WO2022022747A1 - 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统 - Google Patents

一种扫描器以及应用该扫描器的同轴和非同轴雷达系统 Download PDF

Info

Publication number
WO2022022747A1
WO2022022747A1 PCT/CN2021/116482 CN2021116482W WO2022022747A1 WO 2022022747 A1 WO2022022747 A1 WO 2022022747A1 CN 2021116482 W CN2021116482 W CN 2021116482W WO 2022022747 A1 WO2022022747 A1 WO 2022022747A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
optical
scanner
grating
groups
Prior art date
Application number
PCT/CN2021/116482
Other languages
English (en)
French (fr)
Inventor
黄锦熙
单子豪
巩少斌
Original Assignee
杭州视光半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州视光半导体科技有限公司 filed Critical 杭州视光半导体科技有限公司
Priority to US18/018,032 priority Critical patent/US20230273300A1/en
Publication of WO2022022747A1 publication Critical patent/WO2022022747A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention belongs to the technical field of laser radar, and particularly relates to a scanner and coaxial and non-coaxial radar systems using the scanner.
  • Lidar is a sensor that uses laser light for detection and ranging. Its principle is that the transmitting device emits laser light to the target, and the receiving device measures the delay and intensity of the returned laser to measure the distance to the target.
  • the current lidar includes mechanical scanning lidar, Flash lidar, Mems scanning lidar, and OPA radar.
  • the traditional mechanical lidar uses mechanical devices to rotate and scan to obtain 360-degree point cloud information and build a complete three-dimensional image.
  • the mechanical scanning lidar is large in size and is assembled with multiple wire harnesses, which leads to higher production costs; Flash Lidar ranging distance is relatively short, and the accurately measured distance is 10M-20M.
  • Mems scanning Lidar has poor stability during use, and the Mems used cannot meet the vehicle regulations. The risk of long-term use is high, and the price of a single Mems is high;
  • OPA radars are expensive to manufacture and difficult to industrialize.
  • the purpose of the present invention is to provide a scanner and coaxial and non-coaxial radar systems using the scanner, so as to solve the problems raised in the above background art.
  • the present invention provides the following technical solutions:
  • a scanner comprising a wafer substrate, several optical switches and several groups of grating antenna groups; several optical switches and several groups of grating antenna groups are fixed on the upper end face of the wafer substrate, the several optical switches One-to-one correspondence with the several groups of grating antenna groups, that is, one group of grating antenna groups is electrically connected to an optical switch, the several groups of grating antenna groups are arrayed into grating portions, and the upper side of the grating portion is movably provided with a lens module.
  • the lens module includes several lenses arranged at intervals, and the curvature values of the several lenses are all different.
  • the lens module can be finely adjusted up and down on the upper side of the grating portion through a lift motor.
  • a coaxial lidar system is integrated by connecting working parts with multiple splitters:
  • Laser for emitting laser light and outputting optical signal
  • Optical circulator used to realize two-way communication of optical signal
  • an optical amplifier used for amplifying the output optical signal, obtaining the first optical signal, and sending it to the scanner;
  • a scanner used to output the first optical signal to the free space, and at the same time, can receive the optical signal in the free space to obtain the second optical signal;
  • Optical attenuator used to receive the optical signal output by the laser and attenuate it to obtain the local optical signal to avoid damage to the detection circuit;
  • the detection circuit is used for comparing the local optical signal and the second optical signal to calculate the detection distance; wherein, the detection circuit includes a photoelectric balance detector group, a spectrum analyzer group, a processor and an optical fiber.
  • the photoelectric balance detector group includes a first photoelectric balance detector and a second photoelectric balance detector
  • the spectrometer group includes a first spectrometer and a second spectrometer.
  • a non-coaxial lidar system is integrated by multiple splitters connecting working parts:
  • Laser for emitting laser light and outputting optical signal
  • the optical amplifier receives the optical signal transmitted by the laser through the splitter, and amplifies it to obtain the third optical signal, and transmits it to the scanner;
  • a first scanner for outputting the third optical signal to free space
  • the second scanner is used for receiving the optical signal in the free space to obtain the fourth optical signal
  • the optical attenuator receives the optical signal transmitted by the laser through the splitter, and attenuates it to obtain the second local optical signal, and at the same time, avoids damage to the detection circuit;
  • the detection circuit is used to compare the second local optical signal and the fourth optical signal, and then calculate the detection distance; wherein, the detection circuit includes a photoelectric balance detector group, a spectrum analyzer group, a processor and an optical fiber.
