WO2022021919A1 - 一种Micro LED屏幕的显微成像方法及装置 - Google Patents

一种Micro LED屏幕的显微成像方法及装置 Download PDF

Info

Publication number
WO2022021919A1
WO2022021919A1 PCT/CN2021/084398 CN2021084398W WO2022021919A1 WO 2022021919 A1 WO2022021919 A1 WO 2022021919A1 CN 2021084398 W CN2021084398 W CN 2021084398W WO 2022021919 A1 WO2022021919 A1 WO 2022021919A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
microscopic imaging
axis
imaging device
microscopic
Prior art date
Application number
PCT/CN2021/084398
Other languages
English (en)
French (fr)
Inventor
刘立宏
张冲
郑增强
Original Assignee
武汉精立电子技术有限公司
武汉精测电子集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉精立电子技术有限公司, 武汉精测电子集团股份有限公司 filed Critical 武汉精立电子技术有限公司
Publication of WO2022021919A1 publication Critical patent/WO2022021919A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N2021/0106General arrangement of respective parts
    • G01N2021/0112Apparatus in one mechanical, optical or electronic block

Definitions

  • the invention relates to the field of Micro LED detection, in particular to a microscopic imaging method and device for a Micro LED screen.
  • Micro LED (Micro Light Emitting Diode, Micro Light Emitting Diode) display technology is the next generation display technology expected by the industry, with high resolution, low power consumption, high brightness, high contrast, high color saturation, fast response speed, thin thickness, As well as the characteristics of long life, the power consumption can be as low as 10% of LCD (Liquid Crystal Display, liquid crystal display), 50% of OLED (Organic Light-Emitting Diode, organic light-emitting diode). Compared with small-pitch LEDs such as LEDs and Mini LEDs, Micro LEDs further miniaturize the traditional inorganic LED arrays. Each LED pixel with a size of 10 microns can be independently addressed and lit, so that each LED pixel can be independently addressed and lit. The precise control of the brightness of each chip, and then the realization of the image display.
  • Micro LEDs have made some breakthroughs in mass transfer technology and luminous wavelength consistency in mass adoption of some bottleneck technologies.
  • AOI Automatic Optical Inspection
  • Mura optical compensation are the key opto-mechanical integration equipment to respond to the above-mentioned needs of customers.
  • High-precision cameras and microscope heads are used together for AOI inspection and Demura.
  • the resolution of ordinary industrial camera lenses is generally around 3um, while the feature scale of Micro LED pixel detection is usually around 1um, which requires the application of a microscopic imaging system with higher optical resolution, which poses higher challenges to the device system structure and focusing technology. .
  • the purpose of the present invention is to provide a detection method and detection device for a Micro LED screen, which can realize automatic focusing, ensure high-quality imaging in Mciro LED AOI detection and Demura application, reduce Tact Time and cost.
  • a microscopic imaging method of Micro LED screen including:
  • the detection screen is divided into a plurality of single sections, and the microscopic imaging device is located above each single section in turn;
  • the microscopic imaging device performs automatic focusing and imaging on each single interval until an image of the entire detection screen is acquired.
  • obtaining the Z-axis positioning set of the current detection screen according to the surface data of the sampling screen includes:
  • the Z-axis positioning set is calculated according to the surface data of any sampling screen.
  • obtaining the Z-axis positioning set of the current detection screen according to the surface data of the sampling screen includes:
  • Collect the surface shape data of multiple sampling screens if the flatness consistency is equal to or lower than the set value, obtain an empirical surface shape curve according to the surface shape data of the multiple sampling screens, and select according to the empirical surface shape curve multiple reference points;
  • the empirical surface shape curve is modified according to the Z-axis height value of the reference point to obtain the Z-axis positioning set of the current detection screen.
  • the empirical surface curve is modified according to the Z-axis height value of the reference point, and the Z-axis positioning set of the current detection screen is obtained, including the steps:
  • the reference point is a maximum value or a minimum value of the surface curve.
  • obtaining the Z-axis positioning set of the current detection screen includes:
  • the adjustment amount is equal to the difference between the average value and the standard value of the sampling screen
  • the standard value of the sampling screen adopts the average value of the heights between Q1 and Q3 in the quartiles of the surface data, or the average value of the heights of the areas with the highest flatness in the sampling screen.
  • determining the step size of each relative movement of the microscopic imaging device and the sampling screen includes the steps of:
  • t is used as the adjustment period of the single interval
  • t is reduced until the range in the corresponding single interval is within the depth of field range of the microscopic imaging device, and the reduced t is used as the adjustment period of the corresponding interval.
  • a microscopic imaging device of a Micro LED screen is also provided, using the microscopic imaging method described in any of the above to realize automatic focusing and imaging of the screen, and the microscopic imaging device includes:
  • a jig which is used to carry a detection screen and moves in the X/Y direction, and the detection screen is divided into a plurality of single sections;
