WO2022024238A1 - 力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、及び力触覚制御プログラム - Google Patents
力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、及び力触覚制御プログラム Download PDFInfo
- Publication number
- WO2022024238A1 WO2022024238A1 PCT/JP2020/028975 JP2020028975W WO2022024238A1 WO 2022024238 A1 WO2022024238 A1 WO 2022024238A1 JP 2020028975 W JP2020028975 W JP 2020028975W WO 2022024238 A1 WO2022024238 A1 WO 2022024238A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- operator
- force
- master
- slave
- contact
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/02—Hand grip control means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J3/00—Manipulators of master-slave type, i.e. both controlling unit and controlled unit perform corresponding spatial movements
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D3/00—Control of position or direction
- G05D3/12—Control of position or direction using feedback
Definitions
- the present invention relates to a force-tactile control system, a master device, a slave device, a force-tactile control method, and a force-tactile control program.
- the force-tactile control system disclosed in Non-Patent Document 1 is known.
- the user's two hands and two feet are operated by associating the user's foot on the master side with the robot hand on the slave side. It is disclosed that the work can be performed with a total of four hands, two robot hands operated by.
- MetaLimbs MultipleArms Interaction Metamorphism. https://star.rcast.u-tokyo.ac.jp/metalimbs/
- Non-Patent Document 1 there is a one-to-one correspondence between the operator provided on the master side and the robot hand to be controlled, which is provided on the slave side. Therefore, the number of robot hands that can be remotely controlled is limited. For example, since the operator's two hands and two feet can perform complicated movements, the four robot hands are operated by operating the four limbs, and each robot hand is an object (for example,). You can get the feeling when you come in contact with the subject).
- the present invention has been made in view of the above circumstances, and an object thereof is a force-tactile sensation capable of operating a controlled object with a simple operation by an operator and obtaining a feeling of contact with the object. It is an object of the present invention to provide a control system, a master device, a slave device, a force-tactile control method, and a force-tactile control program.
- the force-tactile control system of one aspect of the present invention is a master device that controls an operator that is displaced by an operator's operation, and a slave device that is connected to the master device and controls a controlled object that is displaced by contact with an object.
- the master device is provided with a master-side actuator that generates a force-tactile sensation in the operator, and a master that outputs a control signal for force-tactile sensation to the master-side actuator according to the amount of displacement of the controlled object.
- the slave device includes a control unit, and the slave device outputs a control signal for generating force and tactile sensation to the slave side actuator according to the displacement amount of the actuator and the slave side actuator that generates force and tactile sensation in the controlled object.
- One of the master control unit and the slave control unit generates a constant reaction force on the operator when the control target is not in contact with the object.
- a control signal for generating a force-tactile sensation to the operator is output to the master side actuator in addition to the constant reaction force. ..
- the master device of one aspect of the present invention is a master device connected to a slave device that controls a controlled object that is displaced by contact with an object, and has an actuator that is displaced by an operator's operation and the actuator.
- the master control unit includes a master-side actuator that generates a force-tactile sensation and a master control unit that outputs a control signal for force-tactile sensation to the master-side actuator according to the displacement amount of the controlled object.
- a constant reaction force is generated in the actuator, and when the controlled object is in contact with the object, the actuator is added to the constant reaction force. It is characterized by outputting a control signal for generating a force-tactile sensation.
- the slave device of one aspect of the present invention is a slave device connected to a master device having an actuator that is displaced by an operator's operation, and generates a force-tactile sensation in a controlled object that is displaced by contact with an object.
- the slave control unit includes a slave control unit that outputs a control signal for generating force and tactile sensation to the slave side actuator according to the displacement amount of the operator.
- the slave control unit has the control target as the target. When the actuator is not in contact with an object, a constant reaction force is generated in the actuator, and when the controlled object is in contact with the object, a force tactile sensation is generated in the actuator in addition to the constant reaction force. It is characterized in that a control signal for causing the displacement is output to the master device.
- the force-tactile control method of one aspect of the present invention is mounted on a master device, and when an operator that is displaced by an operator's operation is operated, the force-tactile sensation corresponding to the displacement amount of the operator is obtained by the master device.
- a constant reaction force is generated in the operator
- the controller is in contact with the control target. It is characterized by comprising a step of applying the constant reaction force to the force-tactile sensation corresponding to the displacement amount displaced by the contact with the above-mentioned.
- One aspect of the present invention is a force-tactile control program for operating a computer as the master device.
- One aspect of the present invention is a force-tactile control program for operating a computer as the slave device.
- FIG. 1 is an explanatory diagram showing a schematic configuration of a force-tactile control system according to an embodiment of the present invention.
- FIG. 2 is a block diagram showing a configuration of a force-tactile control system according to an embodiment of the present invention.
- FIG. 3 is an explanatory diagram showing a state when the operator adopted in the force-tactile control system according to the present embodiment is expanded and contracted.
- FIG. 4 is a graph showing changes in the force generated in the operator.
- FIG. 5 is a flowchart showing a process of creating a conversion table.
- FIG. 6 is a flowchart showing the operation of the force-tactile control system according to the present embodiment.
- FIG. 7 is a block diagram showing a functional configuration of the force-tactile control system according to the present invention.
- FIG. 1 is an explanatory diagram showing a schematic configuration of a force-tactile control system according to an embodiment of the present invention
- FIG. 2 is a block diagram showing a configuration of a force-tactile control system according to the present embodiment.
- the operator P1 operates the actuator 11 (for example, a piston) that is displaced in one dimension to the robot hand 21 (controlled object).
- a plurality of actuators 23 (23-1 to 23-n) provided are controlled to operate the robot hand 21.
- a pseudo handshake is performed with the target person P2 in a remote place.
- the plurality of sensors 22 (22-1 to 22-n) provided on the robot hand 21 to the operator 11, the feeling that the operator P1 is shaking hands with the target person P2.
- the force-tactile control system 100 includes a master device 1 and a slave device 2 connected to the master device 1 via a network 3.
- the master device 1 includes an operator 11, a sensor 12 (master side sensor), an actuator 13 (master side actuator), and a master control unit 14.
- the operator 11 is a tactile device that can be easily operated by the operator P1 with one hand, one foot, or the like, and is, for example, a piston that can reciprocate in one-dimensional direction.
- the operator 11 can also be an accelerator pedal of a vehicle, for example, when it is operated by a foot.
- the operator 11 can also use a dial-type knob if pressurization and feedback are possible.
- FIG. 1 for the sake of simplification of the description, in the present embodiment, a plurality of operators 11 are provided. For example, there may be a total of six operators, four operators 11 operated by both hands and feet of the operator P1, and two operators operated by the mouth and armpits of the operator P1. Further, it is also possible to operate the operator 11 by the movement of the eyelids and the abdomen of the operator P1.
- the sensor 12 detects the amount of displacement of the operator 11.
- the tactile device is a piston that reciprocates in one-dimensional direction
- the amount of displacement of the piston in one-dimensional direction is detected.
- the actuator 13 operates the operator 11 by generating a force-tactile sensation in the one-dimensional direction, that is, in the direction in which the operator 11 is contracted or extended. Specifically, the actuator 11 is operated in the one-dimensional direction based on the control command value output from the actuator control unit 141, which will be described later.
- the control command value is, for example, a voltage value or a current value signal.
- the master control unit 14 includes an actuator control unit 141, a sensor control unit 142, a calculation unit 143, a storage unit 144, and a communication unit 145.
- the sensor control unit 142 acquires the detection signal detected by the sensor 12.
- the detection signal includes information on the displacement amount of the operator 11.
- the calculation unit 143 acquires the displacement amount detected by each sensor 22 (22-1 to 22-m) (details will be described later) that is installed in the slave device 2 and detects the displacement amount of the robot hand 21, and this displacement.
- a control amount for controlling the actuator 13 (hereinafter referred to as “master control amount”” is calculated based on the amount.
- the calculation unit 143 outputs the calculated control amount to the actuator control unit 141.