  • the beneficial effects of the present invention are: the present invention performs two-dimensional scanning through a scanner, and then combines the distance information calculated by the system in the third dimension to realize three-dimensional imaging and improve detection accuracy. With the participation of the grating antenna, the noise is eliminated, the interference of the outside world to the detection results is reduced, and the detection distance is improved. In addition, the system is integrated on the chip, which is small in size, easy to install, and convenient for cost reduction and mass production.
  • Fig. 1 is the structural representation of scanner in the present invention
  • Fig. 2 is the frame diagram of the coaxial radar system in the present invention.
  • Fig. 3 is the frame diagram of the non-coaxial radar system in the present invention.
  • FIG. 4 is a schematic structural diagram of a lens module in the present invention.
  • a scanner as shown in FIG. 1 includes a wafer substrate 1, several optical switches 2 and several groups of grating antenna groups; several optical switches 2 and several groups are fixed on the upper end face of the wafer substrate 1 grating antenna group, the several optical switches 2 and the several grating antenna groups are in one-to-one correspondence, that is, one grating antenna group is electrically connected to one optical switch 2, and the several grating antenna group arrays are distributed into grating parts 4.
  • a lens module 3 is movably arranged on the upper side of the grating part 4, and its function is that two-dimensional imaging can be better achieved through the optical switch 2, the grating antenna group and the lens module 3, thereby improving the accuracy of ranging.
  • the lens module 3 includes a plurality of lenses arranged at intervals, and the curvature values of the plurality of lenses are different, and the lens module 3 is finely adjusted up and down on the upper side of the grating portion 4 by the lifting motor, thereby Make sure that the outgoing light is collimated.
  • the lens module 3 includes a first lens 5 and a second lens 6, and the light passes through the first lens 5 and the second lens 6 from the left object space to the chip in sequence;
  • the focal length of the second lens 6 is f 2
  • the center distance of the two convex lenses is d
  • by the formula d is calculated to correct fringing field aberrations.
  • the optical switch 2 and the lens constitute a two-dimensional scanning mechanism, that is, the first dimension is gated by the optical switch 2, and according to the focal plane theorem, the scanning in the first dimension is realized.
  • the dispersion principle of light different After the light of the wavelength passes through the grating, the exit angles are different, and the direction of the second dimension is scanned.
  • the grating antenna group is in the shape of a long strip. Therefore, in order to achieve the best effect and reduce light distortion, the lens is selected as a cylindrical mirror.
  • is the angle of the grating antenna transmitting/receiving light
  • is the wavelength
  • n eff is the equivalent refraction of the waveguide Efficiency
  • is the grating period
  • changing the wavelength can change the receiving and light direction of the waveguide grating antenna, and the changing efficiency is:
  • a waveguide grating is used as the grating, and the waveguide grating emits symmetrically up and down, so it is necessary to use other structures to make the light mainly exit from a measuring point.
  • the substrate is emitted; or a reflective structure is placed under the waveguide, and an interference grating is placed on the waveguide, so as to be emitted from above.
  • the shallower the grating structure the weaker the disturbance to the light transmitted in the waveguide, the lower the radiation rate, the larger the effective radiation length of the grating, the better the parallelism of the outgoing light, and the more concentrated the beam.
  • a coaxial lidar system is integrated by connecting working components with multiple splitters: the specific connection methods are as follows:
  • the laser is used for emitting laser light and outputting an optical signal, and through the first splitter, the optical signal is respectively sent to the optical circulator and the optical attenuator to obtain the first optical signal and the local optical signal;
  • the optical circulator is used to realize bidirectional communication of optical signals; in this embodiment, the optical circulator has 3 interfaces, wherein the first interface is connected with the first splitter, the second interface is connected with an optical amplifier, and the third interface is connected with an optical amplifier.
  • the interface is connected to the detection circuit, which is convenient for the subsequent calculation of scanning distance;
  • an optical amplifier configured to receive the optical signal transmitted by the first splitter, receive the first optical signal, amplify it, and then transmit it to the scanner;
  • the scanner receives the optical signal output by the optical amplifier and outputs it to the free space, and can receive the optical signal in the free space to obtain the second optical signal;
  • Optical attenuator used to receive the optical signal output by the laser and attenuate it to obtain the local optical signal to avoid damage to the detection circuit;
  • the detection circuit is used for comparing the local optical signal and the second optical signal to calculate the detection distance; wherein, the detection circuit includes a photoelectric balance detector group, a spectrum analyzer group, a processor and an optical fiber.
