WO2017113094A1 - 基于阵列波导光栅路由器的雷达系统 - Google Patents

基于阵列波导光栅路由器的雷达系统 Download PDF

Info

Publication number
WO2017113094A1
WO2017113094A1 PCT/CN2015/099417 CN2015099417W WO2017113094A1 WO 2017113094 A1 WO2017113094 A1 WO 2017113094A1 CN 2015099417 W CN2015099417 W CN 2015099417W WO 2017113094 A1 WO2017113094 A1 WO 2017113094A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveguide grating
optical
arrayed waveguide
grating router
radar system
Prior art date
Application number
PCT/CN2015/099417
Other languages
English (en)
French (fr)
Inventor
何建军
陈阳
郎婷婷
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to PCT/CN2015/099417 priority Critical patent/WO2017113094A1/zh
Publication of WO2017113094A1 publication Critical patent/WO2017113094A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves

Definitions

  • the invention relates to a radar system, in particular to a radar system based on an arrayed waveguide grating router for phased array radar technology.
  • light-controlled phased array radar Compared with traditional radar, light-controlled phased array radar has many advantages such as small size, light weight, low loss, anti-electromagnetic interference, wide instantaneous bandwidth and no beam tilt. Therefore, the optical true delay module, which is the core technology of the light-controlled phased array radar, has become a research hotspot in this field.
  • each microwave array element has a delay line array corresponding thereto.
  • the present invention provides a radar system based on an arrayed waveguide grating router to at least solve the above problems in the prior art.
  • the present invention includes a first tunable semiconductor laser sequentially connected, a first optical delay unit, a first semiconductor photodetector, a second tunable semiconductor laser, a second optical delay unit, a second semiconductor photodetector, and a second
  • the semiconductor photodetector is connected with an antenna;
  • the N first tunable semiconductor lasers emit N wavelength-tunable optical wave signals and are modulated into optical carriers by microwave signals, and the optical carriers are transmitted to N input ports of the first optical delay unit,
  • the optical carrier delayed by the first optical delay unit is transmitted to a wavelength conversion array composed of N first semiconductor photodetectors and N second tunable semiconductor lasers, and the wavelength-converted optical carrier is transmitted to the first Two optical delay units N input ports for the second delay;
  • the optical carriers output by the N output ports of the two optical delay units are respectively transmitted to the N second semiconductor detectors to demodulate the microwave signals loaded on the optical wave signals, and the second semiconductor detector output is connected with an antenna, and the second semiconductor detection
  • the transmitter transmits
  • the N-channel wavelength-tunable optical wave signals emitted by the first tunable semiconductor laser are modulated and modulated into optical carriers by direct loading modulation or by microwave signals through respective modulator loading modulations.
  • the first optical delay unit is mainly composed of a first arrayed waveguide grating router, a delay line array and a second arrayed waveguide grating router.
  • the delay line array comprises N-segment waveguides of equal length series, and two ends of the N-segment waveguide are respectively connected between the N output ports of the first arrayed waveguide grating router and the N input ports of the second arrayed waveguide grating router.
  • the first arrayed waveguide grating router and the second arrayed waveguide grating router have N channels corresponding to input or output, the N channels occupying the entire free spectral range of the arrayed waveguide grating, that is, the channel spacing is the freedom of the waveguide grating 1/N of the spectral range.
  • the first arrayed waveguide grating router and the second arrayed waveguide grating router are identical in structure and integrated on the substrate with the delay line array.
  • the waveguide materials of the first arrayed waveguide grating router, the second arrayed waveguide grating router and the delay line array are the same, and optical waveguide materials of silicon dioxide, silicon, silicon nitride, silicon oxynitride or indium phosphide are used.
  • ⁇ L is the wavelength difference of adjacent waveguides and is calculated by the following formula:
  • n eff is the effective refractive index of the waveguide
  • is the minimum required delay difference
  • the wavelength conversion array of the N first semiconductor photodetectors and the N second tunable semiconductor lasers is replaced with a wavelength converter.
  • the first tunable semiconductor laser and the second tunable semiconductor laser are identical, and the first semiconductor photodetector and the second semiconductor photodetector are identical.
  • the second optical delay unit has the same structure as the first optical delay unit, and the second optical delay unit
  • the difference in length between adjacent waveguides of the delay line array in the element is N times the length difference between adjacent waveguides of the delay line array in the first optical delay unit.
  • the tunable semiconductor laser, the semiconductor photodetector, and the arrayed waveguide grating router are integrated on the same substrate by a hybrid integrated method.
  • the tunable semiconductor laser of the present invention can be configured to output different wavelengths of light waves depending on the desired scanning angle.
  • the photoelectric modulator modulates the microwave signal of a specific frequency onto the light wave signal output by the laser, and outputs the modulated optical carrier to the first optical delay unit for the first-order optical delay.
  • the light wave signal after the first-order optical delay is sent to a wavelength conversion array composed of a semiconductor photodetector and a tunable semiconductor laser to perform wavelength conversion of the light wave.
  • the wavelength-converted optical signal is input to the second optical delay unit for the second-level optical delay, and the optical wave signal after the second-level optical delay is transmitted to the photodetector to demodulate the delayed optical carrier.
  • the microwave signal is demodulated and connected to the microwave transmitting antenna.
  • the invention utilizes the routing function of the arrayed waveguide grating router to realize a broadband microwave radar system with insensitive microwave frequency.
