WO2022022270A1 - 一种陶瓷污泥处理方法及系统 - Google Patents

一种陶瓷污泥处理方法及系统 Download PDF

Info

Publication number
WO2022022270A1
WO2022022270A1 PCT/CN2021/105717 CN2021105717W WO2022022270A1 WO 2022022270 A1 WO2022022270 A1 WO 2022022270A1 CN 2021105717 W CN2021105717 W CN 2021105717W WO 2022022270 A1 WO2022022270 A1 WO 2022022270A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
ceramic sludge
sludge
drying
flocculant
Prior art date
Application number
PCT/CN2021/105717
Other languages
English (en)
French (fr)
Inventor
江东
聂怀军
王浩
Original Assignee
水木金谷环境科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202021524685.7U external-priority patent/CN211445482U/zh
Priority claimed from CN202010745939.6A external-priority patent/CN111792813B/zh
Application filed by 水木金谷环境科技有限公司 filed Critical 水木金谷环境科技有限公司
Publication of WO2022022270A1 publication Critical patent/WO2022022270A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/14Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives within horizontal containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/16Separating or sorting of material, associated with crushing or disintegrating with separator defining termination of crushing or disintegrating zone, e.g. screen denying egress of oversize material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/28Moving screens not otherwise provided for, e.g. swinging, reciprocating, rocking, tilting or wobbling screens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/122Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using filter presses
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/125Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering using screw filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • C02F11/131Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating using electromagnetic or ultrasonic waves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/147Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances

Definitions

  • the invention belongs to the technical field of sludge treatment, and more particularly, relates to a ceramic sludge treatment method and system.
  • Ceramic sludge is the sludge produced by the polishing process in the ceramic production process. Its main components are ceramic micropowder, grinding aid and water. The main components of the ceramic micropowder are silicon dioxide and silicon carbide. The ceramic micropowder in the ceramic sludge is It has the characteristics of small particle size and high hardness.
  • the treated ceramic sludge can be used as fine aggregate for building materials, or as a surface layer material for high-quality permeable blocks.
  • the ceramic polishing sludge is usually directly landfilled after flocculation, dehydration and drying, and the utilization value is low. There are also attempts to use the treated ceramic sludge as a building material, such as for making concrete blocks.
  • the treated ceramic sludge is easy to harden, the water content is high, and there is a flocculant.
  • the moisture content of the ceramic sludge is still close to 40%.
  • the moisture in the ceramic sludge will increase the water-cement ratio of the concrete, resulting in a low block strength;
  • Large pieces of compacted ceramic sludge When the mud is directly used to make building materials, the lumpy sludge will form mechanical weak points inside the building materials, resulting in low block strength; 3.
  • the purpose of the present invention is to provide a ceramic sludge treatment method and system, which aims to solve the problem that the prior art ceramic sludge treatment method and system cannot achieve deep dehydration, so that the utilization value of ceramic sludge is not high. Defects.
  • the present invention provides a ceramic sludge treatment method, wherein the method comprises the following steps:
  • Step S1. flocculation and precipitation add flocculant to the ceramic sludge, after stirring and mixing, let it stand for a while, flocculation and precipitation;
  • Step S2 Preliminary dehydration: preliminarily dewatering the flocculated and precipitated ceramic sludge;
  • Step S4. Add oxidant: add oxidant to the ceramic sludge powder, stir, and mix evenly;
  • Step S5. Destruction of the flocculant and deep dehydration: the ceramic sludge powder mixed with oxidant is transported into the drying channel for heating and drying, and the ceramic fine powder is obtained by ultrasonic treatment and microwave treatment in the drying channel.
  • the microwave treatment is set after the ultrasonic treatment.
  • the frequency of the ultrasonic treatment is 20KHz ⁇ 120KHz.
  • the frequency of the microwave treatment is 915MHz-2450MHz.
  • the heating drying is hot air drying, and the temperature of the hot air drying is 60°C to 120°C.
  • the amount of the flocculant added is 0.5% to 3% of the solid content of the ceramic sludge.
  • the flocculant comprises one of polyacrylamide, sodium polyacrylate, polyvinylpyridinium salt and polyethyleneimine.
  • the oxidant comprises one of ferric chloride, ferric sulfate, potassium ferrate, and sodium peroxodisulfate.
  • the added amount of the oxidant is 1-6% of the solid content of the ceramic sludge.
  • the preliminary dehydration is performed by using one of a plate-and-frame filter press or a screw-stacked sludge dehydrator.
  • the present invention provides a method for treating ceramic sludge.
  • the method realizes dewatering and drying, breaking and dispersing, and treating ceramic sludge by setting the steps of flocculation, preliminary dehydration, pulverization, addition of oxidant, destruction of flocculants, and deep dehydration.
  • the polymer flocculant is degraded to obtain ceramic micropowder with lower water content and better dispersibility, which improves the utilization value of ceramic sludge.
  • the flocculant in the destruction of the flocculant and the deep dehydration step, under the combined action of ultrasonic wave, microwave, oxidant and hot air, the flocculant is quickly degraded and broken into short-chain molecules, on the one hand, the agglomeration structure of the ceramic sludge is destroyed, so that the ceramic sludge The interstitial water and bound water in the sludge are easier to evaporate and improve the efficiency of deep dehydration.
  • the short-chain flocculant molecules are charged and attached to the ceramic sludge particles, so that the ceramic particles have the same charge. Disintegration of sludge mass and relative dispersion of ceramic particles. The method can deeply dewater the ceramic sludge, and the obtained ceramic particles have low moisture content, good dispersibility and high application value.
  • Another object of the present invention is to provide a ceramic sludge treatment system, which aims to improve the treatment effect of the ceramic sludge and enhance the regeneration and utilization value of the ceramic sludge.
  • the present invention provides a ceramic sludge treatment system, the system includes a flocculation device and a dewatering device, wherein the system further includes a crushing and screening device and a stirring and mixing device arranged in sequence according to the sludge treatment sequence.
  • Drying device, the pulverizing and screening device is used to pulverize and sieve the dehydrated ceramic sludge block, and the stirring and mixing device is provided with a dry powder feeding mechanism, which is used to feed the pulverized ceramic sludge.
  • the oxidant dry powder is added to the mud, and the drying device includes an ultrasonic generating mechanism and a microwave generator, and the drying device is used for removing the moisture in the ceramic sludge and destroying the flocculant.
  • the drying device includes a sealed conveying channel
  • the ultrasonic generating mechanism includes an ultrasonic generator and an ultrasonic transducer
  • a conveying belt is provided at the bottom of the conveying channel
  • the conveying channel Several ultrasonic transducers and several microwave generators are arranged on the inner side wall of the conveyor, and an ultrasonic generator is arranged outside the conveying channel, and the ultrasonic generator is electrically connected with the ultrasonic transducer.
  • the direction of movement of the conveyor belt is the rear
  • the ultrasonic transducers are evenly distributed on the side walls of the front 2/3 of the conveying channel
  • the microwave generators are evenly distributed on the On the side wall section of the rear 2/3 section of the conveying channel.
  • the rear end of the conveying channel is provided with a hot air inlet
  • the front end of the conveying channel is provided with a hot air outlet
  • both the hot air inlet and the hot air outlet are provided with metal meshes to prevent microwave Give way.
  • the inner wall of the conveying channel is provided with a microwave shielding layer and a sound insulation layer.
  • the flocculation device includes a flocculation tank, the bottom of the flocculation tank is a conical structure, and a dosing mechanism is provided above the flocculation tank.
  • the chemical dosing mechanism includes a chemical storage tank and a chemical dosing pump arranged below the chemical storage tank.
  • the crushing and screening device includes a body and a crushing mechanism and a screening mechanism arranged in the body, the screening mechanism is arranged below the crushing mechanism, and the screening mechanism is provided below the crushing mechanism.
  • the screen mechanism includes a vibrating screen.
  • the pulverizing mechanism includes a blade, a rotating shaft, and a driving motor, the blade is fixedly connected to the rotating shaft, and the rotating shaft is drivingly connected to the driving motor.
  • the system is further provided with a control mechanism, and the control mechanism is respectively electrically connected with the flocculation device, the dehydration device, the crushing and screening device, the stirring and mixing device, and the drying device.
  • the invention provides a ceramic sludge treatment system, which can realize flocculation, dehydration, dispersion, drying, surface treatment of ceramic sludge by setting a flocculation device, a dehydration device, a crushing and screening device, a stirring and mixing device, and a drying device. Modification and other process steps.
  • the system can deeply dewater the ceramic sludge and destroy the flocculant molecular chain inside the ceramic sludge.
  • the treated ceramic sludge is a dispersed ceramic micropowder with low moisture content and high regeneration value.
  • FIG. 1 is a schematic structural diagram of a ceramic sludge treatment system provided by the present invention.
  • Fig. 2 is the structural representation of flocculation device
  • Fig. 3 is the structural representation of crushing and sieving device
  • Fig. 4 is the structural representation of stirring and mixing device
  • FIG. 5 is a schematic structural diagram of a drying device
  • Figure 6 is a cross-sectional view of the delivery channel housing
  • FIG. 7 is a schematic structural diagram of a preferred drying device.
  • a ceramic sludge treatment method comprises the following steps:
  • Step S1. flocculation and sedimentation adding a flocculant to the ceramic sludge in proportion, and after stirring and mixing, let it stand for a while to make the ceramic sludge flocculate and sediment.
  • the flocculant includes one of polyacrylamide, sodium polyacrylate, polyvinylpyridinium salt and polyethyleneimine, and is an organic polymer flocculant, preferably a cationic organic polymer flocculant, such as a cationic polymer flocculant. Acrylamide.
  • the molecular chain of the organic polymer flocculant is relatively long, and the effect will be better if it is activated before use.
  • the activation method of the flocculant is to mix the flocculant and the diluent according to the proportion, and then stir at a high speed, and through the internal friction force of the system, the molecular chain of the flocculant is opened and activated.
  • the better the molecular chain of the flocculant unfolds the better the activation effect, the better the activation effect, the more obvious the flocculation and sedimentation effect on ceramic sludge, and the less the amount of flocculant added, and the flocculant The less the added amount, the lower the difficulty of subsequent removal of the flocculant, and the better the dispersion effect of the ceramic micropowder.
  • the added amount of the flocculant is 0.5% to 3% of the weight of the ceramic sludge.
  • the amount of flocculant added directly affects the effect of flocculation and precipitation. The more the amount of flocculant added, the better the flocculation effect. However, if the added amount is too large, the ceramic sludge after preliminary dehydration will become more compacted, which will further cause difficulties in subsequent pulverization and deep dehydration.
  • the addition amount of the flocculant is 0.5% to 3% of the solid content of the ceramic sludge, it can have a good flocculation effect, and the degree of hardening is relatively weak.
  • Step S2 Preliminary dehydration: perform preliminary dehydration on the flocculated and precipitated ceramic sludge.
  • Preliminary dewatering can be carried out by using a plate-and-frame filter press or a screw-stacked sludge dewatering machine, and the moisture content of the ceramic sludge after preliminary dewatering is 30-60%.
  • the plate and frame filter press is preferred for dehydration, mainly because the pressure of the plate and frame filter press dehydrator is large, and the moisture content of the dehydrated mud cake is as low as 30-45%.
  • Step S4. Add oxidant: add dry oxidant powder to the vibrating ceramic sludge powder, and then fully stir with a stirrer to mix evenly. Since the surface of the sieved ceramic sludge powder is still covered with flocculant and water, it is still easy to agglomerate, and the added dry oxidant powder can participate in the subsequent destruction of the flocculant molecular chain, improve the dispersibility of the ceramic sludge powder, and After the flocculant is destroyed, it facilitates the release of water and improves the effect of deep dehydration.
  • Described oxidizing agent comprises ferric chloride, ferric sulfate, potassium ferrate, sodium peroxodisulfate, described oxidizing agent can react with flocculant, make long-chain flocculant molecule chain scission, thereby destroy the coating effect of flocculant.
  • the added amount of the oxidant is 1-6% of the solid content of the ceramic sludge, it has a better oxidation effect.
  • Step S5. Destruction of the flocculant and deep dehydration: the ceramic sludge powder mixed with oxidant is transported into the drying channel through the conveying channel, heated and dried, and processed by ultrasonic wave and microwave to obtain the ceramic sludge fine powder.
  • the drying channel is a closed channel with a conveyor belt at the bottom for conveying ceramic sludge powder. Both ends of the drying channel are respectively provided with a hot air inlet and a hot air outlet.
  • the mud powder is heated and dried; the side wall of the drying channel is provided with an ultrasonic transducer and a microwave generator, the ultrasonic transducer can emit ultrasonic waves, the microwave generator can emit microwaves, and the ultrasonic wave And microwave, can accelerate the oxidation and chain scission of the flocculant, and accelerate the removal of water.
  • the frequency of the ultrasonic wave is 20KHz ⁇ 120KHz
  • the ultrasonic wave has cavitation, mechanical effect, thermal effect and chemical effect.
  • the cavitation and chemical effect can increase the generation rate of free radicals and accelerate the rate of oxidation reaction , promote the degradation of the flocculant;
  • the mechanical effect can greatly accelerate the penetration of interstitial water and bound water in the ceramic sludge powder, and improve the water removal efficiency;
  • the thermal effect can make the components in the ceramic sludge heat up rapidly, accelerating the water molecules