  • the photoelectric balance detector group includes a first photoelectric balance detector and a second photoelectric balance detector;
  • the spectrometer group includes a first spectrometer and a second spectrometer.
  • the specific working steps of the detection circuit are as follows: the second optical signal enters the second interface of the optical circulator through the scanner and the optical amplifier in sequence, and is transmitted from the third interface of the optical circulator to the first photoelectric balance detection.
  • the output end of the optical attenuator is connected with a second splitter, and the output end of the second splitter is respectively connected with the input end of the first photoelectric balance detector and the input end of the third splitter,
  • the first local optical signal and the second local optical signal are obtained respectively, and the first electrical signal converted from the second optical signal is output by taking the first local optical signal as the differential, and the first electrical signal is output to the first spectrum analyzer
  • the frequency of the spatial echo is detected, that is, the frequency of the second optical signal; secondly, the output end of the third splitter is respectively connected to the input end of the optical fiber and the second photoelectric balance detector, and the output end of the optical fiber is connected to the second photoelectric
  • the input end of the balanced detector is delayed through the optical fiber, and then
  • a non-coaxial lidar system is integrated by multiple splitters connecting working parts:
  • the laser is used for emitting laser light and outputting the optical signal, through the first splitter, the third optical signal and the local optical signal are obtained, and the third optical signal and the local optical signal are respectively sent to the optical amplifier and the optical attenuator;
  • the optical amplifier is used to receive the third optical signal, amplify it, and then send it to the scanner; wherein, the optical amplifier and the grating antenna group in the scanner are used for noise removal and power enhancement to improve the measurement distance, reduce external interference;
  • a first scanner for outputting the third optical signal to free space
  • the second scanner is used for receiving the optical signal in the free space to obtain the fourth optical signal
  • Optical attenuator which receives local optical signals and attenuates them to avoid damage to the detection circuit
  • the detection circuit is used to compare the weakened local optical signal and the fourth optical signal, and then calculate the detection distance; wherein, the detection circuit includes a photoelectric balance detector group, a spectrum analyzer group, a processor and an optical fiber.
  • the photoelectric balance detector group includes a first photoelectric balance detector and a second photoelectric balance detector;
  • the spectrometer group includes a first spectrometer and a second spectrometer.
  • the specific working steps of the detection circuit are as follows: the fourth optical signal is sent to the input end of the first photoelectric balance detector through the second scanner, and at the same time, the output end of the optical attenuator is connected to a second branch.
  • the output terminal of the second splitter is connected to the input terminal of the first photoelectric balance detector and the input terminal of the third splitter respectively, so as to obtain the first local optical signal and the second local optical signal respectively.
  • a local optical signal is used as a differential to output the first electrical signal converted from the second optical signal, and the first electrical signal is output to the first spectrometer to detect the frequency of the spatial echo, that is, the frequency of the second optical signal;
  • the output end of the third splitter is connected to the optical fiber and the input end of the second photoelectric balanced detector respectively, and the output end of the optical fiber is connected to the input end of the second photoelectric balanced detector, and the delay processing is performed through the optical fiber, and then the second optical fiber is used for delay processing.
  • the photoelectric balance detector outputs the second electrical signal, and then passes the second electrical signal through the second spectrum analyzer to obtain the local frequency, and then sends both the spatial echo frequency and the local frequency to the processor for beat frequency processing, and calculates the time difference, to get the distance.
  • Embodiment 1 and Embodiment 2 can be packaged and integrated on the same circuit board, which reduces the volume and facilitates installation and achieves the purpose of reducing cost and mass production.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • “several” means two or more. Additionally, the term “comprising” and any variations thereof are intended to cover non-exclusive inclusion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种扫描器以及应用该扫描器的同轴和非同轴雷达系统,属于激光雷达技术领域。其中,扫描器包括晶圆衬底、若干个光开关和若干组光栅天线组;晶圆衬底上端面固设有若干个光开关和若干组光栅天线组,若干个光开关和若干组光栅天线组一一对应,即一组光栅天线组和一个光开关电性连接,若干组光栅天线组阵列分布成光栅部,光栅部的上侧活动设置有透镜模块。其次,通过扫描器进行二维扫描,再结合系统在第三维度计算出的距离信息,实现三维成像,提高探测精度。再者,通过光放大器和光栅天线的共同参与,进行噪点祛除,降低外界对探测结果的干扰性,提高探测距离。另外,该系统集成在芯片上,体积小,安装简易,方便降本量产。

