nozzle 59 are lowered. In the ground contact determination step, the control device 90 drives the Z-axis motor 71 and lowers the holder 58 and the suction nozzle 59 with respect to the mounting head 50 shown in FIG. In addition, the control device 90 continuously detects the light reception rate from the light receiver of the photoelectric sensor 73.
 ホルダ58が下降し、部品Pが基板Sに接地すると、吸着ノズル59及びコア部581は、直ちに下降を停止する。しかしながら、クラッド部580は、ナット部72b及び光電センサ73と共に、下降を続行する。このため、クラッド部580に対して、吸着ノズル59及びコア部581が相対的に上昇する。クラッド部580に対してコア部581が相対的に上昇すると、被検出部581aが検出領域Aを相対的に上昇する。このため、光電センサ73の受光器の受光率が、増加する。受光率がしきい値a2になると、制御装置90は、基板Sに対する部品Pの接地を判別する。制御装置90は、Z軸モータ71を停止し、ホルダ58及び吸着ノズル59の下降を停止する。制御装置90は、吸着ノズル59から接地済みの部品Pを解放し、Z軸モータ71を駆動し、ホルダ58及び吸着ノズル59を上昇させる。 When the holder 58 descends and the component P touches the substrate S, the suction nozzle 59 and the core portion 581 immediately stop descending. However, the clad portion 580 continues to descend together with the nut portion 72b and the photoelectric sensor 73. Therefore, the suction nozzle 59 and the core portion 581 are relatively elevated with respect to the clad portion 580. When the core portion 581 rises relatively with respect to the clad portion 580, the detected portion 581a relatively rises in the detection region A. Therefore, the light receiving rate of the light receiver of the photoelectric sensor 73 increases. When the light receiving rate reaches the threshold value a2, the control device 90 determines that the component P is grounded with respect to the substrate S. The control device 90 stops the Z-axis motor 71, and stops the lowering of the holder 58 and the suction nozzle 59. The control device 90 releases the grounded component P from the suction nozzle 59, drives the Z-axis motor 71, and raises the holder 58 and the suction nozzle 59.
 それから、制御装置90は、次の装着座標の真上に、次のホルダ58及び吸着ノズル59(部品P吸着済み)をセットする。その後、制御装置90は、上記基準値設定工程と、上記接地判別工程と、を実行する。このように、制御装置90は、実装ヘッド50が保持する部品Pの数だけ、上記接地検出方法を繰り返し実行する。 Then, the control device 90 sets the next holder 58 and the suction nozzle 59 (part P sucked) directly above the next mounting coordinates. After that, the control device 90 executes the reference value setting step and the grounding determination step. In this way, the control device 90 repeatedly executes the above-mentioned grounding detection method for the number of components P held by the mounting head 50.
 制御装置90は、図3に示すように、CPU91を中心とするマイクロプロセッサとして構成されており、CPU91の他に、ROM92やHDD93、RAM94、入出力インタフェース95などを備える。これらはバス96を介して接続されている。制御装置90には、パーツカメラ80からの画像信号やマークカメラからの画像信号、X軸スライダ62のX軸方向の位置を検出するX軸位置センサ67からの検出信号、Y軸スライダ64のY軸方向の位置を検出するY軸位置センサ69からの検出信号、各ナット部72bのZ軸方向の位置を検出するZ軸位置センサ74からの検出信号、各ホルダ58のZ軸方向の位置を検出する光電センサ73からの検出信号などが入出力インタフェース95を介して入力される。一方、制御装置90からは、基板搬送ユニット20への制御信号や部品供給ユニット40への制御信号、XYロボット60(X軸モータ66及びY軸モータ68)への駆動信号、実装ヘッド50(R軸モータ51やQ軸モータ52及びZ軸モータ71)への駆動信号などが入出力インタフェース95を介して出力される。 As shown in FIG. 3, the control device 90 is configured as a microprocessor centered on the CPU 91, and includes a ROM 92, an HDD 93, a RAM 94, an input / output interface 95, and the like in addition to the CPU 91. These are connected via a bus 96. The control device 90 includes an image signal from the parts camera 80, an image signal from the mark camera, a detection signal from the X-axis position sensor 67 that detects the position of the X-axis slider 62 in the X-axis direction, and Y of the Y-axis slider 64. The detection signal from the Y-axis position sensor 69 that detects the position in the axial direction, the detection signal from the Z-axis position sensor 74 that detects the position in the Z-axis direction of each nut portion 72b, and the position in the Z-axis direction of each holder 58. A detection signal or the like from the photoelectric sensor 73 to be detected is input via the input / output interface 95. On the other hand, from the control device 90, a control signal to the board transfer unit 20, a control signal to the component supply unit 40, a drive signal to the XY robot 60 (X-axis motor 66 and Y-axis motor 68), and a mounting head 50 (R). Drive signals to the shaft motor 51, the Q-axis motor 52, and the Z-axis motor 71) are output via the input / output interface 95.
 以下は、こうして構成された実装装置10の動作についての説明である。図4及び図5は、実装処理の一例を示すフローチャートである。この処理は、基板搬送ユニット20により搬入された基板Sがクランプされてバックアップユニット30によりバックアップされた状態で、制御装置90により実行される。以降、各処理の手順の説明において、ステップを「S」と表記する。 The following is a description of the operation of the mounting device 10 configured in this way. 4 and 5 are flowcharts showing an example of the mounting process. This process is executed by the control device 90 in a state where the substrate S carried in by the substrate transfer unit 20 is clamped and backed up by the backup unit 30. Hereinafter, in the description of the procedure of each process, the step is referred to as "S".
 図4において、制御装置90のCPU91は、まず、実装位置毎のタッチダウン検出区間を初期値に設定する(S10)。ここで、タッチダウン検出区間とは、部品Pが基板S上にタッチダウンすることを検出する際に、つまり、上記接地判別工程で接地を判別する際に、ホルダ58及び吸着ノズル59を下降させる速度を減速させる区間である。吸着ノズル59に吸着された部品Pがタッチダウン検出区間より高い位置にある場合、ホルダ58及び吸着ノズル59を下降させる速度を高速化すれば、部品Pの実装時間を短縮化することができる。しかし、この高速度のまま、タッチダウンを検出した場合、うまくタッチダウンを検出できない虞がある。そこで、タッチダウンを検出する直前に、ホルダ58及び吸着ノズル59を下降させる速度を低速化して、うまくタッチダウンを検出するようにしている。 In FIG. 4, the CPU 91 of the control device 90 first sets the touchdown detection section for each mounting position to the initial value (S10). Here, the touch-down detection section means that the holder 58 and the suction nozzle 59 are lowered when the component P is detected to touch down on the substrate S, that is, when the grounding is determined in the grounding determination step. This is the section where the speed is reduced. When the component P adsorbed on the suction nozzle 59 is located at a position higher than the touchdown detection section, the mounting time of the component P can be shortened by increasing the speed at which the holder 58 and the suction nozzle 59 are lowered. However, if the touchdown is detected at this high speed, there is a possibility that the touchdown cannot be detected well. Therefore, immediately before the touchdown is detected, the speed at which the holder 58 and the suction nozzle 59 are lowered is reduced so that the touchdown can be detected successfully.
 図6(a)は、基板Sの表面が理想的なフラット面である基板S0の実装位置毎のタッチダウン検出区間の一例を示している。図6(a)において(図6(b),(c)についても同様)、横方向は実装位置を示し、縦方向は高さを示している。そして、横方向の実装位置P1~P5はそれぞれ、異なる実装位置を示している。また、縦方向の高さH0は、部品Pを基板S上に接地させるための目標値を示している。さらに、高さH1は、実装位置毎のタッチダウン検出区間の始点を示している。つまり、基板S0では、実装位置毎のタッチダウン検出区間は、実装位置P1~P5のいずれについても、同一の区間H1-H0が初期値として設定される。これは、各実装位置P1~P5における目標高さH0と基板S0上の接地の高さが同じであるからである。 FIG. 6A shows an example of a touchdown detection section for each mounting position of the substrate S0 in which the surface of the substrate S is an ideal flat surface. In FIG. 6 (a) (the same applies to FIGS. 6 (b) and 6 (c)), the horizontal direction indicates the mounting position and the vertical direction indicates the height. The mounting positions P1 to P5 in the horizontal direction indicate different mounting positions. Further, the height H0 in the vertical direction indicates a target value for grounding the component P on the substrate S. Further, the height H1 indicates the start point of the touchdown detection section for each mounting position. That is, on the board S0, the same section H1-H0 is set as the initial value for the touchdown detection section for each mounting position for any of the mounting positions P1 to P5. This is because the target height H0 at each mounting position P1 to P5 and the grounding height on the substrate S0 are the same.