  • the invention utilizes two-stage delay unit cascading, which greatly improves the dynamic range of the optical delay and improves the spatial scanning sensitivity of the microwave radar system.
  • the delay unit in the present invention has expandability, and more delay units can be cascaded according to requirements.
  • the two AWGRs of the two optical delay units of the present invention and the delay line array connecting the two AWGRs are integrated on the same substrate, and have the advantages of small size, light weight, and low loss.
  • the integrated optical method is adopted to avoid the overlapping problem of the fiber Bragg grating, and the jitter problem of the chirped fiber grating is also avoided.
  • the tunable semiconductor laser of the present invention uses a tunable semiconductor laser to change the wavelength to switch the delay line array, avoiding the use of a large amount of light-on.
  • the N-channel optical signals share the delay line array, that is, the N microwave array elements share the delay line array, so that the structure is simple, the stability of the system is also improved, the cost is reduced, and the delay line can guarantee the delay.
  • the accuracy of the line length is a tunable semiconductor laser to change the wavelength to switch the delay line array, avoiding the use of a large amount of light-on.
  • Figure 1 is a schematic structural view of a system of the present invention
  • 2 is a structural diagram of an optical delay unit
  • FIG. 3 is a structural diagram of an eight-channel arrayed waveguide grating router
  • FIG. 4 is a schematic diagram of the working principle of the arrayed waveguide grating router
  • Figure 5 is a schematic diagram of a four-channel optical delay unit
  • FIG. 6 is a schematic diagram of a microwave scanning principle
  • FIG. 7 is a schematic diagram of a buried silicon dioxide waveguide structure of an embodiment
  • FIG. 8 is a polar coordinate diagram of a far field radiation intensity of a radiation element microwave signal according to an embodiment of the present invention.
  • the present invention includes a first tunable semiconductor laser 1, a first optical delay unit 2, a first semiconductor photodetector 3, a second tunable semiconductor laser 4, and a second optical delay unit which are sequentially connected. 5.
  • a second semiconductor photodetector 6 and an antenna 7; a first semiconductor photodetector (PD) 3 and a second tunable semiconductor laser (TLS) 4 constitute a wavelength conversion device.
  • N tunable semiconductor lasers (TLS) 1 emit N wavelength-tunable lightwave signals and are modulated into optical carriers by microwave signals, and optical carriers are transmitted to N input ports of the first optical delay unit 2, and the first optical delay is performed.
  • the optical carrier delayed by the unit 2 is transmitted to a wavelength conversion array composed of N semiconductor photodetectors (PD) 3 and N tunable semiconductor lasers (TLS) 4, and the wavelength-converted optical carrier is transmitted to the first
  • the N input ports of the two-light delay unit 5 perform a second delay.
  • the optical carriers output by the N output ports of the second optical delay unit are respectively transmitted to N semiconductor detectors (PD) 6 to demodulate the microwave signals loaded on the optical wave signals, and the semiconductor detector (PD) 6 will be demodulated.
  • the microwave signals are transmitted through respective antennas 7.
  • the first optical delay unit 2 is composed of a first arrayed waveguide grating router (AWGR) 8, an optical delay line array 9, and a second arrayed waveguide grating router (AWGR) 9 which are sequentially connected.
  • AWGR first arrayed waveguide grating router
  • AWGR optical delay line array
  • AWGR second arrayed waveguide grating router
  • the delay line array 9 includes N segments of waveguides of equal length in length, and N-segment waveguides are connected at both ends to N output ports and second array waveguide gratings of the first arrayed waveguide grating router (AWGR) 8. Between the N input ports of the router (AWGR) 9.
  • the first arrayed waveguide grating router 8 and the second arrayed waveguide grating router 9 comprise N channels corresponding to N input or output waveguides, the N channels occupying the entire free spectral range of the arrayed waveguide grating, ie the channel spacing is a waveguide 1/N of the free spectral range of the grating.
  • ⁇ L is the wavelength difference of adjacent waveguides and is calculated by the following formula:
  • n eff is the effective refractive index of the waveguide
  • is the minimum required delay difference
  • the second optical delay unit 5 has the same structure as the first optical delay unit 2, and is also composed of two arrayed waveguide grating routers and a delay line array having the same parameters; and a delay line array in the second optical delay unit
  • a wavelength conversion array composed of N semiconductor photodetectors (PDs) and N tunable semiconductor lasers (TLS) can also be replaced with wavelength converters.
  • TLS tunable semiconductor lasers
  • PD semiconductor photodetectors
  • a total of four arrayed waveguide grating routers in the system have the same structure, including an input port 11, an input star coupler 12, an arrayed waveguide 13, an output star coupler 14, and an output waveguide 15, and the input port 11 is sequentially
  • the input star coupler 12, the arrayed waveguide 13, and the output star coupler 14 are connected to the output waveguide 15, and there are eight channels in FIG.
  • Two arrayed waveguide grating routers and delay line arrays in the same delay unit are integrated on one substrate, and the waveguide materials of the two arrayed waveguide grating routers and the delay line array are the same, using silicon dioxide, silicon, silicon nitride An optical waveguide material of silicon oxynitride or indium phosphide.
  • the number of channels N of the present invention is determined by the accuracy of the scanning angle of the phased array radar, and the larger the N, the higher the accuracy of the radar scanning angle.
  • FIG. 1 A schematic diagram of the wavelength routing of a 4-channel arrayed waveguide grating router is shown in FIG.
  • the four wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 and ⁇ 4 input from the input ports #1i, #2i, #3i and #4i are respectively from the output ports #1o, #2o, #3o , #4o output.
  • the four wavelengths input by the same port are cyclically arranged in the order of ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 from the bottom to the top of the four output ports. In this way, it is possible to select and output optical signals from different output ports by changing the wavelength of the optical signal of the input port.