Description

一种扫描器以及应用该扫描器的同轴和非同轴雷达系统 技术领域
本发明属于激光雷达技术领域,特别涉及一种扫描器以及应用该扫描器的同轴和非同轴雷达系统。
背景技术
激光雷达是一种用激光探测和测距的传感器。它的原理是发射装置向目标发射出激光,通过接收装置测量返回激光的延迟和强度来测量目标的距离。
目前的激光雷达包括机械式扫描激光雷达、Flash激光雷达、Mems扫描激光雷达和OPA雷达,其中传统的机械式激光雷达采用机械装置旋转扫描,得到360度内点云信息,构建成一幅完整的三维图像,但由于机械扫描速度慢,分辨率低,得到的三维图像不能完整的呈现出较小物体,其次,机械式扫描激光雷达的体积较大,采用多线束组装,促使生产成本较高;Flash激光雷达测距距离较近,精确测量的距离在10M-20M,Mems扫描激光雷达在使用过程中稳定性差,且采用的Mems无法符合车规标准,长时间使用风险较高,单个Mems价格高;
OPA雷达制造价格贵,难以工业化。
发明内容
本发明的目的在于提供一种扫描器以及应用该扫描器的同轴和非同轴雷达系统,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种扫描器,包括晶圆衬底、若干个光开关和若干组光栅天线组;所述晶圆衬底上端面固设有若干个光开关和若干组光栅天线组,所述若干个光开关和所述若干组光栅天线组一一对应,即一组光栅天线组和一个光开关电性连接,所述若干组光栅天线组阵列分布成光栅部,所述光栅部的上侧活动设置有透镜模块。
作为优选,所述透镜模块包括若干个间隔设置的透镜,所述若干个透镜的曲率值均不相同。
作为优选,所述透镜模块通过升降电机实现在光栅部上侧上下微调。
一种同轴激光雷达系统,由多个分路器连接工作部件集成而成:
激光器,用于发射激光,输出光信号;
光环形器,用于实现光信号的双向通信;
光放大器,用于对输出光信号放大,获得第一光信号,并将其输送至扫描器;
扫描器,用于将第一光信号输出至自由空间,同时,能够接收自由空间内的光信号,获取第二光信号;
光衰减器,用于接收激光器输出的光信号进行衰减,获得本地光信号,避免损坏检测线路;
检测线路,用于对比本地光信号和第二光信号,计算出检测距离;其中,所述检测线路包括光电平衡探测器组、频谱仪组、处理器和光纤。
作为优选,所述光电平衡探测器组包括第一光电平衡探测器和第二光电平衡探测器;所述频谱仪组包括第一频谱仪和第二频谱仪。
一种非同轴激光雷达系统,由多个分路器连接工作部件集成而成:
激光器,用于发射激光,输出光信号;
光放大器,接收激光器经分路器后输送的光信号,并对其进行放大,得到第三光信号,并将其输送至扫描器;
第一扫描器,用于将第三光信号输出至自由空间;
第二扫描器,用于接收自由空间内的光信号,得到第四光信号;
光衰减器,接收激光器经分路器后输送的光信号,并对其进行衰减,获得第二本地光信号,同时,避免损坏检测线路;
检测线路,用于对比第二本地光信号和第四光信号,然后,计算出检测距离;其中,所述检测线路包括光电平衡探测器组、频谱仪组、处理器和光纤。
与现有技术相比,本发明的有益效果是:本发明通过扫描器进行二维扫描,再结合系统在第三维度计算出的距离信息,实现三维成像,提高探测精度,其次,通过光放大器和光栅天线的共同参与,进行噪点祛除,降低外界对探测结果的干扰性,提高探测距离,另外,本系统集成在芯片上,体积小,安装简易,方便降本量产。
附图说明
图1是本发明中扫描器的结构示意图;
图2是本发明中同轴雷达系统的框架图;
图3是本发明中非同轴雷达系统的框架图;
图4是本发明中透镜模块的结构示意图;
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清除,完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例。
如图1所示的一种扫描器,包括晶圆衬底1、若干个光开关2和若干组光栅天线组;所述晶圆衬底1上端面固设有若干个光开关2和若干组光栅天线组,所述若干个光开关2和所述若干组光栅天线组一一对应,即一组光栅天线组和一个光开关2电性连接,所述若干组光栅天线组阵列分布成光栅部4,所述光栅部4的上侧活动设置有透镜模块3,其作用是,通过光开关2、光栅天线组和透镜模块3能够较好的实现二维成像,从而提高测距的精度。
参考图4可知,所述透镜模块3包括若干个间隔设置的透镜,所述若干个透镜的曲率值均不相同,且所述透镜模块3通过升降电机实现在光栅部4上侧上下微调,从而确保保证出射光准直出去。
在本实施例中,所述透镜模块3包括第一透镜5和第二透镜6,光线从左侧物体空间依次通过第一透镜5和第二透镜6至芯片;下面进行详细的阐述,根据芯片的自身尺寸L=10mm,芯片发散角30度。为了让光全部出射,根据公式NA=n*sinθ,n表示折射率,在空气中n=1.0,可以确定系统像方NA=0.5,其次,假设实际使用场景中物方扫描角度为60度,由tanθ=L/F,计算出系统总焦距F=8.6mm,若第一透镜5的焦距为f 1,第二透镜6的焦距为f 2,两个 凸透镜的中心距离为d,由公式
Figure PCTCN2021116482-appb-000001
计算出d,从而矫正边缘视场的像差。
具体来说,光开关2和透镜构成一个二维扫描机构,即第一维度通过光开关2的选通,根据焦平面定理,实现第一维度方向的扫描,其次,根据光的色散原理,不同波长的光经过光栅后出射角度不同,扫描第二维度方向。