- the calculation unit 143 also acquires information on whether or not the robot hand 21 is in contact with the target person P2 from the sensor control unit 242 provided in the slave device 2. Alternatively, it is determined whether or not the robot hand 21 is in contact with the target person P2 based on the detection signal detected by each sensor 22 provided in the slave device 2. The calculation unit 143 outputs a control amount for generating a constant reaction force to the actuator 11 to the actuator control unit 141 when the robot hand 21 is not in contact with the target person P2. The details of the method of calculating the control amount by the calculation unit 143 will be described later.
- the actuator control unit 141 calculates a control command value (control signal) for operating the actuator 13 based on the control amount calculated by the calculation unit 143.
- the calculated control command value is output to the actuator 13.
- the actuator 13 Based on this control command value, the actuator 13 generates a force for operating the actuator 11 in a one-dimensional direction, that is, in a contraction direction or an extension direction. That is, the actuator control unit 141 mounted on the master control unit 14 outputs a control signal for generating a force-tactile sensation to the actuator 13 according to the displacement amount of the robot hand 21.
- the storage unit 144 has a displacement amount when the operator 11 is operated in the one-dimensional direction, that is, a displacement amount when the operator 11 is contracted or extended, and a displacement amount of the robot hand 21. Memorize the correspondence table showing the relationship between.
- the operator P1 displaces the operator 11 from the most extended state to the contracted state, and calculates the relationship between the displacement amount when the operator P1 is displaced to the most contracted state and the displacement amount of the robot hand 21.
- a correspondence table showing the relationship between the displacement amounts is stored. By setting the correspondence table, the displacement amount of the operator 11 when the operator P1 operates the operator 11 can be converted into the displacement amount of the robot hand 21.
- the corresponding table can also be stored in the storage unit 244 of the slave device 2.
- the storage unit 144 is composed of a recording medium such as a RAM, a ROM, or a hard disk.
- the communication unit 145 communicates with the slave device 2 via the network 3.
- the slave device 2 includes a robot hand 21, which is an operation target device, a sensor 22 (slave side sensor), an actuator 23 (slave side actuator), and a slave control unit 24.
- the robot hand 21 has, for example, five fingers and a plurality of (for example, ten) joints, and each joint moves to simulate the movement of a human hand, for example.
- Actuators 23 (23-1 to 23-n) are provided in each joint, and the robot hand 21 shakes hands with, for example, the subject P2 by operating the actuator 23.
- an example including n actuators 23 is shown.
- one robot hand 21 is described for the sake of simplification of the explanation, but in the present embodiment, a plurality of robot hands 21 are provided.
- the robot hand 21 corresponds to the number of operators 11. Can be six.
- Sensors 22 (22-1 to 22-m) are installed, for example, in the joints of the robot hand 21, and detect the displacement amount of the robot hand 21. Specifically, the displacement amount of each joint due to the operation of the actuator 23 and the displacement amount due to the contact of the robot hand 21 with the object are detected.
- the hand of the subject P2 will be described as an example of the object with which the robot hand 21 comes into contact.
- the actuator 23 operates a plurality of (for example, n) joints provided on the robot hand 21.
- the arithmetic unit 243 outputs a signal of a control amount for controlling the actuator 23 (“slave control amount” described later)
- the actuator 23 generates a force-tactile sensation according to the slave control amount.
- the robot hand 21 operates by generating a force-tactile sensation in the actuator 23.
- the robot hand 21 can be operated so that the robot hand 21 shakes hands with the target person P2.
- the slave control unit 24 includes an actuator control unit 241, a sensor control unit 242, a calculation unit 243, a storage unit 244, and a communication unit 245.
- the sensor control unit 242 acquires the detection signal detected by the sensor 22.
- the detection signal includes information on the amount of displacement of each joint of the robot hand 21. Further, the sensor control unit 242 determines that, for example, when the robot hand 21 shakes hands with the target person P2, the robot hand 21 has touched the hand of the target person P2.
- the calculation unit 243 is mounted on the master device 1 and acquires the displacement amount detected by the sensor 12 that detects the displacement amount of the operator 11, and the control amount for controlling the robot hand 21 based on this displacement amount. (Hereinafter referred to as "slave control amount”) is calculated.
- the actuator control unit 241 is a control command for operating each of the n actuators 23 (23-1 to 23-n) based on the control amount (slave control amount) calculated by the calculation unit 143 of the master device 1. Calculate the value (control signal). The actuator control unit 241 outputs the calculated control command value to each actuator 23. Each actuator 23 operates each joint of the robot hand 21 in a desired direction based on the control command value. That is, the actuator control unit 241 mounted on the slave control unit 24 outputs a control signal for generating a force-tactile sensation to the actuator 23 according to the displacement amount of the actuator 11.
- the storage unit 244 temporarily stores data in the arithmetic processing in the actuator control unit 241, the sensor control unit 242, and the arithmetic unit 243.
- the storage unit 244 is composed of a recording medium such as a RAM, a ROM, or a hard disk.
- the communication unit 245 communicates with the master control unit 14 via the network 3.
- FIG. 3 is an explanatory diagram showing a state when the operator 11 is expanded and contracted.
- FIG. 4 is a graph showing changes in the force f (t) generated in the operator 11 in the sections X1, X2, and X3 shown in FIG.
- the calculation unit 143 generates a constant reaction force on the operator 11 when the robot hand 21 is not in contact with the target person P2. That is, when the operator displaces the actuator 11 in the contraction direction, a constant reaction force is generated in the direction facing the displacement. Further, when the operator displaces the actuator 11 in the extension direction, a constant reaction force is generated in the same direction as the displacement. Whether or not the robot hand 21 is in contact with the target person P2 can be determined based on the detection signal of each sensor 22 acquired by the sensor control unit 242.
- the calculation unit 143 When the robot hand 21 is in contact with the target person P2, the calculation unit 143 generates the above-mentioned constant reaction force on the operator 11, and the target person P2 applies a force to the robot hand 21. Generates force and tactile sensation.
- the calculation unit 143 calculates a control amount for generating the above-mentioned force in the operator 11, and outputs the control amount to the actuator control unit 141.
- the operator P1 presses the operator P1 to gradually contract the operator 11 from the most extended state (p1), and then reaches the most contracted state (p5).
- the operation until the operator P1 relaxes the pressure, gradually expands the pressure, and returns to the most extended state (p9) is shown.
- the robot hand 21 that operates with the movement of the operator 11 does not come into contact with the target person P2 in the section X1 in which the displacement amount of the operator 11 is from the state p1 to p3. .. Further, it is assumed that the robot hand 21 is in contact with the target person P2 in the section X2 in which the displacement amount of the operator 11 is from the state p3 to p7. It is assumed that the robot hand 21 is not in contact with the target person P2 in the section X3 where the displacement amount of the operator 11 is from the state p7 to p9.
- the operator P1 can get the feeling of operating the robot hand 21 and shaking hands with the target person P2 in a pseudo manner by a simple operation of expanding and contracting the operator 11 that operates in the one-dimensional direction.
- the robot hand 21 does not come into contact with the target person P2, as shown in the graph q4 of FIG. 4, the state in which a constant reaction force "a" is generated in the operator 11 is continued.
- the present invention is not limited to this and is provided in the slave device 2. It may be calculated by the calculation unit 243. That is, in either the master control unit 14 or the slave control unit 24, when the control target (robot hand 21) is not in contact with the target object (target person P2), a constant reaction force is generated in the actuator 11. In addition to the force and tactile sensation generated by the actuator 11 when the controlled object is in contact with the object, a control signal for generating a constant reaction force is calculated and this control signal is output to the actuator 13. can do.
- step S11 of FIG. 5 the arithmetic unit 143 sets the state when the operator P1 is not operating the operator 11, that is, the state where the displacement amount of the operator 11 is zero (the state of p1 in FIG. 3). Corresponds to the state where the displacement amount of the robot hand 21 is zero.
- the robot hand 21 is open and is not in contact with the subject P2. That is, the robot hand 21 is in a fully opened state.
- step S12 the arithmetic unit 143 is in a state when the operator P1 maximizes the displacement amount of the operator 11, that is, when the one-dimensionally displaced operator 11 contracts to the maximum (p5 in FIG. 3).
- the state) corresponds to the state in which the displacement amount of the robot hand 21 is maximized.
- the robot hand 21 is in a fully closed state.