  • a microscope optical module which is used for imaging acquisition of the detection screen
  • a ranging module which is used to obtain the distance between the microscopic imaging device and the single interval
  • the driving mechanism is used to drive the fixture to move in the X/Y direction, so that the microscopic optical module is located above each single section; it is also used to drive the microscopic optical module to move in the Z-axis direction to automatically adjust the microscope The focal length of the optical module;
  • a controller for controlling the drive mechanism.
  • the rangefinder module is a rangefinder disposed beside the focus axis of the microscopic optical module, and moves together with the microscopic optical module;
  • the ranging module includes a beam splitter prism arranged on the focal axis of the microscopic optical module, and a laser distance finder coupled to the side of the beam splitter prism.
  • the rangefinder module is a rangefinder set next to the focus axis of the microscopic optical module, which can realize off-axis autofocus and is suitable for focus scenes that do not require high autofocus accuracy and tracking frequency. .
  • the ranging module includes a beam splitter prism arranged on the focal axis of the microscopic optical module, and a laser rangefinder coupled to the side of the beam splitter prism, which can realize coaxial automatic focusing and focal length compensation It has high precision and fast response, and can clearly focus and capture different complex surface conditions in real time.
  • the Z-axis positioning set is obtained from the surface data of the sample screen.
  • the microscopic imaging device is directly adjusted according to the Z-axis positioning set to realize the automatic focusing of the screen, so that the microscopic imaging device can be detected in the Mciro LED AOI and Demura applications to obtain clear images; further save Tact time and cost.
  • the Z-axis positioning set is obtained by the combination of the empirical surface curve and the reference point measurement, which can adapt to the situation that the flatness of multiple sampling screens is poor, and the corresponding Z-axis positioning can be obtained by modifying the empirical surface curve. Assembled to improve the accuracy of autofocus, the microscope imaging device obtains higher quality imaging in Mciro LED AOI inspection and Demura applications.
  • FIG. 1 is a schematic diagram of screen surface data according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of first reference data and second reference data according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an embodiment of an autofocus microscope device of the present invention.
  • FIG. 4 is a schematic diagram of another embodiment of the autofocus microscope device of the present invention.
  • Camera 001 tube lens 002, microscope objective 003, point light source 004, ring light source 005, light prism 006.
  • the present invention provides an embodiment of a microscopic imaging method for a Micro LED screen.
  • the detection screen is divided into a plurality of single sections, and the microscopic imaging device is located above each single section in turn; the distance between the microscopic imaging device and the single section is obtained, and the focal length of the microscopic imaging device is automatically adjusted according to the distance and imaged, Until the image of the entire detection screen is acquired.
  • automatically adjusting the focal length of the microscopic imaging device and imaging according to the distance includes:
  • the Z-axis positioning set of the current detection screen is calculated according to the surface data of one or more sampling screens, and the microscopic imaging device realizes automatic focusing and imaging of each single section according to the Z-axis positioning set.
  • each point in the Z-axis positioning set is the Z-axis positioning of each single section of the microscopic imaging device in the entire screen. Whenever the microscopic imaging device is located in a single section, according to the corresponding Z-axis positioning set point, you can achieve fast autofocus.
  • FIG. 1 it is a schematic diagram of the screen surface data.
  • the surface data is the overall height distribution of the screen.
  • the height curves in different X-axis directions or Y-axis directions are called line distributions corresponding to X or Y positions.
  • the relationship between the degree of consistency and the set value, the set value can be preset according to the detection standards of different screens, and can be set compared to the depth of field in the microscopic imaging device.
  • the Z-axis positioning set is calculated according to the surface data of any sampling screen; during detection, the microscopic imaging device is adjusted according to the Z-axis positioning set to realize automatic focusing of the entire screen.
  • the flatness consistency of multiple sampling screens is equal to or lower than the set value, it means that the surface data consistency of the sampling screens is not good, and the empirical surface curve can be obtained according to the surface data of multiple sampling screens;
  • the Z-axis height value of the screen reference point is used to correct the empirical surface curve to obtain the Z-axis positioning set of the current detection screen; and then adjust the microscopic imaging device according to the Z-axis positioning set to realize the automatic focusing of the current detection screen.
  • the above process is repeated to achieve more accurate focusing.
  • modifying the empirical surface curve according to the Z-axis height value of the reference point to obtain the Z-axis positioning set of the current detection screen including the following steps:
  • the measurement reference point *x such as the maximum or minimum value
  • *x (*x1,*x2,...,*xk)
  • k is the number of reference points.
  • Measure the height value of the second Z-axis corresponding to the current screen reference point *x as *z (*z1,*z2,...,*zk).
  • ** is used as a distinguishing symbol and has no special meaning.
  • S102 Calculate the difference between the first Z-axis height value set and the corresponding point of the second Z-axis height value set, and obtain the average value of all the difference values; after correcting the above-mentioned empirical surface curve with the average value, obtain the current detection The Z-axis positioning set of the screen.
  • step S102 considering that the variation trend amplitudes within the reference point interval are different, after the above step S102, the following steps may also be included:
  • multiple empirical surface curves FZ1, FZ2, ... may be obtained.
  • step size of each relative movement of the microscopic imaging device and the sampling screen is determined to determine the position of each single interval; the average value of the surface data of each single interval is determined, and the adjustment of the Z-axis height of the microscopic imaging device is determined according to the average value.
  • the Z-axis positioning position of the microscopic imaging device is obtained as the Z-axis positioning set.
  • obtaining the Z-axis positioning set of the current detection screen includes the following steps:
  • the adjustment amount is equal to the difference between the average value and the standard value of the sampling screen; if the average value exceeds the adjustment threshold, the adjustment amount is zero.
  • the Z-axis positioning position of the microscopic imaging device is obtained as the Z-axis positioning set.
  • the standard value of the above sampling screen adopts the average value of the height between Q1 and Q3 in the quartile of the surface data, or the average value of the height of the area with the highest flatness in the sampling screen.
  • the present invention also provides an embodiment of a microscopic imaging device of two Micro LED screens, which can use the above-mentioned microscopic imaging method to perform automatic focusing and imaging of the screen.
  • the microscopic imaging device includes a microscopic optical module A, a rangefinder B, a driving mechanism C and a fixture E.
  • the fixture E is used to carry the detection screen D, and can move in the X/Y direction, and the detection screen D is divided into a plurality of single sections.
  • the microscope optical module A is used to image and acquire the detection screen D.
  • the rangefinder B is used to obtain the distance between the microscopic optical module A and a single interval, that is, to measure the distance from the focus center of the detection screen D to the microscopic optical module A, so as to facilitate the calculation involved in the above method.
  • the driving mechanism C is used to drive the fixture E to move in the X/Y direction, so that the microscopic optical module A is located above each single section; it is also used to drive the microscopic optical module A to move in the Z-axis direction to automatically adjust the microscopic optical module The focal length of A.
  • a controller (not shown) is used to control the moving direction and distance of the driving mechanism C according to the Z-axis positioning set.
  • the microscope optical module A includes a camera 001, a tube mirror 002 is arranged below the camera 001, the tube mirror 002 is connected to a point light source 004, a microscope objective 003 is also connected below the tube mirror 002, and a ring light source 005 is also arranged below the microscope objective 003 .
  • Camera 001, tube lens 002, microscope objective 003 and ring light source 005 have the same focus axis.
  • the rangefinder B is arranged beside the focus axis of the microscopic optical module A, and moves together with the microscopic optical module A.
  • the drive mechanism C adopts a five-phase stepping or servo linear module motor. If the precision is high or the response bandwidth is relatively large, a miniature linear motor, a voice coil motor (VCM) or a piezoelectric drive system can also be used.
  • VCM voice coil motor
  • the controller controls the driving mechanism C to drive the microscopic optical module A to achieve clear focus on the screen D.
  • the auto-focusing microscope device in this embodiment is also suitable for off-axis auto-focusing.
  • the rangefinder B can use laser, infrared and other ranging methods to measure the distance between the microscopic optical module A and the screen D in real time for compensation.
  • FIG. 4 it is the second embodiment of the microscopic imaging device of the Micro LED screen.
  • the structure of this embodiment is basically the same as that of the previous embodiment. The difference is that the focus axis of the microscopic optical module A in this embodiment is on the A dichroic prism 006 is provided, a distance measuring module F is coupled to the side of the dichroic prism 006 , and the dichroic prism 006 is located above the microscope objective lens 003 .
  • the coaxial auto-focusing method can be used to measure the distance between the colleague taking the image and focusing. Compared with the previous embodiment, it has the characteristics of high compensation accuracy and fast response, and is suitable for the requirements of focusing accuracy and tracking frequency. higher occasions.
  • the distance measuring module F can use a laser distance finder, and can also calculate the focusing distance through the imaging phase difference and optical path difference of the characteristic reflection optical path.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