  • the movement of flocculants promotes the oxidative degradation of flocculants.
  • the synergistic effect of the ultrasonic wave and the oxidant greatly accelerates the oxidation reaction of the flocculant, oxidizes the long-chain polymer flocculant into short-chain organic matter, disintegrates the agglomerated ceramic sludge mass, and improves the efficiency of the ceramic sludge.
  • the frequency of the microwave treatment is 915MHz-2450MHz.
  • the microwave emitted by the microwave generator can generate thermal effect, which can heat water and flocculant, accelerate the evaporation of water and the oxidation reaction of flocculant, and play the role of deep dehydration and destruction of flocculant molecules.
  • the ultrasonic wave, microwave, oxidant and flowing hot air work in synergy, microwave, ultrasonic wave and hot air can heat the water in the ceramic sludge, accelerate its molecular movement, quickly detach from the ceramic sludge, and flow.
  • the hot air can take away the water in time and further promote the removal of water; at the same time, the synergistic effect of ultrasonic wave, microwave and oxidant accelerates the degradation and chain scission of the flocculant, so that the ceramic sludge particles are dispersed, which is more conducive to the evaporation of water, and after the oxidative degradation
  • the flocculant short-chain molecules or monomers are adsorbed on the ceramic surface, and because of the same charge, they repel each other, so that the ceramic sludge particles are more dispersed. Therefore, under the multiple actions of ultrasonic wave, oxidant, microwave radiation and hot air drying, the ceramic sludge particles are dried quickly and dispersed with each other.
  • the microwave treatment is provided after the ultrasonic treatment.
  • the first 2/3 section of the drying channel is provided with an ultrasonic transducer, and the rear 2/3 section of the drying channel is provided with a microwave generator. Since the ceramic sludge powder has a high moisture content when it just enters the drying channel, The effect of ultrasonic wave on the water-containing medium is better than that of the medium with low water content. Therefore, the ultrasonic wave is set at the front end of the drying channel with high water content, and the microwave generator is set at the back end with low water content, mainly to reduce energy consumption. , improve the efficiency of microwave, and reduce the overall energy consumption while ensuring the drying effect.
  • the temperature of the hot air drying is 60-120° C.
  • the hot air can directly utilize the hot air discharged from the ceramic kiln, so as to realize the utilization of the waste heat of ceramic processing, and save energy and protect the environment.
  • the direction in which the hot air enters is opposite to the direction in which the conveyor belt advances, resulting in better drying effect.
  • ceramic particles with low moisture content, small particle size and good dispersibility can be obtained.
  • the particles can be used as building fillers for concrete, block or other decorative materials, so that ceramic sludge can be obtained higher value utilization.
  • the present invention also provides a treatment system for treating ceramic sludge by adopting the above-mentioned ceramic sludge treatment method.
  • the present invention provides a ceramic sludge treatment system, the system includes a flocculation device 1, a dehydration device 2, a crushing and screening device 3, a stirring and mixing device 4, and a drying device 5, which are used to complete the ceramic sludge treatment system.
  • the sludge treatment process includes the following steps: (1) flocculation and sedimentation of the ceramic sludge, by adding a flocculant, the suspended ceramic sludge is flocculated and precipitated to accelerate the separation of the ceramic sludge and water; (2) Dewatering the ceramic sludge, dewatering the flocculated and precipitated ceramic sludge to a moisture content of 30%-40%; (3) Pulverizing the dewatered ceramic sludge, passing through a pulverizer and a sieve, dewatering the dehydrated ceramic sludge Sludge lumps are crushed into fine particles; (4) Add oxidant dry powder, and mix the oxidant dry powder with granular ceramic sludge by stirring and mixing; (5) The chain scission of the flocculant and the removal of water, by ultrasonic, microwave, The combined action of hot air and oxidant destroys the long-chain molecules of the flocculant. Through the internal thermal effect of hot air and microwave, the water in the ceramic sl
  • the flocculation device includes a flocculation tank 1.1.
  • a feed port A1.2 is provided on the side wall of the flocculation tank 1.1.
  • the ceramic sludge enters the flocculation tank through the feed port.
  • the bottom of the flocculation tank 1.1 It is a conical structure, a discharge port A1.3 is arranged at the bottom of the cone, and a dosing mechanism is provided above the flocculation tank near the feeding port A1.2.
  • the dosing mechanism includes a drug storage tank 1.4 and a feeding
  • the medicine pump 1.5, the medicine dosing pump 1.5 is a metering pump, and the flocculation tank is also provided with an agitator A1.6, which is used to more fully mix the ceramic sludge and the flocculant.
  • the ceramic sludge enters the flocculation tank 1.1 through the feeding port A1.2.
  • the flocculant is added through the dosing mechanism.
  • the coating sediment when standing, sediments at the bottom of the flocculation tank, and then flows out from the discharge port A1.3.
  • the agitator A1.6 is in the gap working mode, stirring is performed during the dosing, and stops when the dosing is completed, so that the ceramic sludge is fully precipitated.
  • the dehydration device 2 includes a plate-and-frame type dehydration device and a stacked screw type dehydration device, both of which can achieve preliminary dehydration of the sludge, remove a large amount of pore water in the sludge, and facilitate subsequent drying treatment. Since both the plate and frame type dehydration device and the stacked screw type dehydration device are in the prior art, they will not be described in detail here.
  • the dehydration device is a plate-and-frame dehydration device, and the moisture content of the dehydrated ceramic sludge can be reduced to about 40%, which is convenient for subsequent drying treatment.
  • the crushing and screening device 3 includes a body 3.1, a hopper 3.2 is arranged on the body, and a crushing mechanism and a sieve are arranged in the body.
  • the pulverizing mechanism includes a blade 3.3, a rotating shaft 3.4, and a drive motor 3.5 disposed outside the fuselage.
  • the blade 3.3 is connected to the rotating shaft 3.4, and the rotating shaft 3.4 is connected to the drive motor 3.5.
  • the sieving mechanism is arranged below the crushing mechanism, including a vibrating screen 3.6, the body is also provided with a powder outlet 3.7, and the small particles of ceramic sludge sieved by the vibrating screen 3.6 are discharged from the powder outlet. outflow. Since the ceramic sludge from the plate-and-frame dehydrator forms a plate structure during dehydration, it is not conducive to the subsequent further dehydration treatment and de-flocculant treatment. The blocks are crushed and sieved to improve the efficiency of subsequent dehydration and facilitate mixing with oxidants.
  • the stirring and mixing device 4 includes a shell 4.1, and a feed port B4.2 is provided above the shell 4.1, and the feed port B4.2 passes through the conveyor belt A (not shown) It is communicated with the powder outlet 3.7 of the crushing and sieving device 3.
  • the shell 4.1 is provided with an agitator B4.4.
  • the top of the shell 4.1 is provided with a dry powder feeding mechanism.
  • the dry powder feeding mechanism includes a storage tank 4.5 and a
  • the on-off valve A4.6 at the bottom of the material tank is also provided with a discharge port B4.7 at the bottom of the shell, and the discharge port B4.7 is provided with an on-off valve B4.8.
  • the on-off valve B4.7. 8 is closed.
  • the stirring and mixing device 4 is mainly used for adding an oxidant and fully mixing the oxidant with the ceramic sludge particles, so as to facilitate the subsequent chain scission treatment of the flocculant.
  • the drying device 5 includes a sealed conveying channel 5.1, several ultrasonic generating mechanisms and several microwave generators 5.3.
  • the bottom of the conveying channel 5.1 is provided with a conveying belt B5.4, one end of the conveying channel 5.1 is the input end, and the other end is the output end (the direction indicated by the arrow in the figure is the moving direction of the conveying belt, and the moving direction of the conveying belt is the rear.
  • a feeding port C5.5 is arranged above the input end, and the discharge port B4.7 of the stirring and mixing device is directly above the feeding port C5.5, and the ceramic sludge falling from the discharging port B4.7
  • the input end of the conveying channel 5.1 is also provided with a hot air outlet 5.7, and the hot air outlet 5.7 discharges the gas through the exhaust pipe
  • the output end of the conveying channel 5.1 is provided with a hot air inlet 5.6
  • the hot air inlet 5.6 is connected to the exhaust port of the ceramic kiln through a pipeline, and the waste heat of the kiln ventilation in the ceramic production line is used to dry the ceramic sludge.
  • Both the hot air outlet 5.7 and the hot air outlet 5.7 are provided with a metal mesh 5.9 to prevent the leakage of microwaves in the conveying channel;
  • the ultrasonic generating mechanism includes an ultrasonic transducer 5.8 and an ultrasonic generator 5.2, and the ultrasonic On the inner side wall, the ultrasonic generator 5.2 is arranged on the outside of the conveying channel 5.1, and the ultrasonic transducer 5.8 is electrically connected with the ultrasonic generator 5.2; the microwave generator 5.3 is also arranged on the inner side wall, and the ultrasonic transducer The generator 5.8 is spaced apart from the microwave generator 5.3.
  • the ultrasonic transducers are evenly distributed on the sidewall of the first 2/3 section of the conveying channel, and the microwave generators are evenly distributed on the rear 2/3 section of the conveying channel on the side wall section. This is because the drying process of ceramic sludge is that with the advancement of the conveyor belt, the moisture content of the sludge gradually decreases. However, too much water in the sludge will consume microwave energy and reduce the effect of microwave.
  • the ultrasonic transducer is arranged on the side wall of the first 2/3 section of the conveying channel, so that in the early stage of drying, ultrasonic waves are mainly used to act on the ceramic sludge, and the combination of ultrasonic waves and oxidants promotes the degradation of the flocculant.
  • the microwave generator is arranged on the side wall of the rear 2/3 section of the conveying channel to treat the sludge that has been relatively dry on the outside, so that the thermal effect of the microwave from the inside to the outside can play a better role, so as to ensure the overall treatment effect. energy consumption is reduced.
  • the outer shell 6 of the transport channel is a metal shell
  • the inner wall of the transport channel is provided with a microwave shielding layer 7 and a sound insulation layer 8
  • the microwave shielding layer 7 is a metal layer
  • the microwave shielding layer and Heat-resistant sound-absorbing material is filled between the shells to form a sound insulation layer 8 .
  • the main function of the microwave shielding layer is to make the microwave energy pass through the reflection of the metal, which can better produce the pyrolysis effect on the ceramic sludge, and at the same time prevent the leakage of the microwave and cause radiation to the human body. In addition, larger noise is formed.
  • the hot air is blown in from the output end of the conveying channel, which plays the role of evaporating away the water in the ceramic sludge.
  • the ultrasonic wave generated by the ultrasonic transducer can promote the flocculation in the ceramic sludge. agent degradation, improve the efficiency and ease of dispersibility of sludge drying.
  • the microwave generated by the microwave generator heats the ceramic sludge from the inside out, which promotes the dispersion of the ceramic sludge and accelerates the evaporation of water in the ceramic sludge.
  • the drier sludge at the rear end can be fully contacted with the drier hot air at the hot air inlet at the rear end of the transmission device, thereby improving the sludge drying efficiency. , reduce the moisture content of the final ceramic powder.
  • the microwave can quickly penetrate the ceramic sludge and heat the internal water of the sludge from the inside out, so that the interstitial water and the bound water between the ceramic particles overflow to the outside, and are then taken away by the hot air.
  • the drying device of the above structure can make the flocculant of the polymer chain rapidly degrade and break into short-chain molecules under the triple action of ultrasonic waves, oxidants and heat radiation, so that the flocculated and aggregated ceramic sludge can be dispersed into ceramic sludge. particles.
  • the short-chain flocculant molecules with the same charge after the fracture are adsorbed on the ceramic particles, so that the ceramic particles are charged with the same charge, which reduces the force between the ceramic particles and the water molecules, and promotes the gap between the ceramic sludge particles. Water and bound moisture evaporate more easily.
  • the ceramic particles with the same charge realize the disintegration of the ceramic sludge mass and the relative dispersion of the ceramic particles through the electrostatic repulsion and the thermal effect of the microwave from the inside to the outside.
  • the ceramic sludge with high water content can be quickly dried to obtain dispersed ceramic micropowder particles.