- step S13 the calculation unit 143 creates a correspondence table showing the relationship between the displacement amount of the operator 11 and the displacement amount of the robot hand 21.
- step S14 the calculation unit 143 stores the corresponding table created in step S13 in the storage unit 144.
- the correspondence table showing the correspondence relationship between the displacement amount of the operator 11 and the displacement amount of the robot hand 21 is stored in the storage unit 144.
- the corresponding table may be stored in the storage unit 244 of the slave device 2.
- FIG. 6 shows an example in which the operator P1 controls the robot hand 21 using the force-tactile control system 100 and shakes hands with the target person P2 in a pseudo manner using the robot hand 21.
- step S31 of FIG. 6 the master control unit 14 waits for the operation of the operator 11 to start.
- step S32 the master control unit 14 determines whether or not the operator 11 has started the operation.
- the operator P1 contracts the operator 11 with, for example, his / her right hand, the operator 11 starts the operation. If the operator 11 starts the operation (S32; YES), the process proceeds to step S33, and if not (S32; NO), the process returns to step S31.
- step S33 the master control unit 14 controls the displacement amount of the robot hand 21 based on the displacement amount of the operator 11 detected by the sensor 12. Specifically, the actuator 23 is controlled to operate the joint of the robot hand 21, and the robot hand 21 is operated in the direction of shaking hands with the target person P2.
- the storage unit 144 stores a correspondence table showing the correspondence between the displacement amount of the operator 11 and the displacement amount of the robot hand 21, and the robot hand 21 can refer to this correspondence table.
- the amount of displacement is controlled to be a desired amount of displacement.
- step S34 the slave control unit 24 determines whether or not the robot hand 21 has come into contact with the hand of the target person P2. Specifically, it is determined whether or not the robot hand 21 has come into contact with the hand of the target person P2 based on the detection signal of each sensor 22 mounted on the robot hand 21. If it is determined that the robot hand 21 has touched the hand of the target person P2 (S34; YES), the process proceeds to step S36, and if not (S34; NO), the process proceeds to step S35.
- step S35 the master control unit 14 generates a constant reaction force on the operator 11. That is, the master control unit 14 is constant to the operator 11 in a state where the operator 11 starts to contract and the robot hand 21 that operates according to the displacement amount of the operator 11 is not in contact with the target person P2. Generates a reaction force of. Specifically, as described in the section X1 of FIGS. 3 and 4 described above, the master control unit 14 generates a constant reaction force “a” in the operator 11. Therefore, the operator P1 feels a reaction force due to the operator 11 in the section X1.
- step S36 the master control unit 14 and the slave control unit 24 perform force-tactile control.
- the actuator 23 is controlled to operate the robot hand 21 based on the displacement amount of the operator 11 detected by the sensor 12 of the master device 1. Further, the amount of displacement caused by the robot hand 21 coming into contact with the target person P2 is detected by the sensor 22 of the slave device 2, and control is performed to generate a force-tactile sensation in the operator 11 according to the amount of displacement. Since force-tactile control is a well-known technique, detailed description thereof will be omitted.
- step S37 the slave control unit 24 determines whether or not the robot hand 21 has left the hand of the target person P2. Specifically, based on the detection signal of each sensor 22, it is determined whether or not the robot hand 21 has left the hand of the target person P2. If it is determined that the robot hand 21 has left the hand of the target person P2 (S37; YES), the process proceeds to step S38, and if not (S37; NO), the process returns to step S36.
- step S38 the master control unit 14 generates a constant reaction force on the operator 11. That is, when the operator 11 starts to extend and the robot hand 21 is separated from the target person P2, the master control unit 14 generates a constant reaction force on the operator 11. Specifically, as described in the section X3 of FIGS. 3 and 4 described above, the master control unit 14 generates a constant reaction force “a” in the operator 11.
- step S39 the slave control unit 24 controls the displacement amount of the robot hand 21 according to the displacement amount of the operator 11. Specifically, the actuator 23 is controlled to operate the joints of the robot hand 21, and the robot hand 21 is controlled to be expanded.
- step S40 the master control unit 14 determines whether or not the operator 11 has been extended to the maximum based on the detection signal of the sensor 12. That is, it is determined whether or not the state p9 shown in FIG. 3 has been reached. If the operator 11 is extended to the maximum (S40; YES), this process is terminated, otherwise (S40; NO), the process is returned to step S39.
- the force-tactile control system 100 of the present embodiment is connected to a master device 1 having an operator 11 that is displaced by the operation of the operator P1 and the master device 1 and is displaced by contact with an object (object P2).
- a slave device 2 for controlling a control target (robot hand 21) is provided, and the master device 1 includes a master side actuator 13 that generates a force-tactile sensation in the operator 11, and a displacement amount of the control target.
- the master control unit 14 that outputs a control signal for generating a force tactile sensation is provided on the master side actuator 13, and the slave device 2 includes a slave side actuator 23 that generates a force tactile sensation on the controlled object and the operator.
- a slave control unit 24 that outputs a control signal for generating force and tactile sensation to the slave side actuator 23 according to the amount of displacement of 11 is provided, and one of the master control unit 14 and the slave control unit 24 is provided.
- a constant reaction force is generated in the operator 11
- a control signal for generating a force-tactile sensation to the operator 11 is output to the master-side actuator 13.
- force-tactile control is performed between the operator 11 and the robot hand 21, and further, when the robot hand 21 is not in contact with the target person P2, the operation is performed. A constant reaction force is generated in the child 11.
- the operator P1 when the operator P1 operates the operator 11 and indirectly shakes hands with the target person P2 using the robot hand 21, the operation is performed even when the robot hand 21 is not in contact with the target person P2. A certain reaction force is generated in the child 11. Therefore, the operator P1 can easily operate the robot hand 21 by operating the operator 11 using a portion such as a mouth or armpit that is difficult to extend by his / her own force. As a result, it is possible to shake hands with the subject P2 in a pseudo manner using the mouth or armpit.
- the robot hand 21 is not in contact with the target person P2, no reaction force is generated in the robot hand 21, and the corresponding reaction force is not generated in the operator 11. Therefore, the robot hand 21 and the robot hand 21 are used. When the contact with the target person P2 is completed, the spread of the robot hand 21 is stopped. On the other hand, in the present embodiment, when the robot hand 21 is not in contact with the target person P2, a reaction force is generated in the operator 11, so that the robot hand 21 can be expanded.
- a pseudo handshake with the target person P2 can be performed by a simple operation of expanding and contracting the operator 11 that is displaced in the one-dimensional direction. That is, it is possible to realize a complicated operation of the robot hand 21 without requiring a complicated operation by the operator P1.
- one-dimensional displacements such as mouth movements, armpit movements, eyelid movements, abdominal movements, etc. can be performed on a wide range of parts other than the four limbs. It is possible to shake hands with the target person P2 by the robot hand 21 by using the movement of the portion that can be generated. Therefore, the operator can shake hands at the same time with many target persons (for example, five or more people) at the same time. In addition to shaking hands, for example, it is possible to give a high five to a plurality of subjects at the same time.
- the artist can shake hands or give a high five with multiple fans in the main venue and the remote venue at the same time.
- robot hand 21 is controlled by one operator 11, but also two robot hands 21 can be controlled at the same time to shake hands with the target person P2 with both hands.
- the robot hand 21 is provided with an emergency stop device for preventing an unexpected operation when an unexpected operation occurs due to a failure of the sensor 22 or the like.
- an emergency stop device for preventing an unexpected operation when an unexpected operation occurs due to a failure of the sensor 22 or the like.
- the force-tactile control system 100 of the present embodiment described above includes, for example, a CPU (Central Processing Unit, processor) 901, a memory 902, and a storage 903 (HDD: HardDiskDrive, SSD: SolidStateDrive). ), A communication device 904, an input device 905, and a general-purpose computer system including an output device 906 can be used.
- the memory 902 and the storage 903 are storage devices.
- each function of the force-tactile control system 100 is realized by the CPU 901 executing a predetermined program loaded on the memory 902.
- the force-tactile control system 100 may be mounted on one computer or may be mounted on a plurality of computers. Further, the force-tactile control system 100 may be a virtual machine mounted on a computer.