一种Micro LED屏幕的显微成像方法及装置,涉及Micro LED检测领域,方法包括:将检测屏划分为多个单区间,显微成像装置依次位于每个单区间上方;根据抽样屏的面型数据获取当前检测屏的Z轴定位集合,面型数据为屏幕(D)整体高度分布;显微成像装置根据Z轴定位集合,对每个单区间进行自动对焦并成像,直至获取整个检测屏的图像;能够实现自动对焦,保证在Mciro LED AOI检测和Demura应用中获取高质量的成像,减少Tact Time时间及成本。

Description

一种Micro LED屏幕的显微成像方法及装置 技术领域
本发明涉及Micro LED检测领域,具体来讲涉及一种Micro LED屏幕的显微成像方法及装置。
背景技术
Micro LED(Micro Light Emitting Diode,微型发光二极管)显示技术是业界期待的下一代显示技术,具有高解析度、低功耗、高亮度、高对比、高色彩饱和度、反应速度快、厚度薄、以及寿命长等特性,功率消耗量可低至LCD(Liquid Crystal Display,液晶显示器)的10%、OLED(Organic Light-Emitting Diode,有机发光二极管)的50%。相比于LED及Mini LED等小间距LED,Micro LED是将传统的无机LED阵列进一步微小化,每个尺寸在10微米尺寸的LED像素点均可以被独立的定址、点亮,从而实现对每个芯片放光亮度的精确控制,进而实现图像显示。
各大面板厂商及研发机构投入了大量资源研发新一代显示技术及产品,Micro LED批量引用面临的一些瓶颈技术,特别是巨量转移工艺及发光波长一致性取得了一些突破。为了保证显示面板的生产品质和质量,需要进行一系列的点、线,Mura,脏污缺陷检测及判定,以及针对发光亮度不一致进行自动光学补偿。自动光学检测设备(Automated Optical Inspection,AOI)及Mura光学补偿就是响应客户上述需求的关键光机电集成设备,为了应对不同分辨率(2K、4K、8K)等Micro LED屏幕缺陷检测,需要通过多种高精度相机和显微镜头配合使用进行AOI检测和Demura。普通工业相机镜头分辨率一 般在3um左右,而Micro LED像素检测特征尺度通常在1um左右,需要应用更高光学解析度的显微成像系统,这对设备系统结构及对焦技术提出了更高的挑战。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种Micro LED屏幕的检测方法及检测装置,能够实现自动对焦,保证在Mciro LED AOI检测和Demura应用中获取高质量的成像,减少Tact Time时间及成本。
为达到以上目的,一方面,采取一种Micro LED屏幕的显微成像方法,包括:
将检测屏划分为多个单区间,显微成像装置依次位于每个单区间上方;
根据抽样屏的面型数据获取当前检测屏的Z轴定位集合,所述面型数据为屏幕整体高度分布;
显微成像装置根据所述Z轴定位集合,对每个单区间进行自动对焦并成像,直至获取整个检测屏的图像。
优选的,根据抽样屏的面型数据获取当前检测屏的Z轴定位集合包括:
采集多个抽样屏的面型数据,若平面度一致性高于设定值,则根据任意一个抽样屏的面型数据计算Z轴定位集合。
优选的,根据抽样屏的面型数据获取当前检测屏的Z轴定位集合包括:
采集多个抽样屏的面型数据,若平面度一致性等于或低于设定值时,则根据所述多个抽样屏的面型数据得到经验面型曲线,根据所述 经验面型曲线选取多个基准点;
获取所述当前检测屏的所述多个基准点的Z轴高度值;
根据所述基准点的Z轴高度值对所述经验面型曲线进行修正,获得当前检测屏的Z轴定位集合。
优选的,根据所述基准点的Z轴高度值对所述经验面型曲线进行修正,获得当前检测屏的Z轴定位集合,包括步骤:
S101、根据经验面型曲线获取对应的所述多个基准点的Z轴高度值,作为第一Z轴高度值集合;获取所述当前检测屏的所述多个基准点的Z轴高度值,作为第二Z轴高度值集合;
S102、计算所述第一Z轴高度值集合与所述第二Z轴高度值集合对应点的差值,并获取所有差值的平均值;用所述平均值修正所述经验面型曲线,获得当前检测屏的Z轴定位集合。
优选的,所述基准点为面型曲线的极大值或极小值。
优选的,获得当前检测屏的Z轴定位集合包括:
确定所述显微成像装置与抽样屏每次相对移动的步长,以确定各单区间的位置;
确定各单区间面型数据的平均值,根据平均值确定显微成像装置Z轴高度的调整量;得到显微成像装置的Z轴定位位置,作为Z轴定位集合。
优选的,各单区间面型数据的平均值如果超过调节阈值,所述调整量等于该平均值与抽样屏标准值的差值;
所述抽样屏标准值采用面型数据四分位数中Q1和Q3之间高度的平均值,或者,采用抽样屏中平整度最高区域的高度的平均值。
优选的,确定所述显微成像装置与抽样屏每次相对移动的步长,包括步骤:
设定标准移动步长s=t×v,t为调整周期,v为抽样屏的移动速度,计算t对应单区间内Z轴高度值极差;
若所述极差在显微成像装置的景深范围内,则t作为该单区间调整周期;
若所述极差超出显微成像装置的景深范围,则缩小t直至对应单区间内的所述极差在显微成像装置的景深范围内,将缩小后的t作为对应区间的调整周期。