 図6(b)は、基板Sの表面に反りがある基板S1の実装位置毎のタッチダウン検出区間の一例を示している。図6(b)の例でも、高さH0は、部品Pを基板S上に接地させるための目標値を示している。しかし、基板S1には、実装位置P2に目標高さH0より高い高さH2の反りがあり、実装位置P4に目標高さH0より低い高さH3の反りがある。このため、各実装位置P1~P5のいずれについても、図5(a)の基板S0と同じ長さ以上のタッチダウン検出区間を設けるためには、高さH2に区間H1-H0分だけ加算した高さH4を実装位置毎のタッチダウン検出区間の始点にする必要がある。したがって、基板S1では、実装位置毎のタッチダウン検出区間は、実装位置P1~P5のいずれについても、同一の区間H4-H0が初期値として設定される。 FIG. 6B shows an example of a touchdown detection section for each mounting position of the substrate S1 having a warp on the surface of the substrate S. Also in the example of FIG. 6B, the height H0 indicates a target value for grounding the component P on the substrate S. However, the substrate S1 has a warp of a height H2 higher than the target height H0 at the mounting position P2, and a warp of a height H3 lower than the target height H0 at the mounting position P4. Therefore, in order to provide a touchdown detection section having the same length as or longer than the substrate S0 in FIG. 5A for any of the mounting positions P1 to P5, only the sections H1-H0 are added to the height H2. It is necessary to set the height H4 as the starting point of the touchdown detection section for each mounting position. Therefore, on the substrate S1, the same section H4-H0 is set as the initial value for the touchdown detection section for each mounting position for any of the mounting positions P1 to P5.
 なお、図4の上記S10において、実装位置毎のタッチダウン検出区間の初期値として、図6(a)のタッチダウン検出区間と図6(b)のタッチダウン検出区間のいずれを用いればよいか問題であるが、実装処理を開始する前に基板Sの反りの状態が分かっていなければ、図6(a)のタッチダウン検出区間を採用すればよいし、分かっていれば、図6(b)のタッチダウン検出区間を採用すればよい。本実施形態では、図6(b)のタッチダウン検出区間を採用することとする。 In the above S10 of FIG. 4, which of the touchdown detection section of FIG. 6A and the touchdown detection section of FIG. 6B should be used as the initial value of the touchdown detection section for each mounting position. Although it is a problem, if the warp state of the substrate S is not known before the mounting process is started, the touchdown detection section of FIG. 6A may be adopted, and if it is known, FIG. 6B ) Touchdown detection section may be adopted. In this embodiment, the touchdown detection section shown in FIG. 6B is adopted.
 図4に戻り、CPU91は、吸着ノズル59を下降させて、部品供給ユニット40により供給位置に供給された部品Pを吸着するよう実装ヘッド50を制御する(S12)。 Returning to FIG. 4, the CPU 91 lowers the suction nozzle 59 and controls the mounting head 50 so as to suck the component P supplied to the supply position by the component supply unit 40 (S12).
 次に、CPU91は、吸着ノズル59への部品の吸着が完了すると、XYロボット60により実装ヘッド50を基板S上に移動させ、吸着ノズル59を下降させて、基板Sの実装位置に部品Pを実装するよう実装ヘッド50を制御する(S14)。 Next, when the CPU 91 completes the suction of the component to the suction nozzle 59, the XY robot 60 moves the mounting head 50 onto the substrate S, lowers the suction nozzle 59, and places the component P at the mounting position of the substrate S. The mounting head 50 is controlled so as to be mounted (S14).
 次に、CPU91は、タッチダウン高さを検出し、検出したタッチダウン高さを現在の実装位置に対応付けて、例えば上記RAM94に記憶する(S16)。タッチダウン高さの検出は、具体的には、上記光電センサ73の受光器の受光率がしきい値a2になったとき、つまり、制御装置90(のCPU91)が基板Sに対する部品Pの接地を判別したときに、Z軸位置センサ74からの検出信号を検出することにより行う。 Next, the CPU 91 detects the touchdown height, associates the detected touchdown height with the current mounting position, and stores it in, for example, the RAM 94 (S16). Specifically, the touchdown height is detected when the light receiving rate of the light receiver of the photoelectric sensor 73 reaches the threshold value a2, that is, the control device 90 (CPU 91) grounds the component P to the substrate S. Is determined by detecting the detection signal from the Z-axis position sensor 74.
 そして、CPU91は、全部品の実装が完了したか否かを判断する(S18)。この判断において、実装すべき部品が未だ残っていると判断された場合(S18:NO)、CPU91は、次に実装すべき部品を選択した後、処理を上記S12に戻す。一方、この判断において、全部品の実装が完了したと判断された場合(S18:YES)、CPU91は、処理をS20に進める。 Then, the CPU 91 determines whether or not the mounting of all the components is completed (S18). In this determination, if it is determined that there are still components to be mounted (S18: NO), the CPU 91 selects the component to be mounted next, and then returns the process to S12. On the other hand, when it is determined in this determination that the mounting of all the components is completed (S18: YES), the CPU 91 advances the process to S20.
 S20では、CPU91は、所定枚数の基板の実装を完了したか否かを判断する。この判断において、所定枚数の基板の実装を完了していないと判断された場合(S20:NO)、CPU91は、処理を図5のS40に進める。一方、この判断において、所定枚数の基板の実装を完了したと判断された場合(S20:YES)、CPU91は、処理をS22に進める。ここで、「所定枚数」とは、実装を予定している全基板のうちの一部の基板の枚数である。本実施形態では、所定枚数として、例えば3枚(図6(c)における基板S1~S3)を例に挙げるが、これに限られる訳ではない。 In S20, the CPU 91 determines whether or not the mounting of a predetermined number of boards has been completed. In this determination, if it is determined that the mounting of the predetermined number of boards has not been completed (S20: NO), the CPU 91 proceeds to the process of S40 in FIG. On the other hand, if it is determined in this determination that the mounting of a predetermined number of boards has been completed (S20: YES), the CPU 91 advances the process to S22. Here, the "predetermined number of boards" is the number of some boards among all the boards scheduled to be mounted. In the present embodiment, for example, three sheets (boards S1 to S3 in FIG. 6C) are given as an example of the predetermined number of sheets, but the number is not limited to this.
 図5のS40では、CPU91は、全基板の実装を完了したか否かを判断する。この判断において、全基板の実装を完了していないと判断された場合(S40:NO)、CPU91は、次に実装すべき基板が上記バックアップユニット30によりバックアップされるまで待ってから、処理を図4の上記S12に戻す。一方、この判断において、全基板の実装を完了したと判断された場合(S40:YES)、CPU91は、実装処理を終了する。 In S40 of FIG. 5, the CPU 91 determines whether or not the mounting of all the boards is completed. In this determination, if it is determined that the mounting of all the boards has not been completed (S40: NO), the CPU 91 waits until the board to be mounted next is backed up by the backup unit 30, and then performs the processing. Return to S12 of 4. On the other hand, if it is determined in this determination that the mounting of all the boards has been completed (S40: YES), the CPU 91 ends the mounting process.
 図4のS22では、CPU91は、実装位置毎にタッチダウン高さの平均値を算出する。平均値の算出は、各実装位置にそれぞれ対応付けて記憶したタッチダウン高さを、所定枚数の基板に亘って平均値を取ることにより行う。 In S22 of FIG. 4, the CPU 91 calculates the average value of the touchdown height for each mounting position. The average value is calculated by taking the average value of the touchdown height stored in association with each mounting position over a predetermined number of substrates.
 次に、CPU91は、タッチダウン高さの平均値からのバラつきを実装位置毎に算出する(S24)。実装位置を1つ固定した場合、タッチダウン高さは、所定枚数の基板分、記憶されている。そして、上記S22では、固定した1つの実装位置について、タッチダウン高さの平均値が1つ算出される。したがって、S24では、所定枚数の基板分あるタッチダウン高さのそれぞれについて、タッチダウン高さの平均値との差分を算出し、固定した1つの実装位置についてのバラつきとする。そして、このバラつきの算出を、全実装位置について行う。なお、S22で算出された、実装位置毎のタッチダウン高さの平均値も、S24で算出された、実装位置毎のタッチダウン高さの平均値からのバラつきも、例えばRAM94に一時的に記憶しておく。 Next, the CPU 91 calculates the variation from the average value of the touchdown height for each mounting position (S24). When one mounting position is fixed, the touchdown height is stored for a predetermined number of boards. Then, in S22, one average value of the touchdown height is calculated for one fixed mounting position. Therefore, in S24, the difference from the average value of the touchdown heights is calculated for each of the touchdown heights of a predetermined number of substrates, and the variation is set for one fixed mounting position. Then, this variation is calculated for all mounting positions. The variation from the average value of the touchdown height for each mounting position calculated in S22 and the average value of the touchdown height for each mounting position calculated in S24 are temporarily stored in the RAM 94, for example. I will do it.