- the program for the force-tactile control system 100 can also be stored in a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc). It can also be delivered over the network.
- a computer-readable recording medium such as an HDD, SSD, USB (Universal Serial Bus) memory, CD (Compact Disc), or DVD (Digital Versatile Disc). It can also be delivered over the network.
- the present invention is not limited to the above embodiment, and many modifications can be made within the scope of the gist thereof.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
Abstract
操作子(11)を備えたマスタ装置(1)と、ロボットハンド(21)を制御するスレーブ装置(2)を備える。マスタ装置(1)は、操作子(11)に力触覚を発生させるアクチュエータ(13)と、ロボットハンド(21)の変位量に応じて、アクチュエータ(13)に力触覚発生用の制御信号を出力するマスタ制御部(14)を備える。スレーブ装置(2)は、ロボットハンド(21)に力触覚を発生させるアクチュエータ(23)と、操作子(11)の変位量に応じて、アクチュエータ(23)に力触覚発生用の制御信号を出力するスレーブ制御部(24)を備える。マスタ制御部(14)は、ロボットハンド(21)が対象者に接触していないときには操作子(11)に一定の反力を発生させる。接触しているときには、一定の反力に加えて力触覚を発生させる。
Description
本発明は、力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、及び力触覚制御プログラムに関する。
非特許文献1に開示された力触覚制御システムが知られている。非特許文献1に開示された力触覚制御システムでは、マスタ側となるユーザの足を、スレーブ側となるロボットハンドに対応付けて作動させることにより、ユーザの2本の手、及び2本の足で作動する2つのロボットハンド、の合計4本の手で作業を実施できることが開示されている。
:MetaLimbs: MultipleArms Interaction Metamorphism。https://star.rcast.u-tokyo.ac.jp/metalimbs/
非特許文献1に開示された力触覚制御システムでは、マスタ側に設けられる操作子と、スレーブ側に設けられる制御対象であるロボットハンドが1対1の対応となっている。このため、遠隔操作が可能なロボットハンドの数が限定される。例えば、操作者の2本の手、及び2本の足は複雑な動きが可能であるので、4本の手足の操作により4つのロボットハンドを操作して、各ロボットハンドが対象物(例えば、対象者)と接触したときの感触を得ることができる。
しかし、操作者の4本の手足以外の部位を用いて複雑な操作を行うことが難しいので、遠隔地に設置されている多くのロボットハンドを同時に操作して、各ロボットハンドが対象者と接触したときの感触を得ることは難しい。
このため、例えば操作者が遠隔地に居る複数の対象者と、ロボットハンドを用いて疑似的に握手やハイタッチをする場合には、操作者の4本の手足を用いて4つのロボットハンドを操作することにより、4人の対象者から握手やハイタッチの感触を得ることができる。しかし、これを超える人数の対象者から握手やハイタッチの感触を同時に得ることは難しい。
本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、操作者による簡単な操作で制御対象を操作して、対象物と接触した感触を得ることが可能な力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、力触覚制御プログラムを提供することにある。
本発明の一態様の力触覚制御システムは、操作者の操作により変位する操作子を制御するマスタ装置と、前記マスタ装置に接続され、対象物との接触により変位する制御対象を制御するスレーブ装置と、を備え、前記マスタ装置は、前記操作子に力触覚を発生させるマスタ側アクチュエータと、前記制御対象の変位量に応じて、前記マスタ側アクチュエータに力触覚発生用の制御信号を出力するマスタ制御部と、を備え、前記スレーブ装置は、前記制御対象に力触覚を発生させるスレーブ側アクチュエータと、前記操作子の変位量に応じて、前記スレーブ側アクチュエータに力触覚発生用の制御信号を出力するスレーブ制御部と、を備え、前記マスタ制御部、及び前記スレーブ制御部のいずれか一方は、前記制御対象が前記対象物に接触していないときには前記操作子に一定の反力を発生させ、前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子に力触覚を発生させるための制御信号を、前記マスタ側アクチュエータに出力することを特徴とする。
本発明の一態様のマスタ装置は、対象物との接触により変位する制御対象を制御するスレーブ装置に接続されたマスタ装置であって、操作者の操作により変位する操作子と、前記操作子に力触覚を発生させるマスタ側アクチュエータと、前記制御対象の変位量に応じて、前記マスタ側アクチュエータに力触覚発生用の制御信号を出力するマスタ制御部と、を備え、前記マスタ制御部は、前記制御対象が前記対象物に接触していないときには前記操作子に一定の反力を発生させ、前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子に力触覚を発生させるための制御信号を出力することを特徴とする。
本発明の一態様のスレーブ装置は、操作者の操作により変位する操作子を備えたマスタ装置に接続されたスレーブ装置であって、対象物との接触により変位する制御対象に力触覚を発生させるスレーブ側アクチュエータと、前記操作子の変位量に応じて、前記スレーブ側アクチュエータに力触覚発生用の制御信号を出力するスレーブ制御部と、を備え、前記スレーブ制御部は、前記制御対象が前記対象物に接触していないときには前記操作子に一定の反力を発生させ、前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子に力触覚を発生させるための制御信号を、前記マスタ装置に出力することを特徴とする。
本発明の一態様の力触覚制御方法は、マスタ装置に搭載され、操作者の操作により変位する操作子が操作された際に、この操作子の変位量に応じた力触覚を、前記マスタ装置に接続されたスレーブ装置に搭載された制御対象に発生させる工程と、前記制御対象が対象物との接触により変位した変位量に応じた力触覚を、前記操作子に発生させる工程と、前記制御対象が前記対象物と接触していないときには、前記操作子に一定の反力を発生させ、前記制御対象が前記対象物と接触しているときには、前記操作子に、前記制御対象が前記対象物に接触したことにより変位した変位量に応じた力触覚に、前記一定の反力を加えて発生させる工程と、を備えたことを特徴とする。
本発明の一態様は、上記マスタ装置としてコンピュータを機能させるための力触覚制御プログラムである。
本発明の一態様は、上記スレーブ装置としてコンピュータを機能させるための力触覚制御プログラムである。
本発明によれば、操作者による簡単な操作で制御対象を操作して、対象物と接触した感触を得ることが可能となる。
[本実施形態の構成説明]
図1は、本発明の実施形態に係る力触覚制御システムの概略構成を示す説明図、図2は、本実施形態に係る力触覚制御システムの構成を示すブロック図である。図1に示すように、本実施形態に係る力触覚制御システムは、操作者P1が一次元方向に変位する操作子11(例えば、ピストン)を操作することにより、ロボットハンド21(制御対象)に設けられている複数のアクチュエータ23(23-1~23-n)を制御し、該ロボットハンド21を動作させる。そして、ロボットハンド21を用いて、例えば遠隔地に居る対象者P2と疑似的に握手する。更に、ロボットハンド21に設けられた複数のセンサ22(22-1~22-n)で検出された力を操作子11にフィードバックすることにより、操作者P1が対象者P2と握手している感触が得られるように力を発生させる。
図1は、本発明の実施形態に係る力触覚制御システムの概略構成を示す説明図、図2は、本実施形態に係る力触覚制御システムの構成を示すブロック図である。図1に示すように、本実施形態に係る力触覚制御システムは、操作者P1が一次元方向に変位する操作子11(例えば、ピストン)を操作することにより、ロボットハンド21(制御対象)に設けられている複数のアクチュエータ23(23-1~23-n)を制御し、該ロボットハンド21を動作させる。そして、ロボットハンド21を用いて、例えば遠隔地に居る対象者P2と疑似的に握手する。更に、ロボットハンド21に設けられた複数のセンサ22(22-1~22-n)で検出された力を操作子11にフィードバックすることにより、操作者P1が対象者P2と握手している感触が得られるように力を発生させる。
以下、図2を参照して本実施形態に係る力触覚制御システムを詳細に説明する。図2に示すように、本実施形態に係る力触覚制御システム100は、マスタ装置1と、ネットワーク3を介してマスタ装置1に接続されたスレーブ装置2と、を有している。