另一方面,还提供一种Micro LED屏幕的显微成像装置,利用如上述任意一项所述显微成像方法实现屏幕自动对焦及成像,所述显微成像装置包括:
治具,其用于承载检测屏,并在X/Y方向移动,所述检测屏划分为多个单区间;
显微光学模块,其用于检测屏的成像采集;
测距模块,其用于获取显微成像装置与单区间之间的距离;
驱动机构,其用于驱动治具在X/Y方向移动,使所述显微光学模块位于每个单区间上方;还用于驱动所述显微光学模块在Z轴方向移动,自动调节显微光学模块的焦距;
控制器,其用于控制所述驱动机构。
优选的,所述测距模块为设置在所述显微光学模块对焦轴旁的测距仪,且与所述显微光学模块共同移动;
或者,所述测距模块包括设置于显微光学模块对焦轴的分光棱镜,以及耦合在所述分光棱镜侧部的激光测距仪。
上述技术方案具有如下有益效果:
1、显微成像装置中,测距模块为设置在所述显微光学模块对焦轴旁的测距仪,可以实现离轴自动对焦,适用于对自动对焦精度及跟 踪频率要求不高的对焦场景。
2、显微成像装置中,测距模块包括设置于显微光学模块对焦轴的分光棱镜,以及耦合在所述分光棱镜侧部的激光测距仪,可以实现同轴自动对焦,对焦距的补偿精度高,响应快,能实时对不同复杂表面情况进行清晰对焦采图。
3、自动获取显微成像装置与每个单区间的距离,并根据所述距离自动调节焦距并成像,直至获取整个检测屏的图像;相对于离轴或同轴实时调整Z轴实现自动对焦,可以减少或者消除对焦距离测量频率,节省Tact Time及成本。
4、通过样本屏幕的面型数据得到Z轴定位集合,同一批屏幕检测时,根据该Z轴定位集合直接调整显微成像装置,实现屏幕的自动对焦,使显微成像装置在Mciro LED AOI检测和Demura应用中获取清晰成像;进一步节省Tact Time及成本。
5、通过经验面型曲线和基准点测量结合的方式得到Z轴定位集合,可以适应多个抽样屏平面度一致性较差的情况,通过对经验面型曲线的修正,得到对应的Z轴定位集合,提高自动对焦的精准程度,显微成像装置在Mciro LED AOI检测和Demura应用中获取更高质量的成像。
附图说明
图1为本发明实施例屏幕面型数据示意图;
图2为本发明实施例第一参考数据和第二参考数据示意图;
图3为本发明自动对焦显微装置实施例示意图;
图4为本发明自动对焦显微装置另一实施例示意图;
附图标记:
显微光学模块A,测距仪B,驱动机构C,屏幕D,治具E,测距模块F;
相机001,管镜002,显微物镜003,点光源004,环形光源005,光棱镜006。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
本发明提供一种Micro LED屏幕的显微成像方法的实施例。
将检测屏划分为多个单区间,显微成像装置依次位于每个单区间上方;获取显微成像装置与单区间之间的距离,并根据该距离自动调节显微成像装置的焦距并成像,直至获取整个检测屏的图像。
具体的,根据该距离自动调节显微成像装置的焦距并成像包括:
根据一个或多个抽样屏的面型数据计算当前检测屏的Z轴定位集合,显微成像装置根据该Z轴定位集合,对每个单区间实现自动对焦并成像。具体的,Z轴定位集合中的每个点,是显微成像装置在整个屏幕中每个单区间的Z轴定位,每当显微成像装置位于一个单区间上,根据Z轴定位集合中对应的点,可以实现快速的自动对焦。
如图1所示,为屏幕面型数据的示意图,面型数据是屏幕整体高度分布,不同X轴方向或Y轴方向高度曲线称为对应X或Y位置的线型分布。
首先,采集多个抽样屏的面型数据,并判断所采集多个抽样屏的 平面度一致性,该平面度一致性是针对不同屏幕之间相同位置点的高度分布的一致性,然后判断平面度一致性与设定值的关系,设定值可以根据不同屏幕的检测标准预先设定,可以相比显微成像装置中的景深进行设置。
如果多个抽样屏的平面度一致性高于设定值,说明抽样屏的面型数据一致性较好,可以直接推广到该批次所有屏幕。根据任意一个抽样屏的面型数据计算Z轴定位集合;检测时,根据Z轴定位集合调整显微成像装置,实现整个屏幕的自动对焦。
如果多个抽样屏的平面度一致性等于或低于设定值,说明抽样屏的面型数据一致性欠佳,可以根据多个抽样屏幕的面型数据得到经验面型曲线;再根据当前检测屏基准点的Z轴高度值对经验面型曲线进行修正,获得当前检测屏的Z轴定位集合;再根据该Z轴定位集合调整显微成像装置,实现当前检测屏的自动对焦。下一个检测屏检测时,重复上述过程,可以更精确的实现对焦。
具体的,根据基准点的Z轴高度值对经验面型曲线进行修正,获得当前检测屏的Z轴定位集合,包括如下步骤:
S101、根据前期批量测量抽样屏的面型数据,根据经验面型曲线获取对应的多个基准点的Z轴高度值,作为第一Z轴高度值集合;测量当前检测屏多个基准点对应的Z轴高度值,作为第二Z轴高度值集合。其中,基准点为面形曲线的极大值或极小值。
如图2所示,具体的,确定Z轴经验面型曲线FZ(x,Z),其中基准点x=(x1,x2,…xn),对应的第一Z轴高度值集合Z=(Z1,Z2,…,Zn),n为基准点数。以FZ曲线特征点(如极大或极小值)对应位置为测量基准点*x,*x=(*x1,*x2,…,*xk),k为基准点数。测量当前屏幕基准点*x对应的第二Z轴高度值为*z=(*z1,*z2,…,*zk)。其中,“*”作为区 分的符号,不具有特殊含义。
