WO2022022047A1 - Plaque d'acier à haute résistance en baïnite granulaire à faible rapport d'élasticité utilisée dans un environnement à basse température et son procédé de fabrication - Google Patents

Plaque d'acier à haute résistance en baïnite granulaire à faible rapport d'élasticité utilisée dans un environnement à basse température et son procédé de fabrication Download PDF

Info

Publication number
WO2022022047A1
WO2022022047A1 PCT/CN2021/097027 CN2021097027W WO2022022047A1 WO 2022022047 A1 WO2022022047 A1 WO 2022022047A1 CN 2021097027 W CN2021097027 W CN 2021097027W WO 2022022047 A1 WO2022022047 A1 WO 2022022047A1
Authority
WO
WIPO (PCT)
Prior art keywords
low
strength
steel plate
rolling
continuous casting
Prior art date
Application number
PCT/CN2021/097027
Other languages
English (en)
Chinese (zh)
Inventor
孙宪进
李国忠
许晓红
白云
苗丕峰
林涛
诸建阳
许峰
石艾来
周海燕
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Publication of WO2022022047A1 publication Critical patent/WO2022022047A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • the invention belongs to the technical field of metallurgy, and relates to a granular bainite high-strength steel sheet used in a low temperature environment and a manufacturing method thereof.
  • yield-strength ratio is an indispensable requirement for high-performance steels.
  • Many pipelines, high-rise buildings, and bridge steels have requirements for yield-strength ratio in order to improve the safety factor of materials.
  • the yield-to-strength ratio is getting higher and higher, and the materials with low yield-to-strength ratio generally have lower strength. How to solve the contradiction between the yield-to-strength ratio and the material strength is the exploration of modern high-performance steel a point.
  • the problem of yield-strength ratio of high-strength steel is mainly ensured by generating a two-phase structure.
  • the soft-phase structure can ensure that the yield strength of the steel plate is low, and the hard-phase structure can improve the tensile strength of the steel plate, so that the steel plate has high strength. can still maintain a low yield ratio.
  • Patent Notice No. CN107099750A describes a manufacturing method of Q630GJ high-strength steel plate, the structure is tempered ferrite + martensite + bainite, and the yield ratio is less than or equal to 0.83 through the multiphase structure; Patent Notice No.
  • CN102433507A provides a low-yield
  • the strength ratio is easy to weld high-strength steel plates, the structure is ferrite + bainite, and the yield ratio is less than or equal to 0.7. From the production process point of view, it is divided into two categories, one is TMCP controlled rolling and controlled cooling to obtain a two-phase structure, and the other is a two-phase structure obtained by sub-temperature quenching + tempering.
  • the technical problem to be solved by the present invention is to provide a granular bainitic high-strength steel sheet for use in a low-temperature environment and a manufacturing method thereof for the above-mentioned prior art, which can be used under the condition of -60° C. At the same time, the yield-strength ratio is less than or equal to 0.70.
  • the technical scheme adopted by the present invention to solve the above problems is: a granular bainite high-strength steel sheet used in a low temperature environment, the chemical composition (wt.%) is C 0.05-0.11, Si 0.20-0.50, Mn 1.00-1.40, Al 0.02-0.04, Nb 0.01-0.03, Ti 0.01-0.03, Ni 0.80-1.30, Mo 0.30-0.60, Cr 0.30-0.60, B 0.0008-0.0020, S ⁇ 0.003, P ⁇ 0.015, the balance is Fe and unavoidable impurities.
  • C The key elements in the steel that affect the phase transformation curve and microstructure type have a significant impact on the key phase transition points and microstructure transition temperature of the material, and at the same time contribute significantly to the strength. Too high content will cause the continuous casting slab to appear at the center of the thickness direction. Serious segregation zone, thus affecting the microstructure transformation and uniformity of microstructure and properties of the steel plate. In quenched and tempered steel, carbon can improve the hardenability of the steel sheet, but for bainitic steel, too high hardenability is not desired, so comprehensively considered, the C content is in the range of 0.05-0.11%.
  • Si the main reducing agent and deoxidizer, if too high, it will adversely affect the surface quality, toughness and welding performance.