マスタ装置1は、操作子11と、センサ12(マスタ側センサ)と、アクチュエータ13(マスタ側アクチュエータ)と、マスタ制御部14と、を備えている。
操作子11は、操作者P1が片手や片足などで容易に操作可能な触覚器具であり、例えば一次元方向に往復動作可能なピストンである。なお、操作子11はピストン以外にも、例えば足で操作する場合には、車両のアクセルペダルとすることもできる。操作子11は、加圧とフィードバックが可能であれば、ダイヤル式のつまみを用いることも可能である。
また、図1では説明を簡素化するために1つの操作子11を記載しているが、本実施形態では、複数の操作子11を備える。例えば、操作者P1の両手、両足で操作する4個の操作子11、及び、操作者P1の口、脇で操作する2個の操作子の、合計6個とすることができる。更に、操作者P1の瞼や腹部の動きで操作子11を操作することも可能である。
センサ12は、操作子11の変位量を検出する。触覚器具が一次元方向に往復動作するピストンである場合には、該ピストンの一次元方向の変位量を検出する。
アクチュエータ13は、操作子11を一次元方向、即ち、操作子11を収縮させる方向、或いは伸長する方向に力触覚を発生させて、操作子11を動作させる。具体的に、後述するアクチュエータ制御部141より出力される制御指令値に基づいて、操作子11を一次元方向に動作させる。制御指令値は、例えば電圧値、或いは電流値の信号である。
マスタ制御部14は、アクチュエータ制御部141と、センサ制御部142と、演算部143と、記憶部144と、通信部145と、を備えている。
センサ制御部142は、センサ12にて検出される検出信号を取得する。検出信号には、操作子11の変位量の情報が含まれる。
演算部143は、スレーブ装置2に設置されてロボットハンド21の変位量を検出する各センサ22(22-1~22-m)(詳細は後述)で検出された変位量を取得し、この変位量に基づいて、アクチュエータ13を制御するための制御量(以下、「マスタ制御量」という」を演算する。演算部143は、演算した制御量をアクチュエータ制御部141に出力する。
演算部143はまた、ロボットハンド21が対象者P2に接触しているか否かをの情報を、スレーブ装置2に設けられるセンサ制御部242より取得する。或いは、スレーブ装置2に設けられる各センサ22で検出される検出信号に基づいて、ロボットハンド21が対象者P2に接触しているか否かを判定する。演算部143は、ロボットハンド21が対象者P2に接触していないときに、操作子11に一定の反力を発生させるための制御量をアクチュエータ制御部141に出力する。演算部143による制御量の演算方法の詳細については後述する。
アクチュエータ制御部141は、演算部143で演算された制御量に基づいて、アクチュエータ13を動作させるための制御指令値(制御信号)を算出する。算出した制御指令値をアクチュエータ13に出力する。アクチュエータ13は、この制御指令値に基づいて、操作子11を一次元方向、即ち、収縮方向または伸長方向に動作させるための力を発生する。即ち、マスタ制御部14に搭載されるアクチュエータ制御部141は、ロボットハンド21の変位量に応じてアクチュエータ13に力触覚発生用の制御信号を出力する。
記憶部144は、操作子11を一次元方向に動作させたときの変位量、即ち、操作子11を収縮させたとき、または、伸長させたときの変位量と、ロボットハンド21の変位量との関係を示す対応テーブルを記憶する。
具体的に、操作者P1が操作子11を最も伸長した状態から収縮させる方向へ変位させ、最も収縮した状態まで変位したときの変位量と、ロボットハンド21の変位量との関係を演算し、この変位量の関係を示す対応テーブルを記憶する。対応テーブルが設定されることにより、操作者P1が操作子11を動作させたときの、操作子11の変位量をロボットハンド21の変位量に変換することができる。なお、上記対応テーブルは、スレーブ装置2の記憶部244に記憶することも可能である。記憶部144は、例えばRAM、ROM、ハードディスクなどの記録媒体からなる。
通信部145は、ネットワーク3を介して、スレーブ装置2との間で通信を行う。
一方、スレーブ装置2は、操作対象機器であるロボットハンド21と、センサ22(スレーブ側センサ)と、アクチュエータ23(スレーブ側アクチュエータ)と、スレーブ制御部24と、を備えている。
ロボットハンド21は、例えば5本の指、及び複数(例えば、10個)の関節を有しており、各関節が動作して、例えば人間の手を動きを模擬する。各関節にはそれぞれアクチュエータ23(23-1~23-n)が設けられており、該アクチュエータ23が動作することにより、ロボットハンド21は例えば対象者P2と握手する。本実施形態では、n個のアクチュエータ23を備える例を示している。
なお、図1では、説明を簡素化するために1つのロボットハンド21を記載しているが、本実施形態では、複数のロボットハンド21を備える。例えば、操作者P1の4つの手足、及び口、脇、で操作する合計6個の操作子11がマスタ装置1に設けられている場合には、操作子11の個数に対応してロボットハンド21を6個とすることができる。
センサ22(22-1~22-m)は、例えばロボットハンド21の関節に設置されており、該ロボットハンド21の変位量を検出する。具体的に、アクチュエータ23の動作に伴う各関節の変位量、及びロボットハンド21が対象物と接触したことによる変位量を検出する。本実施形態では、ロボットハンド21が接触する対象物として、対象者P2の手を例に挙げて説明する。
アクチュエータ23は、ロボットハンド21に設けられる複数(例えば、n個)の関節を動作させる。アクチュエータ23は、演算部243より、アクチュエータ23を制御するための制御量(後述する「スレーブ制御量」)の信号が出力された際に、このスレーブ制御量に応じた力触覚を発生する。アクチュエータ23に力触覚が発生することにより、ロボットハンド21が動作する。例えば、ロボットハンド21が対象者P2と握手するように、該ロボットハンド21を動作させることができる。
スレーブ制御部24は、アクチュエータ制御部241と、センサ制御部242と、演算部243と、記憶部244と、通信部245と、を備えている。
センサ制御部242は、センサ22にて検出される検出信号を取得する。検出信号には、ロボットハンド21の各関節の変位量の情報が含まれる。また、センサ制御部242は、例えばロボットハンド21が対象者P2と握手する際には、ロボットハンド21が対象者P2の手に接触したことを判定する。
演算部243は、マスタ装置1に搭載され、操作子11の変位量を検出するセンサ12で検出された変位量を取得し、この変位量に基づいて、ロボットハンド21を制御するための制御量(以下、「スレーブ制御量」という)を演算する。
アクチュエータ制御部241は、マスタ装置1の演算部143で演算された制御量(スレーブ制御量)に基づいて、n個の各アクチュエータ23(23-1~23-n)を動作させるための制御指令値(制御信号)を算出する。アクチュエータ制御部241は、算出した制御指令値を各アクチュエータ23に出力する。各アクチュエータ23は、この制御指令値に基づいて、ロボットハンド21の各関節を所望の方向に動作させる。即ち、スレーブ制御部24に搭載されるアクチュエータ制御部241は、操作子11の変位量に応じてアクチュエータ23に力触覚発生用の制御信号を出力する。
記憶部244は、アクチュエータ制御部241、センサ制御部242、演算部243における演算処理においてデータを一時的に記憶する。記憶部244は、例えばRAM、ROM、ハードディスクなどの記録媒体からなる。
通信部245は、ネットワーク3を介して、マスタ制御部14との間で通信を行う。
[演算部143による制御量の演算方法]
次に、マスタ装置1に設けられる演算部143による制御量の演算方法について説明する。図3は、操作子11を伸縮したときの状態を示す説明図である。図4は、図3に示した区間X1、X2、X3において、操作子11に発生する力f(t)の変化を示すグラフである。
次に、マスタ装置1に設けられる演算部143による制御量の演算方法について説明する。図3は、操作子11を伸縮したときの状態を示す説明図である。図4は、図3に示した区間X1、X2、X3において、操作子11に発生する力f(t)の変化を示すグラフである。
演算部143は、ロボットハンド21が対象者P2に接触していないときには、操作子11に一定の反力を発生させる。即ち、操作者が操作子11を収縮方向に変位させる際に、この変位に対向する方向に一定の反力を発生させる。また、操作者が操作子11を伸長方向に変位させる際に、この変位と同一の方向に一定の反力を発生させる。ロボットハンド21が対象者P2に接触しているか否かは、センサ制御部242で取得される各センサ22の検出信号に基づいて判定することができる。
演算部143は、ロボットハンド21が対象者P2に接触しているときには、操作子11に上記した一定の反力を発生させることに加え、対象者P2がロボットハンド21に力を加えたことによる力触覚を発生させる。演算部143は、操作子11に上記の力を発生させるための制御量を演算し、アクチュエータ制御部141に出力する。以下、図3、図4を参照して詳細に説明する。
図3に示すp1~p9は、操作子11が最も伸長した状態(p1)から、操作者P1が操作子11を押圧して徐々に収縮させ、最も収縮した状態(p5)に達した後、操作者P1が押圧を緩めて徐々に伸長させて最も伸長した状態(p9)に戻るまでの動作を示している。
本実施形態では、一例として、操作子11の変位量が状態p1からp3までの区間X1において、操作子11の移動に伴って動作するロボットハンド21が対象者P2に接触していないものとする。また、操作子11の変位量が状態p3からp7までの区間X2において、ロボットハンド21が対象者P2に接触しているものとする。操作子11の変位量が状態p7からp9までの区間X3において、ロボットハンド21が対象者P2に接触していないものとする。