另外,在本实施例中,由图1可知,光栅天线组为长条形,因此,为了能够取得最优的效果,降低光线畸变,所述透镜选用柱面镜。
其次,对光栅天线而言,其出射方向和可接收光的方向为sinθ=n eff-λ/Λ,θ为光栅天线发射/接收光的角度,λ为波长,n eff为波导的等效折射率,Λ为光栅周期,改变波长,可以改变波导光栅天线的收发光方向,改变效率为:
Figure PCTCN2021116482-appb-000002
同时,光束发散角Ω与有效长度L的关系为:
Figure PCTCN2021116482-appb-000003
在本实施例中光栅选用波导光栅,而波导光栅为上下对称出射,所以需要通过其他结构使得光主要从一测出射,比如在波导上设一层反射镜或者多层增强反射薄膜,使得从衬底出射;或者在波导下放置反射结构,在波导上放置干涉光栅等办法,使得从上方出射。
因此可知,光栅结构越浅,其对波导中传导的光的扰动越弱,辐射速率越低,光栅的有效辐射长度将变大,出射光的平行度将更好,光束也更汇聚。
实施例1:
如图2所示,一种同轴激光雷达系统,由多个分路器连接工作部件集成而成:具体连接方式如下:
激光器,用于发射激光,输出光信号,经第一分路器,将光信号分别输送至光环形器和光衰减器,得到第一光信号和本地光信号;
光环形器,用于实现光信号的双向通信;在本实施例中,光环形器有3个接口,其中,第一接口和第一分路器连接,第二接口连接有光放大器,第三接口连接至检测线路中,便于实现后续的扫描距离计算;
光放大器,用于接收经第一分路器输送的光信号接收第一光信号,并对其进行放大,然后,将其输送至扫描器;
扫描器,接收光放大器输出的光信号输出至自由空间,另外,能够接收自由空间内的光信号,获得第二光信号;
光衰减器,用于接收激光器输出的光信号进行衰减,获得本地光信号,避免损坏检测线路;
检测线路,用于对比本地光信号和第二光信号,计算出检测距离;其中,所述检测线路包括光电平衡探测器组、频谱仪组、处理器和光纤。
所述光电平衡探测器组包括第一光电平衡探测器和第二光电平衡探测器;所述频谱仪组包括第一频谱仪和第二频谱仪。
值得一说的是,所述检测线路的具体工作步骤如下:第二光信号依次通过扫描器和光放大器进入光环形器的第二接口,从光环形器的第三接口输送至第一光电平衡探测器的输入端,同时,光衰减器的输出端连接有第二分路器,第二分路器输出端分别与第一光电平衡探测器的输入端和第三分路器的输入端连接,从而分别获得第一本地光信号和第二本地光信号,通过将第一本地光信号作为差分,输出第二光信号转化后的第一电信号,该第一电信号输出至第一频谱仪,检测出空间回波的频率,即第二光信号的频率;其次,第三分路器输出端分别连接至光纤和第二光电平衡探测器的输入端,且光纤的输出端连接至第二光电平衡探测器的输入端,通过光纤做延迟处理,然后,经过第二光电平衡探测器输出第二电信号,再讲第二电信号经过第二频谱仪得出本地频率,接着,将空间回波频率和本地频率均输送至处理器进行拍频处理,计算出时间差,从而得出距离。
实施例2:
如图3所示,一种非同轴激光雷达系统,由多个分路器连接工作部件集成而成:
激光器,用于发射激光,输出光信号,经第一分路器,得到第三光信号和本地光信号,并将第三光信号和本地光信号分别输送至光放大器和光衰减器;
光放大器,用于接收第三光信号,并对其进行放大,然后,将其输送至扫描器;其中,通过光放大器和扫描器中的光栅天线组进行噪点祛除和功率增强,提高测量距离,降低外界的干扰性;
第一扫描器,用于将第三光信号输出至自由空间;
第二扫描器,用于接收自由空间内的光信号,得到第四光信号;
光衰减器,接收本地光信号,并对其进行衰减,避免损坏检测线路;
检测线路,用于对比衰弱后的本地光信号和第四光信号,然后,计算出检测距离;其中,所述检测线路包括光电平衡探测器组、频谱仪组、处理器和光纤。
所述光电平衡探测器组包括第一光电平衡探测器和第二光电平衡探测器;所述频谱仪组包括第一频谱仪和第二频谱仪。
值得一说的是,所述检测线路的具体工作步骤如下:第四光信号通过第二扫描器送至第一光电平衡探测器的输入端,同时,光衰减器的输出端连接有第二分路器,第二分路器输出端分别与第一光电平衡探测器的输入端和第三分路器的输入端连接,从而分别获得第一本地光信号和第二本地光信号,通过将第一本地光信号作为差分,输出第二光信号转化后的第一电信号,该第一电信号输出至第一频谱仪,检测出空间回波的频率,即第二光信号的频率;其次,第三分路器输出端分别连接至光纤和第二光电平衡探测器的输入端,且光纤的输出端连接至第二光电平衡探测器的输入端,通过光纤做延迟处理,然后,经过第二光电平衡探测器输出第二电信号,再将第二电信号经过第二频谱仪得出本地频率,接着,将空间回波频率和本地频率均输送至处理器进行拍频处理,计算出时间差,从而得出距离。
另外,无论实施例1或实施例2都可以封装集成化在同一块电路板上,减小体积便于安装,实现降本量产的目的。
本发明的描述中,需要理解的是,术语“中心”、“横向”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语 “第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“若干个”的含义是两个或两个以上。另外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。
本发明按照实施例进行了说明,在不脱离本原理的前提下,本装置还可以作出若干变形和改进。应当指出,凡采用等同替换或等效变换等方式所获得的技术方案,均落在本发明的保护范围内。