  • the selection range of Si content in the present invention is 0.20-0.50%.
  • Mn The main alloying element that affects strength, hardenability and weldability, improves the strength of steel in the form of solid solution strengthening, and makes up for the deficiency caused by the reduction of C; when the Mn content is less than 0.8%, it cannot play the role of solid solution strengthening. If it is too high, it will increase the carbon equivalent and the crack sensitivity coefficient of the steel, which will adversely affect the weldability of the steel.
  • the patent of the present invention focuses on balancing the role of Mn in hardenability and strengthening, and at the same time considering the impact on low temperature toughness, from the perspective of being beneficial to obtaining granular bainite, the selection range of Mn content in the present invention is 1.00-1.40%;
  • Al The main deoxidizing element, which has a certain effect of grain refinement.
  • the selected range of the Al content in the present invention is 0.02-0.04%.
  • Nb The main grain refining element, which can significantly refine austenite grains through pinning and precipitation strengthening during rolling, increase the temperature in the unrecrystallized zone, and is conducive to grain refinement, strength and toughness. improve. Taking comprehensive consideration, the selection range of the Nb content in the present invention is 0.02-0.04%.
  • Ti strengthens and refines grains by precipitation, and is added together with Nb-containing steel to improve the thermoplasticity of steel at high temperature and reduce microcracks. Therefore, the selected range of Ti content in the present invention is 0.01-0.03%.
  • Ni It can increase the strength and hardness of the steel, improve the toughness, and at the same time, it can suppress the precipitation of carbides in the bainite, and reduce the driving force of bainite transformation.
  • the Ni content is too high, iron oxide scale with high viscosity will be produced during the heating process of the continuous casting slab, which will affect the surface quality of the steel plate.
  • the strength of granular bainite structure is relatively low, and at the same time, in order to meet the requirement of toughness under low temperature conditions, the selection range of Ni content is 0.80-1.30%.
  • Cr It can improve the hardenability and strength of steel, but excessive addition will adversely affect the low-temperature impact toughness and weldability of steel.
  • the present invention focuses on balancing the effect of Cr on bainite transformation, hardenability improvement and strength contribution. Considering comprehensively, the selection range of Cr content is 0.30-0.60%.
  • Mo It can significantly improve the hardenability and thermal strength of the steel. Adding an appropriate amount of Mo during the quenching and tempering treatment can overcome the temper brittleness of the steel, improve the tempering stability of the steel, and thus improve the impact toughness of the steel. At the same time, Mo can delay the transformation of ferrite to pearlite and expand the bainite transformation range.
  • the selection range of Mo content in the present invention is 0.30-0.60%.
  • B The most significant element for improving hardenability, and if it is too high, weldability and low-temperature toughness are adversely affected.
  • the selection range of the B content in the present invention is 0.0008-0.0020%.
  • S element the main impurity element, which has a bad influence on the low temperature toughness, comprehensively considered, S ⁇ 0.003%; P ⁇ 0.015%.
  • the present invention also provides a method for manufacturing a granular bainite high-strength steel sheet used in a low temperature environment, comprising the following process steps:
  • the smelting raw materials are sequentially processed by KR molten iron desulfurization pretreatment, converter top and bottom blowing, LF refining, RH refining and continuous casting to form a continuous casting billet with a thickness of 150-450mm, and the continuous casting billet is covered and slowly cooled , the slow cooling time is 96 hours.
  • the first stage is rough rolling stage, the rolling temperature is 1050-1180 °C, and the average reduction rate of a single pass is ⁇ 15%; the second stage is finishing rolling stage, and the rolling temperature is 900 -930°C, cumulative pass reduction rate ⁇ 40%; hot straightening after rolling.