  • FIG. 1 A schematic diagram of the optical delay unit is shown in FIG.
  • the optical signals of four wavelengths ⁇ 1 , ⁇ 2 , ⁇ 3 , and ⁇ 4 are respectively from #1, #2, #3, and #4 of the first arrayed waveguide grating router.
  • AWGR arrayed waveguide grating router
  • the delay difference relationship at the output of each wavelength optical signal is given.
  • the #1 input port of the first arrayed waveguide grating router is taken as an example for simple explanation, and the analysis of the remaining input ports is the same as #1.
  • the four wavelength optical signals of ⁇ a1 , ⁇ a2 , ⁇ a3 and ⁇ a4 are simultaneously input from the #1 port of the first arrayed waveguide grating router, and the four-way wavelength optical signal will be due to the wavelength demultiplexing of the first arrayed waveguide grating router
  • the output order is ⁇ a4 , ⁇ a3 , ⁇ a2 , and ⁇ a1 from top to bottom.
  • the ⁇ a4 , ⁇ a3 , ⁇ a2 , and ⁇ a1 optical signals will pass through L 0 , L 1 , L 2 , and L 3 , respectively. Due to the existence of the length difference ⁇ L between the delay lines, a delay difference of ⁇ will be introduced between the optical signals passing through the adjacent delay lines.
  • the ⁇ a4 optical signal is used as the reference signal
  • the ⁇ a4 , ⁇ a3 , ⁇ a2 and ⁇ a1 optical signals have extensions of 0, ⁇ , 2 ⁇ and 3 ⁇ with respect to the ⁇ a4 optical signal. Time.
  • the four optical signals of ⁇ a4 , ⁇ a3 , ⁇ a2 and ⁇ a1 will eventually be output from the #1 output port of the second arrayed waveguide grating router.
  • the ⁇ a4 wavelength optical signal is output from the #1 port of the second arrayed waveguide grating router at time 0
  • the ⁇ a3 , ⁇ a2 , and ⁇ a1 wavelength optical signals are output from the #1 port at times ⁇ , 2 ⁇ , and 3 ⁇ , respectively.
  • the two optical delay units are connected by a wavelength conversion array consisting of a semiconductor photodetector and a tunable semiconductor laser.
  • the first stage optical delay unit can provide an optical delay of 0 to (N-1) ⁇
  • the second stage optical delay unit can provide an optical delay of 0 to N ⁇ (N-1) ⁇ . Then, by changing the wavelength of the optical signal emitted by the two tunable semiconductor lasers, the optical delay of the final output can be made from 0 to (N+1) ⁇ (N-1) ⁇ .
  • each of the microwave radiation array elements is evenly arranged, and the distance between adjacent array elements is d.
  • the superimposed field distribution E of the microwaves emitted by each array element in a certain direction of space ⁇ can be expressed as:
  • f m is the microwave frequency emitted by the antenna
  • t is time
  • c is the speed of light in vacuum
  • is the phase difference of the adjacent microwave array elements in the ⁇ direction
  • d is the distance between adjacent array elements. It is the initial phase difference of adjacent microwave array elements (i.e., the microwave phase difference introduced on the photo-true delay line). From the field distribution formula, it can be concluded that when Meet the following conditions:
  • the microwave field exhibits an extremely large interference in the ⁇ direction. That is, the spatial angle of the microwave signal radiation direction is ⁇ , as shown in FIG. 6. Simultaneous initial phase difference between adjacent microwave array elements The relationship with the delay difference ⁇ T of the adjacent channel optical signal is satisfied The difference in length between the corresponding optical delay lines is Where c is the speed of light in the vacuum and n eff is the effective refractive index of the waveguide. Substituting into the above formula (2):
  • Microwave radar can be used for wide instantaneous bandwidth and no beam tilt.
  • the function of the microwave spatial scanning can be realized.
  • the total optical delay of the final output can be from 0 to (N+1) ⁇ (N-1) ⁇ .
  • the optical delay difference ⁇ T of adjacent channels can be from 0 to (N+1) ⁇ , that is, the microwave spatial scanning angle can be obtained from -arcsin[c ⁇ (N+1) ⁇ )/d] To arcsin[c ⁇ (N+1) ⁇ )/d].
  • the microwave spatial scanning resolution is related to the minimum optical delay ⁇ , and the resolution angle is related to the number N of system channels.
  • the invention can select the output from different ports of the AWGR by changing the wavelength of the light wave emitted by the tunable semiconductor laser by the wavelength division and routing function of the AWGR, thereby selecting different channels through the delay line array, and then implementing two levels by the wavelength conversion device.
  • the cascade of optical delay units further increases the total optical delay of the system. Thereby, the selection of the optical delay difference ( ⁇ (N+1) ⁇ ) between adjacent optical paths is realized, and finally the phase difference between adjacent microwave antennas is changed, thereby realizing the microwave radar angle scanning function.
  • the material silicon dioxide is selected, and a buried silicon dioxide (SiO 2 ) strip waveguide is used.
  • the structure is as shown in FIG. 7 , and the cladding layer has a refractive index n 1 of SiO 2 , and the core layer a refractive index of n 2 of a germanium-doped SiO 2.
  • a square structure in which the core layer is 6 ⁇ m ⁇ 6 ⁇ m is employed.
  • the main design parameters of the 16-channel arrayed waveguide grating router are shown in Table 1.
  • the microwave signal radiation direction spatial angle is Therefore, in the first optical delay unit, the length difference between adjacent delay lines is 550 ⁇ m, and the corresponding optical delay difference is Available optical delays range from 0 to 15 ⁇ .
  • the available optical delay range is 0 to 240 ⁇ (step Length 16 ⁇ ).
  • the total optical delay that the system can provide is 0 to 255 ⁇ , that is, the achievable delay of the optical signal in each channel.
  • the time is 0 to 255 ⁇ .
  • FIG. 8 shows the polar map of the far field radiation intensity of the radiation array element microwave signal in this case.
  • the microwave radar scanning angle There are 35 angles unequally spaced between -65 degrees and 65 degrees, and the angular interval around the 0 degree scanning angle is small. As the angle increases, the scanning angle interval also increases.
  • the microwave radar system of the invention has great expandability, and the same method can be used to cascade more optical delay units, and the delay dynamic range is greatly improved while ensuring the delay precision.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