  • the ceramic sludge treatment system of the above structure is also provided with a control mechanism, which is electrically connected to the flocculation device 1, the dehydration device 2, the crushing and screening device 3, the stirring and mixing device 4, and the drying device 5, respectively, for controlling The flocculation device, the dehydration device, the crushing and sieving device, the stirring and mixing device, the drying device are opened and closed, and the addition of flocculant and oxidant is controlled at the same time, as well as the rotation speed of each agitator, the frequency of the ultrasonic generator, and the microwave generator. Frequency of.
  • the set control mechanism can realize fully automatic control of the ceramic sludge treatment system, which greatly improves the production efficiency and production safety.
  • the invention provides a ceramic sludge treatment system, which realizes flocculation-preliminary dehydration-pulverization and screening-adding oxidant-depth In the ceramic sludge treatment process of dehydration and flocculant destruction, the treated ceramic sludge becomes dispersed particles with low moisture content and high utilization value.
  • the invention discloses a ceramic sludge treatment system.
  • the system further comprises a crushing and screening device, a stirring and mixing device, and a drying device, which are arranged in sequence according to the sludge treatment sequence.
  • the crushing and screening device is used for dehydrating the ceramic sludge.
  • the sludge block is pulverized and sieved.
  • the stirring and mixing device is provided with a dry powder feeding mechanism.
  • the dry powder feeding mechanism is used to add oxidant dry powder to the pulverized ceramic sludge.
  • the drying device includes an ultrasonic generating mechanism and a microwave generating mechanism. The drying device is used to remove the moisture in the ceramic sludge and destroy the flocculant.
  • the ceramic sludge treatment system provided by the invention can realize multiple process steps such as flocculation and dehydration, dispersion, drying and surface modification of the ceramic sludge, and the treated ceramic sludge becomes dispersed ceramic fine powder particles, and the moisture content Low, can be directly used for making building materials.
  • a preferred ceramic sludge treatment method comprises the following steps:
  • Step S1 Add a cationic polyacrylamide flocculant to the ceramic sludge, and the amount of the flocculant added is 1.2% of the solid content of the ceramic sludge, then stir and mix, and let stand for 10 minutes to make the ceramic sludge fully flocculate and precipitate;
  • Step S2 Preliminarily dewatering the flocculated and precipitated ceramic sludge through a plate-and-frame filter press to obtain a ceramic sludge block, and the dewatered ceramic sludge block has a moisture content of 30%;
  • Step S4 Add the ceramic sludge into the agitator, and at the same time add the ferric chloride dry powder, the amount of the ferric chloride dry powder added is 2% of the solid content of the ceramic sludge, stir, and mix evenly;
  • Step S5. The ceramic sludge powder mixed with the oxidant dry powder is transported into the drying channel for heating and drying, and ultrasonic and microwave treatments are carried out at the same time.
  • the hot air temperature is 105°C
  • the wind speed is 3m/s
  • the ultrasonic frequency is 85KHz
  • the microwave frequency is 2100MHz.
  • the length of the drying channel is 10m
  • the speed of the conveyor belt is 2m/min
  • the ceramic sludge fine powder is obtained after treatment.
  • the particle size of the ceramic sludge micropowder obtained by the method described in this example is 10-200 ⁇ m, the average particle size is 21 ⁇ m, and the moisture content is 8%.
  • a method for treating ceramic sludge is the same as that in Example 1, except that in step S2, preliminary dewatering is performed by a screw-stacked sludge dewatering machine.
  • the particle diameter of the ceramic fine powder obtained after the treatment is 85-1200 ⁇ m, the average particle diameter is 139 ⁇ m, and the moisture content is 21%.
  • a ceramic sludge treatment method comprises the following steps:
  • Step S1 Add sodium polyacrylate flocculant to the ceramic sludge, and the amount of the flocculant added is 0.5% of the solid content of the ceramic sludge, then stir and mix, and let stand for 15 minutes to fully flocculate and precipitate the ceramic sludge;
  • Step S2 Dewatering the flocculated and precipitated ceramic sludge through a plate-and-frame filter press for preliminary dehydration to obtain a ceramic sludge block;
  • Step S4 Add the ceramic sludge into the mixer, and at the same time add ferric sulfate dry powder, the addition amount of the ferric sulfate dry powder is 1% of the solid content of the ceramic sludge, stir and mix evenly;
  • Step S5. The ceramic sludge powder mixed with the oxidant dry powder is transported into the drying channel for heating and drying, and ultrasonic and microwave treatments are performed simultaneously.
  • the hot air temperature is 120 ° C
  • the wind speed is 2m/s
  • the ultrasonic frequency is 20KHz
  • the microwave frequency is 915MHz
  • the length of the drying channel is 10m
  • the speed of the conveyor belt is 1.5m/min
  • the ceramic sludge fine powder is obtained after treatment.
  • the particle size of the ceramic sludge micropowder obtained by the method described in this example is 20-480 ⁇ m, the average particle size is 35 ⁇ m, and the moisture content is 12%.
  • a ceramic sludge treatment method comprises the following steps:
  • Step S1 Add cationic polyvinylpyridinium flocculant to the ceramic sludge, and the amount of the flocculant added is 3% of the solid content of the ceramic sludge, then stir and mix, and let stand for 10 minutes to make the ceramic sludge fully flocculate and precipitate;
  • Step S2 Preliminarily dewatering the flocculated and precipitated ceramic sludge through a screw-stacked sludge dewatering machine to obtain a ceramic sludge block;
  • Step S4 Add the ceramic sludge to the mixer, and add potassium ferrate dry powder at the same time, and the addition amount of the potassium ferrate dry powder is 6% of the solid content of the ceramic sludge, stir and mix evenly;
  • Step S5. The ceramic sludge powder mixed with the oxidant dry powder is transported into the drying channel for heating and drying, and ultrasonic and microwave treatments are carried out at the same time.
  • the hot air temperature is 60°C
  • the wind speed is 4m/s
  • the ultrasonic frequency is 120KHz
  • the microwave frequency is 2450MHz.
  • the length of the drying channel is 10m
  • the speed of the conveyor belt is 2m/min
  • the ceramic sludge fine powder is obtained after treatment.
  • the particle size of the ceramic sludge micropowder obtained by the method described in this example is 25-420 ⁇ m, the average particle size is 38 ⁇ m, and the moisture content is 11%.
  • a ceramic sludge treatment method comprises the following steps:
  • Step S1 Add a cationic polyethyleneimine flocculant to the ceramic sludge, and the amount of the flocculant added is 2% of the solid content of the ceramic sludge, then stir and mix, and let stand for 12 minutes to make the ceramic sludge fully flocculate and precipitate;
  • Step S2 Preliminarily dewatering the flocculated and precipitated ceramic sludge through a screw-stacked sludge dewatering machine to obtain a ceramic sludge block;
  • Step S4 Add the ceramic sludge into the agitator, and add sodium peroxodisulfate dry powder at the same time, and the addition amount of the sodium peroxodisulfate dry powder is 4% of the solid content of the ceramic sludge, stir and mix evenly;
  • Step S5. The ceramic sludge powder mixed with the oxidant dry powder is transported into the drying channel for heating and drying, and ultrasonic and microwave treatments are carried out at the same time.
  • the hot air temperature is 85°C
  • the wind speed is 3m/s
  • the ultrasonic frequency is 90KHz
  • the microwave frequency is 1500MHz
  • the length of the drying channel is 10m
  • the speed of the conveyor belt is 2m/min
  • the ceramic sludge fine powder is obtained after treatment.
  • the particle size of the ceramic sludge micropowder obtained by the method described in this example is 22-330 ⁇ m, the average particle size is 31 ⁇ m, and the moisture content is 10%.
  • a ceramic sludge treatment method steps 1-3 of the method are the same as those in Embodiment 1, and the specific steps are shown in Embodiment 1, and other steps are as follows:
  • Step S4 The ceramic sludge powder obtained in step 3 is transported into the drying channel for heating and drying, and ultrasonic and microwave treatment are carried out at the same time.
  • the hot air temperature is 105° C.
  • the wind speed is 3m/s
  • the ultrasonic frequency is 85KHz
  • the microwave frequency is 2100MHz.
  • the length of the drying channel is 10m
  • the speed of the conveyor belt is 2m/min
  • the ceramic sludge fine powder is obtained after treatment.
  • the particle size of the ceramic sludge product obtained by the method described in this comparative example is 42-800 ⁇ m, the average particle size is 87 ⁇ m, and the moisture content is 15%.
  • a ceramic sludge treatment method, steps 1-4 of the method are the same as those in Embodiment 1, the specific steps are shown in Embodiment 1, and other steps are as follows:
  • Step S5. The ceramic sludge powder mixed with the oxidant dry powder is transported into the drying channel for heating and drying, and microwave treatment is carried out at the same time.
  • the hot air temperature is 105°C
  • the wind speed is 3m/s
  • the microwave frequency is 2100MHz
  • the length of the drying channel is 10m
  • the speed of the conveyor belt is 2m/min
  • the ceramic sludge fine powder is obtained after treatment.
  • the particle size of the ceramic sludge product obtained by the method described in this comparative example is 92-1500 ⁇ m, the average particle size is 186 ⁇ m, and the moisture content is 20%.
  • a ceramic sludge treatment method, steps 1-4 of the method are the same as those in Embodiment 1, the specific steps are shown in Embodiment 1, and other steps are as follows:
  • Step S5. The ceramic sludge powder mixed with the oxidant dry powder is transported into the drying channel for heating and drying, and ultrasonic treatment is carried out at the same time.
  • the hot air temperature is 105°C
  • the wind speed is 3m/s
  • the ultrasonic frequency is 85KHz
  • the length of the drying channel is 10m
  • the speed of the conveyor belt is 2m/min
  • the ceramic sludge fine powder is obtained after treatment.
  • the particle size of the ceramic sludge product obtained by the method described in this comparative example is 78-1200 ⁇ m, the average particle size is 165 ⁇ m, and the moisture content is 16%.
  • a ceramic sludge treatment method steps 1-3 of the method are the same as those in Embodiment 1, and the specific steps are shown in Embodiment 1, and other steps are as follows:
  • Step S4 The crushed ceramic sludge powder is transported into the drying channel for heating and drying.
  • the hot air temperature is 105°C
  • the wind speed is 3m/s
  • the length of the drying channel is 10m
  • the conveyor belt speed is 2m/min.
  • the ceramic sludge is obtained. Mud powder.
  • the particle size of the ceramic sludge product obtained by the method described in this comparative example is 136-1850 ⁇ m, the average particle size is 289 ⁇ m, and the moisture content is 25%.
  • Example 1 It can be known from the above-mentioned Examples 1-5 and Comparative Examples 1-4 that the particle size and water content of the ceramic micropowder obtained in Example 1 are better than those of other Examples and Comparative Examples, mainly because the cations added in Example 1 After the combined action of oxidizing agent, microwave and ultrasonic wave, polyacrylamide can obtain more thorough oxidative chain scission, so that the removal rate of water is higher, and the particle size and dispersibility of ceramic particles are better. Comparing Example 1 with Example 2, it can be seen that the plate-and-frame dehydration is obviously better than the screw-stacked dehydration, and the effect of preliminary dehydration will directly affect the effect of deep dehydration. Comparing Example 1 with Comparative Examples 1-4, it can be seen that oxidizing agent, microwave and ultrasonic wave have a great influence on the removal of flocculant and water, thereby directly affecting the particle size of ceramic particles.
  • Example 1-5 and the ceramic sludge product obtained in Comparative Example 1-4 were made into concrete blocks to obtain concrete samples numbered as Example 1#-4# and Comparative Example 1#-4#,
  • the concrete sample includes 350 parts of cement, 900 parts of crushed stone, 450 parts of medium-coarse sand, 100 parts of water, 6-8 parts of admixtures, and 400 parts of ceramic sludge treatment products, among which, cement, water, crushed stone, medium and The content of coarse sand, admixtures, and ceramic sludge treatment products in Example 1#-4# and Comparative Example 1#-4# are the same, the sample size is the same, the curing time and curing conditions are the same, the difference is only in the example
  • the treated ceramic sludge in concrete samples of 1#-4# is the ceramic micropowder of the corresponding embodiment, while the treated ceramic sludge of Comparative Examples 1#-4# is the treated product of ceramic sludge of Comparative Examples 1-4. Then, the concrete samples of Example 1
  • Example 1# As can be seen from Table 1, the early compressive strength of concrete blocks of Examples 1#, 3#, 4#, and 5# and the compressive strength of 28 days of curing are obviously better than those of the comparative example, especially Example 1#, which is mainly It is because the ceramic micropowder added in Example 1# has small particles, good dispersibility and low water content, so that when it is used as a partial substitute for concrete fine aggregates, there will be no problem of agglomeration and agglomeration, which will cause the local mechanical properties of concrete to decline. increase the compressive strength of concrete.