  • Quenching + high temperature tempering treatment is carried out on the slow-cooled steel plate. Both quenching and tempering are carried out in a continuous furnace.
  • the quenching temperature is 920-930°C, and the furnace time is 1.8-2.2min/mm; 730-740°C, the furnace time is 3.0-4.0min/mm, and it is air-cooled after being released from the furnace.
  • the invention can obtain stable granular bainite structure under high temperature and isothermal conditions through reasonable composition design and process matching.
  • the formation temperature range of this structure is higher than the upper bainite transformation temperature but lower than the pearlite transformation temperature.
  • the austenite is transformed into the bulk ferrite structure, and then on the bulk ferrite matrix, the carbon-rich residual Austenite transforms into granular bainite structure, and the grain size is above 10.
  • the steel plate produced by the above method has a yield strength ⁇ 500MPa, a tensile strength ⁇ 700MPa, a yield-strength ratio ⁇ 0.70, and the Charpy impact energy at 1/4 thickness and 1/2 thickness of the steel plate at -60°C is both ⁇ 100J. Use in a low temperature environment of -60°C.
  • composition system that can obtain stable granular bainite through heat treatment process is designed to meet the requirements of process control and final performance.
  • the steel has the characteristics of good strength, toughness and low yield ratio, and can be used under the condition of -60°C.
  • the biggest advantage of the invention is high stability. Since the dual-phase structure needs to control the ratio between different structures, the yield-strength ratio is often in a fluctuating state, and the uniformity of the structure is poor. , the single-phase granular bainite structure has high stability, which greatly improves the performance stability.
  • FIG. 1 is a photo of the microstructure of the steel sheet of Example 1 of the present invention.
  • Fig. 2 is a microstructure photograph of the steel sheet of Example 2 of the present invention.
  • KR molten iron pretreatment converter smelting—LF refining—RH/VD vacuum degassing—370mm continuous casting—continuous casting billet slow cooling for ⁇ 96 hours—cast billet heating—high pressure water Descale - rolling - slow cooling of steel plate stack - quenching treatment - tempering treatment and other process steps to manufacture granular bainite high-strength steel plates.
  • the concrete process of the above-mentioned stage is: obtain molten steel that meets the composition design requirements through KR molten iron pretreatment, converter smelting, LF and RH refining, then obtain 370mm thick continuous casting slab steel plate through slab continuous casting, slow cooling for 96 hours (Example 1 and 2).
  • the 370mm thick continuous casting billet is heated to 1170-1250 °C, and the temperature is kept for 185-190 minutes (cases 1 and 2).
  • Example 2 After the continuous casting billet is released, high-pressure water is used for descaling; then two-stage rolling is performed, and the first stage rolling temperature is 1080 °C (Example 1) and 1120°C (Example 2), the thickness of the intermediate blank is 170mm (Example 1) and 180mm (Example 2), and the average reduction rate of a single pass is 18% (Example 1) and 17% (Example 2).
  • the rolling temperature of the second stage is 900°C (Example 1) and 930°C (Example 2)
  • the cumulative pass reduction rate is 58.8% (Example 1) and 44% (Example 2)
  • rolling Steel sheets with thicknesses of 70 mm (Example 1) and 100 mm (Example 2) were hot-straightened after rolling, and the slow cooling time of the steel sheet stack was ⁇ 48 hours (Examples 1 and 2).
  • Example 1 The heating temperature was 920° C., the furnace time was 1.8 min/mm, and the quenching machine was used for water quenching.
  • Example 2 The heating temperature was 930° C., the furnace time was 1.8 min/mm, and the quenching machine was used for water quenching.
  • the quenched steel sheet is tempered in a continuous furnace.
  • Example 1 heating temperature 740°C, furnace time 3.5min/mm
  • Example 2 heating temperature 740°C, furnace time 4.0min/mm.
  • the present invention also includes other embodiments, and all technical solutions formed by equivalent transformation or equivalent replacement shall fall within the protection scope of the claims of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