 次に、CPU91は、実装位置カウンタを初期化する(S26)。なお、実装位置カウンタは、実装位置、つまり、本実施形態では、実装位置P1~P5のいずれかの位置を示すためにカウントするソフトウェアカウンタである。したがって、本実施形態では、実装位置カウンタは、1~5のいずれかをカウントするので、上記初期化は、実装位置カウンタを“1”に設定することを意味する。 Next, the CPU 91 initializes the mounting position counter (S26). The mounting position counter is a software counter that counts to indicate the mounting position, that is, in the present embodiment, any of the mounting positions P1 to P5. Therefore, in the present embodiment, the mounting position counter counts any of 1 to 5, and the initialization means that the mounting position counter is set to "1".
 そして、CPU91は、実装位置カウンタが示す実装位置におけるバラつきが所定の範囲を超えているか否かを判断する(図5のS28)。バラつきは、本実施形態では上述のように、タッチダウン高さの平均値との差分として算出されたので、CPU91は、バラつきが所定の範囲を超えているか否かは、算出された差分のうちの最大値が所定の範囲を超えているか否かによって判断する。 Then, the CPU 91 determines whether or not the variation in the mounting position indicated by the mounting position counter exceeds a predetermined range (S28 in FIG. 5). Since the variation is calculated as a difference from the average value of the touchdown height as described above in the present embodiment, the CPU 91 determines whether or not the variation exceeds a predetermined range among the calculated differences. Judgment is made based on whether or not the maximum value of is exceeded the predetermined range.
 S28の判断において、実装位置カウンタが示す実装位置におけるバラつきが所定の範囲を超えていると判断された場合(S28:YES)、CPU91は、バラつきの最大値、つまり差分の最大値をタッチダウン高さの平均値に加算し、さらに所定のマージンを加算し、実装位置に対応付けて、例えばRAM94に記憶した(S30)後、処理をS34に進める。 In the determination of S28, when it is determined that the variation in the mounting position indicated by the mounting position counter exceeds a predetermined range (S28: YES), the CPU 91 touches down the maximum value of the variation, that is, the maximum value of the difference. After adding to the average value of the above, adding a predetermined margin, and storing the product in the RAM 94 (S30) in association with the mounting position, the process proceeds to S34.
 一方、S28の判断において、実装位置カウンタが示す実装位置におけるバラつきが所定の範囲を超えていないと判断された場合(S28:NO)、CPU91は、タッチダウン高さの平均値に所定のマージンを加算し、実装位置に対応付けて、例えばRAM94に記憶した(S32)後、処理をS34に進める。 On the other hand, when it is determined in S28 that the variation in the mounting position indicated by the mounting position counter does not exceed the predetermined range (S28: NO), the CPU 91 sets a predetermined margin in the average value of the touchdown heights. After adding and storing in the RAM 94 (S32) in association with the mounting position, the process proceeds to S34.
 S34では、CPU91は、実装位置カウンタが最後の実装位置をカウントしているか否かを判断する。この判断において、実装位置カウンタが最後の実装位置をカウントしていないと判断された場合(S34:NO)、CPU91は、実装位置カウンタを“1”だけインクリメントした(S36)後、処理を上記S28に戻す。一方、この判断において、実装位置カウンタが最後の実装位置をカウントしていると判断された場合(S34:YES)、CPU91は、処理をS38に進める。 In S34, the CPU 91 determines whether or not the mounting position counter is counting the last mounting position. In this determination, when it is determined that the mounting position counter does not count the last mounting position (S34: NO), the CPU 91 increments the mounting position counter by "1" (S36), and then performs processing in the above S28. Return to. On the other hand, in this determination, when it is determined that the mounting position counter is counting the last mounting position (S34: YES), the CPU 91 advances the process to S38.
 S38では、CPU91は、実装位置毎のタッチダウン検出区間を記憶された値で更新する。その後、CPU91は、処理を上記S40に進める。S40の処理については、上述したので、その説明を省略する。S38の処理により実装位置毎のタッチダウン検出区間が更新されると、その後、全基板の実装が完了するまで、CPU91は、更新された実装位置毎のタッチダウン検出区間に基づいて、ホルダ58及び吸着ノズル59を下降させる速度を決定する。つまり、CPU91は、ホルダ58及び吸着ノズル59を下降させる速度を、実装位置毎のタッチダウン検出区間より高い位置では高速化し、実装位置毎のタッチダウン検出区間内では低速化する。 In S38, the CPU 91 updates the touchdown detection section for each mounting position with a stored value. After that, the CPU 91 advances the process to S40. Since the processing of S40 has been described above, the description thereof will be omitted. When the touchdown detection section for each mounting position is updated by the processing of S38, the CPU 91 then holds the holder 58 and the holder 58 based on the updated touchdown detection section for each mounting position until the mounting of all the boards is completed. The speed at which the suction nozzle 59 is lowered is determined. That is, the CPU 91 speeds up the lowering of the holder 58 and the suction nozzle 59 at a position higher than the touchdown detection section for each mounting position, and slows down within the touchdown detection section for each mounting position.
 図6(c)は、上記S38の処理により更新された実装位置毎のタッチダウン検出区間の一例を示している。図6(c)において、基板S1は、実装処理により最初に実装された基板を示し、基板S2は、実装処理により第2番目に実装された基板を示し、基板S3は、実装処理により第3番目に実装された基板を示している。 FIG. 6C shows an example of the touchdown detection section for each mounting position updated by the process of S38. In FIG. 6C, the substrate S1 shows the board first mounted by the mounting process, the board S2 shows the board second mounted by the mounting process, and the board S3 is the third board mounted by the mounting process. The second mounted board is shown.
 図6(c)の例では、実装位置P1,P3,P5については、基板S1~S3のいずれにも反りがないので、タッチダウン高さの平均値=H0であり、バラつき=0である。このため、上記S30における「所定のマージン」を、例えば値H1-H0(図6(a)参照)とすると、実装位置P1,P3,P5における実装位置毎のタッチダウン検出区間は、初期値H4-H0から値H1-H0に更新される。なお、H1<H4である。 In the example of FIG. 6C, since there is no warp in any of the boards S1 to S3 at the mounting positions P1, P3, and P5, the average value of the touchdown height = H0 and the variation = 0. Therefore, assuming that the "predetermined margin" in S30 is, for example, the value H1-H0 (see FIG. 6A), the touchdown detection section for each mounting position at the mounting positions P1, P3, and P5 is the initial value H4. -Updated from H0 to the value H1-H0. In addition, H1 <H4.
 一方、実装位置P2については、基板S1~S3のいずれにも反りがあるものの、バラつきは少ない。例えば、タッチダウン高さの平均値が基板S2における実装位置P2の高さであるとし、バラつきの最大値が所定の範囲内であるとすると、実装位置P2における実装位置毎のタッチダウン検出区間は、初期値H4-H0から値H5-H0に更新される。なお、高さH5は、基板S2における実装位置P2の高さに、「所定のマージン」、つまり値H1-H0を加算した値であり、H5>H4である。 On the other hand, regarding the mounting position P2, although there is a warp in any of the boards S1 to S3, there is little variation. For example, assuming that the average value of the touchdown height is the height of the mounting position P2 on the board S2 and the maximum value of the variation is within a predetermined range, the touchdown detection section for each mounting position at the mounting position P2 is , The initial value H4-H0 is updated to the value H5-H0. The height H5 is a value obtained by adding a "predetermined margin", that is, the values H1-H0 to the height of the mounting position P2 on the substrate S2, and H5> H4.