Abstract

本发明属于污泥处理技术领域,更具体地,涉及一种陶瓷污泥处理方法及系统。该方法首先在陶瓷污泥中加入絮凝剂,搅拌混合后,静置片刻,絮凝沉淀;将絮凝沉淀后的陶瓷污泥进行初步脱水;将脱水后的陶瓷污泥通过粉碎机粉碎,经振筛机过筛,得到细颗粒的陶瓷污泥粉;在陶瓷污泥粉中加入氧化剂,搅拌,混合均匀;将混有氧化剂的陶瓷污泥粉输送至干燥通道内进行加热干燥,在干燥通道内通过超声波处理和微波处理,处理后得到陶瓷微粉。本发明还提供了一种采用上述处理方法的陶瓷污泥处理系统,该陶瓷污泥处理方法及系统,能实现对陶瓷污泥深度脱水及对高分子絮凝剂降解,得到的陶瓷微粉,含水率低,分散性好,具有较高的利用价值。

Description

一种陶瓷污泥处理方法及系统 [技术领域]
本发明属于污泥处理技术领域,更具体地,涉及一种陶瓷污泥处理方法及系统。
[背景技术]
陶瓷污泥是陶瓷生产过程中抛光工艺环节产生的污泥,其主要成分是陶瓷微粉、助研剂和水,其中的陶瓷微粉主要成分是二氧化硅和碳化硅,陶瓷污泥中的陶瓷微粉具有粒径小、硬度大的特点,经处理后的陶瓷污泥,可用作建筑材料的细骨料,或者做成高品质透水砌块的面层材料。但是,现有技术中,由于处理工艺的限制,陶瓷抛光污泥通常经絮凝、脱水、干燥后,直接进行填埋,利用价值较低。也有人尝试将处理后的陶瓷污泥作为建筑材料,如用于制作混凝土砌块。但由于陶瓷抛光污泥处理工艺的落后,使得处理后的陶瓷污泥容易板结,含水率高,且存在絮凝剂,这样的陶瓷污泥用作建筑材料时,存在以下缺陷:1、由于处理后的陶瓷污泥含水率仍然接近40%,当将其用于制作砌块时,陶瓷污泥中的水分会增加混凝土的水灰比,导致砌块强度偏低;2、大块的板结陶瓷污泥直接用于制建材时,块状的污泥会在建材内部形成力学薄弱点,导致砌块强度偏低;3、脱水后的陶瓷污泥中存在高分子絮凝剂,其会对水泥的水化产生不利影响,使得混凝土砌块的早期强度差,最终影响混凝土制品的力学性能。可见,现有技术还有待改进和提高。
[发明内容]
针对现有技术的缺陷,本发明的目的在于提供一种陶瓷污泥处理方法及系统,旨在解决现有技术陶瓷污泥处理方法及系统无法实现深度脱水,使得陶瓷污泥的利用价值不高的缺陷。
为实现上述目的,本发明提供了一种陶瓷污泥处理方法,其中,所述方法包括以下步骤:
步骤S1.絮凝沉淀:在陶瓷污泥中加入絮凝剂,搅拌混合后,静置片刻,絮凝沉淀;
步骤S2.初步脱水:将絮凝沉淀后的陶瓷污泥进行初步脱水;
步骤S3.粉碎:将脱水后的陶瓷污泥通过粉碎机粉碎,经振筛机过筛,得到细颗粒的陶瓷污泥粉;
步骤S4.加氧化剂:在陶瓷污泥粉中加入氧化剂,搅拌,混合均匀;
步骤S5.絮凝剂的破坏及深度脱水:将混有氧化剂的陶瓷污泥粉输送至干燥通道内进行加热干燥,在干燥通道内通过超声波处理和微波处理,处理后得到陶瓷微粉。
优选地,所述步骤S5中,所述微波处理设置在超声波处理之后。
优选地,所述步骤S5中,所述超声波处理的频率为20KHz~120KHz。
优选地,所述步骤S5中,所述微波处理的频率为915MHz~2450MHz。
优选地,所述步骤S5中,所述加热干燥为热风干燥,所述热风干燥的温度为60℃~120℃。
优选地,所述步骤S1中,所述絮凝剂的加入量为陶瓷污泥固含量的0.5%~3%。
优选地,所述步骤S1中,所述絮凝剂包括聚丙烯酰胺、聚丙烯酸钠、聚乙烯吡啶盐和聚乙烯亚胺中的一种。
优选地,所述步骤S4中,所述氧化剂包括氯化铁、硫酸铁、高铁酸钾、过二硫酸钠中的一种。
优选地,所述步骤S4中,所述氧化剂的加入量为陶瓷污泥固含量的1~6%。
优选地,所述步骤S2中,所述初步脱水采用板框式压滤机或叠螺式污泥脱水机中的一种进行脱水。
通过本发明所构思的以上技术方案,与现有技术相比,能够取得下列有益效果:
本发明提供了一种陶瓷污泥处理方法,所述方法通过设置絮凝、初步脱水、粉碎、加氧化剂、絮凝剂的破坏及深度脱水步骤,实现对陶瓷污泥除水干燥、破团分散及对高分子絮凝剂降解,从而得到含水率较低,分散性较好的陶瓷微粉,提高陶瓷污泥的利用价值。其中,在絮凝剂的破坏及深度脱水步骤中,通过超声波、微波、氧化剂及热风的共同作用下,快速将絮凝剂降解断裂成短链分子,一方面破坏陶瓷污泥团聚结构,使陶瓷污泥中的间隙水和结合水更易蒸发,提高深度脱水的效率,另一方面,短链的絮凝剂分子带电,附着在陶瓷污泥颗粒上,使陶瓷颗粒带相同电荷,通过静电排斥作用,实现陶瓷污泥团的崩解与陶瓷颗粒的相对分散。所述方法能对陶瓷污泥进行深度脱水,得到的陶瓷微粒含水率低,分散性好,具有较高的应用价值。
本发明的另一目的在于提供一种陶瓷污泥处理系统,旨在提高陶瓷污泥的处理效果,提升陶瓷污泥的再生利用价值。
为实现上述目的,本发明提供了一种陶瓷污泥处理系统,所述系统包括絮凝装置和脱水装置,其中,所述系统还包括按照污泥处理顺序依次设置的粉碎过筛装置、搅拌混合装置、干燥装置,所述粉碎过筛装置用于将脱水后的陶瓷污泥块进行粉碎、过筛,所述搅拌混合装置设有干粉加料机构,所述干粉加料机构用于向粉碎后的陶瓷污泥中加入氧化剂干粉,所述干燥装置包括超声波发生机构和微波发生器,所述干燥装置用于去除陶瓷污泥中的水分和破坏絮凝剂。
优选地,所述陶瓷污泥处理系统中,所述干燥装置包括密封的输送通道,所述超声波发生机构包括超声波发生器和超声波换能器,所述输送通道的底部设有输送带,输送通道 的内侧壁上布有若干个超声波换能器和若干个微波发生器,输送通道外设有超声波发生器,所述超声波发生器与超声波换能器电性连接。
优选地,所述陶瓷污泥处理系统中,以输送带运动的方向为后方,所述超声波换能器均布于输送通道前2/3段的侧壁上,所述微波发生器均布于输送通道后2/3段的侧壁段上。
优选地,所述陶瓷污泥处理系统中,所述输送通道的后端设有热风入口,输送通道的前端设有热风出口,所述热风入口和热风出口均设有金属网,用于防止微波泄露。
优选地,所述陶瓷污泥处理系统中,所述输送通道的内壁设有微波屏蔽层和隔音层。
优选地,所述陶瓷污泥处理系统中,所述絮凝装置包括絮凝槽,絮凝槽底部为锥形结构,絮凝槽上方设有加药机构。
优选地,所述陶瓷污泥处理系统中,所述加药机构包括储药罐和设置于储药罐下方的加药泵。
优选地,所述陶瓷污泥处理系统中,所述粉碎过筛装置包括机身以及设置在机身内的粉碎机构和过筛机构,所述过筛机构设置于粉碎机构的下方,所述过筛机构包括振动筛网。
优选地,所述陶瓷污泥处理系统中,所述粉碎机构包括刀片、转轴、驱动电机,所述刀片固定连接转轴,所述转轴与驱动电机传动连接。
优选地,所述陶瓷污泥处理系统中,所述系统还设有控制机构,所述控制机构分别与絮凝装置、脱水装置、粉碎过筛装置、搅拌混合装置、干燥装置电性连接。
通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
本发明提供了一种陶瓷污泥处理系统,所述系统通过设置絮凝装置、脱水装置、粉碎过筛装置、搅拌混合装置、干燥装置,实现对陶瓷污泥进行絮凝脱水、分散、干化、表面改性等多个工艺步骤。所述系统能够对陶瓷污泥进行深度脱水,并且破坏陶瓷污泥内部的絮凝剂分子链,处理后的陶瓷污泥为分散的陶瓷微粉,含水率低,再生利用价值高。
[附图说明]
图1为本发明提供的陶瓷污泥处理系统的结构示意图;
图2为絮凝装置的结构示意图;
图3为粉碎过筛装置的结构示意图;
图4为搅拌混合装置的结构示意图;
图5为干燥装置的结构示意图;
图6为输送通道壳体的截面图;
图7为一种优选的干燥装置的结构示意图。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
一种陶瓷污泥处理方法,所述方法包括以下步骤:
步骤S1.絮凝沉淀:按比例在陶瓷污泥中加入絮凝剂,搅拌混合后,静置片刻,使陶瓷污泥絮凝沉淀。所述絮凝剂包括聚丙烯酰胺、聚丙烯酸钠、聚乙烯吡啶盐和聚乙烯亚胺中的一种,为有机高分子絮凝剂,优选为阳离子型的有机高分子絮凝剂,如,阳离子型聚丙烯酰胺。所述有机高分子絮凝剂的分子链比较长,使用前先活化,其效果会更好。所述絮凝剂的活化方法为将絮凝剂与稀释剂按配比混合,然后高速搅拌,通过体系内部摩擦力,使絮凝剂分子链打开,使其活化。絮凝剂的活化过程中,絮凝剂分子链展开越好,其活化效果则越好,活化效果越好,其对陶瓷污泥的絮凝沉淀效果就越明显,并且添加量则越少,而絮凝剂的添加量越少,后续去除絮凝剂的难度会越低,陶瓷微粉的分散效果会越好。
具体的,所述絮凝剂的添加量为陶瓷污泥重量的0.5%~3%。絮凝剂的添加量直接影响到絮凝沉淀的效果,添加量越多,则絮凝效果越好。但是,添加量过多,会使得初步脱水后的陶瓷污泥板结越明显,进一步给后续的粉碎及深度脱水造成困难,同时加大后续絮凝剂去除的难度,另外也会增加水处理的成本。当絮凝剂的添加量为陶瓷污泥固含量的0.5%~3%时,可具有较好的絮凝效果,并且板结程度相对较弱。
步骤S2.初步脱水:将絮凝沉淀后的陶瓷污泥进行初步脱水。初步脱水可采用板框式压滤机或叠螺式污泥脱水机及进行脱水,经初步脱水后的陶瓷污泥含水率为30~60%。优选为板框式压滤机脱水,主要是因为板框式压滤脱水机的压力大,脱水后的泥饼含水率低可达到30~45%。
步骤S3.粉碎:将初步脱水后的陶瓷污泥通过粉碎机粉碎,再通过振筛机过筛,得到细颗粒的陶瓷污泥粉。由于经初步脱水后的陶瓷污泥存在板结,板结后的陶瓷污泥难以进行深度脱水和干燥,也不适合进行絮凝剂的去除,因此需将其粉碎。先通过粉碎机将板结的陶瓷污泥块粉碎,再通过振筛机进行筛分,筛下料通过输送管道进入下一工艺步骤,而筛余物返回粉碎机内,再次进行粉碎。
步骤S4.加氧化剂:在振筛后的陶瓷污泥粉中加入氧化剂干粉,然后通过搅拌器充分搅拌,混合均匀。由于筛分后的陶瓷污泥粉表面仍然包覆有絮凝剂和水,因此仍然容易团聚,而加入的氧化剂干粉,可参与后续絮凝剂分子链的破坏,提高陶瓷污泥粉的分散性,并且絮凝剂被破坏后,便于水分的释放,提高深度脱水的效果。所述氧化剂包括氯化铁、硫酸铁、高铁酸钾、过二硫酸钠,所述氧化剂能与絮凝剂进行反应,使长链的絮凝剂分子 发生断链,从而破坏絮凝剂的包覆作用。所述氧化剂的加入量为陶瓷污泥固含量的1~6%时,具有较好的氧化效果。
步骤S5.絮凝剂的破坏及深度脱水:混有氧化剂的陶瓷污泥粉通过输送通道输送至干燥通道内,进行加热干燥,并通过超声波和微波进行处理,得到陶瓷污泥微粉。所述干燥通道为封闭的通道,底部设有输送带,用于输送陶瓷污泥粉,干燥通道的两端分别设有热风入口和热风出口,通过对干燥通道内输入热风,起到对陶瓷污泥粉进行加热吹干的作用;所述干燥通道的侧壁上设有超声波换能器和微波发生器,所述超声波换能器能发出超声波,所述微波发生器能发射微波,所述超声波和微波,能加速絮凝剂的氧化、断链,加速水分的去除。
具体的,所述超声波的频率为20KHz~120KHz,所述超声波具有空化作用、机械效应、热效应及化学效应,所述空化作用及化学效应能提升自由基的产生速率,加快氧化反应的速率,促进絮凝剂的降解;所述机械效应能大大加速陶瓷污泥粉中的间隙水、结合水渗透出来,提高除水效率;所述热效应能使陶瓷污泥中各成分迅速升温,加速水分子的运动,促进絮凝剂的氧化降解。进一步的,所述超声波与氧化剂协同作用,大大的加速了絮凝剂的氧化反应,使长链的高分子絮凝剂氧化成短链的有机物,使团聚的陶瓷污泥团崩解,提高陶瓷污泥颗粒的分散性,并且,当絮凝剂为阳离子型絮凝剂时,如阳离子型的聚丙烯酰胺,断裂后的絮凝剂短链分子或单体带电,并且吸附在陶瓷颗粒上会使陶瓷颗粒带上同种电荷,从而降低陶瓷污泥颗粒与水分子间作用力,促使陶瓷颗粒间的间隙水和结合水分更易蒸发。
具体的,所述微波处理的频率为915MHz~2450MHz。所述微波发生器发射的微波,能产生热效应,所述热效应能对水分和絮凝剂进行加热,加速水分的蒸发和絮凝剂的氧化反应,起到深度脱水和破坏絮凝剂分子的作用。