一种基于阵列波导光栅路由器的雷达系统。N个可调谐半导体激光器(1)发出多路不同波长的光波信号用微波信号通过各自的调制器加载调制后,经过两级光真延时单元(2、5)的延时,再传输到N个半导体探测器(6)解调,半导体探测器(6)将解调后的微波信号通过天线(7)发射出去。每级延时单元都由两个阵列波导光栅路由器(8、10)和光延时阵列(9)组成。使用可调谐半导体激光器(1)改变波长来切换延时线阵,避免了大量光开关的使用;利用集成光学的方法,避免了光纤布拉格光栅的重叠问题,将阵列波导光栅路由器(8、10)以及延迟线阵列(9)集成在同一块衬底上,并保证延迟线长度的精度,提高了系统的稳定性,降低了成本,具有尺寸小、损耗小、质量轻、精度高、抗电磁干扰等优点。

Description

基于阵列波导光栅路由器的雷达系统 技术领域
本发明涉及了一种雷达系统,特别是涉及了相控阵雷达技术的一种基于阵列波导光栅路由器的雷达系统。
背景技术
光控相控阵雷达相对于传统的雷达具有体积小、质量轻、损耗低、抗电磁干扰、宽瞬时带宽、无波束倾斜等许多优点。因而,作为光控相控阵雷达核心技术的光学真延时模块,成为该领域的研究热点。
国内外现有技术中,也提供了很多关于光真延时模块的设计。有基于普通光纤长度改变来实现延时的方法;也有通过光纤布拉格光栅不同位置反射不同波长光波来实现延时的;还有利用啁啾光纤光栅技术实现光真延时技术的;也有将光纤布拉格光栅和啁啾光纤光栅结合在一起来实现延时的方法等等。上述方法中,都使用了大量的光纤,包括普通光纤,布拉格光栅光纤,啁啾光纤等。在基于光纤的光真延时装置中,每个微波阵元都有与之对应的延时线阵,随着通道数目的增加,延时线阵数量将线性增加,光纤的数量将成倍增加,造成损耗增加、结构复杂、体积庞大、耗资巨大等缺点;并且,上述方法中大多需要使用大量光开关来实现延时线的选择,随着通道数增加,光开关数量将成倍增加,同样会造成损耗增加等缺点;同时,由于上述方法中,大多利用光纤长度的不同来引入延时,这就对光纤长度精度要求非常高;此外光纤光栅重叠问题,啁啾光纤光栅抖动问题等都影响着延时的性能。
发明内容
为了克服上述现有技术的不足,本发明提供了一种基于阵列波导光栅路由器的雷达系统,以至少解决现有技术中存在的上述问题。
本发明所采用的技术方案是:
本发明包括依次连接的第一可调谐半导体激光器、第一光延时单元、第一半导体光探测器、第二可调谐半导体激光器、第二光延时单元、第二半导体光探测器,第二半导体光探测器连接有天线;N个第一可调谐半导体激光器发出N路波长可调的光波信号用微波信号加载调制为光载波,光载波传输到第一光延时单元的N个输入端口,经过第一光延时单元延时后的光载波传入到由N个第一半导体光探测器和N个第二可调谐半导体激光器组成的波长转换阵列,经过波长变换后的光载波传输到第二光延时单元N个输入端口进行第二次延时;第 二光延时单元N个输出端口输出的光载波分别传输到N个第二半导体探测器将加载在光波信号上的微波信号解调,第二半导体探测器输出端连接有天线,第二半导体探测器将解调后的微波信号通过各自的天线发射出去。
所述第一可调谐半导体激光器发出的N路波长可调的光波信号加载调制为光载波是通过直接加载调制或者用微波信号通过各自的调制器加载调制。
所述第一光延时单元主要由第一阵列波导光栅路由器、延时线阵列和第二阵列波导光栅路由器依次相连组成。
所述的延迟线阵列包括N段长度呈等差数列的波导,N段波导的两端分别连接在第一阵列波导光栅路由器N个输出端口和第二阵列波导光栅路由器N个输入端口之间。
所述第一阵列波导光栅路由器和第二阵列波导光栅路由器具有对应输入或输出的N个信道,所述N个信道占据所述阵列波导光栅的整个自由光谱范围,即信道间隔为波导光栅的自由光谱范围的1/N。
所述第一阵列波导光栅路由器和第二阵列波导光栅路由器结构相同,并且与所述延迟线阵列集成在一块衬底上。
所述的第一阵列波导光栅路由器、第二阵列波导光栅路由器和延迟线阵列的波导材料相同,均采用二氧化硅、硅、氮化硅、氮氧化硅或者磷化铟的光波导材料。
所述的延迟线阵列中各波导长度为L+jΔL,其中,j=0,1,2…N-1,j表示波导序数,N表示波导总数,L为最短波导的长度,作为参考波导长度;
ΔL为相邻波导的波长差,采用以下公式计算:
Figure PCTCN2015099417-appb-000001
其中,c为光速,neff为波导有效折射率,Δτ为所需的最小延时差;所需的最小延时差Δτ由系统的精度要求而定。
所述的N个第一半导体光探测器和N个第二可调谐半导体激光器构成的波长转换阵列用波长转换器来代替。
所述的第一可调谐半导体激光器和第二可调谐半导体激光器完全相同,所述第一半导体光探测器和第二半导体光探测器完全相同。
所述的第一可调谐半导体激光器和第二可调谐半导体激光器发射各个光信号的波长为λ+iΔλ,其中,i为信道的序数,i=0,1,2…N-1。
所述的第二光延时单元与所述第一光延时单元的结构相同,第二光延时单 元中延时线阵列相邻波导之间长度差是所述第一光延时单元中延时线阵列相邻波导之间长度差的N倍。
所述可调谐半导体激光器、半导体光探测器和阵列波导光栅路由器通过混合集成的方法集成在同一衬底上。
本发明可调谐半导体激光器可根据所需的扫描角度被配置成不同的波长光波输出。光电调制器,将特定频率的微波信号,调制到激光器输出的光波信号上,输出调制后的光载波到第一光延时单元进行第一级光延时。经过一级光延时后的光波信号被送入由半导体光探测器和可调谐半导体激光器组成的波长转换阵列,进行光波的波长转化。经过波长转换后的光信号,输入到第二光延时单元进行第二级光延时,进过二级光延时后的光波信号传入光电探测器,对经过延迟的光载波进行解调,将微波信号解调出来,与微波发射天线相连。
本发明的有益效果是:
本发明利用阵列波导光栅路由器的路由功能,实现了微波频率不敏感的宽带微波雷达系统。
本发明利用两级延时单元级联,极大地提高了光延时的动态范围,提高了微波雷达系统的空间扫描灵敏度。
同时,本发明中的延时单元具有可拓展性,可以根据需求,级联更多的延时单元。
本发明的两个光延时单元中的两个AWGR和连接两个AWGR的延时线阵列,集成在同一块衬底上,具有尺寸小、质量轻、损耗小等优点。并采用集成光学方法,避免了光纤布拉格光栅的重叠问题,同样也避免了啁啾光纤光栅的抖动问题。