La présente invention concerne une plaque d'acier à haute résistance en baïnite granulaire utilisée dans un environnement à basse température, et son procédé de fabrication. La plaque d'acier comprend les composants chimiques suivants (en % en poids) : 0,05 à 0,11 de C, 0,20 à 0,50 de Si, 1,00 à 1,40 de Mn, 0,02 à 0,04 d'Al, 0,01 à 0,03 de Nb, 0,01 à 0,03 de Ti, 0,80 à 1,30 de Ni, 0,30 à 0,60 de Mo, 0,30 à 0,60 de Cr, 0,0008 à 0,0020 de B, S ≤ 0,003, P ≤ 0,015, et le reste étant du Fe et des impuretés inévitables. Le procédé de fabrication comprend les procédures de fusion en convertisseur, de fusion LF+RH(VD), de coulée continue de brame, de chauffage de brame, de laminage, de traitement thermique, etc. en séquence. La présente invention concerne une plaque d'acier à haute résistance en baïnite granulaire qui est utilisée à -60 °C, et a une limite d'élasticité ≥ 500 MPa, une résistance à la traction ≥ 700 MPa, un rapport d'élasticité ≤ 0,70, et une puissance d'impact à -60 °C ≥ 100 J.
PCT/CN2021/097027 2020-07-30 2021-05-29 Plaque d'acier à haute résistance en baïnite granulaire à faible rapport d'élasticité utilisée dans un environnement à basse température et son procédé de fabrication WO2022022047A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010751840.7A CN112048675A (zh) 2020-07-30 2020-07-30 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
CN202010751840.7 2020-07-30