进一步的,所述超声波、微波、氧化剂及流动的热风协同作用,微波及超声波及热风均能对陶瓷污泥中的水分进行加热,加速其分子运动,快速从陶瓷污泥中脱离出来,而流动的热风能及时将水分带走,进一步促进水分的去除;同时,超声波、微波及氧化剂协同作用,加速絮凝剂的降解断链,使陶瓷污泥颗粒分散,更利于水分的蒸发,而氧化降解后的絮凝剂短链分子或单体,吸附在陶瓷表面,并且由于带同种电荷,相互排斥,从而使得陶瓷污泥颗粒更为分散。因此,在超声波、氧化剂、微波辐射和热风干燥的多重作用下,使得陶瓷污泥颗粒快速干燥,并相互分散。
优选的,所述微波处理设置在超声波处理之后。所述干燥通道的前2/3段设有超声波换能器,所述干燥通道的后2/3段设有微波发生器,由于陶瓷污泥粉在刚进入干燥通道时的水分含量较高,而超声波对含水介质的作用效果会优于含水率低的介质,因此将超声波 设置在含水较高的干燥通道前端,而将微波发生器设置于含水率较低的后端,主要为了降低能耗,提高微波的效率,实现在保证干燥效果的同时,降低总体能耗。
具体的,所述热风干燥的温度为60~120℃,所述热风可以直接利用陶瓷窑炉排出的热风,实现对陶瓷加工余热的利用,节能环保。所述热风进入的方向与输送带前进的方向相反,具有更好的干燥效果。
经上述陶瓷污泥方法处理后,可得到含水率低,粒径小,分散性好的陶瓷微粒,所述微粒可作为建筑填充料用于混凝土、砌块或其他装饰材料,使陶瓷污泥得到较高价值的利用。
本发明还提供了一种采用上述陶瓷污泥处理方法处理陶瓷污泥的处理系统。请参阅图1-5,本发明提供一种陶瓷污泥处理系统,所述系统包括絮凝装置1、脱水装置2、粉碎过筛装置3、搅拌混合装置4、干燥装置5,用于完成陶瓷污泥的处理工艺步骤,所述陶瓷污泥的处理工艺包括以下步骤:(1)陶瓷污泥的絮凝沉淀,通过添加絮凝剂,使悬浮的陶瓷污泥絮凝沉淀,加速陶瓷污泥与水分离;(2)陶瓷污泥脱水,将絮凝沉淀后的陶瓷污泥脱水至30%-40%含水率;(3)脱水后的陶瓷污泥粉碎,通过粉碎机和过筛机,将脱水后的陶瓷污泥块粉碎成细颗粒;(4)添加氧化剂干粉,并通过搅拌混合,将氧化剂干粉与颗粒状的陶瓷污泥混合;(5)絮凝剂的断链和水分的去除,通过超声波、微波、热风及氧化剂的共同作用,破坏絮凝剂的长链分子。通过热风和微波内部热效应,使陶瓷污泥内部水分蒸发,得到颗粒细小,分散性好的陶瓷微粉。
如图2所示,所述絮凝装置包括絮凝槽1.1,絮凝槽1.1的侧壁上设有进料口A1.2,所述陶瓷污泥通过进料口进入絮凝槽中,絮凝槽1.1的底部为锥形结构,在锥形的底部设有出料口A1.3,在絮凝槽上方靠近进料口A1.2的位置设有加药机构,所述加药机构包括储药罐1.4和加药泵1.5,所述加药泵1.5为计量泵,所述絮凝槽还设有搅拌器A1.6,所述搅拌器A1.6用于将陶瓷污泥与絮凝剂更充分的混合。工作时,陶瓷污泥通过进料口A1.2进入絮凝槽1.1中,在进料的同时,通过加药机构加入絮凝剂,在搅拌器A1.6的搅拌混合下,絮凝剂将陶瓷污泥包覆沉淀,静置时,沉淀在絮凝槽的底部,然后从出料口A1.3流出。需要说明的是,搅拌器A1.6为间隙工作模式,加药时进行搅拌,当加药完成后停止工作,使陶瓷污泥充分沉淀。
具体的,所述脱水装置2包括板框式脱水装置和叠螺式脱水装置,两者均可以实现对污泥进行初步脱水,除去污泥中大量的孔隙水,方便后续干燥处理。由于板框式脱水装置和叠螺式脱水装置均为现有技术,在此不做详细说明。优选的,所述脱水装置为板框式脱水装置,脱水后的陶瓷污泥水分含量可降至40%左右,便于后续的干燥处理。
具体的,如图3所示,在上述陶瓷污泥处理系统中,所述粉碎过筛装置3包括机身3.1, 所述机身上设有料斗3.2,机身内设有粉碎机构和过筛机构,所述粉碎机构包括设置在机身内的刀片3.3、转轴3.4,和设置在机身外的驱动电机3.5,所述刀片3.3连接在转轴3.4上,所述转轴3.4与驱动电机3.5传动连接,所述过筛机构设置于粉碎机构的下方,包括振动筛网3.6,所述机身还设有粉料出口3.7,经振动筛网3.6筛分后的小颗粒陶瓷污泥,由粉料出口流出。由于从板框式脱水机出来的陶瓷污泥在脱水时形成了板块结构,不利于后续的进一步脱水处理和除絮凝剂处理,设置的粉碎过筛装置,主要用于将脱水后的陶瓷污泥块进行粉碎、过筛,从而提高后续脱水的效率,也便于与氧化剂混合。
具体的,如图4所示所述搅拌混合装置4包括壳体4.1,壳体4.1的上方设有进料口B4.2,所述进料口B4.2通过输送带A(未画出)与粉碎过筛装置3的粉料出口3.7连通,壳体4.1内设有搅拌器B4.4,壳体4.1的顶部设有干粉加料机构,所述干粉加料机构包括储料罐4.5及设置在储料罐底部的开关阀A4.6,壳体的底部还设有出料口B4.7,所述出料口B4.7设有开关阀B4.8,搅拌混合时,所述开关阀B4.8是闭合的,搅拌完成时,开关阀B4.8打开,混有氧化剂的陶瓷污泥颗粒从出料口B4.7进入干燥装置5。所述搅拌混合装置4主要用于加入氧化剂和将氧化剂与陶瓷污泥颗粒充分混合,便于后续对絮凝剂进行断链处理。
具体的,如图5所示,所述干燥装置5包括密封的输送通道5.1、若干超声波发生机构和若干微波发生器5.3。所述输送通道5.1的底部设有输送带B5.4,输送通道5.1的一端为输入端,另一端为输出端(图中箭头所指方向为输送带运动方向,以输送带的运动方向为后方),所述输入端的上方设有进料口C5.5,进料口C5.5的正上方为搅拌混合装置的出料口B4.7,从出料口B4.7落出的陶瓷污泥颗粒刚好落在输送带B5.4,并且随输送带B5.4的运动,逐渐往后方运动;输送通道5.1的输入端还设有热风出口5.7,所述热风出口5.7通过排气管将气体排出,输送通道5.1的输出端设有热风入口5.6,所述热风入口5.6通过管道连通陶瓷窑炉的排风口,利用陶瓷生产线中窑炉通风的余热对陶瓷污泥进行干燥,所述热风入口5.6和热风出口5.7均设有金属网5.9,用于防止输送通道内微波外泄;所述超声波发生机构包括超声波换能器5.8和超声波发生器5.2,所述超声波换能器设置于输送通道5.1的内侧壁上,超声波发生器5.2设置于输送通道5.1的外部,所述超声波换能器5.8与超声波发生器5.2电性连接;所述微波发生器5.3也设置于的内侧壁上,并且超声波换能器5.8与微波发生器5.3间隔设置。
作为一种优选的实施方式,如图7所示,所述超声波换能器均布于输送通道前2/3段的侧壁上,所述微波发生器均布于输送通道后2/3段的侧壁段上。这是因为,陶瓷污泥的干燥过程是随着输送带的前进,其含水率是逐渐下降的,在输送通道的前段,含水率较高,而超声波对含水率高的介质处理效果较明显,但是污泥中过多水分会消耗微波能量,降低 微波的作用效果。因此,将超声波换能器设置于输送通道的前2/3段的侧壁上,使干燥的前期,主要通过超声波对陶瓷污泥起作用,超声波与氧化剂结合促使絮凝剂降解。将微波发生器设置于输送通道后2/3段的侧壁上,处理外表已经比较干燥污泥,使微波由内而外的热效应更好的发挥作用,从而在保证处理效果的前提下使整体的能耗降低。
优选的,如图6所示,所述输送通道的外壳6为金属外壳,输送通道的内壁设有微波屏蔽层7和隔音层8,所述微波屏蔽层7为金属层,在微波屏蔽层和外壳之间填充有耐热吸音材料,形成隔音层8。设置的微波屏蔽层主要作用是使微波能通过金属的反射,更好的对陶瓷污泥产生热解效应,同时防止微波外泄,对人体造成辐射,设置的隔音层主要作用是防止超声波传递至外,形成较大的噪声。
上述结构的干燥装置工作时,热风从输送通道的输出端吹入,起到将陶瓷污泥中的水分蒸发带走的作用,同时,超声波换能器产生的超声波,能促进陶瓷污泥中絮凝剂降解,提高污泥干燥的效率和易分散性。而微波发生器产生的微波,由内而外的对陶瓷污泥加热,促进陶瓷污泥分散,加速陶瓷污泥中水分的蒸发。
进一步的,上述结构的干燥装置中,由于热风流动方向和污泥输送方向相反,可以使后端较干燥的污泥与传输装置后端热风入口处较干燥的热风充分接触,提高污泥干燥效率,降低最终陶瓷微粉含水率。而微波可以快速穿透陶瓷污泥,由内而外的加热污泥内部水分,使得陶瓷颗粒间的间隙水和结合水向外溢出,随后被热风带走。
更进一步的,上述结构的干燥装置能使高分子链的絮凝剂在超声波、氧化剂以及热辐射的三重作用下,快速降解断裂成短链分子,从而使絮凝团聚的陶瓷污泥分散成陶瓷污泥颗粒。并且,断裂后的带同种电荷的絮凝剂短链分子,通过吸附在陶瓷颗粒上使陶瓷颗粒带上同种电荷,降低陶瓷颗粒与水分子间的作用力,促使陶瓷污泥颗粒间的间隙水和结合水分更易蒸发。同时,带同种电荷的陶瓷颗粒通过静电斥力、微波由内而外的热效应,实现了陶瓷污泥团的崩解与陶瓷颗粒的相对分散。在超声波、氧化剂、高频微波辐射和热风干燥的多重作用下,可使含水率较高的陶瓷污泥快速干燥,得到分散的陶瓷微粉颗粒。
上述结构的陶瓷污泥处理系统,还设有控制机构,所述控制机构分别与絮凝装置1、脱水装置2、粉碎过筛装置3、搅拌混合装置4、干燥装置5电性连接,用于控制絮凝装置、脱水装置、粉碎过筛装置、搅拌混合装置、干燥装置的开启和关闭,同时控制絮凝剂的添加、氧化剂的添加,以及控制各搅拌器的转速、超声波发生器的频率、微波发生器的频率。设置的控制机构,能实现对陶瓷污泥处理系统全自动化控制,极大的提高了生产效率及生产的安全性。
本发明提供了一种陶瓷污泥处理系统,所述系统通过设置絮凝装置、脱水装置、粉碎过筛装置、搅拌混合装置、干燥装置,实现了絮凝-初步脱水-粉碎过筛-加氧化剂-深度脱水 和絮凝剂的破坏的陶瓷污泥处理工艺,处理后的陶瓷污泥变成分散的颗粒,含水率低,利用价值高。
本发明公开了一种陶瓷污泥处理系统,所述系统还包括按照污泥处理顺序依次设置的粉碎过筛装置、搅拌混合装置、干燥装置,所述粉碎过筛装置用于将脱水后的陶瓷污泥块进行粉碎、过筛,所述搅拌混合装置设有干粉加料机构,所述干粉加料机构用于向粉碎后的陶瓷污泥中加入氧化剂干粉,所述干燥装置包括超声波发生机构和微波发生器,所述干燥装置用于去除陶瓷污泥中的水分和破坏絮凝剂。本发明提供的陶瓷污泥处理系统,能实现对陶瓷污泥进行絮凝脱水、分散、干化、表面改性等多个工艺步骤,处理后的陶瓷污泥变为分散的陶瓷微粉颗粒,含水率低,可以直接用于制建材利用。
实施例1
一种优选的陶瓷污泥处理方法,所述方法包括以下步骤:
步骤S1.在陶瓷污泥中加入阳离子型的聚丙烯酰胺絮凝剂,絮凝剂的加入量为陶瓷污泥固含量的1.2%,然后搅拌混合,静置10min,使陶瓷污泥充分絮凝沉淀;
步骤S2.将絮凝沉淀后的陶瓷污泥通过板框式压滤机进行初步脱水,得到陶瓷污泥块,脱水后的陶瓷污泥块含水率为30%;
步骤S3.将脱水后的陶瓷污泥块通过粉碎机粉碎,粉碎后的污泥块通过振筛机过筛,得到细颗粒的陶瓷污泥粉;
步骤S4.将陶瓷污泥加入搅拌器中,同时加入氯化铁干粉,氯化铁干粉的加入量为陶瓷污泥固含量的2%,搅拌,混合均匀;
步骤S5.将混有氧化剂干粉的陶瓷污泥粉输送至干燥通道内进行加热干燥,同时进行超声波和微波处理,热风温度为105℃,风速为3m/s,超声波频率为85KHz,微波频率为2100MHz,干燥通道长度为10m,输送带速度为2m/min,处理后得到陶瓷污泥微粉。
本实施例所述方法处理后得到的陶瓷污泥微粉颗粒粒径为10~200μm,平均粒径为21μm,含水率为8%。
实施例2
一种陶瓷污泥处理方法,所述方法与实施例1相同,区别仅在于步骤S2中是通过叠螺式污泥脱水机进行初步脱水。处理后得到的陶瓷微粉颗粒粒径为85~1200μm,平均粒径为139μm,含水率为21%。
实施例3
一种陶瓷污泥处理方法,所述方法包括以下步骤:
步骤S1.在陶瓷污泥中加入聚丙烯酸钠絮凝剂,絮凝剂的加入量为陶瓷污泥固含量的0.5%,然后搅拌混合,静置15min,使陶瓷污泥充分絮凝沉淀;
步骤S2.将絮凝沉淀后的陶瓷污泥通过板框式压滤机脱水进行初步脱水,得到陶瓷污泥块;
步骤S3.将脱水后的陶瓷污泥块通过粉碎机粉碎,粉碎后的污泥块通过振筛机过筛,得到细颗粒的陶瓷污泥粉;
步骤S4.将陶瓷污泥加入搅拌器中,同时加入硫酸铁干粉,所述硫酸铁干粉的加入量为陶瓷污泥固含量的1%,搅拌,混合均匀;
步骤S5.将混有氧化剂干粉的陶瓷污泥粉输送至干燥通道内进行加热干燥,同时进行超声波和微波处理,热风温度为120℃,风速为2m/s,超声波频率为20KHz,微波频率为915MHz,干燥通道长度为10m,输送带速度为1.5m/min,处理后得到陶瓷污泥微粉。