本发明的使用可调谐半导体激光器改变波长来切换延时线阵,避免了大量光开光的使用。其中N路光信号共用延时线阵,即所述N个微波阵元共用延时线阵,使得在使结构简单的同时,也提高了系统的稳定性,降低了成本,延迟线能够保证延迟线长度的精度。
附图说明
图1为本发明系统的结构示意图;
图2为光延时单元的结构图;
图3为八通道阵列波导光栅路由器的结构图;
图4为阵列波导光栅路由器工作原理示意图;
图5为四通道的光延时单元原理图;
图6为微波扫描原理示意图;
图7为实施例的掩埋二氧化硅波导结构示意图;
图8本发明实施方式的辐射阵元微波信号远场辐射强度极坐标图。
图中:1、第一可调谐半导体激光器,2、第一光延时单元,3、第一半导体光探测器,4、第二可调谐半导体激光器,5、第二光延时单元,6、第二半导体光探测器,7、天线,8、第一阵列波导光栅路由器,9、延时线阵列,10、第二阵列波导光栅路由器,11、输入端口,12、输入星型耦合器,13、阵列波导,14、输出星型耦合器,15、输出波导,16、芯层,17、包层。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细说明。
如图1所示,本发明包括依次连接的第一可调谐半导体激光器1、第一光延时单元2、第一半导体光探测器3、第二可调谐半导体激光器4、第二光延时单元5、第二半导体光探测器6和天线7;第一半导体光探测器(PD)3和第二可调谐半导体激光器(TLS)4构成了波长转换器件。
N个可调谐半导体激光器(TLS)1发出N路波长可调的光波信号用微波信号加载调制为光载波,光载波传输到第一光延时单元2的N个输入端口,经过第一光延时单元2延时后的光载波传入到由N个半导体光探测器(PD)3和N个可调谐半导体激光器(TLS)4组成的波长转换阵列,经过波长变换后的光载波传输到第二光延时单元5的N个输入端口进行第二次延时。第二光延时单元的N个输出端口输出的光载波分别传输到N个半导体探测器(PD)6将加载在光波信号上的微波信号解调,半导体探测器(PD)6将解调后的微波信号通过各自的天线(antennas)7发射出去。
如图2所示,第一光延时单元2由依次相连的第一阵列波导光栅路由器(AWGR)8、光延时线阵列9和第二阵列波导光栅路由器(AWGR)9组成。
如图7所示,延迟线阵列9包括N段长度呈等差数列的波导,N段波导的两端连接在第一阵列波导光栅路由器(AWGR)8的N个输出端口和第二阵列波导光栅路由器(AWGR)9的N个输入端口之间。
第一阵列波导光栅路由器8和第二阵列波导光栅路由器9包含对应N个输入或输出波导的N个信道,所述N个信道占据所述阵列波导光栅的整个自由光谱范围,即信道间隔为波导光栅的自由光谱范围的1/N。
延迟线阵列9中各波导长度为L1m=L10+m·ΔL其中m=0,1,2…N-1,L10为最短波导的长度,作为参考波导长度;
ΔL为相邻波导的波长差,采用以下公式计算:
Figure PCTCN2015099417-appb-000002
其中,c为光速,neff为波导有效折射率,Δτ为所需的最小延时差;所需的最小延时差Δτ由系统的精度要求而定。
第二光延时单元5与所述第一光延时单元2的结构相同,也是由两个参数相同的阵列波导光栅路由器和延时线阵列组成;第二光延时单元中延时线阵列的长度差是所述第一光延时单元中延时线阵列的长度差的N倍,即第二光延时单元中延时线阵的长度为L2n=L20+n·N·ΔL,其中n=0,1,2…N-1,L20为最短波导的长度,作为参考波导长度,N为系统的通道数目,ΔL为第一光延时单元中相邻波导的波长差。
N个半导体光探测器(PD)和N个可调谐半导体激光器(TLS)组成的波长转换阵列,也可以用波长转换器来代替。
两个可调谐半导体激光器(TLS)1和4完全相同,两个半导体光探测器(PD)3和6完全相同。
每个可调谐半导体激光器(TLS)发射的光信号在多个不同波长的信道中切换,各个信道的波长为λ+iΔλ,其中i为信道的序数,i=0,1,2…N-1。
如图3所示,系统中总共四个阵列波导光栅路由器结构相同,包括输入端口11、输入星型耦合器12、阵列波导13、输出星型耦合器14和输出波导15,输入端口11依次经输入星型耦合器12、阵列波导13、输出星型耦合器14后与输出波导15连接,图3中具有八个通道。
同一个延时单元中的两个阵列波导光栅路由器与延迟线阵列集成在一块衬底上,两个阵列波导光栅路由器和延迟线阵列的波导材料相同,均采用二氧化硅、硅、氮化硅、氮氧化硅或者磷化铟的光波导材料。
本发明的通道数量N,由相控阵雷达扫描角度精度所决定,N越大,雷达扫描角度精度越高。
图4中示出了4通道阵列波导光栅路由器的波长路由原理图。从图中可以看出,从输入端口#1i、#2i、#3i和#4i输入的4个波长λ1、λ2、λ3和λ4,分别从输出端口#1o、#2o、#3o、#4o输出。并且,同一端口输入的4个波长,在4个输出端口从下到上始终按照λ1、λ2、λ3和λ4顺序循环排列。这样,就可以通过改变输入端口的光信号波长,来选择从不同的输出端口输出光信号。
图5中示出了光延时单元原理图。以四通道阵列波导光栅路由器(AWGR)为例,λ1、λ2、λ3和λ4四个波长的光信号分别从第一阵列波导光栅路由器的 #1,#2,#3和#4四个端口输入,经过延时线阵,引入延时差,最后输入到第二阵列波导光栅路由器的四个输入端口,从第二阵列波导光栅路由器的四个端口输出。由于结构的对称性,从第一阵列波导光栅路由器的同一输入端输入的光信号,必将从第二阵列波导光栅路由器的同一输出端输出。在第二阵列波导光栅路由器的输出端口,给出了各波长光信号输出时的延时差关系。这里,以第一阵列波导光栅路由器的#1输入端口为例,做简单的说明,其余输入端口的分析与#1相同。λa1、λa2、λa3和λa4四个波长光信号同时从第一阵列波导光栅路由器的#1端口输入,由于第一阵列波导光栅路由器的波长解复用作用,四路波长光信号将分别从第一阵列波导光栅路由器的四个输出端口输出,输出顺序从上到下依次为λa4、λa3、λa2和λa1。第一阵列波导光栅路由器的输出端口与延时线阵列相连,延时线阵长度Li=L0+iΔL其中i=0,1,2,3。即λa4、λa3、λa2和λa1光信号将分别从L0、L1、L2和L3上通过。由于延时线之间长度差ΔL的存在,从相邻延时线上通过的光信号之间将引入Δτ的延时差。以λa4光信号为参考信号,则到达第二阵列波导光栅路由器输入端口时,λa4、λa3、λa2和λa1光信号相对于λa4光信号存在0,Δτ,2Δτ和3Δτ的延时。由于结构的对称性和AWG的波长复用功能,λa4、λa3、λa2和λa1四路光信号最终都将从第二阵列波导光栅路由器的#1输出端口先后输出。假设λa4波长光信号在0时刻从第二阵列波导光栅路由器的#1端口输出,则λa3、λa2和λa1波长光信号分别在Δτ,2Δτ和3Δτ时刻从#1端口输出。因此,对于第一阵列波导光栅路由器的任一输入端口,建立了输入波长λ1、λ2、λ3、λ4与延时线阵L0、L1、L2、L3之间的一一对应关系。这样,就可通过改变输入光信号的波长来选择其从L0、L1、L2和L3中的任一延时线通过。