S102、计算第一Z轴高度值集合与所述第二Z轴高度值集合对应点的差值,并获取所有差值的平均值;用该平均值修正上述经验面型曲线后,获得当前检测屏的Z轴定位集合。
具体的,计算基准点在经验面型曲线FZ上对应的Z轴高度值集合*Z=(*Z1,*Z2,…,*Zk),计算*z与*Z差值,再取平均值λ。将原FZ偏移补偿λ,形成新的映射关系曲线fz(x,Z+λ),据此获得当前检测屏的Z轴定位集合。
进一步的,考虑到基准点区间内变化趋势幅度不一样,上述步骤S102之后,还可以包括如下步骤:
S103、在基准点区间(*xj,*xj+1)内通过插值,得到单区间内Z轴高度值(^zj,^zj+1),再得到当前检测屏Z轴高度集合^z=(^z1,^z2,…,^zn),确定的曲线fz2(x,^z),据此获得当前检测屏更精确的Z轴定位集合。其中,“^”表示单区间内Z轴高度值、集合的代表符号,不具有特殊含义。
优选的,在对前期批量测量数据分析过程中,由于屏幕的不同批次以及特性,可能会得到多条经验面型曲线FZ1,FZ2,…,实际应用根据具体屏幕特性选定对应曲线进行计算,如存在多种选择则对选定经验曲线集合加权融合FZ=p1×FZ1+p2×FZ2+…,(p1+p2+…=1),其中P为设定的权值。
另外,确定显微成像装置与抽样屏每次相对移动的步长,以确定各单区间的位置;确定各单区间面型数据的平均值,根据平均值确定显微成像装置Z轴高度的调整量;得到显微成像装置的Z轴定位位置,作为Z轴定位集合。
具体的,获得当前检测屏的Z轴定位集合,包括如下步骤:
确定显微成像装置与抽样屏每次相对移动的步长,以确定各单区间的位置;以及,确定各单区间面型数据的平均值,根据平均值确定显微成像装置Z轴高度的调整量。
如果该平均值超过调节阈值,调整量等于该平均值与抽样屏标准值的差值;如果该平均值超过调节阈值,则调整量为零。
根据各单区间的调整量得到显微成像装置的Z轴定位位置,作为Z轴定位集合。
为了避免部分数据剧烈起伏影响,上述抽样屏标准值采用面型数据四分位数中Q1和Q3之间高度的平均值,或者,采用抽样屏中平整度最高区域的高度的平均值。
并且,确定显微成像装置与抽样屏每次相对移动的步长之前,考虑显微成像装置中驱动机构的响应频率f,低于该频率不会响应幅值及相位滞后而出现定位精度问题,因此确定了显微成像装置的最小调整周期T=1/f。
设定标准移动步长s=t×v,t为调整周期,t≥T,v为抽样屏的XY向移动速度,对面型数据进行单区间细分。计算t对应单区间内Z轴高度值极差Zp,若极差在显微成像装置的景深范围FOV内,则t作为该单区间调整周期;若极差超出显微成像装置的景深范围FOV,则缩小t,将单区间进一步细分,直至对应单区间内的极差在显微成像装置的景深范围内,将缩小后的t作为对应区间的调整周期。
一方面,本发明还提供两个Micro LED屏幕的显微成像装置的实施例,可以利用上述显微成像方法进行屏幕自动对焦及成像。
如图3所示,为Micro LED屏幕的显微成像装置的第一个实施例。显微成像装置包括显微光学模块A、测距仪B、驱动机构C和治具E。其中,治具E用于承载检测屏D,并可以在X/Y方向移动,检测屏D 被划分为多个单区间。显微光学模块A用于对检测屏D进行成像采集。测距仪B用于获取显微光学模块A与单区间之间的距离,即,测量检测屏D的对焦中心到显微光学模块A的距离,以便于进行上述方法中涉及的计算。驱动机构C用于驱动治具E在X/Y方向移动,使显微光学模块A位于每个单区间上方;还用于驱动显微光学模块A在Z轴方向移动,自动调节显微光学模块A的焦距。控制器(图未示),用于根据Z轴定位集合控制驱动机构C的移动方向和距离。
具体的,显微光学模块A包括相机001,相机001下方设置管镜002,管镜002连接有点光源004,管镜002下方还连接显微物镜003,显微物镜003下方还设有环形光源005。相机001、管镜002、显微物镜003和环形光源005具有相同对焦轴。
测距仪B设置在显微光学模块A的对焦轴旁,且与显微光学模块A共同移动。
优选的,驱动机构C采用五相步进或者伺服直线模组电机,如果对于精度要求较高或响应带宽比较大,也可以采用微型直线电机、音圈电机(VCM)或压电驱动系统。
本实施例中,控制器控制驱动机构C驱动显微光学模块A对屏幕D实现清晰对焦。本实施例中自动对焦显微装置同样适用于离轴自动对焦,测距仪B可采用激光、红外等测距方式,实时测量显微光学模块A与屏幕D之间的距离来进行补偿。
如图4所示,为Micro LED屏幕的显微成像装置的第二个实施例,本实施例与上一个实施例结构基本相同,区别在于:本实施例中显微光学模块A的对焦轴上设置有分光棱镜006,分光棱镜006侧部耦合有测距模块F,并且,分光棱镜006位于显微物镜003上方。
本实施例中,可以采用同轴自动对焦的方式,在取图对焦的同事 进行距离的测量,相对上一个实施例,具有补偿精度高,响应快的特点,适用于对焦精度及跟踪频率要求要求更高的场合。测距模块F可采用激光测距仪,也可以通过特征反射光路成像相位差及光程差计算对焦距离。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (10)