Claims (5)

  1. 一种扫描器,其特征在于:包括晶圆衬底、若干个光开关和若干组光栅天线组;所述晶圆衬底上端面固设有若干个光开关和若干组光栅天线组,若干个所述光开关和若干组所述光栅天线组一一对应,即一组光栅天线组和一个光开关电性连接,若干组所述光栅天线组阵列分布成光栅部,所述光栅部的上侧活动设置有透镜模块;其中,所述光栅天线组为长条形,所述透镜模块包括若干个间隔设置的透镜,所述若干个透镜的曲率值均不相同;所述透镜选用柱面镜。
  2. 根据权利要求1所述的一种扫描器,其特征在于:所述透镜模块通过升降电机实现在光栅部上侧上下微调。
  3. 一种基于权利要求1的同轴激光雷达系统,其特征在于:由多个分路器连接工作部件集成而成,所述工作部件包括如权利要求1中所述的扫描器:
    激光器,用于发射激光,输出光信号;
    光环形器,用于实现光信号的双向通信;
    光放大器,用于对输出光信号放大,获得第一光信号,并将其输送至扫描器;
    扫描器,用于将第一光信号输出至自由空间,同时,能够接收自由空间内的光信号,获取第二光信号;
    光衰减器,用于接收激光器输出的光信号进行衰减,获得第一本地光信号,避免损坏检测线路;
    检测线路,用于对比第一本地光信号和第二光信号,计算出检测距离;其中,所述检测线路包括光电平衡探测器组、频谱仪组、处理器和光纤。
  4. 根据权利要求3所述的一种同轴激光雷达系统,其特征在于:所述光电平衡探测器组包括第一光电平衡探测器和第二光电平衡探测器;所述频谱仪组包括第一频谱仪和第二频谱仪。
  5. 一种基于权利要求1的非同轴激光雷达系统,其特征在于:由多个分路器连接工作部件集成而成,所述工作部件包括两个如权利要求1中所述的扫描器:
    激光器,用于发射激光,输出光信号;
    光放大器,接收激光器经分路器后输送的光信号,并对其进行放大,得到第三光信号,并将其输送至扫描器;
    第一扫描器,用于将第三光信号输出至自由空间;
    第二扫描器,用于接收自由空间内的光信号,得到第四光信号;光衰减器,接收激光器经分路器后输送的光信号,并对其进行衰减,获得第二本地光信号,同时,避免损坏检测线路;
    检测线路,用于对比第二本地光信号和第四光信号,然后,计算出检测距离;其中,所述检测线路包括光电平衡探测器组、频谱仪组、处理器和光纤。
PCT/CN2021/116482 2020-07-29 2021-09-03 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统 WO2022022747A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/018,032 US20230273300A1 (en) 2020-07-29 2021-09-03 Scanner, and coaxial and non-coaxial radar systems using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010744507.3A CN111856481B (zh) 2020-07-29 2020-07-29 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
CN202010744507.3 2020-07-29