通过由半导体光探测器和可调谐半导体激光器组成的波长转换阵列将两个光延时单元连接起来。第一级光延时单元可提供的光延时为0到(N-1)·Δτ,第二级光延时单元可提供的光延时为0到N·(N-1)·Δτ。那么通过改变两个可调谐半导体激光器的发射的光信号波长,使得最终输出的光延时可以做到从0到(N+1)·(N-1)·Δτ。
在本发明的相控阵雷达系统中,各微波辐射阵元之间均匀排列,相邻阵元之间距离为d。各阵元发射的微波在空间某一方向θ的叠加场分布E可表示为:
Figure PCTCN2015099417-appb-000003
其中,
Figure PCTCN2015099417-appb-000004
fm为天线发射的微波频率,t为时间,c为真空中光速,δ为相邻微波阵元在θ方向上的相位差,d为相邻阵元之间的距离,
Figure PCTCN2015099417-appb-000005
为 相邻微波阵元初始相位差(即光真延迟线上引入的微波相位差)。从场分布公式中可以得出,当
Figure PCTCN2015099417-appb-000006
满足如下条件:
Figure PCTCN2015099417-appb-000007
微波场在θ方向上出现干涉极大。即微波信号辐射方向空间角度为θ,如图6所示。同时相邻微波阵元之间的初始相位差
Figure PCTCN2015099417-appb-000008
与相邻通道光信号的时延差ΔT的关系满足
Figure PCTCN2015099417-appb-000009
对应的光学延时线之间的长度差为
Figure PCTCN2015099417-appb-000010
其中c为真空中光速,neff为波导有效折射率。代入上面公式(2)中得:
Figure PCTCN2015099417-appb-000011
由公式(3)可知,微波信号辐射方向空间角度为θ与相邻微波阵元之间的距离d,以及相邻通道光信号的延时差ΔT有关,与发射微波频率fm无关,这样就可以做到微波雷达宽瞬时带宽、无波束倾斜。
因此,只要改变相邻通道光载波信号的延时差ΔT,就可以实现微波空间扫描的功能。通过改变两个可调谐半导体激光器的发射的光信号波长,最终输出的总光延时可以做到从0到(N+1)·(N-1)·Δτ。这样,相邻通道的光延时差ΔT可以做到从0到(N+1)·Δτ,即微波空间扫描角度可以做到从-arcsin[c·(N+1)·Δτ)/d]到arcsin[c·(N+1)·Δτ)/d]。微波空间扫描分辨率与最小光延时Δτ有关,分辨角度大小与系统通道数目N有关。
本发明由于AWGR的分光和路由功能,可通过改变可调谐半导体激光器发射的光波波长,来选择从AWGR的不同端口输出,从而选择经过延迟线阵列的不同通道,再由波长转换器件,实现两级光延时单元的级联,使得系统总光延时进一步加大。从而实现了相邻光路之间光延时差(Δτ~(N+1)Δτ)的选择,最终实现相邻微波天线之间相位差的改变,从而实现微波雷达角度扫描功能。
以下,通过一个具体案例对本发明做进一步说明:
为方便说明,采用十六通道阵列波导光栅,通道间隔为1.6nm的实际设计数据来说明本案例。
在光学真延时装置设计中,选择材料二氧化硅,采用掩埋型二氧化硅(SiO2)条形波导,其结构如图7所示,包层折射率为n1的SiO2,芯层为折射率为n2的掺锗SiO2。在本发明中,采用芯层为6μm×6μm的正方形结构。在光波波长1550nm时,纯SiO2折射率n2=1.455,掺锗SiO2折射率n2=1.465,则通过有限差分方 法(FDM)计算得芯层有效折射率为neff=1.460。
本案例中,十六通道阵列波导光栅路由器的主要设计参数如下表1所示。使用到的光信号波长λi=λc+(i-8)Δλ,其中i=1,2,3…16。
表1十六通道AWGR主要设计参数
Figure PCTCN2015099417-appb-000012
在本案例中,取最小延时线阵长度差为ΔL=550μm,取相邻微波阵元间距为d=1.5cm,则微波信号辐射方向空间角度为
Figure PCTCN2015099417-appb-000013
因此,第一光延时单元中,相邻延时线之间的长度差为550μm,对应的光延时差为
Figure PCTCN2015099417-appb-000014
可提供的光延时范围为0到15Δτ。对应的第二光延时单元中,相邻延时线之间的长度差为16ΔL=8800μm,对应的光延时差为16Δτ=42.88ps,可提供的光延时范围为0到240Δτ(步长16Δτ)。因此通过波长转换单元将第一光延时单元和第二光延时单元级联起来后,系统可提供的总光延时为0到255Δτ,即最终每个通道中的光信号可实现的延时为0到255Δτ。这样,最终相邻通道的光延时可以做到从0到17Δτ,其中Δτ=2.68ps。
由于该系统是微波频率无关的,这里取10GHz的微波频率作为仿真,图8给出了本案例中辐射阵元微波信号远场辐射强度极坐标图,从图中可以看出,微波雷达扫描角度在-65度到65度之间不等间隔分布着35个角度,0度扫描角附近角度间隔较小,随着角度增大,扫描角度间隔也在增大。
本发明的微波雷达系统具有极大的可拓展性,利用同样的方法,可以级联更多的光延时单元,在保证延时精度的同时,实现延时动态范围的极大提高。当然,也可以通过增加阵列波导光栅路由器的通道数目来实现延时动态范围的提高。
以上结合附图详细描述了本发明光控相控阵雷达系统的实施方式。注意,以上实施案例是用来解释说明本发明的,而不是对本发明进行限制,在本发明 的精神和权力要求的保护范围内,对本发明做出的任何修改和改变,都将落入本发明的保护范围。