  1. 一种Micro LED屏幕的显微成像方法,其特征在于,包括:
    将检测屏划分为多个单区间,显微成像装置依次位于每个单区间上方;
    根据抽样屏的面型数据获取当前检测屏的Z轴定位集合,所述面型数据为屏幕整体高度分布;
    显微成像装置根据所述Z轴定位集合,对每个单区间进行自动对焦并成像,直至获取整个检测屏的图像。
  2. 如权利要求1所述的Micro LED屏幕的显微成像方法,其特征在于,根据抽样屏的面型数据获取当前检测屏的Z轴定位集合包括:
    采集多个抽样屏的面型数据,若平面度一致性高于设定值,则根据任意一个抽样屏的面型数据计算Z轴定位集合。
  3. 如权利要求1所述的Micro LED屏幕的显微成像方法,其特征在于,根据抽样屏的面型数据获取当前检测屏的Z轴定位集合包括:
    采集多个抽样屏的面型数据,若平面度一致性等于或低于设定值时,则根据所述多个抽样屏的面型数据得到经验面型曲线,根据所述经验面型曲线选取多个基准点;
    获取所述当前检测屏的所述多个基准点的Z轴高度值;
    根据所述基准点的Z轴高度值对所述经验面型曲线进行修正,获得当前检测屏的Z轴定位集合。
  4. 如权利要求3所述的Micro LED屏幕的显微成像方法,其特征在于,根据所述基准点的Z轴高度值对所述经验面型曲线进行修正,获得当前检测屏的Z轴定位集合,包括步骤:
    S101、根据经验面型曲线获取对应的所述多个基准点的Z轴高 度值,作为第一Z轴高度值集合;获取所述当前检测屏的所述多个基准点的Z轴高度值,作为第二Z轴高度值集合;
    S102、计算所述第一Z轴高度值集合与所述第二Z轴高度值集合对应点的差值,并获取所有差值的平均值;用所述平均值修正所述经验面型曲线,获得当前检测屏的Z轴定位集合。
  5. 如权利要求3或4所述的Micro LED屏幕的显微成像方法,其特征在于,所述基准点为面型曲线的极大值或极小值。
  6. 如权利要求4所述的Micro LED屏幕的显微成像方法,其特征在于,获得当前检测屏的Z轴定位集合包括:
    确定所述显微成像装置与抽样屏每次相对移动的步长,以确定各单区间的位置;
    确定各单区间面型数据的平均值,根据平均值确定显微成像装置Z轴高度的调整量;得到显微成像装置的Z轴定位位置,作为Z轴定位集合。
  7. 如权利要求6所述的Micro LED屏幕的显微成像方法,其特征在于,各单区间面型数据的平均值如果超过调节阈值,所述调整量等于该平均值与抽样屏标准值的差值;
    所述抽样屏标准值采用面型数据四分位数中Q1和Q3之间高度的平均值,或者,采用抽样屏中平整度最高区域的高度的平均值。
  8. 如权利要求6所述的Micro LED屏幕的显微成像方法,其特征在于,确定所述显微成像装置与抽样屏每次相对移动的步长,包括步骤:
    设定标准移动步长s=t×v,t为调整周期,v为抽样屏的移动速度,计算t对应单区间内Z轴高度值极差;
    若所述极差在显微成像装置的景深范围内,则t作为该单区间调 整周期;
    若所述极差超出显微成像装置的景深范围,则缩小t直至对应单区间内的所述极差在显微成像装置的景深范围内,将缩小后的t作为对应区间的调整周期。
  9. 一种Micro LED屏幕的显微成像装置,利用如所述权利要求1-8中任意一项所述显微成像方法实现屏幕自动对焦及成像,其特征在于,所述显微成像装置包括:
    治具,其用于承载检测屏,并在X/Y方向移动,所述检测屏划分为多个单区间;
    显微光学模块,其用于检测屏的成像采集;
    测距模块,其用于获取显微成像装置与单区间之间的距离;
    驱动机构,其用于驱动治具在X/Y方向移动,使所述显微光学模块位于每个单区间上方;还用于驱动所述显微光学模块在Z轴方向移动,自动调节显微光学模块的焦距;
    控制器,其用于控制所述驱动机构。
  10. 如权利要求9所述的Micro LED屏幕的显微成像装置,其特征在于,
    所述测距模块为设置在所述显微光学模块对焦轴旁的测距仪,且与所述显微光学模块共同移动;
    或者,所述测距模块包括设置于显微光学模块对焦轴的分光棱镜,以及耦合在所述分光棱镜侧部的激光测距仪。
PCT/CN2021/084398 2020-07-31 2021-03-31 一种Micro LED屏幕的显微成像方法及装置 WO2022021919A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010761188.7A CN111735768B (zh) 2020-07-31 2020-07-31 一种Micro LED屏幕的显微成像方法及装置
CN202010761188.7 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022021919A1 true WO2022021919A1 (zh) 2022-02-03