Publications (1)

Publication Number Publication Date
WO2022022747A1 true WO2022022747A1 (zh) 2022-02-03

Family

ID=72945949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116482 WO2022022747A1 (zh) 2020-07-29 2021-09-03 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统

Country Status (3)

Country Link
US (1) US20230273300A1 (zh)
CN (1) CN111856481B (zh)
WO (1) WO2022022747A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111856481B (zh) * 2020-07-29 2021-07-06 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
CN112630884B (zh) * 2020-12-22 2023-09-08 联合微电子中心有限责任公司 用于光学相控阵的波导光栅天线阵列及其制备方法
TWI792305B (zh) * 2021-05-10 2023-02-11 大陸商信泰光學(深圳)有限公司 光路共軸的光學裝置(六)
CN113671464B (zh) * 2021-10-22 2022-02-18 杭州视光半导体科技有限公司 一种片上相干检测的扫描同轴面阵收发机
CN117092619B (zh) * 2023-10-18 2024-01-12 吉林大学 一种相干激光雷达收发芯片及制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333633A (ja) * 2002-05-09 2003-11-21 Toshiba Corp 光スイッチ装置とその制御方法
WO2017113094A1 (zh) * 2015-12-29 2017-07-06 浙江大学 基于阵列波导光栅路由器的雷达系统
CN107102322A (zh) * 2017-05-02 2017-08-29 哈尔滨工业大学 微波激光雷达一体化系统
CN208013431U (zh) * 2018-03-01 2018-10-26 深圳市镭神智能系统有限公司 一种激光雷达
CN109298404A (zh) * 2018-10-22 2019-02-01 上海交通大学 基于透镜的集成二维光束转向装置
CN110118960A (zh) * 2019-05-29 2019-08-13 深圳市镭神智能系统有限公司 激光雷达
CN110168430A (zh) * 2016-11-16 2019-08-23 博莱佳私人有限公司 光束定向器
CN110244281A (zh) * 2019-07-19 2019-09-17 北京一径科技有限公司 一种激光雷达系统
US20190317199A1 (en) * 2018-04-17 2019-10-17 Santec Corporation Lidar sensing arrangements
CN110857977A (zh) * 2018-08-23 2020-03-03 北京万集科技股份有限公司 光学天线、相控阵激光雷达及光学天线的二维扫描方法
CN111856481A (zh) * 2020-07-29 2020-10-30 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3553385B2 (ja) * 1998-08-31 2004-08-11 三菱電機株式会社 光スイッチング装置
JP2013130609A (ja) * 2011-12-20 2013-07-04 Ngk Insulators Ltd 電磁波放射素子およびその製造方法
CN103954602B (zh) * 2014-03-10 2016-08-17 北京理工大学 激光双轴差动共焦布里渊-拉曼光谱测量方法与装置
JP6791840B2 (ja) * 2014-08-14 2020-11-25 エムティティ イノベーション インコーポレイテッドMtt Innovation Incorporated 光源
CN105162515B (zh) * 2015-06-23 2017-09-29 西安空间无线电技术研究所 一种锁相和数据分离的平衡锁相环系统及方法
JP6879561B2 (ja) * 2016-01-22 2021-06-02 国立大学法人横浜国立大学 光偏向デバイスおよびライダー装置
CN105607304B (zh) * 2016-02-15 2021-02-19 欧阳征标 基于光子晶体t型波导的横向输出磁控二选一光路开关
WO2017184581A1 (en) * 2016-04-22 2017-10-26 Wavefront Technology, Inc. Optical switch devices
CN106501812B (zh) * 2016-12-01 2024-04-30 上海思岚科技有限公司 一种激光扫描测距设备
US10338321B2 (en) * 2017-03-20 2019-07-02 Analog Photonics LLC Large scale steerable coherent optical switched arrays
US10690993B2 (en) * 2017-09-15 2020-06-23 Analog Photonics LLC Tunable optical structures
KR102501469B1 (ko) * 2018-02-02 2023-02-20 삼성전자주식회사 빔 스티어링 장치를 포함한 시스템
CN108375774A (zh) * 2018-02-28 2018-08-07 中国科学技术大学 一种无扫描的单光子成像探测激光雷达
US11867844B2 (en) * 2018-10-05 2024-01-09 GM Global Technology Operations LLC Lidar spectrum analyzer
JP7422313B2 (ja) * 2018-12-26 2024-01-26 パナソニックIpマネジメント株式会社 ラインビーム走査光学系およびレーザレーダ
CN109581329B (zh) * 2018-12-29 2024-01-23 国科光芯(海宁)科技股份有限公司 一种相控阵集成光学芯片和光学相控阵发射装置
WO2020163717A1 (en) * 2019-02-07 2020-08-13 Pointcloud Inc. Ranging using a shared path optical coupler
CN109991582B (zh) * 2019-03-13 2023-11-03 上海交通大学 硅基混合集成激光雷达芯片系统
EP3938830A1 (en) * 2019-03-14 2022-01-19 Ricoh Company, Ltd. Light source device, detection device, and electronic apparatus
US10802120B1 (en) * 2019-08-20 2020-10-13 Luminar Technologies, Inc. Coherent pulsed lidar system
US11940571B2 (en) * 2019-12-12 2024-03-26 Aeva, Inc. Performing speckle reduction using polarization
US11573294B2 (en) * 2020-03-17 2023-02-07 Litexel Inc. Switched optical phased array based beam steering LiDAR
CN111257896B (zh) * 2020-05-06 2020-08-11 中国电子科技集团公司信息科学研究院 选通阵列激光雷达接收光学系统和激光雷达