Claims (13)

  1. 一种基于阵列波导光栅路由器的雷达系统,其特征在于:包括依次连接的第一可调谐半导体激光器(1)、第一光延时单元(2)、第一半导体光探测器(3)、第二可调谐半导体激光器(4)、第二光延时单元(5)、第二半导体光探测器(6),第二半导体光探测器(6)连接有天线(7);
    N个第一可调谐半导体激光器(1)发出N路波长可调的光波信号用微波信号加载调制为光载波,光载波传输到第一光延时单元(2)的N个输入端口,经过第一光延时单元(2)延时后的光载波传入到由N个第一半导体光探测器(3)和N个第二可调谐半导体激光器(4)组成的波长转换阵列,经过波长变换后的光载波传输到第二光延时单元(5)N个输入端口进行第二次延时;第二光延时单元(5)N个输出端口输出的光载波分别传输到N个第二半导体探测器(6)将加载在光波信号上的微波信号解调,第二半导体探测器(6)输出端连接有天线(7),第二半导体探测器(6)将解调后的微波信号通过各自的天线(7)发射出去。
  2. 根据权利要求1所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述第一可调谐半导体激光器(1)发出的N路波长可调的光波信号加载调制为光载波是通过直接加载调制或者用微波信号通过各自的调制器加载调制。
  3. 根据权利要求1所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述第一光延时单元(2)主要由第一阵列波导光栅路由器(8)、延时线阵列(9)和第二阵列波导光栅路由器(10)依次相连组成。
  4. 根据权利要求3所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述的延迟线阵列(9)包括N段长度呈等差数列的波导,N段波导的两端分别连接在第一阵列波导光栅路由器(8)N个输出端口和第二阵列波导光栅路由器(10)N个输入端口之间。
  5. 根据权利要求3所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述第一阵列波导光栅路由器(8)和第二阵列波导光栅路由器(10)具有对应输入或输出的N个信道,所述N个信道占据所述阵列波导光栅的整个自由光谱范围,即信道间隔为波导光栅的自由光谱范围的1/N。
  6. 根据权利要求3所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述的延迟线阵列(9)中各波导长度为L+jΔL,其中,j=0,1,2…N-1,j表示波导序数,N表示波导总数,L为最短波导的长度,作为参考波导长度;
    ΔL为相邻波导的波长差,采用以下公式计算:
    Figure PCTCN2015099417-appb-100001
    其中,c为光速,neff为波导有效折射率,Δτ为所需的最小延时差;所需的最小延时差Δτ由系统的精度要求而定。
  7. 根据权利要求3所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述第一阵列波导光栅路由器(8)和第二阵列波导光栅路由器(10)结构相同,并且与所述延迟线阵列(9)集成在一块衬底上。
  8. 根据权利要求3所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述的第一阵列波导光栅路由器(8)、第二阵列波导光栅路由器(10)和延迟线阵列(9)的波导材料相同,均采用二氧化硅、硅、氮化硅、氮氧化硅或者磷化铟的光波导材料。
  9. 根据权利要求3或者8所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述的第二光延时单元(5)与所述第一光延时单元(2)的结构相同,第二光延时单元(5)中延时线阵列(9)相邻波导之间长度差是所述第一光延时单元(2)中延时线阵列(9)相邻波导之间长度差的N倍。
  10. 根据权利要求1所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述的N个第一半导体光探测器(3)和N个第二可调谐半导体激光器(4)构成的波长转换阵列用波长转换器来代替。
  11. 根据权利要求1所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述的第一可调谐半导体激光器(1)和第二可调谐半导体激光器(4)完全相同,所述第一半导体光探测器(3)和第二半导体光探测器(6)完全相同。
  12. 根据权利要求1所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述的第一可调谐半导体激光器(1)和第二可调谐半导体激光器(4)发射各个光信号的波长为λ+iΔλ,其中,i为信道的序数,i=0,1,2…N-1。
  13. 根据权利要求1~12任一所述的一种基于阵列波导光栅路由器的雷达系统,其特征在于:所述可调谐半导体激光器、半导体光探测器和阵列波导光栅路由器通过混合集成的方法集成在同一衬底上。
PCT/CN2015/099417 2015-12-29 2015-12-29 基于阵列波导光栅路由器的雷达系统 WO2017113094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099417 WO2017113094A1 (zh) 2015-12-29 2015-12-29 基于阵列波导光栅路由器的雷达系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/099417 WO2017113094A1 (zh) 2015-12-29 2015-12-29 基于阵列波导光栅路由器的雷达系统

Publications (1)

Publication Number Publication Date
WO2017113094A1 true WO2017113094A1 (zh) 2017-07-06

Family

ID=59224170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099417 WO2017113094A1 (zh) 2015-12-29 2015-12-29 基于阵列波导光栅路由器的雷达系统

Country Status (1)