Publications (1)

Publication Number Publication Date
WO2022022047A1 true WO2022022047A1 (fr) 2022-02-03

Family

ID=73602425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097027 WO2022022047A1 (fr) 2020-07-30 2021-05-29 Plaque d'acier à haute résistance en baïnite granulaire à faible rapport d'élasticité utilisée dans un environnement à basse température et son procédé de fabrication

Country Status (2)

Country Link
CN (1) CN112048675A (fr)
WO (1) WO2022022047A1 (fr)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807751A (zh) * 2022-04-12 2022-07-29 江阴兴澄特种钢铁有限公司 一种具有优良模焊和低温性能的A516 Gr.70(HIC)抗酸管件钢及其制造方法
CN114892080A (zh) * 2022-04-27 2022-08-12 鞍钢股份有限公司 一种720MPa级析出强化型热轧贝氏体钢及其生产方法
CN115094331A (zh) * 2022-07-18 2022-09-23 柳州钢铁股份有限公司 一种低成本的q690钢板及其生产方法
CN115261581A (zh) * 2022-07-26 2022-11-01 张家港宏昌钢板有限公司 非调质高强度钢板及其生产方法
CN115323271A (zh) * 2022-07-31 2022-11-11 包头钢铁(集团)有限责任公司 一种屈服强度390MPa级低屈强比高低温韧性耐火热轧钢板及其制备方法
CN115354220A (zh) * 2022-07-21 2022-11-18 首钢京唐钢铁联合有限责任公司 一种低成本高性能低碳贝氏体钢及其生产方法
CN115558863A (zh) * 2022-10-19 2023-01-03 鞍钢集团北京研究院有限公司 一种屈服强度≥750MPa的低屈强比海工钢及其生产工艺
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法
CN116891975A (zh) * 2023-07-24 2023-10-17 鞍钢股份有限公司 一种冰区船舶用超高强钢板及制造方法
CN117210770A (zh) * 2023-08-24 2023-12-12 鞍钢股份有限公司 高强度均质化铁素体特厚风电结构用钢板及其制造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112048675A (zh) * 2020-07-30 2020-12-08 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法
CN113025885A (zh) * 2021-02-08 2021-06-25 江阴兴澄特种钢铁有限公司 一种具有良好抗hic性能的低屈强比高强管线钢板及其制造方法
CN114134416B (zh) * 2021-11-16 2022-10-25 山东钢铁集团日照有限公司 一种低屈强比高强度中厚钢板及其短流程制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775561A (zh) * 2010-03-19 2010-07-14 江苏省沙钢钢铁研究院有限公司 低屈强比高强度厚板及其制备工艺
CN102011068A (zh) * 2010-12-13 2011-04-13 首钢总公司 一种800MPa级低屈强比结构钢板及其生产方法
CN106435379A (zh) * 2016-10-17 2017-02-22 江阴兴澄特种钢铁有限公司 550MPa级特厚易焊接高韧性抗层状撕裂钢板及其制造方法
CN110423938A (zh) * 2019-07-24 2019-11-08 舞阳钢铁有限责任公司 TMCP型屈服500MPa级结构钢板及其生产方法
CN111441000A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种屈服强度690MPa级低屈强比高强钢板及其制造方法
CN112048675A (zh) * 2020-07-30 2020-12-08 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681078A (ja) * 1992-07-09 1994-03-22 Sumitomo Metal Ind Ltd 低降伏比高強度鋼材およびその製造方法
JP5472071B2 (ja) * 2010-12-13 2014-04-16 新日鐵住金株式会社 ラインパイプ用鋼材
CN106567011A (zh) * 2016-11-09 2017-04-19 江阴兴澄特种钢铁有限公司 适用于‑60℃的易焊接高强高韧性特厚钢板及其制造方法
JP6702357B2 (ja) * 2017-06-29 2020-06-03 Jfeスチール株式会社 低降伏比型高強度鋼板およびその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101775561A (zh) * 2010-03-19 2010-07-14 江苏省沙钢钢铁研究院有限公司 低屈强比高强度厚板及其制备工艺
CN102011068A (zh) * 2010-12-13 2011-04-13 首钢总公司 一种800MPa级低屈强比结构钢板及其生产方法
CN106435379A (zh) * 2016-10-17 2017-02-22 江阴兴澄特种钢铁有限公司 550MPa级特厚易焊接高韧性抗层状撕裂钢板及其制造方法
CN110423938A (zh) * 2019-07-24 2019-11-08 舞阳钢铁有限责任公司 TMCP型屈服500MPa级结构钢板及其生产方法
CN111441000A (zh) * 2020-03-30 2020-07-24 江阴兴澄特种钢铁有限公司 一种屈服强度690MPa级低屈强比高强钢板及其制造方法
CN112048675A (zh) * 2020-07-30 2020-12-08 江阴兴澄特种钢铁有限公司 一种低温环境下使用的低屈强比粒状贝氏体高强钢板及其制造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807751A (zh) * 2022-04-12 2022-07-29 江阴兴澄特种钢铁有限公司 一种具有优良模焊和低温性能的A516 Gr.70(HIC)抗酸管件钢及其制造方法
CN114807751B (zh) * 2022-04-12 2023-10-24 江阴兴澄特种钢铁有限公司 一种具有优良模焊和低温性能的A516 Gr.70(HIC)抗酸管件钢及其制造方法
CN114892080A (zh) * 2022-04-27 2022-08-12 鞍钢股份有限公司 一种720MPa级析出强化型热轧贝氏体钢及其生产方法
CN115094331A (zh) * 2022-07-18 2022-09-23 柳州钢铁股份有限公司 一种低成本的q690钢板及其生产方法
CN115354220A (zh) * 2022-07-21 2022-11-18 首钢京唐钢铁联合有限责任公司 一种低成本高性能低碳贝氏体钢及其生产方法
CN115354220B (zh) * 2022-07-21 2024-03-19 首钢京唐钢铁联合有限责任公司 一种低成本高性能低碳贝氏体钢及其生产方法
CN115261581B (zh) * 2022-07-26 2023-10-20 张家港宏昌钢板有限公司 非调质高强度钢板及其生产方法
CN115261581A (zh) * 2022-07-26 2022-11-01 张家港宏昌钢板有限公司 非调质高强度钢板及其生产方法
CN115323271A (zh) * 2022-07-31 2022-11-11 包头钢铁(集团)有限责任公司 一种屈服强度390MPa级低屈强比高低温韧性耐火热轧钢板及其制备方法
CN115323271B (zh) * 2022-07-31 2023-09-26 包头钢铁(集团)有限责任公司 一种屈服强度390MPa级低屈强比高低温韧性耐火热轧钢板及其制备方法
CN115558863A (zh) * 2022-10-19 2023-01-03 鞍钢集团北京研究院有限公司 一种屈服强度≥750MPa的低屈强比海工钢及其生产工艺
CN115896623A (zh) * 2022-11-21 2023-04-04 包头钢铁(集团)有限责任公司 一种厚规格高韧性屈服强度420MPa级风力发电塔用结构钢板生产方法
CN116891975A (zh) * 2023-07-24 2023-10-17 鞍钢股份有限公司 一种冰区船舶用超高强钢板及制造方法
CN116891975B (zh) * 2023-07-24 2024-05-14 鞍钢股份有限公司 一种冰区船舶用超高强钢板及制造方法
CN117210770A (zh) * 2023-08-24 2023-12-12 鞍钢股份有限公司 高强度均质化铁素体特厚风电结构用钢板及其制造方法