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003333633A (ja) * 2002-05-09 2003-11-21 Toshiba Corp 光スイッチ装置とその制御方法
WO2017113094A1 (zh) * 2015-12-29 2017-07-06 浙江大学 基于阵列波导光栅路由器的雷达系统
CN110168430A (zh) * 2016-11-16 2019-08-23 博莱佳私人有限公司 光束定向器
CN107102322A (zh) * 2017-05-02 2017-08-29 哈尔滨工业大学 微波激光雷达一体化系统
CN208013431U (zh) * 2018-03-01 2018-10-26 深圳市镭神智能系统有限公司 一种激光雷达
US20190317199A1 (en) * 2018-04-17 2019-10-17 Santec Corporation Lidar sensing arrangements
CN110857977A (zh) * 2018-08-23 2020-03-03 北京万集科技股份有限公司 光学天线、相控阵激光雷达及光学天线的二维扫描方法
CN109298404A (zh) * 2018-10-22 2019-02-01 上海交通大学 基于透镜的集成二维光束转向装置
CN110118960A (zh) * 2019-05-29 2019-08-13 深圳市镭神智能系统有限公司 激光雷达
CN110244281A (zh) * 2019-07-19 2019-09-17 北京一径科技有限公司 一种激光雷达系统
CN111856481A (zh) * 2020-07-29 2020-10-30 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统

Also Published As

Publication number Publication date
US20230273300A1 (en) 2023-08-31
CN111856481A (zh) 2020-10-30
CN111856481B (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022022747A1 (zh) 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
KR102038533B1 (ko) 레이저 레이더 시스템 및 목표물 영상 획득 방법
US9007600B2 (en) Laser radar system
CN106371102B (zh) 基于自适应光学的逆合成孔径激光雷达信号接收系统
CN105301600B (zh) 一种基于锥形反射镜的无扫描激光三维成像装置
US20140231647A1 (en) Compact fiber-based scanning laser detection and ranging system
CN101201403A (zh) 三维偏振成像激光雷达遥感器
CN107727008A (zh) 一种测量主动光电系统收发同轴的装置及方法
CN112284302B (zh) 扫描法测量主动光电系统激光收发同轴度的装置及方法
CN110275176A (zh) 一种激光雷达
CN104251995A (zh) 彩色激光三维扫描技术
CN114002703A (zh) 一种三维成像的全固态激光雷达装置
CN102944879A (zh) 一种基于mems二维扫描镜的四维成像装置及其成像方法
CN207923059U (zh) 固态式环形三维成像装置
US20130341486A1 (en) Apparatus for obtaining 3d information using photodetector array
KR20120069487A (ko) 능동형 광 레이더 장치
WO2023066397A1 (zh) 一种片上相干检测的扫描同轴面阵收发机
CN111913164A (zh) 激光探测系统及其探测方法
CN213986839U (zh) 一种激光雷达
CN110345863A (zh) 一种固态式环形三维成像装置
CN212229160U (zh) 一种相干激光雷达设备
CN110471071B (zh) 一种多线状光型全固态激光雷达
CN111913165A (zh) 探测系统及其探测方法
CN112504169A (zh) 一种主动光电系统激光收发同轴度的测试装置及方法
CN116559825B (zh) 激光系统及激光测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849550

Country of ref document: EP

Kind code of ref document: A1