Country Link
WO (1) WO2017113094A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896978A (zh) * 2018-06-27 2018-11-27 上海交通大学 基于奈奎斯特脉冲的集成激光雷达
CN109444903A (zh) * 2018-10-18 2019-03-08 华北水利水电大学 一种光学相控阵激光雷达装置
CN109613512A (zh) * 2018-12-06 2019-04-12 上海交通大学 基于诺伦矩阵的n×m集成多波束激光雷达发射系统
CN111580070A (zh) * 2020-05-28 2020-08-25 香港中文大学(深圳) 一种光学相控阵激光雷达
CN111740786A (zh) * 2020-06-10 2020-10-02 电子科技大学 一种集成光波导波束赋形装置
CN112485777A (zh) * 2020-11-19 2021-03-12 浙江大学 基于可插拔式收发组件的光控微波相控阵雷达系统及反馈控制方法
CN113534167A (zh) * 2020-04-22 2021-10-22 北京万集科技股份有限公司 可切换天线的相控阵激光雷达芯片、使用方法及激光雷达
WO2022022747A1 (zh) * 2020-07-29 2022-02-03 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
CN114785446A (zh) * 2022-03-29 2022-07-22 中国电子科技集团公司第三十八研究所 基于阵列波导光栅周期化输出特性的波束形成系统
CN114826403A (zh) * 2021-01-19 2022-07-29 中国科学院半导体研究所 一种基于多芯光纤的多路光延时系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055941A2 (en) * 1999-05-28 2000-11-29 Mitsubishi Denki Kabushiki Kaisha Coherent laser radar apparatus and radar/optical communication system
CN103580752A (zh) * 2012-08-07 2014-02-12 北京邮电大学 光学真延时装置及光控波束形成网络系统
CN104656090A (zh) * 2015-02-06 2015-05-27 浙江大学 基于波长路由的光控相阵雷达系统
CN204479750U (zh) * 2015-02-06 2015-07-15 浙江大学 一种基于波长路由的光控相阵雷达系统
WO2015120598A1 (zh) * 2014-02-13 2015-08-20 华为技术有限公司 波长转换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1055941A2 (en) * 1999-05-28 2000-11-29 Mitsubishi Denki Kabushiki Kaisha Coherent laser radar apparatus and radar/optical communication system
CN103580752A (zh) * 2012-08-07 2014-02-12 北京邮电大学 光学真延时装置及光控波束形成网络系统
WO2015120598A1 (zh) * 2014-02-13 2015-08-20 华为技术有限公司 波长转换器
CN104656090A (zh) * 2015-02-06 2015-05-27 浙江大学 基于波长路由的光控相阵雷达系统
CN204479750U (zh) * 2015-02-06 2015-07-15 浙江大学 一种基于波长路由的光控相阵雷达系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FAN, CHAO.: "Research on Broadband Optical True Time Delay Technology for Phased Array Antenna", MASTER'S DISSERTATION OF BEIJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS, 31 December 2013 (2013-12-31), pages 47 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108896978A (zh) * 2018-06-27 2018-11-27 上海交通大学 基于奈奎斯特脉冲的集成激光雷达
CN108896978B (zh) * 2018-06-27 2022-01-04 上海交通大学 基于奈奎斯特脉冲的集成激光雷达
CN109444903B (zh) * 2018-10-18 2022-11-25 华北水利水电大学 一种光学相控阵激光雷达装置
CN109444903A (zh) * 2018-10-18 2019-03-08 华北水利水电大学 一种光学相控阵激光雷达装置
CN109613512A (zh) * 2018-12-06 2019-04-12 上海交通大学 基于诺伦矩阵的n×m集成多波束激光雷达发射系统
CN113534167B (zh) * 2020-04-22 2024-03-08 北京万集科技股份有限公司 可切换天线的相控阵激光雷达芯片、使用方法及激光雷达
CN113534167A (zh) * 2020-04-22 2021-10-22 北京万集科技股份有限公司 可切换天线的相控阵激光雷达芯片、使用方法及激光雷达
CN111580070A (zh) * 2020-05-28 2020-08-25 香港中文大学(深圳) 一种光学相控阵激光雷达
CN111740786A (zh) * 2020-06-10 2020-10-02 电子科技大学 一种集成光波导波束赋形装置
CN111740786B (zh) * 2020-06-10 2022-01-25 电子科技大学 一种集成光波导波束赋形装置
WO2022022747A1 (zh) * 2020-07-29 2022-02-03 杭州视光半导体科技有限公司 一种扫描器以及应用该扫描器的同轴和非同轴雷达系统
CN112485777A (zh) * 2020-11-19 2021-03-12 浙江大学 基于可插拔式收发组件的光控微波相控阵雷达系统及反馈控制方法
CN112485777B (zh) * 2020-11-19 2024-05-10 浙江大学 基于可插拔式收发组件的光控微波相控阵雷达系统及反馈控制方法
CN114826403A (zh) * 2021-01-19 2022-07-29 中国科学院半导体研究所 一种基于多芯光纤的多路光延时系统
CN114826403B (zh) * 2021-01-19 2023-06-30 中国科学院半导体研究所 一种基于多芯光纤的多路光延时系统
CN114785446A (zh) * 2022-03-29 2022-07-22 中国电子科技集团公司第三十八研究所 基于阵列波导光栅周期化输出特性的波束形成系统
CN114785446B (zh) * 2022-03-29 2024-05-07 中国电子科技集团公司第三十八研究所 基于阵列波导光栅周期化输出特性的波束形成系统

Similar Documents

Publication Publication Date Title
WO2017113094A1 (zh) 基于阵列波导光栅路由器的雷达系统
CN104656090B (zh) 基于波长路由的光控相阵雷达系统
CN104459881B (zh) 偏振不敏感的波分复用型硅基光接收芯片
JP4246724B2 (ja) ビームフォーミング型rofシステム
JP5710499B2 (ja) ポイントツーポイント通信用の光学エンジン
CN204479750U (zh) 一种基于波长路由的光控相阵雷达系统
Soref Fiber grating prism for true time delay beamsteering
CN106164725B (zh) 可调栅格跟踪发射器和接收器
US9778415B2 (en) Arrayed waveguide grating multiplexer-demultiplexer and related control method
US10578804B2 (en) Optical slab
US20200393737A1 (en) Optical Switching Using Spatially Distributed Phase Shifters
CN110308521B (zh) 一种调制芯片、光发射模块
EP4372440A1 (en) Beam controller and beam controlling method
US6114994A (en) Photonic time-delay beamsteering system using fiber bragg prism
Cheng et al. An integrated optical beamforming network for two-dimensional phased array radar
CN207037149U (zh) 具有温度不敏感特征的光子装置和延迟线干涉仪
CN114384495A (zh) 一种高精度片上光学波束形成网络
US8610625B2 (en) Method and apparatus for transmitting and receiving phase-controlled radiofrequency signals
CN111740786B (zh) 一种集成光波导波束赋形装置
CN112994791A (zh) 基于硅基光学相控阵的高速室内光无线通信系统
CN106685532A (zh) 一种利用偏振复用功能的多波长光发送芯片及方法
CN114785446B (zh) 基于阵列波导光栅周期化输出特性的波束形成系统
JP2009198826A (ja) 光信号処理装置
Gasulla et al. Microwave photonic devices based on multicore fibers
KR102329109B1 (ko) 무선 광통신 방향 분할 역다중화가 가능한 포토닉 위상배열 기반 수신기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15911725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15911725

Country of ref document: EP

Kind code of ref document: A1