本实施例所述方法处理后得到的陶瓷污泥微粉颗粒粒径为20~480μm,平均粒径为35μm,含水率为12%。
实施例4
一种陶瓷污泥处理方法,所述方法包括以下步骤:
步骤S1.在陶瓷污泥中加入阳离子型的聚乙烯吡啶盐絮凝剂,絮凝剂的加入量为陶瓷污泥固含量的3%,然后搅拌混合,静置10min,使陶瓷污泥充分絮凝沉淀;
步骤S2.将絮凝沉淀后的陶瓷污泥通过叠螺式污泥脱水机进行初步脱水,得到陶瓷污泥块;
步骤S3.将脱水后的陶瓷污泥块通过粉碎机粉碎,粉碎后的污泥块通过振筛机过筛,得到细颗粒的陶瓷污泥粉;
步骤S4.将陶瓷污泥加入搅拌器中,同时加入高铁酸钾干粉,高铁酸钾干粉的加入量为陶瓷污泥固含量的6%,搅拌,混合均匀;
步骤S5.将混有氧化剂干粉的陶瓷污泥粉输送至干燥通道内进行加热干燥,同时进行超声波和微波处理,热风温度为60℃,风速为4m/s,超声波频率为120KHz,微波频率为2450MHz,干燥通道长度为10m,输送带速度为2m/min,处理后得到陶瓷污泥微粉。
本实施例所述方法处理后得到的陶瓷污泥微粉颗粒粒径为25~420μm,平均粒径为38μm,含水率为11%。
实施例5
一种陶瓷污泥处理方法,所述方法包括以下步骤:
步骤S1.在陶瓷污泥中加入阳离子型的聚乙烯亚胺絮凝剂,絮凝剂的加入量为陶瓷污泥固含量的2%,然后搅拌混合,静置12min,使陶瓷污泥充分絮凝沉淀;
步骤S2.将絮凝沉淀后的陶瓷污泥通过叠螺式污泥脱水机进行初步脱水,得到陶瓷污泥块;
步骤S3.将脱水后的陶瓷污泥块通过粉碎机粉碎,粉碎后的污泥块通过振筛机过筛,得到细颗粒的陶瓷污泥粉;
步骤S4.将陶瓷污泥加入搅拌器中,同时加入过二硫酸钠干粉,过二硫酸钠干粉的加入量为陶瓷污泥固含量的4%,搅拌,混合均匀;
步骤S5.将混有氧化剂干粉的陶瓷污泥粉输送至干燥通道内进行加热干燥,同时进行超声波和微波处理,热风温度为85℃,风速为3m/s,超声波频率为90KHz,微波频率为1500MHz,干燥通道长度为10m,输送带速度为2m/min,处理后得到陶瓷污泥微粉。
本实施例所述方法处理后得到的陶瓷污泥微粉颗粒粒径为22~330μm,平均粒径为31μm,含水率为10%。
对比例1
一种陶瓷污泥处理方法,所述方法步骤1-3与实施例1的相同,具体步骤见实施例1,其他步骤如下:
步骤S4.将步骤3得到的陶瓷污泥粉输送至干燥通道内进行加热干燥,同时进行超声波和微波处理,热风温度为105℃,风速为3m/s,超声波频率为85KHz,微波频率为2100MHz,干燥通道长度为10m,输送带速度为2m/min,处理后得到陶瓷污泥微粉。
本对比例所述方法处理后得到的陶瓷污泥产物粒径为42~800μm,平均粒径为87μm,含水率为15%。
对比例2
一种陶瓷污泥处理方法,所述方法步骤1-4与实施例1的相同,具体步骤见实施例1,其他步骤如下:
步骤S5.将混有氧化剂干粉的陶瓷污泥粉输送至干燥通道内进行加热干燥,同时进行微波处理,热风温度为105℃,风速为3m/s,微波频率为2100MHz,干燥通道长度为10m,输送带速度为2m/min,处理后得到陶瓷污泥微粉。
本对比例所述方法处理后得到的陶瓷污泥产物粒径为92~1500μm,平均粒径为186μm,含水率为20%。
对比例3
一种陶瓷污泥处理方法,所述方法步骤1-4与实施例1的相同,具体步骤见实施例1,其他步骤如下:
步骤S5.将混有氧化剂干粉的陶瓷污泥粉输送至干燥通道内进行加热干燥,同时进行超声波处理,热风温度为105℃,风速为3m/s,超声波频率为85KHz,干燥通道长度为10m,输送带速度为2m/min,处理后得到陶瓷污泥微粉。
本对比例所述方法处理后得到的陶瓷污泥产物粒径为78~1200μm,平均粒径为 165μm,含水率为16%。
对比例4
一种陶瓷污泥处理方法,所述方法步骤1-3与实施例1的相同,具体步骤见实施例1,其他步骤如下:
步骤S4.将粉碎的陶瓷污泥粉输送至干燥通道内进行加热干燥,热风温度为105℃,风速为3m/s,干燥通道长度为10m,输送带速度为2m/min,处理后得到陶瓷污泥微粉。
本对比例所述方法处理后得到的陶瓷污泥产物粒径为136~1850μm,平均粒径为289μm,含水率为25%。
由上述实施例1-5及对比例1-4可知,实施例1得到的陶瓷微粉的粒径及含水率均优于其他实施例和对比例的,这主要是因为实施例1中添加的阳离子型聚丙烯酰胺在氧化剂及微波和超声波的共同作用后,得到较彻底的氧化断链,从而使得水分的去除率较高,陶瓷微粒的粒径及分散性较好。将实施例1与实施例2比对可知,板框式脱水明显优于叠螺式脱水,并且初步脱水的效果,会直接影响到深度脱水的效果。将实施例1与对比例1-4比对可知,氧化剂、微波、超声波均对絮凝剂和水的去除起到较大的影响,从而直接影响到陶瓷微粒的粒径大小。
将实施例1-5得到的陶瓷微粉及对比例1-4得到的陶瓷污泥产物进行混凝土制块,得到编号为实施例1#-4#和对比例1#-4#的混凝土试样,所述混凝土试样包括水泥350份,碎石900份,中粗砂450份,水100份、外加剂6-8份、陶瓷污泥处理物400份,其中,水泥、水、碎石、中粗砂、外加剂、陶瓷污泥处理物在实施例1#-4#和对比例1#-4#中的含量相同,试样大小相同,养护时间和养护条件均相同,区别仅在于实施例1#-4#的混凝土试样中陶瓷污泥处理物为对应实施例的陶瓷微粉,而对比例1#-4#的陶瓷污泥处理物为对比例1-4的陶瓷污泥处理产物。然后将实施例1#-4#和对比例1#-4#的混凝土试样进行力学性能测试,测试方法依据《普通混凝土力学性能试验方法标准》GB/T50081-2002进行,测试结构如表1所示。
表1
试样编号 抗压强度(7d)MPa 抗压强度(28d)MPa
实施例1# 47 68
实施例2# 25 41
实施例3# 40 58
实施例4# 42 62
实施例5# 45 65
对比例1# 37 55
对比例2# 26 45
对比例3# 25 40
对比例4# 24 35
由表1可知,实施例1#、3#、4#、5#混凝土制块的早期抗压强度及养护28天的抗压强度明显优于对比例的,特别是实施例1#,这主要是由于实施例1#添加的陶瓷微粉颗粒小,分散性好,含水率低,使得其作为混凝土细骨料的部分替代物时,不会出现团聚结块造成混凝土局部力学性能下降的问题,大大的提高混凝土抗压强度。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种陶瓷污泥处理方法,其特征在于,所述方法包括以下步骤:
    步骤S1.絮凝沉淀:在陶瓷污泥中加入絮凝剂,搅拌混合后,静置片刻,絮凝沉淀;
    步骤S2.初步脱水:将絮凝沉淀后的陶瓷污泥进行初步脱水;
    步骤S3.粉碎:将脱水后的陶瓷污泥通过粉碎机粉碎,经振筛机过筛,得到细颗粒的陶瓷污泥粉;
    步骤S4.加氧化剂:在陶瓷污泥粉中加入氧化剂,搅拌,混合均匀;
    步骤S5.絮凝剂的破坏及深度脱水:将混有氧化剂的陶瓷污泥粉输送至干燥通道内进行加热干燥,在干燥通道内通过超声波处理和微波处理,处理后得到陶瓷微粉。
  2. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S5中,所述微波处理设置在超声波处理之后。
  3. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S5中,所述超声波处理的频率为20KHz~120KHz。
  4. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S5中,所述微波处理的频率为915MHz~2450MHz。
  5. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S5中,所述加热干燥为热风干燥,所述热风干燥的温度为60℃~120℃。
  6. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S1中,所述絮凝剂的加入量为陶瓷污泥固含量的0.5%~3%。
  7. 根据权利要求7所述的陶瓷污泥处理方法,其特征在于,所述步骤S1中,所述絮凝剂包括聚丙烯酰胺、聚丙烯酸钠、聚乙烯吡啶盐和聚乙烯亚胺中的一种。
  8. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S4中,所述氧化剂包括氯化铁、硫酸铁、高铁酸钾、过二硫酸钠中的一种。
  9. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S4中,所述氧化剂的加入量为陶瓷污泥固含量的1~6%。
  10. 根据权利要求1所述的陶瓷污泥处理方法,其特征在于,所述步骤S2中,所述初步脱水采用板框式压滤机或叠螺式污泥脱水机中的一种进行脱水。
  11. 一种陶瓷污泥处理系统,所述系统包括絮凝装置和脱水装置,其特征在于,所述系统还包括按照污泥处理顺序依次设置的粉碎过筛装置、搅拌混合装置、干燥装置,所述粉碎过筛装置用于将脱水后的陶瓷污泥块进行粉碎、过筛,所述搅拌混合装置设有干粉加料机构,所述干粉加料机构用于向粉碎后的陶瓷污泥中加入氧化剂干粉,所述干燥装置包 括超声波发生机构和微波发生器,所述干燥装置用于去除陶瓷污泥中的水分和破坏絮凝剂。
  12. 根据权利要求11所述的陶瓷污泥处理系统,其特征在于,所述干燥装置包括密封的输送通道,所述超声波发生机构包括超声波发生器和超声波换能器,所述输送通道的底部设有输送带,输送通道的内侧壁上布有若干个超声波换能器和若干个微波发生器,输送通道外设有超声波发生器,所述超声波发生器与超声波换能器电性连接。
  13. 根据权利要求12所述的陶瓷污泥处理系统,其特征在于,以输送带运动的方向为后方,所述超声波换能器均布于输送通道前2/3段的侧壁上,所述微波发生器均布于输送通道后2/3段的侧壁段上。
  14. 根据权利要求13所述的陶瓷污泥处理系统,其特征在于,所述输送通道的后端设有热风入口,输送通道的前端设有热风出口,所述热风入口和热风出口均设有金属网,用于防止微波泄露。
  15. 根据权利要求12所述的陶瓷污泥处理系统,其特征在于,所述输送通道的内壁设有微波屏蔽层和隔音层。
  16. 根据权利要求1所述的陶瓷污泥处理系统,其特征在于,所述絮凝装置包括絮凝槽,所述絮凝槽的底部为锥形结构,絮凝槽上方设有加药机构。
  17. 根据权利要求16所述的陶瓷污泥处理系统,其特征在于,所述加药机构包括储药罐和设置于储药罐下方的加药泵。
  18. 根据权利要求11所述的陶瓷污泥处理系统,其特征在于,所述粉碎过筛装置包括机身以及设置在机身内的粉碎机构和过筛机构,所述过筛机构设置于粉碎机构的下方,所述过筛机构包括振动筛网。
  19. 根据权利要求18所述的陶瓷污泥处理系统,其特征在于,所述粉碎机构包括刀片、转轴、驱动电机,所述刀片固定连接转轴,所述转轴与驱动电机传动连接。
  20. 根据权利要求11所述的陶瓷污泥处理系统,其特征在于,所述系统还设有控制机构,所述控制机构分别与絮凝装置、脱水装置、粉碎过筛装置、搅拌混合装置、干燥装置电性连接。
PCT/CN2021/105717 2020-07-29 2021-07-12 一种陶瓷污泥处理方法及系统 WO2022022270A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202021524685.7U CN211445482U (zh) 2020-07-29 2020-07-29 一种陶瓷污泥处理系统
CN202010745939.6 2020-07-29
CN202021524685.7 2020-07-29
CN202010745939.6A CN111792813B (zh) 2020-07-29 2020-07-29 一种陶瓷污泥处理方法