Family

ID=72656823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084398 WO2022021919A1 (zh) 2020-07-31 2021-03-31 一种Micro LED屏幕的显微成像方法及装置

Country Status (2)

Country Link
CN (1) CN111735768B (zh)
WO (1) WO2022021919A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278072A (zh) * 2022-07-25 2022-11-01 武汉精立电子技术有限公司 一种用于Micro LED检测的自动对焦方法及系统
CN116698753A (zh) * 2023-07-25 2023-09-05 广州纳动半导体设备有限公司 一种基于机器视觉的mini-LED面板缺陷检测设备及方法
CN115278072B (zh) * 2022-07-25 2024-05-24 武汉精立电子技术有限公司 一种用于Micro LED检测的自动对焦方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114428056A (zh) * 2021-12-31 2022-05-03 苏州精濑光电有限公司 一种自动光学检测设备及其检测方法
CN114495815B (zh) * 2022-04-13 2022-06-28 苏州威达智电子科技有限公司 一种微型显示屏的Demura方法、计算设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1800836A (zh) * 2004-12-24 2006-07-12 奥林巴斯株式会社 图像检查装置
JP4146655B2 (ja) * 2002-03-13 2008-09-10 株式会社日立ハイテクノロジーズ 欠陥源候補抽出プログラム
CN104460355A (zh) * 2013-09-22 2015-03-25 北京兆维电子(集团)有限责任公司 液晶面板自动调焦光学检测系统
CN108627964A (zh) * 2017-06-07 2018-10-09 李昕昱 一种全自动显微扫描仪
CN109154781A (zh) * 2016-05-12 2019-01-04 Asml荷兰有限公司 获得测量的方法、用于执行过程步骤的设备和计量设备
CN110736701A (zh) * 2019-11-14 2020-01-31 林励 一种样品全表面三维显微成像系统及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2304978C (en) * 2000-04-13 2008-02-12 Giuceppe Milioto Limb extremity positioning device and measurement method
KR101838329B1 (ko) * 2011-05-20 2018-03-13 유니베르시타트 폴리테크니카 데 카탈루냐 표면을 비접촉 측정하기 위한 방법 및 디바이스
US9655545B2 (en) * 2011-09-15 2017-05-23 The Trustees Of Dartmouth College Apparatus for measuring in-vivo mechanical properties of biological tissues
DE102017101188B4 (de) * 2017-01-23 2021-09-30 Carl Zeiss Microscopy Gmbh Mikroskop und Verfahren zum Mikroskopieren einer Probe
CN109085695B (zh) * 2018-08-08 2021-06-18 杭州上池科技有限公司 一种用于平面样本快速对焦拍照的方法
CN109001902B (zh) * 2018-09-05 2021-07-16 哈尔滨理工大学 基于图像融合的显微镜聚焦方法
CN109272575B (zh) * 2018-09-28 2022-06-28 麦克奥迪实业集团有限公司 一种提高数字切片扫描仪建模速度的方法
CN111399208B (zh) * 2020-03-31 2022-04-26 上海澜澈生物科技有限公司 生物荧光样本的聚焦拍摄实现方法、显微镜和存储介质
CN111462253A (zh) * 2020-04-23 2020-07-28 深圳群宾精密工业有限公司 适用于激光3d视觉的三维标定板、系统及标定方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4146655B2 (ja) * 2002-03-13 2008-09-10 株式会社日立ハイテクノロジーズ 欠陥源候補抽出プログラム
CN1800836A (zh) * 2004-12-24 2006-07-12 奥林巴斯株式会社 图像检查装置
CN104460355A (zh) * 2013-09-22 2015-03-25 北京兆维电子(集团)有限责任公司 液晶面板自动调焦光学检测系统
CN109154781A (zh) * 2016-05-12 2019-01-04 Asml荷兰有限公司 获得测量的方法、用于执行过程步骤的设备和计量设备
CN108627964A (zh) * 2017-06-07 2018-10-09 李昕昱 一种全自动显微扫描仪
CN110736701A (zh) * 2019-11-14 2020-01-31 林励 一种样品全表面三维显微成像系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115278072A (zh) * 2022-07-25 2022-11-01 武汉精立电子技术有限公司 一种用于Micro LED检测的自动对焦方法及系统
CN115278072B (zh) * 2022-07-25 2024-05-24 武汉精立电子技术有限公司 一种用于Micro LED检测的自动对焦方法及系统
CN116698753A (zh) * 2023-07-25 2023-09-05 广州纳动半导体设备有限公司 一种基于机器视觉的mini-LED面板缺陷检测设备及方法
CN116698753B (zh) * 2023-07-25 2024-03-26 广州纳动半导体设备有限公司 一种基于机器视觉的mini-LED面板缺陷检测设备及方法

Also Published As

Publication number Publication date
CN111735768A (zh) 2020-10-02
CN111735768B (zh) 2020-12-08

Similar Documents

Publication Publication Date Title
WO2022021919A1 (zh) 一种Micro LED屏幕的显微成像方法及装置
CN101107558B (zh) 自动聚焦跟踪系统
CN110006905B (zh) 一种线面阵相机结合的大口径超净光滑表面缺陷检测装置
JP4135603B2 (ja) 2次元分光装置及び膜厚測定装置
CN110849289A (zh) 一种双摄像头并行共焦差动显微3d形貌测量装置及方法
CN108172527B (zh) 一种光学检测系统
CN109714535A (zh) 一种基于色差的自动对焦机器视觉测量装置及方法
CN205562431U (zh) 具有自动对焦功能的晶圆检测设备
CN106290390B (zh) 缺陷检测装置及方法
WO2022161123A1 (zh) 激光测距方法、对焦方法、激光测距系统、对焦系统及自动对焦分析装置
CN110542687A (zh) 一种微观元件外观缺陷的检测装置及检测方法
CN210922541U (zh) 一种双摄像头并行共焦差动显微3d形貌测量装置
TW202206888A (zh) 振鏡的參數調節方法、裝置、設備
CN209992407U (zh) 线面阵相机结合的大口径超净光滑表面缺陷检测装置
JP2013034127A (ja) 撮像装置
JPWO2016157291A1 (ja) 測定ヘッド及びそれを備えた偏心測定装置
TW202006319A (zh) 表面形貌光學量測系統及表面形貌光學量測方法
US11249225B2 (en) Tunable acoustic gradient lens system utilizing amplitude adjustments for acquiring images focused at different z-heights
CN111366593A (zh) 一种测量玻璃基板缺陷分层的装置和方法
US10613308B2 (en) Method and microscope for measuring and calculating heights on curved surface of microscope slide
CN114815284B (zh) 一种带有折转光路光学镜头消除光学间隔装调误差的方法
WO2018154871A1 (ja) 観察装置、観察システム及び観察装置の制御方法
EP3385663A1 (en) Height measuring and estimation method of uneven surface of microscope slide, and microscope
CN114112322A (zh) 一种基于差分共焦的显微镜焦点偏移测量方法
US10761398B2 (en) Imaging ellipsometer system utilizing a tunable acoustic gradient lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21850555

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21850555

Country of ref document: EP

Kind code of ref document: A1