演算部143は、図3に示す区間X1、X3において、操作子11に一定の反力を発生させるための制御量を演算する。このため、操作子11には区間X1において、操作子11が収縮する方向の逆の方向に一定の反力が発生する。また、操作子11は、区間X3において、操作子11が伸長する方向と同一の方向に一定の反力が発生する。即ち、図4に示すように、区間X1、X3において、「f(t)=a」の反力が発生する。
演算部143はまた、図3に示す区間X2において、操作子11に一定の反力と、スレーブ装置2より送信される「マスタ制御量」に応じた力触覚、の合計の力を発生させるための制御量を演算する。このため、図4に示すように操作子11には、区間X2において、力触覚g(t)と反力「a」の合計である「f(t)=g(t)+a」の力が発生する。
従って、操作者P1が操作子11を徐々に収縮させることにより、スレーブ装置2のロボットハンド21を動作させ、ロボットハンド21が対象者P2に接触していない場合には、操作子11には一定の反力「a」が発生する(図4のq1)。この際、操作子11には一定の反力が作用しているため、操作者P1が力を抜くと、操作子11は自然に伸長する。また、ロボットハンド21が対象者P2に接触した場合には、操作子11には一定の反力「a」に加えて、力触覚「g(t)」が発生する(図4のq2)。更に、操作者P1が操作子11を徐々に伸長させることにより、ロボットハンド21と対象者P2との接触が終了した場合には、操作子11には一定の反力「a」が発生する(図4のq3)。
従って、操作者P1は、一次元方向に動作する操作子11を伸縮させるという簡単な操作で、ロボットハンド21を動作させて対象者P2と疑似的に握手するという感触を得ることができる。なお、ロボットハンド21が対象者P2に接触しない場合には、図4のグラフq4に示すように、操作子11には一定の反力「a」が発生した状態が継続される。
なお、本実施形態では、マスタ装置1に設けられた演算部143において、操作子11に発生させる力を算出する例について説明したが、本発明はこれに限定されず、スレーブ装置2に設けられた演算部243において演算してもよい。即ち、マスタ制御部14、及びスレーブ制御部24のいずれか一方において、制御対象(ロボットハンド21)が対象物(対象者P2)に接触していないときには操作子11に一定の反力を発生させ、制御対象が対象物に接触しているときには操作子11に発生させる力触覚に加えて、一定の反力を発生させるための制御信号を演算し、この制御信号をアクチュエータ13に出力する構成とすることができる。
[本実施形態の動作]
次に、本実施形態に係る力触覚制御システム100の動作について説明する。初めに、図5に示すフローチャートを参照して、操作子11の変位量を、ロボットハンド21の変位量に変換する際に使用する変換テーブルを作成する処理について説明する。この処理は、図2に示した演算部143によって実行される。
次に、本実施形態に係る力触覚制御システム100の動作について説明する。初めに、図5に示すフローチャートを参照して、操作子11の変位量を、ロボットハンド21の変位量に変換する際に使用する変換テーブルを作成する処理について説明する。この処理は、図2に示した演算部143によって実行される。
図5のステップS11において、演算部143は、操作者P1が操作子11を操作していないときの状態、即ち、操作子11の変位量がゼロの状態(図3のp1の状態)を、ロボットハンド21の変位量がゼロの状態に対応させる。ロボットハンド21の変位量がゼロであるときには、ロボットハンド21が開いており、対象者P2と接触していない。即ち、ロボットハンド21は開ききった状態である。
ステップS12において、演算部143は、操作者P1が操作子11の変位量を最大としたとき、即ち、一次元的に変位する操作子11が最大に収縮したときの状態(図3のp5の状態)を、ロボットハンド21の変位量が最大となる状態に対応させる。ロボットハンド21の変位量が最大であるときには、ロボットハンド21が閉じきった状態である。
ステップS13において、演算部143は、操作子11の変位量と、ロボットハンド21の変位量との関係を示す対応テーブルを作成する。
ステップS14において、演算部143は、ステップS13で作成した対応テーブルを記憶部144に記憶する。こうして、操作子11の変位量とロボットハンド21の変位量の対応関係を示す対応テーブルが記憶部144に記憶される。なお、対応テーブルを、スレーブ装置2の記憶部244に記憶してもよい。
次に、本実施形態に係る力触覚制御システム100の動作を、図6に示すフローチャートを参照して説明する。この処理は、図1に示すマスタ制御部14、及びスレーブ制御部24により実行される。図6では、操作者P1が力触覚制御システム100を用いてロボットハンド21を制御し、該ロボットハンド21を用いて対象者P2と疑似的に握手する例を示している。
図6のステップS31において、マスタ制御部14は、操作子11の動作開始を待機する。
ステップS32において、マスタ制御部14は、操作子11が動作を開始したか否かを判定する。操作者P1が、例えば右手で操作子11を収縮させることにより、操作子11は動作を開始する。操作子11が動作を開始した場合には(S32;YES)、ステップS33に処理を進め、そうでなければ(S32;NO)、ステップS31に処理を戻す。
ステップS33において、マスタ制御部14は、センサ12で検出される操作子11の変位量に基づいて、ロボットハンド21の変位量を制御する。具体的に、アクチュエータ23を制御してロボットハンド21の関節を動作させて、対象者P2と握手する方向にロボットハンド21を動作させる。
即ち、前述したように記憶部144には、操作子11の変位量とロボットハンド21の変位量との対応を示す対応テーブルが記憶されており、この対応テーブルを参照して、ロボットハンド21の変位量が所望の変位量となるように制御する。
ステップS34において、スレーブ制御部24は、ロボットハンド21が対象者P2の手に接触したか否かを判定する。具体的に、ロボットハンド21に搭載されている各センサ22での検出信号に基づいて、ロボットハンド21が対象者P2の手に接触したか否かを判定する。ロボットハンド21が対象者P2の手に接触したと判定された場合には(S34;YES)、ステップS36に処理を進め、そうでなければ(S34;NO)、ステップS35に処理を進める。
ステップS35において、マスタ制御部14は、操作子11に一定の反力を発生させる。即ち、操作子11が収縮を開始し、且つ、操作子11の変位量に応じて動作するロボットハンド21が対象者P2に接触していない状態において、マスタ制御部14は、操作子11に一定の反力を発生させる。具体的に、前述した図3、図4の区間X1にて説明したように、マスタ制御部14は、操作子11に一定の反力「a」を発生させる。このため、操作者P1は、区間X1において操作子11により反力を感じる。
ステップS36において、マスタ制御部14及びスレーブ制御部24は、力触覚制御を実施する。具体的に、マスタ装置1のセンサ12で検出された操作子11の変位量に基づいて、アクチュエータ23を制御しロボットハンド21を動作させる。また、ロボットハンド21が対象者P2に接触したことによる変位量が、スレーブ装置2のセンサ22により検出され、この変位量に応じて操作子11に力触覚を発生する制御が実施される。なお、力触覚制御については周知の技術であるので詳細な説明を省略する。
そして、力触覚制御が実施されることにより、図4の区間X2のグラフq2に示したように、操作子11には、ロボットハンド21が対象者P2と握手したことによる力触覚g(t)が発生する。更に、一定の反力「a」が加算され、合計の力「f(t)=g(t)+a」が操作子11に発生する。
ステップS37において、スレーブ制御部24は、ロボットハンド21が対象者P2の手から離れたか否かを判定する。具体的に、各センサ22での検出信号に基づいて、ロボットハンド21が対象者P2の手から離れたか否かを判定する。ロボットハンド21が対象者P2の手から離れたと判定された場合には(S37;YES)、ステップS38に処理を進め、そうでなければ(S37;NO)、ステップS36に処理を戻す。
ステップS38において、マスタ制御部14は、操作子11に一定の反力を発生させる。即ち、操作子11が伸長を開始し、且つ、ロボットハンド21が対象者P2から離れた場合には、マスタ制御部14は、操作子11に一定の反力を発生させる。具体的に、前述した図3、図4の区間X3にて説明したように、マスタ制御部14は、操作子11に一定の反力「a」を発生させる。
ステップS39において、スレーブ制御部24は、操作子11の変位量に応じてロボットハンド21の変位量を制御する。具体的に、アクチュエータ23を制御してロボットハンド21の関節を動作させ、ロボットハンド21を広げるように制御する。
ステップS40において、マスタ制御部14は、センサ12の検出信号に基づき、操作子11が最大に伸長したか否かを判断する。即ち、図3に示した状態p9になったか否かを判定する。操作子11が最大に伸長した場合には(S40;YES)、本処理を終了し、そうでなければ(S40;NO)、ステップS39に処理を戻す。
こうして、一次元方向に動作する操作子11を操作することにより、ロボットハンド21が対象者P2と握手し、握手した際に生じる力を操作子11に発生させる制御を実施することができる。
[本実施形態の効果]