Also Published As

Publication number Publication date
CN112048675A (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022022047A1 (fr) Plaque d'acier à haute résistance en baïnite granulaire à faible rapport d'élasticité utilisée dans un environnement à basse température et son procédé de fabrication
CN105803325B (zh) 一种低裂纹敏感性低屈强比特厚钢板及其制备方法
US10378073B2 (en) High-toughness hot-rolling high-strength steel with yield strength of 800 MPa, and preparation method thereof
CN110295320B (zh) 一种lf-rh精炼工艺生产的大壁厚x52ms抗酸管线钢板及其制造方法
JP2014520208A (ja) 低降伏比高靭性鋼板及びその製造方法
CN101338400B (zh) 一种高强度低温用低碳贝氏体钢及其生产工艺
CN108048733B (zh) 一种经济型低温高韧性自回火管件用钢板及其制造方法
CN101985722A (zh) 低屈强比细晶粒高强管线钢板及其生产方法
CN109628828B (zh) 一种低屈强比超厚水电高强度钢板及其制造方法
CN108728728B (zh) 一种具有极低屈强比的高锰钢及其制造方法
CN108474089B (zh) 具有优异的低温韧性和抗氢致开裂性的厚钢板及其制造方法
WO2018227740A1 (fr) Plaque d'acier de forte épaisseur à bas rapport de limite d'élasticité et résistance et ductilité élevées, et son procédé de fabrication
CN109943771B (zh) 一种高韧性可焊接细晶粒结构钢板及其生产方法
CN113025885A (zh) 一种具有良好抗hic性能的低屈强比高强管线钢板及其制造方法
CN111542621B (zh) 高强度高韧性的热轧钢板及其制造方法
CN115572901B (zh) 一种630MPa级高调质稳定性低碳低合金钢板及其制造方法
CN111763880A (zh) 一种低屈强比超厚水电高强钢板及其制造方法
CN109136724B (zh) 一种低屈强比q690f工程机械用钢板及其制造方法
CN114480960B (zh) 一种低屈强比的低温韧性800MPa级高强钢及其生产工艺
CN114134387B (zh) 一种抗拉强度1300MPa级厚规格超高强钢板及其制造方法
CN114480949B (zh) 一种690MPa级低屈强比耐候焊接结构钢、钢板及其制造方法
CN112375997B (zh) 一种低成本和超低温条件下使用的x70m管线钢板的制造方法
CN114645125A (zh) 一种降低耐候桥梁钢屈强比的方法
CN111910128A (zh) 一种q690级别煤矿液压支架用钢板及其生产方法
CN105838997B (zh) Si‑Mn系780MPa级热轧双相钢及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21849092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21849092

Country of ref document: EP

Kind code of ref document: A1