Publications (1)

Publication Number Publication Date
WO2022022270A1 true WO2022022270A1 (zh) 2022-02-03

Family

ID=80037520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/105717 WO2022022270A1 (zh) 2020-07-29 2021-07-12 一种陶瓷污泥处理方法及系统

Country Status (1)

Country Link
WO (1) WO2022022270A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804581A (zh) * 2022-05-10 2022-07-29 兰州理工大学 一种联合强化污泥脱水的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685900A (en) * 1995-10-18 1997-11-11 Ecc International Inc. Method for beneficiating discolored kaolin to produce high brightness coating clay
CN1555347A (zh) * 2001-09-14 2004-12-15 英默里斯颜料公司 对高岭土粘土悬浮体同时进行精选、浸取和脱水的方法
CN101786785A (zh) * 2010-02-04 2010-07-28 苏州群瑞环保科技有限公司 一种含絮凝剂污泥处理方法
CN105601083A (zh) * 2015-11-05 2016-05-25 王天成 一种陶瓷抛光废料的加工处理方法
CN211445482U (zh) * 2020-07-29 2020-09-08 佛山水木金谷环境科技有限公司 一种陶瓷污泥处理系统
CN111792813A (zh) * 2020-07-29 2020-10-20 佛山水木金谷环境科技有限公司 一种陶瓷污泥处理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5685900A (en) * 1995-10-18 1997-11-11 Ecc International Inc. Method for beneficiating discolored kaolin to produce high brightness coating clay
CN1555347A (zh) * 2001-09-14 2004-12-15 英默里斯颜料公司 对高岭土粘土悬浮体同时进行精选、浸取和脱水的方法
CN101786785A (zh) * 2010-02-04 2010-07-28 苏州群瑞环保科技有限公司 一种含絮凝剂污泥处理方法
CN105601083A (zh) * 2015-11-05 2016-05-25 王天成 一种陶瓷抛光废料的加工处理方法
CN211445482U (zh) * 2020-07-29 2020-09-08 佛山水木金谷环境科技有限公司 一种陶瓷污泥处理系统
CN111792813A (zh) * 2020-07-29 2020-10-20 佛山水木金谷环境科技有限公司 一种陶瓷污泥处理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHAO WEI, SU LEI, MA BAO-GUO: "Performance analysis of autoclaved aerated concrete block based on pretreatment method of different ceramic tile polishing mud", BLOCK-BRICK-TILE, no. 2, 28 February 2018 (2018-02-28), pages 64 - 67, XP055892039, ISSN: 1001-6945, DOI: 10.16001/j.cnki.1001-6945.2018.02.017 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114804581A (zh) * 2022-05-10 2022-07-29 兰州理工大学 一种联合强化污泥脱水的方法

Similar Documents

Publication Publication Date Title
CN111792813B (zh) 一种陶瓷污泥处理方法
JP5526344B2 (ja) 下水汚泥の濃縮‐脱水および好気的空気乾燥を統合する方法
AU2008349041B2 (en) A method for drying sludge
WO2022021808A1 (zh) 一种陶瓷污泥处理系统
WO2022022270A1 (zh) 一种陶瓷污泥处理方法及系统
JP2011067764A (ja) コンクリートスラッジ微粉末の回収方法および回収装置ならびにコンクリートスラッジ微粉末
CN106430878A (zh) 一种用于净水厂污泥调理脱水的方法
JP4811728B2 (ja) スラリー脱水処理方法および装置、ならびに懸濁液処理システム
KR101737994B1 (ko) 폐자원을 활용하여 슬러지의 탈수 기능을 향상시키는 탈수시스템 및 이를 이용한 슬러지 탈수방법
CN110467332A (zh) 一种高效的污泥调理及脱水方法
NL2032175B1 (en) Ceramic sludge treatment method and system
JPH11347593A (ja) 建設汚泥クローズド型リサイクル処理システム
JP2003001297A (ja) 建設汚泥、汚土、焼却灰等からなる粒状物の製造方法
JP2019501020A (ja) 改良された凝集剤によってスラッジを脱水する方法及びこの方法を実施するプラント
JP2008049318A (ja) 汚泥の処理方法
JP3211113B2 (ja) 脱水汚泥を原料とする軽量骨材の製造方法
JP2002254099A (ja) コンクリートスラッジ微粉末回収方法および装置ならびにコンクリートスラッジ微粉末
KR101031191B1 (ko) 소화슬러지 응집장치
CN115215518A (zh) 一种超声-微波联用的污泥减量化方法
KR101916120B1 (ko) 탈수 전 슬러지 처리 시스템 및 방법
KR100723886B1 (ko) 수분을 가진 폐기물 탈수장치 및 그 탈수장치를 이용한탈수시스템
JP3242674B2 (ja) 泥水・泥土類の廃棄処理装置
JP2001090103A (ja) 解砕造粒装置及び発生土処理装置
CN220389861U (zh) 一种水泥生产原料粉碎干燥混合装置
RU2529619C1 (ru) Способ получения структурированного органоминерального вяжущего

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21848623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21848623

Country of ref document: EP

Kind code of ref document: A1