本実施形態の力触覚制御システム100は、操作者P1の操作により変位する操作子11を備えたマスタ装置1と、前記マスタ装置1に接続され、対象物(対象者P2)との接触により変位する制御対象(ロボットハンド21)を制御するスレーブ装置2と、を備え、前記マスタ装置1は、前記操作子11に力触覚を発生させるマスタ側アクチュエータ13と、前記制御対象の変位量に応じて、前記マスタ側アクチュエータ13に力触覚発生用の制御信号を出力するマスタ制御部14と、を備え、前記スレーブ装置2は、前記制御対象に力触覚を発生させるスレーブ側アクチュエータ23と、前記操作子11の変位量に応じて、前記スレーブ側アクチュエータ23に力触覚発生用の制御信号を出力するスレーブ制御部24と、を備え、前記マスタ制御部14、及び前記スレーブ制御部24のいずれか一方は、前記制御対象が前記対象物に接触していないときには前記操作子11に一定の反力を発生させ、前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子11に力触覚を発生させるための制御信号を、前記マスタ側アクチュエータ13に出力する。
本実施形態の力触覚制御システム100は、操作者P1の操作により変位する操作子11を備えたマスタ装置1と、前記マスタ装置1に接続され、対象物(対象者P2)との接触により変位する制御対象(ロボットハンド21)を制御するスレーブ装置2と、を備え、前記マスタ装置1は、前記操作子11に力触覚を発生させるマスタ側アクチュエータ13と、前記制御対象の変位量に応じて、前記マスタ側アクチュエータ13に力触覚発生用の制御信号を出力するマスタ制御部14と、を備え、前記スレーブ装置2は、前記制御対象に力触覚を発生させるスレーブ側アクチュエータ23と、前記操作子11の変位量に応じて、前記スレーブ側アクチュエータ23に力触覚発生用の制御信号を出力するスレーブ制御部24と、を備え、前記マスタ制御部14、及び前記スレーブ制御部24のいずれか一方は、前記制御対象が前記対象物に接触していないときには前記操作子11に一定の反力を発生させ、前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子11に力触覚を発生させるための制御信号を、前記マスタ側アクチュエータ13に出力する。
このように本実施形態に係る力触覚制御システム100では、操作子11とロボットハンド21との間で力触覚制御を実施し、更に、ロボットハンド21が対象者P2と接触していないときには、操作子11に一定の反力を発生させる。
このため、操作者P1が操作子11を操作し、ロボットハンド21を用いて対象者P2と間接的に握手する際には、ロボットハンド21が対象者P2に接触していないときにおいても、操作子11に一定の反力が発生する。このため、操作者P1は、自らの力で伸長させることが難しい口や脇などの部位を使って操作子11を操作し、容易にロボットハンド21を操作することが可能となる。ひいては、口や脇を使って対象者P2と疑似的に握手することが可能となる。
また、従来においてはロボットハンド21が対象者P2に接触していなければ、ロボットハンド21には反力は発生せず、これに応じた反力が操作子11に発生しないので、ロボットハンド21と対象者P2との接触が終了した時点で、ロボットハンド21の広がりがストップする。これに対して本実施形態では、ロボットハンド21が対象者P2と接触していないときに、操作子11に反力が発生するので、ロボットハンド21を広げることができる。
また、本実施形態では、一次元方向に変位する操作子11を伸縮させるという簡単な操作で、対象者P2との疑似的な握手を行うことができる。即ち、操作者P1による複雑な動作を必要とせずに、ロボットハンド21の複雑な動作を実現することが可能となる。
操作者P1による複雑な動作が不要となるので、4本の手足以外にも広範囲な部位、例えば、口の動作、脇の動作、瞼の動作、腹部の動作、などの一次元的な変位を発生させることが可能な部位の動作を用いて、ロボットハンド21による対象者P2との握手を行うことが可能となる。このため、操作者は同時に多くの対象者(例えば、5人以上)と同時に握手することが可能となる。また、握手以外にも、例えば、同時に複数の対象者とハイタッチすることが可能である。
また、例えばアーティストが、本会場から離れた遠隔会場のファンと握手するシーンにおいては、アーティストは同時に本会場及び遠隔会場の複数のファンと握手、或いはハイタッチすることができる。その結果、遠隔会場のファンと握手やハイタッチで触れ合うことができる。
更に、操作者の親指以外の4本の指を用いて、操作子11を操作することも可能である。具体的に、親指と人差し指、親指と中指、親指と薬指、親指と小指の4通りの組み合わせを用いて4つの操作子11を操作することも可能である。
また、一つの操作子11で1つのロボットハンド21を制御するだけでなく、2つのロボットハンド21を同時に制御することにより、対象者P2と両手で握手することも可能である。
更に、操作子11が予期せずに動作してロボットハンド21が予期しない動作を引き起こさないように、ロック機構を備える構成とすることが望ましい。
また、ロボットハンド21は、センサ22の故障などに起因して、予期せぬ動作が発生した際に、想定外の動作を防止するための緊急停止装置を備える構成とすることが望ましい。このような構成とすることにより、ロボットハンド21が対象者P2と握手する際に、必要以上の握力が発生するというトラブルの発生を回避できる。更に、緊急停止に加え、自動でロボットハンド21を開く方向に動作するように制御する構成とすることが望ましい。
上記説明した本実施形態の力触覚制御システム100には、図7に示すように例えば、CPU(Central Processing Unit、プロセッサ)901と、メモリ902と、ストレージ903(HDD:HardDisk Drive、SSD:SolidState Drive)と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムを用いることができる。メモリ902およびストレージ903は、記憶装置である。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、力触覚制御システム100の各機能が実現される。
なお、力触覚制御システム100は、1つのコンピュータで実装されてもよく、あるいは複数のコンピュータで実装されても良い。また、力触覚制御システム100は、コンピュータに実装される仮想マシンであっても良い。
なお、力触覚制御システム100用のプログラムは、HDD、SSD、USB(Universal Serial Bus)メモリ、CD (Compact Disc)、DVD (Digital Versatile Disc)などのコンピュータ読取り可能な記録媒体に記憶することも、ネットワークを介して配信することもできる。
なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
1 マスタ装置
2 スレーブ装置
3 ネットワーク
11 操作子
12 センサ(マスタ側センサ)
13 アクチュエータ(マスタ側アクチュエータ)
14 マスタ制御部
21 ロボットハンド(制御対象)
22(22-1~22-m) センサ(スレーブ側センサ)
23(23-1~23-n) アクチュエータ(スレーブ側アクチュエータ)
24 スレーブ制御部
100 力触覚制御システム
141、241 アクチュエータ制御部
142、242 センサ制御部
143、243 演算部
144、244 記憶部
145、245 通信部
2 スレーブ装置
3 ネットワーク
11 操作子
12 センサ(マスタ側センサ)
13 アクチュエータ(マスタ側アクチュエータ)
14 マスタ制御部
21 ロボットハンド(制御対象)
22(22-1~22-m) センサ(スレーブ側センサ)
23(23-1~23-n) アクチュエータ(スレーブ側アクチュエータ)
24 スレーブ制御部
100 力触覚制御システム
141、241 アクチュエータ制御部
142、242 センサ制御部
143、243 演算部
144、244 記憶部
145、245 通信部
Claims (8)
- 操作者の操作により変位する操作子を制御するマスタ装置と、前記マスタ装置に接続され、対象物との接触により変位する制御対象を制御するスレーブ装置と、を備え、
前記マスタ装置は、
前記操作子に力触覚を発生させるマスタ側アクチュエータと、
前記制御対象の変位量に応じて、前記マスタ側アクチュエータに力触覚発生用の制御信号を出力するマスタ制御部と、を備え、
前記スレーブ装置は、
前記制御対象に力触覚を発生させるスレーブ側アクチュエータと、
前記操作子の変位量に応じて、前記スレーブ側アクチュエータに力触覚発生用の制御信号を出力するスレーブ制御部と、を備え、
前記マスタ制御部、及び前記スレーブ制御部のいずれか一方は、
前記制御対象が前記対象物に接触していないときには前記操作子に一定の反力を発生させ、
前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子に力触覚を発生させるための制御信号を、前記マスタ側アクチュエータに出力すること
を特徴とする力触覚制御システム。 - 前記操作子は、一次元方向に動作すること
を特徴とする請求項1に記載の力触覚制御システム。 - 対象物との接触により変位する制御対象を制御するスレーブ装置に接続されたマスタ装置であって、
操作者の操作により変位する操作子と、
前記操作子に力触覚を発生させるマスタ側アクチュエータと、
前記制御対象の変位量に応じて、前記マスタ側アクチュエータに力触覚発生用の制御信号を出力するマスタ制御部と、を備え、
前記マスタ制御部は、
前記制御対象が前記対象物に接触していないときには前記操作子に一定の反力を発生させ、
前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子に力触覚を発生させるための制御信号を出力すること