 さらに、実装位置P4については、基板S1~S3のいずれにも反りがあり、バラつきは多い。例えば、タッチダウン高さの平均値が基板S3における実装位置P4の高さ=H0であるとし、バラつきの最大値が所定の範囲を超えているとすると、実装位置P4における実装位置毎のタッチダウン検出区間は、初期値H4-H0から値H6-H0に更新される。なお、高さH6は、基板S3における実装位置P2の高さH0にバラつきの最大値、つまり、基板S2における実装位置P2の高さと基板S3における実装位置P2の高さH0との差分を加算し、更に「所定のマージン」、つまり値H1-H0を加算した値であり、H6>H5>H4である。 Furthermore, regarding the mounting position P4, there is a warp in any of the boards S1 to S3, and there is a lot of variation. For example, assuming that the average value of the touchdown height is the height of the mounting position P4 on the substrate S3 = H0 and the maximum value of the variation exceeds a predetermined range, the touchdown for each mounting position at the mounting position P4 The detection section is updated from the initial value H4-H0 to the value H6-H0. The height H6 is obtained by adding the maximum value of variation to the height H0 of the mounting position P2 on the board S3, that is, the difference between the height of the mounting position P2 on the board S2 and the height H0 of the mounting position P2 on the board S3. Further, it is a “predetermined margin”, that is, a value obtained by adding the values H1-H0, and H6> H5> H4.
 このように、更新後の実装位置毎のタッチダウン検出区間は、実装位置P2,P4では、初期値より長くなるが、実装位置P1,P3,P5では、初期値より短くなるので、全体として、実装位置毎のタッチダウン検出区間の初期値より短くなる。これにより、実装時間の短縮化を図ることが可能となる。 As described above, the touchdown detection section for each mounting position after the update is longer than the initial value at the mounting positions P2 and P4, but shorter than the initial value at the mounting positions P1, P3 and P5. It is shorter than the initial value of the touchdown detection section for each mounting position. This makes it possible to shorten the mounting time.
 また、実装位置P2のように、タッチダウン高さのバラつきが少ない実装位置では、実装位置毎のタッチダウン検出区間は、タッチダウン高さの平均値に所定のマージンを加算した値、つまり、実装位置毎のタッチダウン検出区間の中心値をタッチダウン高さの平均値にシフトした区間に更新される。さらに、実装位置P4のように、タッチダウン高さのバラつきが多い実装位置では、実装位置毎のタッチダウン検出区間は、バラつきの最大値にタッチダウン高さの平均値を加算し、更に所定のマージンを加算した値に更新される。このように、実装位置毎のタッチダウン検出区間は、各基板Sにおけるタッチダウン高さの状況に応じて最適な区間に設定されるので、いずれの基板Sにおいてもタッチダウンを的確に検出することが可能となる。 Further, in the mounting position where the variation in the touchdown height is small as in the mounting position P2, the touchdown detection section for each mounting position is a value obtained by adding a predetermined margin to the average value of the touchdown height, that is, mounting. The center value of the touchdown detection section for each position is updated to the section shifted to the average value of the touchdown height. Further, in a mounting position where there are many variations in the touchdown height, such as the mounting position P4, the touchdown detection section for each mounting position is obtained by adding the average value of the touchdown height to the maximum value of the variation and further determining. It is updated to the value with the margin added. In this way, the touchdown detection section for each mounting position is set to the optimum section according to the state of the touchdown height on each board S, so that the touchdown can be accurately detected on any board S. Is possible.
 図7は、図2の実装ヘッド50とは異なる構成の実装ヘッド140を示している。実装ヘッド140は、回転軸と同軸の円周方向に複数のノズルホルダ165(図7では2個のみ図示)が所定角度間隔(例えば30度間隔)で配置されたヘッド本体142と、各ノズルホルダ165の下端部に対して着脱可能に取り付けられる吸着ノズル160と、を備えている。また、実装ヘッド140は、ヘッド本体142を回転させて複数のノズルホルダ165を回転(公転)させるR軸モータ(図示せず)と、複数のノズルホルダ165を回転(自転)させるQ軸モータ146と、ノズルホルダ165を昇降させる昇降装置(図示せず)と、を備えている。また、実装ヘッド140は、吸着部161に負圧を供給する負圧供給装置170と、ノズルホルダ165に正圧を供給する正圧供給装置180と、を備えている。 FIG. 7 shows a mounting head 140 having a configuration different from that of the mounting head 50 of FIG. The mounting head 140 includes a head body 142 in which a plurality of nozzle holders 165 (only two are shown in FIG. 7) are arranged at predetermined angular intervals (for example, 30 degree intervals) in a circumferential direction coaxial with the rotation axis, and each nozzle holder. It is provided with a suction nozzle 160 that is detachably attached to the lower end of the 165. Further, the mounting head 140 includes an R-axis motor (not shown) that rotates (revolves) a plurality of nozzle holders 165 by rotating the head body 142, and a Q-axis motor 146 that rotates (rotates) a plurality of nozzle holders 165. And an elevating device (not shown) for elevating and lowering the nozzle holder 165. Further, the mounting head 140 includes a negative pressure supply device 170 that supplies a negative pressure to the suction unit 161 and a positive pressure supply device 180 that supplies a positive pressure to the nozzle holder 165.
 ヘッド本体142は、X軸スライダ62(図1参照)に取り付けられたフレーム141と、フレーム141に回転自在に支持された軸部142aと、軸部142aよりも大きな径の円柱形状に形成され複数のノズルホルダ165をZ軸方向に移動可能に保持するホルダ保持部142bと、を備える。R軸モータが駆動すると、軸部142a及びホルダ保持部142bが回転し、これにより複数のノズルホルダ165は回転(公転)する。また、ヘッド本体142は、軸部142aと同軸で軸部142aに対して相対的に回転自在に支持されたギヤ143と、ギヤ143の回転に伴って回転するギヤ147と、を有する。ギヤ143は、Q軸モータ146の回転軸に取り付けられたギヤ145と噛み合い、ギヤ147は、各ノズルホルダ165に取り付けられたギヤ165bと噛み合っている。Q軸モータ146が駆動すると、各ノズルホルダ165及び各ノズルホルダ165に装着された吸着ノズル160は、いずれも同一回転方向に同一回転量(回転角度)だけ回転(自転)する。また、ギヤ165bの下面とホルダ保持部142bの上面との間には、スプリング165aが配置されている。スプリング165aは、ノズルホルダ165をZ軸方向の上方へ付勢する。 A plurality of head main bodies 142 are formed into a frame 141 attached to the X-axis slider 62 (see FIG. 1), a shaft portion 142a rotatably supported by the frame 141, and a cylindrical shape having a diameter larger than that of the shaft portion 142a. It is provided with a holder holding portion 142b for holding the nozzle holder 165 of the above so as to be movable in the Z-axis direction. When the R-axis motor is driven, the shaft portion 142a and the holder holding portion 142b rotate, whereby the plurality of nozzle holders 165 rotate (revolve). Further, the head main body 142 has a gear 143 coaxially with the shaft portion 142a and rotatably supported relative to the shaft portion 142a, and a gear 147 that rotates with the rotation of the gear 143. The gear 143 meshes with the gear 145 attached to the rotating shaft of the Q-axis motor 146, and the gear 147 meshes with the gear 165b attached to each nozzle holder 165. When the Q-axis motor 146 is driven, each nozzle holder 165 and the suction nozzle 160 mounted on each nozzle holder 165 rotate (rotate) by the same rotation amount (rotation angle) in the same rotation direction. Further, a spring 165a is arranged between the lower surface of the gear 165b and the upper surface of the holder holding portion 142b. The spring 165a urges the nozzle holder 165 upward in the Z-axis direction.
 ノズルホルダ165は、Z軸方向に延びる円筒部材として構成されており、その内部には第1ガス通路166a及び第2ガス通路167aが形成されている。また、ノズルホルダ165は、その上端部に径方向に延びる水平部165cが形成されている。 The nozzle holder 165 is configured as a cylindrical member extending in the Z-axis direction, and a first gas passage 166a and a second gas passage 167a are formed inside the nozzle holder 165. Further, the nozzle holder 165 is formed with a horizontal portion 165c extending in the radial direction at the upper end portion thereof.
 負圧供給装置170は、複数のノズルホルダ165の各々に装着された複数の吸着ノズル160に同一の負圧源171からの負圧をそれぞれ独立して供給する装置である。負圧供給装置170は、真空ポンプなどの負圧源171と、フレーム通路172と、ヘッド通路173と、負圧導入通路174と、大気導入通路175と、スプール穴177と、スプール178と、スプール駆動機構(図示せず)と、を備える。フレーム通路172は、実装ヘッド140のフレーム141内に形成され、負圧源171に接続されている。ヘッド通路173は、フレーム通路172と連通し、実装ヘッド140の中心軸に沿って延びるように形成されている。負圧導入通路174は、ヘッド通路173と連通し、ホルダ保持部142bの中心軸から放射状に延びるように複数形成されている。大気導入通路175は、正圧源(ここでは大気)に連通するよう負圧導入通路174と対応させて複数形成されている。 The negative pressure supply device 170 is a device that independently supplies negative pressure from the same negative pressure source 171 to a plurality of suction nozzles 160 mounted on each of the plurality of nozzle holders 165. The negative pressure supply device 170 includes a negative pressure source 171 such as a vacuum pump, a frame passage 172, a head passage 173, a negative pressure introduction passage 174, an atmosphere introduction passage 175, a spool hole 177, a spool 178, and a spool. It is equipped with a drive mechanism (not shown). The frame passage 172 is formed in the frame 141 of the mounting head 140 and is connected to the negative pressure source 171. The head passage 173 communicates with the frame passage 172 and is formed so as to extend along the central axis of the mounting head 140. A plurality of negative pressure introduction passages 174 are formed so as to communicate with the head passage 173 and extend radially from the central axis of the holder holding portion 142b. A plurality of atmosphere introduction passages 175 are formed in correspondence with the negative pressure introduction passage 174 so as to communicate with the positive pressure source (here, the atmosphere).
 スプール178は、複数のノズルホルダ165の各々に設けられた第1ガス通路166aに対して、対応する負圧導入通路174と大気導入通路175とのいずれかを選択的に連通させるための切替弁である。第1ガス通路166aは吸着ノズル160の吸着部161の先端の吸引口と連通している。スプール178は、ホルダ保持部142b内に複数のノズルホルダ165の各々に対応して形成されたスプール穴177にそれぞれ挿入される筒状部材である。このスプール178は、略中央部が縮径されており、スプール穴177内の空間のうちこの縮径された部分の周囲が負圧源171からの負圧の経路となる。スプール178は、自身が上方へ移動している状態(図7の状態)では、第1ガス通路166aと負圧導入通路174とを連通すると共に第1ガス通路166aと大気導入通路175との連通を遮断する。一方、スプール178は、自身が下方へ移動している状態では、第1ガス通路166aと負圧導入通路174との連通を遮断すると共に第1ガス通路166aと大気導入通路175とを連通する。スプール駆動機構は、駆動力を出力してスプール178を上下させることで、スプール178が負圧導入通路174と大気導入通路175とのいずれを第1ガス通路166aに連通させるかを切り替える。 The spool 178 is a switching valve for selectively communicating either the corresponding negative pressure introduction passage 174 or the atmosphere introduction passage 175 to the first gas passage 166a provided in each of the plurality of nozzle holders 165. Is. The first gas passage 166a communicates with the suction port at the tip of the suction portion 161 of the suction nozzle 160. The spool 178 is a tubular member that is inserted into each of the spool holes 177 formed in the holder holding portion 142b corresponding to each of the plurality of nozzle holders 165. The spool 178 has a substantially central portion reduced in diameter, and the circumference of the reduced diameter portion of the space in the spool hole 177 serves as a path for negative pressure from the negative pressure source 171. The spool 178 communicates with the first gas passage 166a and the negative pressure introduction passage 174 and also communicates with the first gas passage 166a and the atmosphere introduction passage 175 when the spool 178 is moving upward (the state shown in FIG. 7). To shut off. On the other hand, when the spool 178 is moving downward, the spool 178 blocks the communication between the first gas passage 166a and the negative pressure introduction passage 174 and communicates with the first gas passage 166a and the atmosphere introduction passage 175. The spool drive mechanism outputs a driving force to move the spool 178 up and down, so that the spool 178 switches between the negative pressure introduction passage 174 and the atmosphere introduction passage 175 to communicate with the first gas passage 166a.
 正圧供給装置180は、複数のノズルホルダ165の各々に設けられた第2ガス通路167aに対して正圧を供給する装置である。正圧供給装置180は、コンプレッサなどの正圧源181と、流量センサ181aと、フレーム通路182と、ヘッド通路183と、正圧導入通路184と、を備える。流量センサ181aは、正圧源181に接続されており、正圧源181から供給されて第2ガス通路167aを流れるガス(ここではエアー)の流量を検出する。フレーム通路182は、実装ヘッド140のフレーム141内のフレーム通路172とは異なる位置に形成され、流量センサ181a及び正圧源181に接続されている。ヘッド通路183は、フレーム通路182と連通し、実装ヘッド140の中心軸方向に沿って延びるように形成されている。ヘッド通路183は、上面視でヘッド通路173を中心としたリング状の形状をしており、ヘッド通路173から離間しつつその周囲を囲むような形状で上下方向に延びている。正圧導入通路184は、ヘッド通路183と連通し、ホルダ保持部142bの中心軸側からホルダ保持部142bの外側に向かって延びるように複数形成されている。複数の正圧導入通路184の各々は、複数のノズルホルダ165の各々と対応して形成されており、対応するノズルホルダ165の第2ガス通路167aと連通している。なお、複数の正圧導入通路184は、いずれも負圧導入通路174及びスプール穴177を避けるように形成されている。なお、フレーム通路182,ヘッド通路183,正圧導入通路184及び第2ガス通路167aは、いずれも、フレーム通路172,ヘッド通路173,負圧導入通路174,大気導入通路175,スプール穴177,及び第1ガス通路166aのいずれとも連通していない。すなわち、負圧供給装置170の負圧の経路及び正圧(大気)の経路と、正圧供給装置180の正圧の経路とは、互いに独立している。 The positive pressure supply device 180 is a device that supplies positive pressure to the second gas passage 167a provided in each of the plurality of nozzle holders 165. The positive pressure supply device 180 includes a positive pressure source 181 such as a compressor, a flow rate sensor 181a, a frame passage 182, a head passage 183, and a positive pressure introduction passage 184. The flow rate sensor 181a is connected to the positive pressure source 181 and detects the flow rate of the gas (here, air) supplied from the positive pressure source 181 and flowing through the second gas passage 167a. The frame passage 182 is formed at a position different from the frame passage 172 in the frame 141 of the mounting head 140, and is connected to the flow rate sensor 181a and the positive pressure source 181. The head passage 183 communicates with the frame passage 182 and is formed so as to extend along the central axis direction of the mounting head 140. The head passage 183 has a ring-shaped shape centered on the head passage 173 in a top view, and extends in the vertical direction so as to surround the head passage 173 while being separated from the head passage 173. A plurality of positive pressure introduction passages 184 are formed so as to communicate with the head passage 183 and extend from the central axis side of the holder holding portion 142b toward the outside of the holder holding portion 142b. Each of the plurality of positive pressure introduction passages 184 is formed corresponding to each of the plurality of nozzle holders 165 and communicates with the second gas passage 167a of the corresponding nozzle holder 165. The plurality of positive pressure introduction passages 184 are all formed so as to avoid the negative pressure introduction passage 174 and the spool hole 177. The frame passage 182, the head passage 183, the positive pressure introduction passage 184 and the second gas passage 167a are all frame passage 172, head passage 173, negative pressure introduction passage 174, atmosphere introduction passage 175, spool hole 177, and It does not communicate with any of the first gas passages 166a. That is, the negative pressure path and the positive pressure (atmosphere) path of the negative pressure supply device 170 and the positive pressure path of the positive pressure supply device 180 are independent of each other.
 実装ヘッド140によって部品Pを基板Sに実装する場合、CPU91は、昇降装置により対象ノズルの下降を開始させる。そして、CPU91は、流量センサ181aが検出した流量が所定の閾値を超えるまで、すなわち押し込み量が所定量に達するまで待つ。押し込み量が所定量に達したと判断すると、CPU91は、対象ノズルに対応するスプール178をスプール駆動機構によって切り替えて吸着部161に正圧(大気)を作用させることで負圧を解除し、昇降装置により吸着部161を上昇させる。このように、CPU91は、流量センサ181aが検出した流量に基づいて押し込み量が所定量に達したと判断したときに、吸着部161の負圧の解除及び上昇を行う。 When the component P is mounted on the board S by the mounting head 140, the CPU 91 starts the lowering of the target nozzle by the elevating device. Then, the CPU 91 waits until the flow rate detected by the flow rate sensor 181a exceeds a predetermined threshold value, that is, until the pushing amount reaches a predetermined amount. When it is determined that the pushing amount has reached a predetermined amount, the CPU 91 switches the spool 178 corresponding to the target nozzle by the spool drive mechanism and applies a positive pressure (atmosphere) to the suction portion 161 to release the negative pressure and move up and down. The suction unit 161 is raised by the device. In this way, when the CPU 91 determines that the pushing amount has reached a predetermined amount based on the flow rate detected by the flow rate sensor 181a, the CPU 91 releases and increases the negative pressure of the suction unit 161.
 つまり、上記図2の実装ヘッド50では、タッチダウンの検出を光電センサ73の受光器が検出した光の受光率に基づいて行うのに対して、図7の実装ヘッド140では、タッチダウンの検出を流量センサ181aが検出した流量に基づいて行う点が異なっている。しかし、実装位置毎のタッチダウン検出区間を設定する処理、つまり、上記図4及び図5の実装処理中、S12,S14の処理以外の処理は、実装ヘッド50から実装ヘッド140に変わったとしても異ならないので、その説明は省略する。 That is, the mounting head 50 of FIG. 2 detects the touchdown based on the light receiving rate of the light detected by the light receiver of the photoelectric sensor 73, whereas the mounting head 140 of FIG. 7 detects the touchdown. Is different in that the flow rate sensor 181a is used based on the flow rate detected. However, even if the process of setting the touchdown detection section for each mounting position, that is, the processing other than the processing of S12 and S14 during the mounting processing of FIGS. 4 and 5, the mounting head 50 is changed to the mounting head 140. Since there is no difference, the explanation is omitted.
 以上説明したように、本実施形態の実装方法は、Z軸モータ71の駆動により昇降して部品Pを吸着可能な実装ヘッド50を用いて、部品Pを基板Sに実装する実装方法であって、部品Pの吸着された実装ヘッド50,140が基板S上の部品Pの実装位置まで下降して、部品Pを介して基板S上に接触したことを検出する検出ステップ(S16)と、検出ステップによる検出を行う検出区間を基板S上の部品Pの実装位置毎に設定可能な設定ステップ(S10,S38)と、を有する。ちなみに、本実施形態において、Z軸モータ71は、「駆動源」の一例である。実装ヘッド50,140は、「吸着部材」の一例である。 As described above, the mounting method of the present embodiment is a mounting method in which the component P is mounted on the substrate S by using the mounting head 50 capable of moving up and down by driving the Z-axis motor 71 to attract the component P. , A detection step (S16) for detecting that the mounting heads 50 and 140 to which the component P is attracted descend to the mounting position of the component P on the substrate S and come into contact with the substrate S via the component P. It has a setting step (S10, S38) in which a detection section for detection by a step can be set for each mounting position of a component P on the substrate S. Incidentally, in the present embodiment, the Z-axis motor 71 is an example of a “drive source”. The mounting heads 50 and 140 are examples of "suction members".
 このように、本実施形態の実装方法では、部品Pの吸着された実装ヘッド50,140が部品Pを介して基板S上に接触したことを検出する検出区間を、基板S上の部品Pの実装位置毎に設定できるので、つまり、部品Pを実装する位置の基板Sの状況に応じて検出区間の長さを変えることができるので、実装時間のさらなる短縮化を図ることが可能となる。 As described above, in the mounting method of the present embodiment, the detection section for detecting that the mounting heads 50, 140 to which the component P is attracted comes into contact with the substrate S via the component P is set as the detection section of the component P on the substrate S. Since it can be set for each mounting position, that is, the length of the detection section can be changed according to the situation of the board S at the position where the component P is mounted, the mounting time can be further shortened.
 また、検出ステップにより実装ヘッド50,140が部品Pを介して基板S上に接触したことが検出されたときの実装ヘッド50の高さを履歴情報としてRAM94に記憶させる記憶ステップ(S16)と、記憶ステップにより記憶された履歴情報に基づいて検出区間を決定する決定ステップ(S30,S32)と、をさらに有する。ちなみに、RAM94は、「メモリ」の一例である。 Further, a storage step (S16) in which the height of the mounting head 50 when it is detected that the mounting heads 50 and 140 are in contact with the substrate S via the component P is stored in the RAM 94 as history information is stored in the detection step (S16). It further includes a determination step (S30, S32) for determining a detection interval based on the history information stored by the storage step. Incidentally, the RAM 94 is an example of a "memory".
 これにより、過去に実際に実装された実装ヘッド50の高さの履歴に基づいて検出区間が決定されるので、適正な検出区間を設定することができる。 As a result, the detection section is determined based on the history of the height of the mounting head 50 actually mounted in the past, so that an appropriate detection section can be set.
 また、決定ステップ(S30,S32)は、履歴情報に含まれる実装ヘッド50の高さのバラつき度合いに応じて検出区間の範囲を決定する。 Further, in the determination step (S30, S32), the range of the detection section is determined according to the degree of variation in the height of the mounting head 50 included in the history information.
 これにより、さらに適正な検出区間を設定することができる。 This makes it possible to set a more appropriate detection section.
 また、決定ステップ(S32)は、高さのバラつき度合いが所定の範囲内である場合、検出区間の中心値を高さの平均値にシフトすることにより検出区間を決定する。 Further, in the determination step (S32), when the degree of height variation is within a predetermined range, the detection section is determined by shifting the center value of the detection section to the average value of the heights.
 これにより、検出区間の長さはそのままの状態でシフトされるので、検出区間が長くなることを抑制できる。 As a result, the length of the detection section is shifted as it is, so that it is possible to suppress the lengthening of the detection section.
 また、実装ヘッド50は、部品Pを吸着する吸着部591と、基板Sに対する部品Pの接触に連動して被検出部581aが相対的に移動する検出領域Aに光を投光し、検出領域Aからの光を受光する光電センサ73と、を備え、検出ステップ(S16)は、部品Pが基板S上の実装位置に接触したことを、光電センサ73からの出力信号に基づいて検出する。ちなみに、吸着部591は、「ノズル部」の一例である。 Further, the mounting head 50 projects light onto the detection region A in which the detection portion 581a relatively moves in conjunction with the contact between the suction portion 591 that attracts the component P and the component P with respect to the substrate S, and the detection region. A photoelectric sensor 73 that receives light from A is provided, and the detection step (S16) detects that the component P has come into contact with the mounting position on the substrate S based on the output signal from the photoelectric sensor 73. By the way, the suction portion 591 is an example of the "nozzle portion".
 また、実装ヘッド140は、部品Pを吸着する吸着部161と、吸着部161の押し込み量に応じて流れる気体の流量又は圧力が変動するフレーム通路182と、を備え、検出ステップ(S16)は、部品Pが基板S上の実装位置に接触したことを、フレーム通路182を流れる気体の流量と圧力との少なくとも一方を検出することにより検出する。ちなみに、吸着部161は、「ノズル部」の一例である。フレーム通路182は、「気体通路」の一例である。 Further, the mounting head 140 includes a suction unit 161 for sucking the component P, and a frame passage 182 in which the flow rate or pressure of the flowing gas fluctuates according to the pushing amount of the suction unit 161. The contact of the component P with the mounting position on the substrate S is detected by detecting at least one of the flow rate and the pressure of the gas flowing through the frame passage 182. Incidentally, the suction portion 161 is an example of a “nozzle portion”. The frame passage 182 is an example of a “gas passage”.
 なお、本発明は上記実施形態に限定されるものでなく、その趣旨を逸脱しない範囲で様々な変更が可能である。 The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
 (1)上記実施形態では、図2の実装ヘッド50における吸着ノズル59の数を8個とし、図7の実装ヘッド140における吸着ノズル160の数を12個としたが、吸着ノズルの数は、これらに限らない。 (1) In the above embodiment, the number of suction nozzles 59 in the mounting head 50 of FIG. 2 is eight, and the number of suction nozzles 160 in the mounting head 140 of FIG. 7 is twelve. Not limited to these.
 (2)上記実施形態では、上記図5のS30,S32のいずれの処理でも、同じ「所定のマージン」を加算するようにしたが、これに限らず、S30の処理とS32の処理とで、加算するマージンの値を異ならせてもよい。また、マージンの値を“0”あるいは“0”に近い値にしてもよい。この場合、実装時間をさらに短縮化することができる。 (2) In the above embodiment, the same "predetermined margin" is added in any of the processes of S30 and S32 in FIG. 5, but the present invention is not limited to this, and the process of S30 and the process of S32 are not limited to this. The value of the margin to be added may be different. Further, the value of the margin may be set to "0" or a value close to "0". In this case, the mounting time can be further shortened.
 10…実装装置、50,140…実装ヘッド、58…ホルダ、580…クラッド部、581…コア部、59,160…吸着ノズル、591,161…吸着部、60…XYロボット、70…昇降装置、71…Z軸モータ、72a…シャフト部、72b…ナット部、73…光電センサ、90…制御装置、91…CPU、92…ROM、93…HDD、94…RAM、95…入出力インタフェース、161a…ノズル部通路、161b…ノズル部分岐通路、165…ノズルホルダ、166…第1ガス通路、167a…第2ガス通路、170…負圧供給装置、171…負圧源、172…フレーム通路、173…ヘッド通路、174…負圧導入通路、175…大気導入通路、177…スプール穴、178…スプール、180…正圧供給装置、181…正圧源、181a…流量センサ、182…フレーム通路、183…ヘッド通路、184…正圧導入通路。
 
10 ... Mounting device, 50, 140 ... Mounting head, 58 ... Holder, 580 ... Clad part, 581 ... Core part, 59, 160 ... Suction nozzle, 591, 161 ... Suction part, 60 ... XY robot, 70 ... Elevating device, 71 ... Z-axis motor, 72a ... shaft part, 72b ... nut part, 73 ... photoelectric sensor, 90 ... control device, 91 ... CPU, 92 ... ROM, 93 ... HDD, 94 ... RAM, 95 ... input / output interface, 161a ... Nozzle passage, 161b ... Nozzle branch passage, 165 ... Nozzle holder, 166 ... First gas passage, 167a ... Second gas passage, 170 ... Negative pressure supply device, 171 ... Negative pressure source, 172 ... Frame passage, 173 ... Head passage, 174 ... Negative pressure introduction passage, 175 ... Atmospheric introduction passage, 177 ... Spool hole, 178 ... Spool, 180 ... Positive pressure supply device, 181 ... Positive pressure source, 181a ... Flow sensor, 182 ... Frame passage, 183 ... Head passage, 184 ... Positive pressure introduction passage.

Claims (7)

  1.  駆動源の駆動により昇降して部品を吸着可能な吸着部材を用いて、前記部品を基板に実装する実装方法であって、
     前記部品の吸着された前記吸着部材が前記基板上の前記部品の実装位置まで下降して、前記部品を介して前記基板上に接触したことを検出する検出ステップと、
     前記検出ステップによる検出を行う検出区間を前記基板上の前記部品の実装位置毎に設定可能な設定ステップと、
    を有する実装方法。
    It is a mounting method in which the component is mounted on a substrate by using a suction member that can move up and down by driving a drive source to suck the component.
    A detection step for detecting that the suction member to which the component is attracted descends to the mounting position of the component on the substrate and comes into contact with the substrate via the component.
    A setting step in which a detection section for detection by the detection step can be set for each mounting position of the component on the board, and a setting step.
    Implementation method with.
  2.  前記検出ステップにより前記吸着部材が前記部品を介して前記基板上に接触したことが検出されたときの前記吸着部材の高さを履歴情報としてメモリに記憶させる記憶ステップと、
     前記記憶ステップにより記憶された前記履歴情報に基づいて前記検出区間を決定する決定ステップと、
    をさらに有する請求項1に記載の実装方法。
    A storage step of storing the height of the suction member as history information when it is detected that the suction member is in contact with the substrate via the component by the detection step.
    A determination step for determining the detection section based on the history information stored by the storage step, and a determination step.
    The implementation method according to claim 1, further comprising.
  3.  前記決定ステップは、前記履歴情報に含まれる前記吸着部材の高さのバラつき度合いに応じて前記検出区間の範囲を決定する、
    請求項2に記載の実装方法。
    The determination step determines the range of the detection section according to the degree of variation in the height of the adsorption member included in the history information.
    The mounting method according to claim 2.
  4.  前記決定ステップは、前記高さのバラつき度合いが所定の範囲内である場合、前記検出区間の中心値を前記高さの平均値にシフトすることにより前記検出区間を決定する、
    請求項3に記載の実装方法。
    In the determination step, when the degree of variation in height is within a predetermined range, the detection section is determined by shifting the center value of the detection section to the average value of the height.
    The mounting method according to claim 3.
  5.  前記吸着部材は、前記部品を吸着するノズル部と、前記基板に対する前記部品の接触に連動して被検出部が相対的に移動する検出領域に光を投光し、前記検出領域からの前記光を受光する光電センサと、を備え、
     前記検出ステップは、前記部品が前記基板上の前記実装位置に接触したことを、前記光電センサからの出力信号に基づいて検出する、
    請求項1~4のいずれか1項に記載の実装方法。
    The suction member projects light onto a nozzle portion that sucks the component and a detection region in which the detected portion moves relatively in conjunction with the contact of the component with the substrate, and the light from the detection region. With a photoelectric sensor that receives light,
    The detection step detects that the component has come into contact with the mounting position on the substrate based on the output signal from the photoelectric sensor.
    The mounting method according to any one of claims 1 to 4.
  6.  前記吸着部材は、前記部品を吸着するノズル部と、前記ノズル部の押し込み量に応じて流れる気体の流量又は圧力が変動する気体通路と、を備え、
     前記検出ステップは、前記部品が前記基板上の前記実装位置に接触したことを、前記気体通路を流れる気体の流量と圧力との少なくとも一方を検出することにより検出する、
    請求項1~4のいずれか1項に記載の実装方法。
    The suction member includes a nozzle portion for sucking the component and a gas passage in which the flow rate or pressure of the flowing gas fluctuates according to the pushing amount of the nozzle portion.
    The detection step detects that the component has come into contact with the mounting position on the substrate by detecting at least one of the flow rate and the pressure of the gas flowing through the gas passage.
    The mounting method according to any one of claims 1 to 4.
  7.  駆動源の駆動により昇降して部品を吸着可能な吸着部材を備え、前記吸着部材により吸着された前記部品を基板に実装する実装装置であって、
     前記部品の吸着された前記吸着部材が前記基板上の前記部品の実装位置まで下降して、前記部品を介して前記基板上に接触したことを検出する検出部と、
     前記検出部による検出を行う検出区間を前記基板上の前記部品の実装位置毎に設定可能な設定部と、
    を有する実装装置。
    A mounting device provided with a suction member capable of moving up and down by driving a drive source to suck a component, and mounting the component sucked by the suction member on a substrate.
    A detection unit that detects that the suction member to which the component is sucked descends to the mounting position of the component on the substrate and comes into contact with the substrate via the component.
    A setting unit that can set a detection section for detection by the detection unit for each mounting position of the component on the board, and a setting unit.
    Mounting device with.
PCT/JP2020/029455 2020-07-31 2020-07-31 Mounting method and mounting device WO2022024350A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080102357.4A CN115769691A (en) 2020-07-31 2020-07-31 Mounting method and mounting device
DE112020007469.2T DE112020007469T5 (en) 2020-07-31 2020-07-31 Assembly method and assembly device
PCT/JP2020/029455 WO2022024350A1 (en) 2020-07-31 2020-07-31 Mounting method and mounting device
JP2022539947A JPWO2022024350A1 (en) 2020-07-31 2020-07-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/029455 WO2022024350A1 (en) 2020-07-31 2020-07-31 Mounting method and mounting device

Publications (1)

Publication Number Publication Date
WO2022024350A1 true WO2022024350A1 (en) 2022-02-03

Family

ID=80035317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029455 WO2022024350A1 (en) 2020-07-31 2020-07-31 Mounting method and mounting device

Country Status (4)

Country Link
JP (1) JPWO2022024350A1 (en)
CN (1) CN115769691A (en)
DE (1) DE112020007469T5 (en)
WO (1) WO2022024350A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061146A1 (en) * 2016-09-29 2018-04-05 富士機械製造株式会社 Mounting device and mounting method
WO2018179317A1 (en) * 2017-03-31 2018-10-04 株式会社Fuji Component mounter and mounting head
WO2019171481A1 (en) * 2018-03-07 2019-09-12 株式会社Fuji Component mounting system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018061146A1 (en) * 2016-09-29 2018-04-05 富士機械製造株式会社 Mounting device and mounting method
WO2018179317A1 (en) * 2017-03-31 2018-10-04 株式会社Fuji Component mounter and mounting head
WO2019171481A1 (en) * 2018-03-07 2019-09-12 株式会社Fuji Component mounting system

Also Published As

Publication number Publication date
JPWO2022024350A1 (en) 2022-02-03
CN115769691A (en) 2023-03-07
DE112020007469T5 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP3477321B2 (en) Electronic component mounting device
KR101431572B1 (en) Component transfer device and method for adjusting suction position in component transfer device
JP4333769B2 (en) Chip mounting apparatus and method for replacing peeling promoting head in chip mounting apparatus
JP5746593B2 (en) Electronic component feeder
JP3398109B2 (en) Electronic component mounting device
JP2004034166A (en) Lens machining system
JPH09270595A (en) Electronic component mounting device and mounting head device
WO2019058530A1 (en) Component mounting machine and method for determining dropping of component
JP6499768B2 (en) Component mounter, component holding member imaging method
WO2022024350A1 (en) Mounting method and mounting device
JP2004034167A (en) Grinding fluid removing apparatus and lens machining system
JPH0715181A (en) Electronic component mounting device
JP3537510B2 (en) Electronic component automatic mounting device and electronic component mounting method
JP6630730B2 (en) Component mounting machine
JP3613122B2 (en) Electronic component mounting equipment
JP2002079484A (en) Suction nozzle and electrical part holding position detector
JP6263413B2 (en) Electronic component mounting device
JP2001210997A (en) Device for mounting electronic part
JP3397837B2 (en) Suction nozzle pressure supply device
JP4017900B2 (en) Electronic component mounting device
JP4530580B2 (en) Electronic component mounting device
JP6837941B2 (en) Board backup device and board processing device using this
JP2003110290A (en) Electronic component mounting device
JP3768040B2 (en) Electronic component mounting device
WO2019150439A1 (en) Component mounting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947449

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539947

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20947449

Country of ref document: EP

Kind code of ref document: A1