を特徴とするマスタ装置。 - 前記操作子は、一次元方向に動作すること
を特徴とする請求項3に記載のマスタ装置。 - 操作者の操作により変位する操作子を備えたマスタ装置に接続されたスレーブ装置であって、
対象物との接触により変位する制御対象に力触覚を発生させるスレーブ側アクチュエータと、
前記操作子の変位量に応じて、前記スレーブ側アクチュエータに力触覚発生用の制御信号を出力するスレーブ制御部と、を備え、
前記スレーブ制御部は、
前記制御対象が前記対象物に接触していないときには前記操作子に一定の反力を発生させ、
前記制御対象が前記対象物に接触しているときには、前記一定の反力に加えて、前記操作子に力触覚を発生させるための制御信号を、前記マスタ装置に出力すること
を特徴とするスレーブ装置。 - マスタ装置に搭載され、操作者の操作により変位する操作子が操作された際に、この操作子の変位量に応じた力触覚を、前記マスタ装置に接続されたスレーブ装置に搭載された制御対象に発生させる工程と、
前記制御対象が対象物との接触により変位した変位量に応じた力触覚を、前記操作子に発生させる工程と、
前記制御対象が前記対象物と接触していないときには、前記操作子に一定の反力を発生させ、前記制御対象が前記対象物と接触しているときには、前記操作子に、前記制御対象が前記対象物に接触したことにより変位した変位量に応じた力触覚に、前記一定の反力を加えて発生させる工程と、
を備えたことを特徴とする力触覚制御方法。 - 請求項3または4に記載したマスタ装置としてコンピュータを機能させるための力触覚制御プログラム。
- 請求項5に記載したスレーブ装置としてコンピュータを機能させるための力触覚制御プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/028975 WO2022024238A1 (ja) | 2020-07-29 | 2020-07-29 | 力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、及び力触覚制御プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/028975 WO2022024238A1 (ja) | 2020-07-29 | 2020-07-29 | 力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、及び力触覚制御プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022024238A1 true WO2022024238A1 (ja) | 2022-02-03 |
Family
ID=80035501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/028975 WO2022024238A1 (ja) | 2020-07-29 | 2020-07-29 | 力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、及び力触覚制御プログラム |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022024238A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0271979A (ja) * | 1988-09-05 | 1990-03-12 | Hitachi Ltd | マニピュレータの制御方法および装置 |
JPH07246578A (ja) * | 1994-03-11 | 1995-09-26 | Yaskawa Electric Corp | マスターハンド装置 |
JP2014004655A (ja) * | 2012-06-25 | 2014-01-16 | Univ Of Tsukuba | マニピュレーションシステム |
JP2015089605A (ja) * | 2013-11-07 | 2015-05-11 | 学校法人立命館 | マスタスレーブシステム |
-
2020
- 2020-07-29 WO PCT/JP2020/028975 patent/WO2022024238A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0271979A (ja) * | 1988-09-05 | 1990-03-12 | Hitachi Ltd | マニピュレータの制御方法および装置 |
JPH07246578A (ja) * | 1994-03-11 | 1995-09-26 | Yaskawa Electric Corp | マスターハンド装置 |
JP2014004655A (ja) * | 2012-06-25 | 2014-01-16 | Univ Of Tsukuba | マニピュレーションシステム |
JP2015089605A (ja) * | 2013-11-07 | 2015-05-11 | 学校法人立命館 | マスタスレーブシステム |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100940396B1 (ko) | 촉각 피드백과 연관된 명령어를 매핑하는 시스템 및 방법 | |
Abbott et al. | Virtual fixture architectures for telemanipulation | |
Tachi | Real-time remote robotics-toward networked telexistence | |
JP5105450B2 (ja) | マスタスレーブシステム及びその制御方法 | |
KR102334764B1 (ko) | 햅틱 장치를 통한 가상 피드백을 위한 시스템 및 방법 | |
JPH10177387A (ja) | 力覚駆動装置、力覚付与方法および記録媒体 | |
WO2019195020A1 (en) | Resistance-based haptic device | |
Walker et al. | User-controlled variable impedance teleoperation | |
WO2022024238A1 (ja) | 力触覚制御システム、マスタ装置、スレーブ装置、力触覚制御方法、及び力触覚制御プログラム | |
Fan et al. | Digital twin-driven mixed reality framework for immersive teleoperation with haptic rendering | |
JP4876246B2 (ja) | 触覚制御方法および触覚制御装置 | |
Nisar et al. | Effects of different hand-grounding locations on haptic performance with a wearable kinesthetic haptic device | |
KR102544926B1 (ko) | 결합된 어드미턴스 제어기의 최적 제어 | |
Kamikawa et al. | Comparison between force-controlled skin deformation feedback and hand-grounded kinesthetic force feedback for sensory substitution | |
Malysz et al. | Cooperative teleoperation control with projective force mappings | |
JPH0442144B2 (ja) | ||
CN107168105B (zh) | 一种虚拟手术混合控制系统及其验证方法 | |
Kuchenbecker et al. | Canceling induced master motion in force-reflecting teleoperation | |
JP4524729B2 (ja) | 遠隔操縦ロボットの制御装置 | |
Ishii et al. | Bilateral control for remote controlled robotic forceps system with time varying delay | |
Xia et al. | System Design of Wearable Tactile Device Based on Virtual Reality | |
Dorin et al. | Design and development of an upper limb rehabilitation robotic system | |
WO2006070495A1 (ja) | インタフェース装置 | |
Wijayasekara et al. | Fuzzy logic based force-feedback for obstacle collision avoidance of robot manipulators | |
WO2024028980A1 (ja) | 遠隔タッチング支援装置および遠隔タッチング支援方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20946924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20946924 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |