WO2022021477A1 - 一种激光点阵系统及方法、激光点阵治疗仪 - Google Patents

一种激光点阵系统及方法、激光点阵治疗仪 Download PDF

Info

Publication number
WO2022021477A1
WO2022021477A1 PCT/CN2020/108514 CN2020108514W WO2022021477A1 WO 2022021477 A1 WO2022021477 A1 WO 2022021477A1 CN 2020108514 W CN2020108514 W CN 2020108514W WO 2022021477 A1 WO2022021477 A1 WO 2022021477A1
Authority
WO
WIPO (PCT)
Prior art keywords
scanning
laser
micro
unit
lens
Prior art date
Application number
PCT/CN2020/108514
Other languages
English (en)
French (fr)
Inventor
蔡磊
刘兴胜
Original Assignee
西安炬光科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安炬光科技股份有限公司 filed Critical 西安炬光科技股份有限公司
Publication of WO2022021477A1 publication Critical patent/WO2022021477A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0632Constructional aspects of the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0664Details

Definitions

  • the present invention requires the priority of the Chinese patent application with the application number CN202010765086.2 and the title of "a laser lattice system and method, laser lattice therapy apparatus” filed with the China Patent Office on July 31, 2020, all of which are The contents are incorporated herein by reference.
  • the invention relates to the technical field of semiconductor lasers, and in particular, to a laser lattice system and method, and a laser lattice therapy apparatus.
  • Laser dot matrix refers to a multi-laser dot array in which the laser beam is presented in a dot matrix state by means of pulses and scans. Laser dot matrix can be used for high-precision laser surgery. Moreover, since research and experiments have confirmed that laser lattices have the functions of wrinkle removal, freckle removal, firming, accelerated healing and tissue regeneration on human skin, laser lattices are now more and more used in plastic surgery and beauty. In other respects, laser lattice irradiation forms dense and orderly micropores on the skin, and directly penetrates into the dermis layer of the skin for repair and stimulation, so as to achieve the effects of skin freckle and wrinkle removal.
  • the purpose of the present invention is to provide a laser lattice system and method, and a laser lattice treatment apparatus.
  • the laser lattice system can form a variety of different two-dimensional laser lattices with variable sizes and ranges, so as to improve the efficiency of forming laser lattices. Diversity.
  • a laser dot matrix system which includes a laser source and a scanning optical device disposed in a light-emitting direction of the laser source.
  • the scanning optical device can be driven along a first direction and a second direction perpendicular to the light-emitting direction, respectively.
  • the two directions reciprocate, so that the laser beam passes through the scanning optical device to form a two-dimensional laser lattice at the scanning position, wherein the first direction is perpendicular to the second direction.
  • the scanning optical device is a scanning lens
  • the light incident surface of the scanning lens includes multiple columns of first micro-scanning units arranged in parallel and continuously along the first direction
  • the light exit surface of the scanning lens includes multiple columns arranged in parallel and continuously along the second direction.
  • the second micro-scanning unit emits laser beams at different angles through two adjacent columns of the first micro-scanning unit or the second micro-scanning unit.
  • the first micro-scanning unit and/or the second micro-scanning unit is a cylindrical mirror or a sawtooth prism.
  • the scanning lens includes a first scanning lens and a second scanning lens arranged in sequence along the light-emitting direction of the laser source, the first micro-scanning unit is arranged on the light-incident side or the light-emitting side of the first scanning lens, and the second micro-scanning unit is arranged On the light-emitting side or the light-incident side of the second scanning lens, the first scanning lens and the second scanning lens are attached to each other or arranged at intervals.
  • the laser beams passing through a row of first micro-scanning units are emitted at the same angle in the first direction, and/or the laser beams passing through a row of second micro-scanning units are emitted at the same angle in the second direction.
  • the first micro-scanning unit is axially symmetrically arranged on the scanning lens along the second direction
  • the second micro-scanning unit is axially symmetrically arranged on the scanning lens along the first direction
  • the first micro-scanning unit is divided into a plurality of sub-units along the second direction
  • the second micro-scanning unit is divided into a plurality of sub-units along the first direction
  • the sub-units are cylindrical units
  • the sub-units have the Curvature in one direction and curvature in the second direction.
  • the scanning optical device is a scanning lens
  • the light incident surface or the light output surface of the scanning lens includes a plurality of micro-transmission units
  • the micro-transmission units are formed by splicing a first transmission unit and a second transmission unit
  • the first transmission unit is used for The incident laser beam is refracted in the first direction and then transmitted
  • the second transmission unit is used for refracting the incident laser beam in the second direction and then transmitted.
  • the scanning optical device is a scanning mirror
  • the reflective surface of the scanning mirror includes a plurality of micro-reflection units
  • the micro-reflection units are formed by splicing a first reflection unit and a second reflection unit
  • the first reflection unit is used to The beam is reflected in the first direction
  • the second reflecting unit is used for reflecting the laser beam in the second direction.
  • the first reflection unit and the second reflection unit are respectively a first prism surface and a second prism surface, the angles between the plurality of first prism surfaces and the main optical axis are different, and the plurality of second prism surfaces and the main optical axis are different.
  • the included angles of the axes are different.
  • the first reflection unit and the second reflection unit are respectively a first arc surface and a second arc surface, and the first reflection unit and the second reflection unit have curvatures in the first direction and the second direction, respectively.
  • a collimating lens group is also provided between the laser source and the scanning optical device, and the collimating lens group includes a fast-axis collimating mirror and a slow-axis collimating mirror arranged in sequence along the light exit direction, for respectively aligning the laser source.
  • the outgoing laser beam is collimated by fast axis and slow axis.
  • the scanning optical device is arranged in a fixed frame, the fixed frame is provided with a stepping motor, and the driving end of the stepping motor is connected with the scanning optical device to drive the scanning optical device to move along the first direction and/or the second direction. .
  • a method for forming a laser dot matrix comprising: moving a scanning optical device in a first direction and a second direction perpendicular to each other; The scanned positions form a two-dimensional laser lattice.
  • a laser lattice therapy apparatus which includes the laser lattice system according to any one of the foregoing.
  • a laser dot matrix system provided by an embodiment of the present invention includes a laser source and a scanning optical device disposed in a light-emitting direction of the laser source.
  • the scanning optical device is driven to reciprocate in a first direction and a second direction perpendicular to the light-emitting direction, respectively.
  • the first direction is perpendicular to the second direction, and the scanning optical device reciprocates along the first direction and the second direction respectively, which is equivalent to being able to move to any position in the two-dimensional space of the plane where the scanning optical device is located, so that the scanning optical device can move to any position.
  • a two-dimensional laser lattice is formed at the scanning position.
  • the laser lattice system provided by the present invention is applied to a laser lattice treatment apparatus, and can be widely used in medical cosmetology and laser surgery. In the related field of measurement, the laser lattice has rich patterns, strong applicability for different detection and measurement, and high detection accuracy.
  • FIG. 1 is a schematic structural diagram of a laser lattice system under a first viewing angle provided by an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a laser lattice system under a second viewing angle provided by an embodiment of the present invention
  • 3 is a scanning laser lattice formed at a scanning position by the laser lattice system
  • FIG. 4 is one of the structural schematic diagrams of the scanning lens in the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a light incident surface of a scanning lens including multiple rows of first micro-scanning units in an embodiment of the present invention
  • FIG. 6 is the second schematic diagram of the structure of the scanning lens according to the embodiment of the present invention.
  • FIG. 7 is a third schematic structural diagram of a scanning lens in an embodiment of the present invention.
  • FIG. 8 is another schematic structural diagram of a laser lattice system provided by an embodiment of the present invention.
  • FIG. 9 is another schematic structural diagram of a laser lattice system provided by an embodiment of the present invention.
  • FIG. 10 is a flowchart of a method for forming a laser dot matrix provided by an embodiment of the present invention.
  • FIG. 11 is a fourth schematic structural diagram of a scanning lens in an embodiment of the present invention.
  • FIG. 12 is a fifth schematic diagram of the structure of the scanning lens according to the embodiment of the present invention.
  • FIG. 13 is one of the structural schematic diagrams in which the light incident surface of the scanning lens includes a plurality of micro-transmitting units in an embodiment of the present invention
  • 14 is the second schematic diagram of the structure of the light incident surface of the scanning lens including a plurality of micro-transmitting units in the embodiment of the present invention.
  • the scanning optical device is a scanning mirror in an embodiment of the present invention.
  • FIG. 16 is the second structural schematic diagram of the scanning optical device being a scanning mirror in the embodiment of the present invention.
  • Icon 10-laser source; 20-scanning lens; 201-first micro-scanning unit; 202-second micro-scanning unit; 203-cylindrical unit; 21-first scanning lens; 22-second scanning lens; 23- Cylinder lens; 30-collimating lens group; 31-fast-axis collimating lens; 32-slow-axis collimating lens; A-first direction; B-second direction.
  • the orientation or positional relationship indicated by the terms “center”, “vertical” or “horizontal” is based on the orientation or positional relationship shown in the accompanying drawings, or is usually placed when the product of the invention is used.
  • the orientation or positional relationship is only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying that the indicated device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore should not be construed as a limitation of the present invention.
  • the terms “first” or “second” etc. are only used to differentiate the description and should not be construed to indicate or imply relative importance.
  • FIG. 1 is a schematic structural diagram of a laser dot matrix system provided by an embodiment of the present invention. Please refer to FIG. 1 .
  • An embodiment of the present invention provides a laser dot matrix system.
  • the laser dot matrix system includes a laser source 10 and a laser source 10.
  • the scanning optical device in the light-emitting direction is driven to reciprocate along the first direction A perpendicular to the light-emitting direction to form a laser dot matrix along the first direction A at the scanning position.
  • FIG. 2 is a top view of FIG. 1. Please refer to FIG. 2. Since the first direction A is perpendicular to the second direction B, it can be seen from the perspective of FIG. 2 that the scanning optical device can also be driven along the second direction perpendicular to the light-emitting direction. B reciprocating motion, synthesizing the movement of the scanning optical device in the first direction A and the second direction B, the laser beam can form a two-dimensional laser lattice at the scanning position after being emitted by the scanning optical device
  • the scanning optical device is an optical device capable of processing the incident laser beam, and the scanning optical device is driven to move in a direction perpendicular to the light-emitting direction.
  • a relatively common scanning optical device is the scanning lens 20 as shown in FIG. 1 , and for example, the scanning optical device may also be a scanning mirror or the like.
  • FIG. 3 is a two-dimensional laser lattice formed by the laser beam at the scanning position after the scanning lens 20 is driven to reciprocate along the first direction A and the second direction B perpendicular to the light-emitting direction of the laser lattice system provided by the embodiment of the present invention picture.
  • FIG. 3 it should be noted that, in the embodiment of the present invention, how the scanning lens 20 realizes the reciprocating motion scanning along the first direction A and the second direction B, and the scanning range and scanning trajectory of the scanning lens 20 are not Make specific restrictions.
  • the scanning lens 20 is on the surface where the mirror surface is located along the mutually perpendicular Scans in one direction A and the second direction B.
  • scanning along the first direction A and the second direction B that are perpendicular to each other is understood as the motion trajectory including the first direction component and the second direction component, and any arbitrary position in the plane formed by the first direction and the second direction.
  • the trajectory movement belongs to the movement along the first direction A and the second direction B of the present invention. Due to the different requirements for the actual use of the laser lattice, the shapes of the required laser lattices are also very diverse.
  • the scanning lens 20 moves The movement track and path can be set in any combination along the first direction A and the second direction B, for example, making the scanning lens 20 alternately move between the first direction A and the second direction B briefly and frequently, which can make the laser spot
  • the array is formed in an oblique direction.
  • the scanning lens 20 alternately moves between the first direction A and the second direction B briefly and frequently, the actual displacement of the first direction A and the actual displacement of the second direction B
  • the regular zeroing setting can also make the laser lattice form a closed ring.
  • the laser beam emitted from the laser source 10 has mutually perpendicular fast-axis components and slow-axis components on the surface perpendicular to the light-emitting direction. Therefore, the first direction A shown in FIG. 1 can also be understood as the fast axis direction, and FIG. 2 The second direction B shown in can also be understood as the slow axis direction.
  • the scanning lens 20 can reciprocate and scan along the fast axis direction and the slow axis direction of the laser beam respectively, so as to form a two-dimensional laser lattice as shown in FIG. 3 .
  • the form and parameters of the laser source 10 are not specifically limited.
  • the common laser source 10 in the prior art can be classified into gas according to the working medium. Lasers, solid-state lasers, semiconductor lasers and dye lasers, etc. Alternatively, it may also include other laser sources 10 that can meet the conditions for emitting laser beams, which are not specifically limited in the embodiment of the present invention, as long as the laser beams emitted by the laser sources 10 can form light spots, so that the laser beams pass along the fast axis.
  • the scanning lens 20 reciprocatingly moves the scanning in the direction and the slow axis direction to form a two-dimensional laser dot matrix at the scanning position.
  • the laser dot matrix system according to the embodiment of the present invention can be specifically designed and selected for the wavelength and intensity of the laser beam required for applications such as laser surgery, anti-wrinkle beauty, or industrial inspection.
  • the specific presentation forms of the scanning lens 20 in the laser dot matrix system of the embodiment of the present invention may include various forms, which are not specifically limited in the embodiment of the present invention, as long as the scanning lens 20 is positioned along the fast axis direction and the slow axis direction
  • the laser beam can be scanned by the scanning lens 20 to form a two-dimensional laser dot matrix.
  • refraction surfaces with different angles can be arranged in the light-transmitting area of the scanning lens 20, so that during the scanning process, the laser beam is refracted by the refraction surfaces at different angles to form corresponding light spots at the scanning position, thereby finally forming a laser beam. 2D laser lattice.
  • the specific setting form and function of the scanning lens 20 will be described in detail below.
  • a laser dot matrix system provided by an embodiment of the present invention includes a laser source 10 and a scanning optical device (scanning lens 20) disposed in the light-emitting direction of the laser source 10, and the scanning lens 20 is driven to be respectively driven along the second direction perpendicular to the light-emitting direction.
  • a direction A and a second direction B reciprocate, wherein the first direction A is perpendicular to the second direction B, and the scanning lens 20 reciprocates along the first direction A and the second direction B respectively, which is equivalent to being able to reciprocate in the position where the scanning lens 20 is located.
  • the two-dimensional space of the plane moves the position, so that after the laser beam is scanned by the scanning lens 20 in the two-dimensional space, the two-dimensional laser dot matrix can be formed at the scanning position.
  • two-dimensional laser lattices of various desired lattice shapes can be correspondingly formed at the scanning position for different use requirements.
  • the laser lattice system provided by the present invention is applied to a laser lattice treatment apparatus, and can be widely used in medical cosmetology and laser surgery. In the related field of measurement, the laser lattice has rich patterns, strong applicability for different detection and measurement, and high detection accuracy.
  • FIG. 4 is one of the schematic structural diagrams of the scanning lens 20 .
  • the scanning optical device is the scanning lens 20
  • the light incident surface of the scanning lens 20 includes a plurality of rows of parallel and continuous arrays along the first direction A.
  • a micro-scanning unit 201, the light-emitting surface of the scanning lens 20 includes a plurality of columns of second micro-scanning units 202 arranged in parallel and consecutively along the second direction B, so that two adjacent columns of the first micro-scanning unit 201 or the second micro-scanning unit pass through
  • the laser beam of 202 is refracted and exited at different angles.
  • the laser beam of the lens 20 will be simultaneously refracted by the first micro-scanning unit 201 along the first direction A and the second micro-scanning unit 202 along the second direction B to form the final laser beam emitted through the scanning lens 20 .
  • the first micro-scanning unit 201 and/or the second micro-scanning unit 202 are cylindrical mirrors or sawtooth prisms.
  • the scanning lens 20 includes a first scanning lens 21 and a second scanning lens 22 arranged in sequence along the light-emitting direction of the laser source 10.
  • the first micro-scanning unit 201 is arranged on the light-incident side or the light-emitting side of the first scanning lens 21, and the second micro-scanning
  • the unit 202 is disposed on the light-emitting side or the light-incident side of the second scanning lens 22 , and the first scanning lens 21 and the second scanning lens 22 are attached to each other or disposed at intervals.
  • the laser beams passing through a row of first micro-scanning units 201 are emitted at the same angle in the first direction A, and/or the laser beams passing through a row of second micro-scanning units 202 are emitted at the same angle in the second direction B .
  • the first micro-scanning unit 201 and the second micro-scanning unit 202 may be cylindrical mirrors or sawtooth prisms, respectively.
  • the cylindrical mirror is a mirror body with a curved surface (as shown in FIG. 8 ).
  • the radians of a row of cylindrical mirrors are the same, so that the A row of laser beams along the second direction B exits at the same angle in the first direction A when passing through the same row of cylindrical mirrors; the surface of the sawtooth prism is a plane with an inclined angle (as shown in Figure 4).
  • the scanning unit 201 or the second micro-scanning unit 202 is a sawtooth prism
  • the planes of a row of sawtooth prisms have the same inclination angle, which can also make a row of laser beams along the second direction B pass through the same row of sawtooth prisms to the same one in the first direction A. Angled out.
  • the functions of refraction and output of the laser beam required by the first micro-scanning unit 201 and the second micro-scanning unit 202 can be realized.
  • the scanning lens 20 includes the first scanning lens 21 and the second scanning lens 22 which are arranged in sequence
  • the first scanning lens 21 and the second scanning lens 22 may be arranged to fit each other or be spaced from each other according to the overall structure and space conditions of the device.
  • the first micro-scanning unit 201 can be arranged on the light-incident side of the first scanning lens 21, or can be arranged on the light-emitting side of the first scanning lens 21.
  • the second micro-scanning unit 202 can be arranged on the second scanning lens.
  • the following is a step-by-step illustration with reference to the accompanying drawings.
  • FIG. 5 is a schematic diagram illustrating that the light incident surface of the scanning lens 20 includes a plurality of columns of first micro-scanning units 201 according to an embodiment of the present invention.
  • the light-incident surface of the scanning lens 20 includes a plurality of columns of first micro-scanning units 201 arranged in parallel and continuously along the first direction A , each column of the first micro-scanning unit 201 (as shown by the dotted box in FIG. 5 ) is composed of a plurality of sub-units that are continuous along the second direction B.
  • FIG. 5 is a schematic diagram illustrating that the light incident surface of the scanning lens 20 includes a plurality of columns of first micro-scanning units 201 according to an embodiment of the present invention.
  • the angles of the incident surfaces of the first micro-scanning units 201 in each column are the same, and the incident surfaces of the first micro-scanning units 201 in two adjacent columns are at different angles.
  • the laser beams emitted by the laser source 10 will be sequentially irradiated on the first micro-scanning units 201 in different columns. Since the incident surfaces of the first micro-scanning units 201 in two adjacent columns have different angles, the The outgoing laser beam can present the spot of the array at the scanning position.
  • the fact that the incident surfaces of the first micro-scanning unit 201 are at different angles means that the included angles between the laser beam and the incident surface of the first micro-scanning unit 201 are different.
  • the angles of the incident surfaces of the first micro-scanning units 201 are the same, it is equivalent to that the incident surface of the scanning lens composed of the first micro-scanning units 201 is a smooth plane.
  • a reciprocating motion the laser beam emitted by the laser source 10 cannot form a laser dot matrix even when passing through the reciprocating scanning lens 20 . Therefore, the incident surfaces of the plurality of columns of the first micro-scanning units 201 connected in sequence along the first direction A have different angles, so that when the scanning lens 20 reciprocates along the first direction A, the cyclical scanning of the laser beam is irradiated at different angles. Angle the first micro-scanning unit 201 to emit a laser dot matrix along the first direction A.
  • the light-emitting surface of the scanning lens 20 includes a plurality of columns of second micro-scanning units 202 arranged in parallel and continuously along the second direction B.
  • the laser beams emitted by the laser source 10 will sequentially irradiate the second micro-scanning units 202 in different columns to emit laser beams along the second direction B.
  • Laser dot matrix the number of columns of second micro-scanning units 202 arranged in parallel and continuously along the second direction B.
  • FIG. 6 is the second schematic diagram of the structure of the scanning lens 20.
  • the scanning lens 20 is a structure in which the first micro-scanning unit 201 and the second micro-scanning unit 202 are both sawtooth prisms
  • the scanning lens 20 is in the first
  • the laser beam emitted by the laser source 10 can be adjusted in the fast axis direction and in the fast axis direction according to the different angles of the first micro-scanning units 201 and the second micro-scanning units 202 in the multiple rows.
  • the slow axis direction is refracted and emitted accordingly to form a two-dimensional laser lattice of the desired shape at the scanning position.
  • the first micro-scanning unit 201 may be the incident light of the scanning lens 20 after the independent preparation is completed.
  • Surface splicing is fixed and formed.
  • a plurality of rows of first micro-scanning units 201 connected and arranged in sequence along the first direction A are integrally formed on the scanning lens 20 according to different preset angles. light surface.
  • the setting method of the second micro-scanning unit 202 arranged on the light-emitting surface of the scanning lens 20 is the same, and details are not repeated here.
  • an antireflection coating (not shown in FIG. 4 ) is provided on the light incident surface of the scanning lens 20 and/or the light output surface of the scanning lens 20 .
  • the light incident surface and the light output surface of the scanning lens 20 can be An anti-reflection film layer is respectively plated, and the anti-reflection film layer can enhance the light beam passing through the surface of the optical structure on which it is arranged, so as to reduce the light loss in the transmission process.
  • an anti-reflection coating layer can be provided only on the light incident surface of the scanning lens 20, Alternatively, the anti-reflection coating layer is only provided on the light-emitting surface of the scanning lens 20 .
  • the setting parameters of the anti-reflection coating layer such as the set thickness and material composition, and the plating method of the anti-reflection coating layer are not specifically limited, and those skilled in the art are based on technical needs, actual conditions of processing equipment and costs. It is sufficient to make specific settings and preparations after comprehensive consideration of accounting and other aspects.
  • the first micro-scanning unit 201 is axially symmetrically arranged along the second direction B on the light-incident surface of the scanning lens 20
  • the second micro-scanning unit 202 is arranged along the first direction on the light-emitting surface of the scanning lens 20 .
  • A-axis is set symmetrically.
  • the first micro-scanning unit 201 is arranged symmetrically along the second direction B axis on the light incident surface of the scanning lens 20.
  • the formed laser lattice is used in medical treatment or testing, and the spots that make up the laser lattice need to be in a certain shape.
  • the second direction B is used as the central axis of the light incident surface of the scanning lens 20, so that the multiple rows of first micro-scanning units 201 located on both sides of the central axis are axisymmetric, so that , the shape and spacing of the formed laser lattices are also symmetrical to each other in the first direction A from the center to the two sides.
  • the second micro-scanning unit 202 is arranged on the light-emitting surface of the scanning lens 20 to be axially symmetrical along the first direction A, and the first direction A is used as the central axis of the light-emitting surface of the scanning lens 20, so that many The rows of the second micro-scanning units 202 are axially symmetric, so that in the second direction B, the shapes and spacings of the formed laser dots are also symmetrical to each other from the center to the two sides.
  • the incident surface of each column of the first micro-scanning units 201 arranged along the first direction A forms a cylindrical unit, so that when the scanning lens 20 reciprocates along the first direction A During motion, when the laser beam emitted by the laser source 10 irradiates any one of the first micro-scanning units 201 in each column of the first micro-scanning units 201 on the scanning lens 20, the light spot emitted at the scanning position is in the same position in the first direction A. .
  • the light-emitting surface of each column of the second micro-scanning units 202 arranged along the second direction B forms a cylindrical unit. No longer.
  • the manufacturing process is relatively simplified, and the processing yield is also high.
  • the scanning lens 20 can be made to simplify the manufacturing process difficulty on the basis of satisfying the scanning to form a laser lattice in the direction of the fast axis.
  • the emitting surface of 202 is a cylindrical unit, which can simplify the manufacturing process difficulty of the scanning lens 20 on the basis of satisfying the requirement of scanning to form a laser lattice in the direction of the slow axis.
  • FIG. 11 is the fourth schematic diagram of the structure of the scanning lens 20 in the embodiment of the present invention.
  • the light incident surface and the light output surface of the scanning lens 20 that is adhered or integrally formed can also be set to be respectively Sawtooth lenses arranged along the first direction A and along the second direction B.
  • the first micro-scanning unit 201 is divided into a plurality of sub-units along the second direction B, and/or the second micro-scanning unit 202 is divided into a plurality of sub-units along the first direction A, the sub-units To be a cylindrical unit, the cylindrical unit has a curvature in the first direction A and a curvature in the second direction B.
  • the curvature of the first direction A and the curvature of the second direction B are not equal.
  • each of the first micro-scanning units 201 and each of the second micro-scanning units 202 is a sub-unit, each sub-unit is a cylindrical unit, and the curvature of the cylindrical unit in the first direction A is is not equal to the curvature of the second direction B, so that for each cylindrical unit, when the laser beam is transmitted by the cylindrical unit, the curvature of the cylindrical unit in the first direction A and the second direction can be calculated according to the The curvature of B refracts the laser beam in the direction of the fast axis and the direction of the slow axis, respectively, and forms a light spot at the scanning position.
  • the scanning lens 20 composed of cylindrical units with double curvature can also eliminate the phase difference during the formation of the two-dimensional laser lattice, so as to form an accurate lattice distribution at the scanning position.
  • FIG. 7 is the third schematic structural diagram of the scanning lens in the embodiment of the present invention.
  • the scanning lens 20 includes a first scanning lens 21 and a second scanning lens 22 arranged in sequence along the light-emitting direction of the laser source 10 ,
  • the first micro-scanning unit 201 is arranged on the light-incident side of the first scanning lens 21, and the second micro-scanning unit 202 is arranged on the light-emitting side of the second scanning lens 22.
  • the first scanning lens 21 and the second scanning The lenses 22 are arranged in close contact with each other.
  • the first scanning lens 21 and the second scanning lens 22 can also be arranged to be spaced apart from each other.
  • the first scanning lens 21 and the second scanning lens 22 are arranged to fit together, so as to reduce the thickness and volume of the scanning lens 20 composed of the first scanning lens 21 and the second scanning lens 22 as much as possible, and improve the The overall structure is compact.
  • the first scanning lens 21 and the second scanning lens 22 are integrally formed to form the scanning lens 20.
  • the number of interfaces through which the laser beam passes through the scanning lens 20 is reduced, and under the same conditions, the number of laser beams passing through the scanning lens 20 can be reduced.
  • the light loss of the scanning lens 20 improves the light output effect.
  • FIG. 8 is another schematic structural diagram of a laser dot matrix system provided by an embodiment of the present invention.
  • the first scanning lens 21 is formed by sequentially connecting a plurality of cylindrical mirrors along the first direction A.
  • the second scanning lens 22 is formed by sequentially connecting a plurality of cylindrical mirrors along the second direction B.
  • the cylindrical mirrors connected in sequence may be mutually bonded and fixed or arranged at intervals, or may be integrally formed.
  • the first scanning lens 21 or the second scanning lens 22 is formed by cylindrical mirrors in different directions.
  • the scanning lens 20 further includes a lenticular lens 23.
  • the first scanning lens 21 and the second scanning lens 22 constituting the scanning lens 20 are arranged at intervals, and the lenticular lens 23 is arranged on the first scanning lens 21 and the second scanning lens 22. between the two scanning lenses 22 .
  • the first scanning lens 21 can be controlled to move in one direction
  • the second scanning lens 22 can be controlled to move in another vertical direction, or the first scanning lens 21 and the Both the second scanning lenses 22 move simultaneously in two unidirectional directions.
  • FIG. 9 is another schematic structural diagram of a laser dot matrix system provided by an embodiment of the present invention.
  • the first scanning lens 21 and The second scanning lens 22, the first scanning lens 21 and the second scanning lens 22 are glued and fixed to each other, or, the first scanning lens 21 and the second scanning lens 22 are integrally formed and prepared, and in the preparation process of the integral forming, the lens is passed through the lens.
  • the generation process corresponding structures are directly generated on the first scanning lens 21 and the second scanning lens 22 .
  • the scanning lens 20 further includes a cylindrical lens 23, and the cylindrical lens 23 is arranged on the light incident side of the first scanning lens 21 to collimate and converge the laser beam entering the scanning lens 20 in the laser lattice system of the embodiment of the present invention, so as to achieve Optimize the quality of the light spot exiting the scan position.
  • the lenticular lens 23 can also be arranged in the first scanning lens 21 and the second scanning lens 22 combined with each other, or on the light-emitting side of the second scanning lens 22 .
  • the scanning optical device is a scanning lens 20, and the light incident surface or light output surface of the scanning lens 20 includes a plurality of micro-transmitting units.
  • FIG. 12 is the fifth structural schematic diagram of the scanning lens in the embodiment of the present invention, as shown in FIG. 12 .
  • a plurality of micro transmission units are formed on the light incident surface of the scanning lens 20.
  • the micro transmission units are formed by splicing a first transmission unit and a second transmission unit.
  • the first transmission unit is used to direct the incident laser beam to the first direction A.
  • the second transmission unit is used for refracting the incident laser beam to the second direction B at a certain angle and then transmitting.
  • the first transmission unit and the second transmission unit may be a plane or a curved surface.
  • the scanning lens in the embodiment of the present invention receives light as shown in FIG. 13 .
  • the first transmission unit has a certain inclination angle at least in the first direction A.
  • the first transmission unit can also be set to have a certain inclination in the first direction A.
  • the second direction B also has a certain inclination angle.
  • Fig. 14 is the second schematic diagram of the structure of the light incident surface of the scanning lens including a plurality of micro-transmission units in the embodiment of the present invention.
  • the second transmission unit has a certain inclination at least in the second direction B.
  • the incident laser beam is refracted and emitted at a certain angle according to the inclination of the second transmission unit in the second direction B.
  • the second transmission unit can also be set at the second transmission unit. While the direction B has a certain inclination angle, the first direction A also has a certain inclination angle, and its refraction principle for the laser beam is the same as that of the first transmission unit, which will not be repeated here.
  • first transmission unit and the second transmission unit are both formed with inclination angles in the first direction A and the second direction B, in general, the inclination angles of the two are different, so that when the scanning lens 20 is subjected to When the drive scan passes through the first transmission unit and the second transmission unit spliced with each other in the micro transmission unit in sequence, the first transmission unit and the second transmission unit can refract and emit the laser beam in different angles and directions.
  • FIG. 15 is one of the schematic structural diagrams in which the scanning optical device is a scanning mirror in an embodiment of the present invention.
  • the scanning optical device is a scanning mirror
  • the reflective surface of the scanning mirror includes a plurality of micro-reflection units
  • the micro-reflection unit is formed by splicing a first reflecting unit and a second reflecting unit
  • the first reflecting unit is used to reflect the laser beam along the first direction A
  • the second reflecting unit is used to reflect the laser beam along the second direction B.
  • the scanning optical device is a scanning mirror
  • the reflective surface of the scanning mirror includes a plurality of micro-reflection units
  • the micro-reflection units are formed by splicing a first reflection unit and a second reflection unit.
  • the laser beam incident on the first reflection unit is reflected at a certain angle along the first direction A
  • the laser beam incident on the second reflection unit is reflected at a certain angle along the second direction B.
  • FIG. 16 is the second structural schematic diagram in which the scanning optical device is the scanning mirror in the embodiment of the present invention.
  • the first reflecting unit and the second reflecting unit are the first prism surface and the second prism surface respectively.
  • the included angles between the plurality of first prism surfaces and the main optical axis in the first direction A are different, and the included angles between the plurality of second prism surfaces and the main optical axis in the second direction B are different.
  • the plurality of first prism surfaces may also have a certain angle with the main optical axis in the second direction B, so that the laser beam reflected by the first prism surfaces has more diversified reflections
  • the angle and the arrangement form of the light spot in the same way, the multiple second prism surfaces can also have a certain angle with the main optical axis in the first direction A, so that the laser beam reflected by the second prism surface has a more diverse range.
  • the angle of reflection and the arrangement of the light spots are examples of reflections.
  • first reflection unit and the second reflection unit may also be a first arc surface and a second arc surface, respectively, and the first reflection unit and the second reflection unit have curvatures in the first direction A and the second direction B, respectively.
  • the first reflecting unit and the second reflecting unit are the first arc surface and the second arc surface, respectively, by setting the first arc surface to have the curvature of the first direction A and the curvature of the second direction B, respectively, so that the first arc surface passes through the first arc surface.
  • the laser beam can be reflected at a certain angle in the first direction A and the second direction B respectively, forming the superposition direction and superposition angle after reflection, and the second arc surface is also set in the same way.
  • the radians of the first arc surface and the second arc surface in the first direction A and the second direction B are different.
  • a collimating lens group 30 is further arranged between the laser source 10 and the scanning lens 20, and the collimating lens group 30 includes a fast-axis collimating mirror 31 and a slow-axis collimating mirror 31 arranged in sequence along the light exit direction.
  • the collimating mirror 32 is used for collimating the fast axis and the slow axis of the laser beam emitted from the laser source 10 respectively.
  • a collimating lens group 30 is further arranged between the laser source 10 and the scanning lens 20 , and is used for pairing the output from the laser source 10 through the collimating lens group 30
  • the laser beam is collimated and shaped.
  • the fast-axis collimating mirror 31 can collimate the laser beam along the fast-axis direction
  • the slow-axis collimating mirror 32 can collimate the laser beam along the slow-axis direction.
  • the laser beam is collimated by the fast axis collimating mirror 31 and the slow axis collimating mirror 32 respectively through the fast axis direction and the slow axis direction, so that the collimation of the outgoing light is better, and the light spot formed at the scanning position is further optimized. Pattern accuracy.
  • the scanning optical device (scanning lens 20) is arranged in a fixed frame, and a stepping motor (not shown in FIG. 8 ) is respectively provided on the fixed frame, and the driving end of the stepping motor is connected with the scanning lens 20 to drive
  • the scan lens 20 moves in the first direction A and/or the second direction B.
  • the movement of the scanning lens 20 along the first direction A or the second direction B in the two-dimensional space can be monitored by arranging a stepper motor capable of two-dimensional operation on the fixed frame.
  • the control is performed, and the scanning lens 20 can be reciprocated in both the first direction A and the second direction B at the same time, thereby increasing the diversity of the movement modes of the scanning lens 20 .
  • the first stepping motor and the second stepping motor are respectively arranged on the adjacent sides of the fixed frame, so that the stepping motor of the first stepping motor and the second stepping motor can be stepped
  • the directions are perpendicular to each other, so that the stepping work of the first stepping motor and the second stepping motor can be controlled separately or simultaneously.
  • FIG. 10 is a flowchart of the method for forming a laser dot matrix provided by an embodiment of the present invention. As shown in FIG. 10 , the method includes:
  • the scanning optical device moves along a first direction A and a second direction B that are perpendicular to each other, respectively.
  • the laser beam is scanned and emitted by the moving scanning optical device, and a two-dimensional laser lattice is formed at the scanning position.
  • the laser source 10 emits a laser beam toward the scanning optical device (scanning lens 20 ), during which the scanning lens 20 is driven to reciprocate in the first direction A and the second direction B which are perpendicular to each other and form a plane. Then, the laser beam is scanned and emitted through the moving scanning lens 20, and a two-dimensional laser lattice is formed at the scanning position.
  • the implementation manner and motion trajectory of the scanning lens 20 being driven to reciprocate in the first direction A and the second direction B, which are perpendicular to each other and form a plane, are not specifically limited in the method of the present invention.
  • a circular motion can be performed in the plane formed by the direction A and the second direction B, or any irregular motion can be performed in the plane formed by the first direction A and the second direction B.
  • a laser lattice therapy apparatus which includes the laser lattice system according to any one of the foregoing.
  • the laser lattice system When the laser lattice system according to the embodiment of the present invention is applied to the laser lattice treatment apparatus, the laser lattice system is set in the casing of the laser lattice treatment apparatus, and the scanning position of the laser lattice system is set in the laser lattice treatment apparatus In the process of operation or cosmetic treatment, the operator holds the laser lattice treatment instrument, and makes the light emission range of the laser lattice treatment instrument according to the needs. The scanning position inside is located at the affected part, and the power of the laser lattice therapy apparatus is activated to make the laser source 10 in the laser lattice system start to work, so as to form a two-dimensional laser lattice at the scanning position.
  • the laser dot matrix system in the embodiment of the present invention can also be applied to fields such as medical surgery, or industrial inspection, etc., which are not listed one by one in the embodiment of the present invention, as long as the corresponding fields are used.
  • the scanning position of the laser dot matrix system is set at the operating position, and the laser source 10 of the laser dot matrix system and the reciprocating motion of the scanning lens 20 of the laser dot matrix system are activated.
  • the position forms a continuous 2D laser lattice.

Landscapes

  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种激光点阵系统及方法、激光点阵治疗仪,其中,激光点阵系统包括激光源(10)以及设置于激光源(10)的出光方向的扫描透镜(20),扫描透镜(20)受驱可分别沿与出光方向垂直的第一方向(A)和第二方向(B)往复运动,以使激光束经过扫描透镜(20)在扫描位置形成二维激光点阵,其中,第一方向(A)与第二方向(B)垂直。激光点阵系统能够形成尺寸和范围可变的多种不同的二维激光点阵,以提高形成激光点阵的多样性。

Description

一种激光点阵系统及方法、激光点阵治疗仪
相关申请的交叉引用
本发明要求于2020年07月31日提交中国专利局的申请号为CN202010765086.2、名称为“一种激光点阵系统及方法、激光点阵治疗仪”的中国专利申请的优先权,其全部内容通过引用结合在本发明中。
技术领域
本发明涉及半导体激光器技术领域,具体而言,涉及一种激光点阵系统及方法、激光点阵治疗仪。
背景技术
激光点阵指的是通过脉冲和扫描等方式使激光束呈点阵状态呈现出的多激光点阵列,激光点阵能够用于精细度较高的激光手术。而且,由于经研究和实验证实,激光点阵作用于人体皮肤具有能够除皱、祛斑、紧致、加速愈合以及提高组织再生的功能以使得现在激光点阵越来越多的应用于整形和美容等方面,激光点阵照射在皮肤形成密集有序的微孔,并直接穿透至皮肤的真皮层进行修复刺激,以达到皮肤祛斑除皱等功效。
由于需要进行治疗修复的患处所在的位置和包含的范围往往不同,现有技术的激光点阵系统难以形成不同尺寸和范围的激光点阵,使得激光点阵治疗仪的应用范围受到限制。
发明内容
本发明的目的在于提供一种激光点阵系统及方法、激光点阵治疗仪,激光点阵系统能够形成尺寸和范围可变的多种不同的二维激光点阵,以提高形成激光点阵的多样性。
本发明的实施例是这样实现的:
本发明实施例的一方面,提供一种激光点阵系统,包括激光源以及设置于激光源的出光方向的扫描光学装置,扫描光学装置受驱可分别沿与出光方向垂直的第一方向和第二方向往复运动,以使激光束经过扫描光学装置在扫描位置形成二维激光点阵,其中,第一方向与第二方向垂直。
可选地,扫描光学装置为扫描透镜,扫描透镜的入光面包括沿第一方向平行连续设置的多列第一微扫描单元,扫描透镜的出光面包括沿第二方向平行连续设置的多列第二微扫描单元,通过相邻两列第一微扫描单元或第二微扫描单元的激光束向不同角度出射。
可选地,第一微扫描单元和/或第二微扫描单元为柱面镜或者锯齿棱镜。
可选地,扫描透镜包括沿激光源出光方向依次设置的第一扫描透镜和第二扫描透镜,第一微扫描单元设置于第一扫描透镜的入光侧或出光侧,第二微扫描单元设置于第二扫描透镜的出光侧或入光侧,第一扫描透镜和第二扫描透镜贴合或间隔设置。
可选地,通过一列第一微扫描单元的激光束向第一方向的同一角度出射,和/或,通过一列第二微扫描单元的激光束向在第二方向的同一角度出射。
可选地,第一微扫描单元在扫描透镜上沿第二方向轴对称设置,第二微扫描单元在扫描透镜上沿第一方向轴对称设置。
可选地,第一微扫描单元沿第二方向划分有多个子单元,和/或,第二微扫描单元沿第一方向划分有多个子单元,子单元为柱面单元,子单元具有在第一方向的曲率和在第二方向的曲率。
可选地,扫描光学装置为扫描透镜,扫描透镜的入光面或出光面包括多个微透射单元,微透射单元由第一透射单元和第二透射单元拼接而成,第一透射单元用于将入射的激光束向第一方向折射后透过,第二透射单元用于将入射的激光束向第二方向折射后透过。
可选地,扫描光学装置为扫描反射镜,扫描反射镜的反射面包括多个微反射单元,微反射单元由第一反射单元和第二反射单元拼接而成,第一反射单元用于将激光束沿第一方向反射,第二反射单元用于将激光束沿第二方向反射。
可选地,第一反射单元和第二反射单元分别为第一棱镜面和第二棱镜面,多个第一棱镜面与主光轴的夹角角度不同,多个第二棱镜面与主光轴的夹角角度不同。
可选地,第一反射单元和第二反射单元分别为第一弧面和第二弧面,第一反射单元和第二反射单元分别具有第一方向和第二方向的曲率。
可选地,在激光源与扫描光学装置之间还设置有准直镜组,准直镜组包括沿出光方向依次设置的快轴准直镜和慢轴准直镜,用于分别对激光源出射的激光束进行快轴准直和慢轴准直。
可选地,扫描光学装置设置在固定框内,固定框上设置有步进电机,步进电机的驱动端与扫描光学装置连接,以驱动扫描光学装置沿第一方向和/或第二方向移动。
本发明实施例的另一方面,提供一种形成激光点阵的方法,包括:扫描光学装置分别沿相互垂直的第一方向和第二方向运动;激光束经运动的扫描光学装置扫描出射并在扫描位置形成二维激光点阵。
本发明实施例的又一方面,提供一种激光点阵治疗仪,包括前述任一项的激光点阵系统。
本发明实施例的有益效果包括:
本发明实施例提供的一种激光点阵系统,包括激光源以及设置于激光源的出光方向的扫描光学装置,扫描光学装置受驱可分别沿与出光方向垂直的第一方向和第二方向往复运动,其中,第一方向与第二方向垂直,扫描光学装置分别沿第一方向和第二方向往复运动, 相当于能够在扫描光学装置所在的平面的二维空间内移动至任意位置,从而能够使激光束经过在二维空间移动位置的扫描光学装置的扫描后,在扫描位置形成二维激光点阵。通过对扫描光学装置提供不同的驱动力以形成扫描光学装置不同的扫描路径,能够在扫描位置对应形成各种所需点阵形状的二维激光点阵,用于不同的使用需要。本发明提供的激光点阵系统应用于激光点阵治疗仪中,能够广泛的应用于医疗美容和激光手术中,此外,本发明提供的激光点阵系统还可应用于通过激光点阵进行检测和测量的相关领域,激光点阵的形成图案丰富,针对于不同检测和测量的适用性较强,检测准确性高。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本发明实施例提供的第一视角下的一种激光点阵系统的结构示意图;
图2为本发明实施例提供的第二视角下的一种激光点阵系统的结构示意图;
图3为经所述激光点阵系统在扫描位置形成的扫描激光点阵;
图4为本发明实施例中扫描透镜的结构示意图之一;
图5为本发明实施例中扫描透镜的入光面包括多列第一微扫描单元的示意图;
图6为本发明实施例中扫描透镜的结构示意图之二;
图7为本发明实施例中扫描透镜的结构示意图之三;
图8为本发明实施例提供的一种激光点阵系统的又一结构示意图;
图9为本发明实施例提供的一种激光点阵系统的又一结构示意图;
图10为本发明实施例提供的形成激光点阵方法的流程图;
图11为本发明实施例中扫描透镜的结构示意图之四;
图12为本发明实施例中扫描透镜的结构示意图之五;
图13本发明实施例中扫描透镜入光面包括多个微透射单元的结构示意图之一;
图14本发明实施例中扫描透镜入光面包括多个微透射单元的结构示意图之二;
图15本发明实施例中扫描光学装置为扫描反射镜的结构示意图之一;
图16本发明实施例中扫描光学装置为扫描反射镜的结构示意图之二。
图标:10-激光源;20-扫描透镜;201-第一微扫描单元;202-第二微扫描单元;203-柱面单元;21-第一扫描透镜;22-第二扫描透镜;23-柱镜;30-准直镜组;31-快轴准直镜;32-慢轴准直镜;A-第一方向;B-第二方向。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚且完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,术语“中心”、“竖直”或“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”或“第二”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
图1为本发明实施例提供的一种激光点阵系统的结构示意图,请参照图1,本发明实施例提供一种激光点阵系统,激光点阵系统包括激光源10以及设置于激光源10的出光方向的扫描光学装置,扫描光学装置受驱可沿与出光方向垂直的第一方向A往复运动以在扫描位置形成沿第一方向A的激光点阵。图2为图1的俯视图,请参照图2,由于第一方向A与第二方向B垂直,由图2的视角可以看到,扫描光学装置还能够受驱沿与出光方向垂直的第二方向B往复运动,综合扫描光学装置在第一方向A和第二方向B上的运动,激光束经扫描光学装置出射后在扫描位置能够形成二维激光点阵。
其中,扫描光学装置为能够对入射激光束进行处理的光学装置,而且,扫描光学装置受驱能够沿与出光方向垂直的方向运动。其中,较为常见的扫描光学装置即为如图1中所示的扫描透镜20,又例如,扫描光学装置也可以为扫描反射镜等。以下对照附图,以扫描光学装置为扫描透镜20为例进行详细的说明。
图3为本发明实施例提供的激光点阵系统在扫描透镜20受驱沿与出光方向垂直的第一方向A和第二方向B往复运动后,激光束在扫描位置形成的二维激光点阵图。请参照图3,需要说明的是,本发明实施例中,对于扫描透镜20如何实现沿第一方向A和沿第二方向B的往复运动扫描,以及扫描透镜20的扫描范围和扫描轨迹均不做具体限定。由于第一方向A与第二方向B垂直,且,第一方向A和第二方向B均与激光源10的出光方向垂 直,可知,扫描透镜20在其镜面所在的表面,沿相互垂直的第一方向A和第二方向B扫描。
需要说明的是,沿相互垂直的第一方向A和第二方向B扫描,理解为运动轨迹包含第一方向分量和第二方向的分量,在第一方向和第二方向构成的平面内的任意轨迹运动均属于本发明的沿第一方向A和第二方向B的运动。由于对于激光点阵的实际使用需求不同,所需要的激光点阵的形状也非常多样,在本发明实施例的激光点阵系统中,根据所需要的激光点阵的特殊形状,扫描透镜20运动的运动轨迹和路径可以沿第一方向A运动和第二方向B任意组合设置,例如,使得扫描透镜20短促且频繁的在第一方向A和第二方向B之间交替运动,能够使得激光点阵呈斜线方向形成,又例如,扫描透镜20短促且频繁的在第一方向A和第二方向B之间交替运动的同时,对于第一方向A的实际位移和第二方向B的实际位移进行规律化的归零设置,还能够使得激光点阵呈封闭的环形。以上,还包括其他各种通过在第一方向A和第二方向B进行扫描形成的激光点阵形态均在本发明实施例的保护范围内。
激光源10出射的激光束,在垂直于出光方向的表面上具有相互垂直的快轴分量和慢轴分量,因此,图1中示出的第一方向A也可理解为快轴方向,图2中示出的第二方向B也可理解为慢轴方向。扫描透镜20可分别沿激光束的快轴方向和慢轴方向往复运动扫描,以形成如图3所示的二维激光点阵。
需要说明的是,本发明实施例的激光点阵系统中,对于激光源10的形式和参数不作具体限定,示例地,现有技术中常见的激光源10,根据工作介质划分,可分为气体激光器、固体激光器、半导体激光器和染料激光器等。或者还可以包括其他能够满足条件出射激光束的激光源10,本发明实施例中对此不作具体限定,只要是通过激光源10出射的激光束能够形成光斑,以便在该激光束通过沿快轴方向和慢轴方向往复运动扫描的扫描透镜20后在扫描位置形成二维激光点阵即可。例如,根据本发明实施例的激光点阵系统具体在激光手术、抗皱美容或者工业检测等方面应用所需的激光束波长和强度进行具体的设计和选择即可。
而且,本发明实施例的激光点阵系统中的扫描透镜20的具体呈现形式可以包括多种,本发明实施例中对此不作具体限定,只要使得扫描透镜20在沿快轴方向和慢轴方向往复运动中,通过扫描透镜20激光束能够扫描形成二维激光点阵即可。示例的,可以通过在扫描透镜20的透光区域设置呈不同角度的折射面,以使激光束在扫描过程中,通过不同角度的折射面的折射以在扫描位置形成对应的光斑,从而最终形成二维激光点阵。扫描透镜20的具体设置形式和功能作用在下文中进行详细具体的说明。
本发明实施例提供的一种激光点阵系统,包括激光源10以及设置于激光源10的出光方向的扫描光学装置(扫描透镜20),扫描透镜20受驱可分别沿与出光方向垂直的第一方向A和第二方向B往复运动,其中,第一方向A与第二方向B垂直,扫描透镜20分别沿第一方向A和第二方向B往复运动,相当于能够在扫描透镜20所在的平面的二维空间移动位置,从而能够使激光束经过在二维空间移动位置的扫描透镜20的扫描后,在扫描位置形成二维激光点阵。通过对扫描透镜20提供不同的驱动力以形成扫描透镜20不同的扫描路径,能够在扫描位置对应形成各种所需点阵形状的二维激光点阵,用于不同的使用需要。本发明提供的激光点阵系统应用于激光点阵治疗仪中,能够广泛的应用于医疗美容和激光手术中,此外,本发明提供的激光点阵系统还可应用于通过激光点阵进行检测和测量的相关领域,激光点阵的形成图案丰富,针对于不同检测和测量的适用性较强,检测准确性高。
可选地,图4为扫描透镜20的结构示意图之一,如图4所示,扫描光学装置为扫描透镜20,扫描透镜20的入光面包括沿第一方向A平行连续设置的多列第一微扫描单元201,扫描透镜20的出光面包括沿第二方向B平行连续设置的多列第二微扫描单元202,以使经过相邻两列第一微扫描单元201或第二微扫描单元202的激光束向不同的角度折射出射。由于相邻两列第一微扫描单元201能够使通过的激光束向不同角度出射,相邻两列第二微扫描单元202也能够使通过的激光束向不同角度出射,这样一来,入射扫描透镜20的激光束,会同时通过沿第一方向A的第一微扫描单元201和沿第二方向B的第二微扫描单元202的折射作用,形成最终的经过扫描透镜20出射的激光束。
可选地,第一微扫描单元201和/或第二微扫描单元202为柱面镜或者锯齿棱镜。扫描透镜20包括沿激光源10出光方向依次设置的第一扫描透镜21和第二扫描透镜22,第一微扫描单元201设置于第一扫描透镜21的入光侧或出光侧,第二微扫描单元202设置于第二扫描透镜22的出光侧或入光侧,第一扫描透镜21和第二扫描透镜22贴合或间隔设置。
可选地,通过一列第一微扫描单元201的激光束向第一方向A的同一角度出射,和/或,通过一列第二微扫描单元202的激光束向在第二方向B的同一角度出射。
第一微扫描单元201和第二微扫描单元202分别可以为柱面镜或者为锯齿棱镜。柱面镜即为表面呈弧面的镜体(如图8所示),当第一微扫描单元201或第二微扫描单元202为柱面镜时,一列柱面镜的弧度相同,以使一列沿第二方向B的激光束通过同一列柱面镜时向第一方向A的同一个角度出射;锯齿棱镜的表面为带有倾斜角度的平面(如图4所示),当第一微扫描单元201或第二微扫描单元202为锯齿棱镜时,一列锯齿棱镜的平面倾斜角度相同,同样能够使一列沿第二方向B的激光束通过同一列锯齿棱镜时向第一方向A的同一个角度出射。
无论表面为弧面的柱面镜,或是表面为倾斜平面的锯齿棱镜,均能够实现第一微扫描单元201和第二微扫描单元202所需的对激光束进行折射出射的功能。而且,当扫描透镜20包括依次设置的第一扫描透镜21和第二扫描透镜22时,第一扫描透镜21和第二扫描透镜22可以根据装置的整体结构和空间条件相互贴合设置或者相互间隔设置,第一微扫描单元201可以设置于第一扫描透镜21的入光侧,也可以设置于第一扫描透镜21的出光侧,同样的,第二微扫描单元202可以设置于第二扫描透镜22的出光侧,或者设置于第二扫描透镜22的入光侧,以上的多种设置方式的选择,本领域技术人员可以根据装置的实际需要以及结构空间等客观条件进行具体的选择和设置。以下逐步对照附图进行举例说明。
图5为本发明实施例中扫描透镜20中入光面包括多列第一微扫描单元201的示意图。如图5所示,以扫描透镜20的入光面设置的第一微扫描单元201为例,扫描透镜20的入光面包括沿第一方向A平行连续设置的多列第一微扫描单元201,每一列第一微扫描单元201(如图5中虚线框所示)由多个沿第二方向B连续的子单元组成。如图4所示,在本实施例中,每一列第一微扫描单元201的入射面角度相同,相邻两列的第一微扫描单元201的入射面呈不同角度,当扫描透镜20沿第一方向A往复运动时,激光源10出射的激光束会顺序的照射在不同列的第一微扫描单元201上,由于相邻两列的第一微扫描单元201的入射面呈不同角度,使得出射的激光束在扫描位置能够呈现阵列的光斑。第一微扫描单元201的入射面呈不同角度指的是,激光束与第一微扫描单元201的入射面之间的夹角角度不同。若各个第一微扫描单元201的入射面的角度均相同,则相当于由第一微扫描单元201组成的扫描透镜的入射面为一光滑的平面,这样的话,扫描透镜20即使沿第一方向A往复运动,激光源10出射的激光束在通过往复运动的扫描透镜20也无法形成激光点阵。因此,沿第一方向A依次连接设置的多列第一微扫描单元201的入射面呈不同角度,能够使得当扫描透镜20沿第一方向A往复运动时,激光束循环往复的扫描照射在不同角度的第一微扫描单元201上,以出射沿第一方向A的激光点阵。
同样的,如图4所示,在扫描透镜20的出光面包括沿第这二方向B平行连续设置的多列第二微扫描单元202,相邻两列第二微扫描单元202的出射面呈不同角度,这样一来,当扫描透镜20沿第二方向B往复运动,激光源10出射的激光束会顺序的照射在不同列的第二微扫描单元202上,以出射沿第二方向B的激光点阵。
图6为扫描透镜20的结构示意图之二,如图6所示,当扫描透镜20为第一微扫描单元201和第二微扫描单元202均为锯齿棱镜的结构时,扫描透镜20在第一方向A和第二方向B分别往复运动的过程中,激光源10出射的激光束即能够根据多列第一微扫描单元201和多列第二微扫描单元202的不同角度,在快轴方向和慢轴方向进行相应的折射出射 以在扫描位置形成所需形态的二维激光点阵。
需要说明的是,如图5所示,以扫描透镜20的入光面上设置的第一微扫描单元201为例,第一微扫描单元201可以为独立制备完成后在扫描透镜20的入光面拼接固定形成,优选的,为了节省制备工序以及对位校准的时间,沿第一方向A依次连接设置的多列第一微扫描单元201根据预设的不同角度一体成型形成于扫描透镜20的入光面。扫描透镜20的出光面上设置的第二微扫描单元202的设置方式同理,此处不再赘述。
可选地,在扫描透镜20的入光面和/或扫描透镜20的出光面上设置有增透膜(图4中未示出)。
为了尽可能保证激光束出射在扫描位置的二维激光点阵的光强度和出光效果,减少激光束在激光点阵系统中传输时的光损失,可以在扫描透镜20的入光面和出光面分别镀设增透膜层,增透膜层能够对经过其所设置的光学结构的表面的光束进行增强,以减少透射过程中的光损失。
当然,若根据特殊需求,仅需要对激光束的快轴方向提高透射效果,或者仅需要对激光束的慢轴方向提高透射效果,可以仅在扫描透镜20的入光面设置增透膜层,或者仅在扫描透镜20的出光面设置增透膜层。
本发明实施例中对于增透膜层的设置参数,如设置厚度和材料组成,以及对于增透膜层的镀设方式均不作具体限定,本领域技术人员根据技术需要、加工设备实际情况以及成本核算等方面的综合考虑进行具体设定和制备即可。
可选地,如图4所示,第一微扫描单元201在扫描透镜20的入光面沿第二方向B轴对称设置,第二微扫描单元202在扫描透镜20的出光面沿第一方向A轴对称设置。
设置第一微扫描单元201在扫描透镜20的入光面沿第二方向B轴对称设置,通常情况下,形成的激光点阵在医疗或检测使用中,需要组成激光点阵的光斑呈一定的规律排列,常见的,如图4所示,以第二方向B作为扫描透镜20的入光面的中心轴,使得位于中心轴两侧的多列第一微扫描单元201轴对称,这样一来,形成的激光点阵在第一方向A也是由中心向两侧的设置形状和间距相互对称。同样的,设置第二微扫描单元202在扫描透镜20的出光面沿第一方向A轴对称设置,以第一方向A作为扫描透镜20的出光面的中心轴,使得位于中心轴两侧的多列第二微扫描单元202轴对称,这样一来,形成的激光点阵在第二方向B也是由中心向两侧的设置形状和间距相互对称。
示例的,在扫描透镜20的入光面,沿第一方向A设置的每一列第一微扫描单元201的入射面形成一个柱面单元,这样一来,当扫描透镜20沿第一方向A往复运动时,激光源10出射的激光束照射在扫描透镜20上每一列第一微扫描单元201中的任意一个第一微扫 描单元201时,出射在扫描位置的光斑在第一方向A的位置相同。在扫描透镜20的出光面,沿第二方向B设置的每一列第二微扫描单元202的出射面形成一个柱面单元,其形成方式和扫描结果与第一微扫描单元201同理,此处不再赘述。
此外,设置每一列第一微扫描单元201或者设置每一列第二微扫描单元202为柱面单元,相对于在扫描透镜20表面阵列形成的多个第一微扫描单元201或者多个第二微扫描单元202来说,制备工艺相对简化,且加工良率也较高。
而且,通过设置第一微扫描单元201的入射面为柱面单元,能够使得扫描透镜20在快轴方向上在满足扫描形成激光点阵的基础上简化制备工艺难度,通过设置第二微扫描单元202的出射面为柱面单元,能够使得扫描透镜20在慢轴方向上在满足扫描形成激光点阵的基础上简化制备工艺难度。
此外,图11为本发明实施例中扫描透镜20的结构示意图之四,如图11所示,又例如,还可以将粘贴设置或一体成型的扫描透镜20的入光面和出光面设置为分别沿第一方向A排列和沿第二方向B排列的锯齿透镜。
可选地,如图4所示,第一微扫描单元201沿第二方向B划分有多个子单元,和/或,第二微扫描单元202沿第一方向A划分有多个子单元,子单元为柱面单元,柱面单元具有在第一方向A的曲率和在第二方向B的曲率,优选的,第一方向A的曲率和第二方向B的曲率不相等。
如图4所示,每一个第一微扫描单元201和每一个第二微扫描单元202均为一个子单元,每一个子单元为柱面单元,而且,柱面单元在第一方向A的曲率和第二方向B的曲率不相等,这样一来,对于每一个柱面单元来说,当激光束由该柱面单元透过,能够根据柱面单元在第一方向A的曲率和第二方向B的曲率分别对激光束由快轴方向和慢轴方向进行折射并在扫描位置对应形成光斑。而且,具有双曲率的柱面单元组成的扫描透镜20,还能够在二维激光点阵的形成过程中,消除相差,以在扫描位置形成精确的点阵分布。
示例的,图7为本发明实施例中扫描透镜的结构示意图之三,如图7所示,扫描透镜20包括沿激光源10出光方向依次设置的第一扫描透镜21和第二扫描透镜22,第一微扫描单元201设置于第一扫描透镜的21入光侧,第二微扫描单元202设置于第二扫描透镜22的出光侧,在本实施例中,第一扫描透镜21和第二扫描透镜22相互贴合设置,当然,根据实际需要,也可以设置第一扫描透镜21和第二扫描透镜22相互间隔设置。
如图7所示,第一扫描透镜21和第二扫描透镜22贴合设置,以尽可能减小由第一扫描透镜21和第二扫描透镜22组成的扫描透镜20的厚度尺寸和体积,提高整体结构的紧凑型。或者,第一扫描透镜21和第二扫描透镜22一体成型形成扫描透镜20,在保证紧凑的 结构体积的基础上,减少激光束通过扫描透镜20的界面数量,同等条件下能够减小激光束经过扫描透镜20的光损失,提高出光效果。
示例的,图8为本发明实施例提供的一种激光点阵系统的又一结构示意图,如图8所示,第一扫描透镜21由多个沿第一方向A的柱面镜依次连接形成,第二扫描透镜22由多个沿第二方向B的柱面镜依次连接而成。依次连接的柱面镜可以为相互粘接固定或相互间隔设置,也可以为一体成型制作。
如图8所示,通过柱面镜沿不同方向组成的第一扫描透镜21或第二扫描透镜22。可选地,扫描透镜20还包括柱镜23,在本实施例中,组成扫描透镜20的第一扫描透镜21和第二扫描透镜22间隔设置,柱镜23设置于第一扫描透镜21和第二扫描透镜22之间。这样一来,控制扫描透镜20的扫描运动,可以为控制第一扫描透镜21沿单方向运动,并控制第二扫描透镜22沿垂直的另一单方向运动,也可以控制第一扫描透镜21和第二扫描透镜22均沿两个单方向同时运动。
或者,图9为本发明实施例提供的一种激光点阵系统的再一结构示意图,如图9所示,在本实施例中,通过柱面镜沿不同方向组成的第一扫描透镜21和第二扫描透镜22,第一扫描透镜21和第二扫描透镜22相互粘贴固定,或者,第一扫描透镜21和第二扫描透镜22为一体成型制备,且在一体成型的制备过程中,通过透镜生成工艺,直接在第一扫描透镜21和第二扫描透镜22生成相应的结构。扫描透镜20还包括柱镜23,柱镜23设置于第一扫描透镜21的入光侧,以对进入本发明实施例的激光点阵系统中扫描透镜20的激光束进行准直和汇聚,以优化出射至扫描位置的光斑质量。当然,还可以将柱镜23设置在相互结合第一扫描透镜21和第二扫描透镜22中,或者第二扫描透镜22的出光侧。
可选地,扫描光学装置为扫描透镜20,扫描透镜20的入光面或出光面包括多个微透射单元,图12为本发明实施例中扫描透镜的结构示意图之五,如图12所示,在扫描透镜20的入光面形成有多个微透射单元,微透射单元由第一透射单元和第二透射单元拼接而成,第一透射单元用于将入射的激光束向第一方向A呈一定的角度折射后透过,第二透射单元用于将入射的激光束向第二方向B呈一定的角度折射后透过。
其中,第一透射单元和第二透射单元可以为平面或弧面,如图12所示,以第一透射单元和第二透射单元为平面为例,图13本发明实施例中扫描透镜入光面包括多个微透射单元的结构示意图之一,如图13所示,第一透射单元至少在第一方向A具有一定的倾角,当激光束入射至微透射单元的第一透射单元时,入射的激光束根据第一透射单元在第一方向A的倾角对应呈一定角度折射出射,在此基础上,优选的,第一透射单元还可以设置为在第一方向A具有一定的倾角的同时在第二方向B也具有一定的倾角,这样一来,入射第一透 射单元的激光束能够同时沿第一方向A和第二方向B均发生一定角度的折射,两个折射方向叠加后以角度叠加的方向折射出射。同理,图14本发明实施例中扫描透镜入光面包括多个微透射单元的结构示意图之二,如图14所示,第二透射单元至少在第二方向B具有一定的倾角,当激光束入射至微透射单元的第二透射单元时,入射的激光束根据第二透射单元在第二方向B的倾角对应呈一定角度折射出射,优选的,第二透射单元也可以设置为在第二方向B具有一定的倾角的同时在第一方向A也具有一定的倾角,其对于激光束的折射原理与第一透射单元相同,此处不再赘述。
需要说明的是,即使第一透射单元和第二透射单元均在第一方向A和第二方向B上形成有倾角,但通常情况下,二者的倾角不相同,从而实现当扫描透镜20受驱扫描依次经过微透射单元中相互拼接的第一透射单元和第二透射单元时,第一透射单元和第二透射单元能够对激光束进行不同角度和方向的折射出射。
图15本发明实施例中扫描光学装置为扫描反射镜的结构示意图之一,如图15所示,可选地,扫描光学装置为扫描反射镜,扫描反射镜的反射面包括多个微反射单元,微反射单元由第一反射单元和第二反射单元拼接而成,第一反射单元用于将激光束沿第一方向A反射,第二反射单元用于将激光束沿第二方向B反射。
如图15所示,本发明实施例的激光点阵系统在一些特殊应用时,可能存在装置结构的特殊性要求,或者光路方向的限制,使得需要对激光束进行反射以改变光传播方向,示例的,在本方案中,扫描光学装置为扫描反射镜,扫描反射镜的反射面包括多个微反射单元,微反射单元由第一反射单元和第二反射单元拼接而成。以使入射第一反射单元的激光束沿第一方向A呈一定的角度反射出射,入射第二反射单元的激光束沿第二方向B呈一定的角度反射出射。
可选地,图16本发明实施例中扫描光学装置为扫描反射镜的结构示意图之二,如图16所示,第一反射单元和第二反射单元分别为第一棱镜面和第二棱镜面,多个第一棱镜面与主光轴在第一方向A的夹角角度不同,多个第二棱镜面与主光轴在第二方向B的夹角角度不同。
优选的,如图16所示,多个第一棱镜面还可以与主光轴在第二方向B具有一定的夹角,从而使得经过第一棱镜面反射的激光束具有更多元化的反射角度和光斑的排列形式;同理,多个第二棱镜面也可以与主光轴在第一方向A具有一定的夹角,从而使得经过第二棱镜面反射的激光束具有更多元化的反射角度和光斑的排列形式。
可选地,第一反射单元和第二反射单元还可以分别为第一弧面和第二弧面,第一反射单元和第二反射单元分别具有第一方向A和第二方向B的曲率。
当第一反射单元和第二反射单元分别为第一弧面和第二弧面,通过设置第一弧面分别具有第一方向A的曲率和第二方向B的曲率,使得经过第一弧面的激光束能够在第一方向A和第二方向B分别反射一定的角度,形成叠加方向和叠加角度的反射后出射,第二弧面也同理设置。需要说明的是,通常第一弧面和第二弧面在第一方向A和第二方向B的弧度不相同。
可选地,如图8所示,在激光源10与扫描透镜20之间还设置有准直镜组30,准直镜组30包括沿出光方向依次设置的快轴准直镜31和慢轴准直镜32,用于分别对激光源10出射的激光束进行快轴准直和慢轴准直。
如图8所示,在本发明实施例的激光点阵系统中,在激光源10与扫描透镜20之间还设置准直镜组30,用于通过准直镜组30对由激光源10出射的激光束进行准直和整形。其中,快轴准直镜31能够沿快轴方向对激光束进行准直,慢轴准直镜32能够沿慢轴方向对激光束进行准直。由快轴准直镜31和慢轴准直镜32分别通过快轴方向和慢轴方向对激光束进行准直,使得出射光的准直度较好,并进一步优化了在扫描位置形成的光斑图案准确性。
可选地,扫描光学装置(扫描透镜20)设置在固定框内,固定框上分别设置有步进电机(图8中未示出),步进电机的驱动端与扫描透镜20连接,以驱动扫描透镜20沿第一方向A和/或第二方向B移动。
在本发明实施例的激光点阵系统中,通过在固定框上设置可二维工作的步进电机就能够对扫描透镜20在二维空间内的沿第一方向A或者第二方向B的运动进行控制,而且能够使得扫描透镜20同时在第一方向A和第二方向B上均往复运动,增加扫描透镜20运动方式的多样性。若步进电机为一维直线步进工作,则在固定框相邻两侧分别设置第一步进电机和第二步进电机,以使得第一步进电机和第二步进电机的步进方向相互垂直,这样一来,可以分别或者同时控制第一步进电机和第二步进电机的步进工作。
本发明实施例的另一方面,提供一种形成激光点阵的方法,图10为本发明实施例提供的形成激光点阵方法的流程图,如图10所示,包括:
S101、扫描光学装置分别沿相互垂直的第一方向A和第二方向B运动。
S102、激光束经运动的扫描光学装置扫描出射并在扫描位置形成二维激光点阵。
首先,激光源10朝向扫描光学装置(扫描透镜20)的方向发射激光束,扫描透镜20在此过程中受驱在相互垂直且形成一平面的第一方向A和第二方向B往复运动。然后,激光束经过运动的扫描透镜20扫描出射,并在扫描位置形成二维激光点阵。
其中,对于扫描透镜20受驱在相互垂直且形成一平面的第一方向A和第二方向B往 复运动的实现方式和运动轨迹,本发明的方法中不做具体限定,例如,可以在第一方向A和第二方向B形成的平面内做圆周运动,或者在第一方向A和第二方向B形成的平面内做任意不规则的运动均可。
本发明实施例的又一方面,提供一种激光点阵治疗仪,包括前述任一项的激光点阵系统。
本发明实施例的激光点阵系统应用于激光点阵治疗仪时,将激光点阵系统设置于激光点阵治疗仪的壳体内,且将激光点阵系统中扫描位置设置于激光点阵治疗仪的出光范围内,以使得本发明四十里的激光点阵治疗仪在用于手术或美容的治疗过程中,操作者手持激光点阵治疗仪,并根据需要使得激光点阵治疗仪的出光范围内的扫描位置位于患处,启动激光点阵治疗仪的电源使得激光点阵系统中的激光源10启动工作,以在扫描位置形成二维激光点阵。
当然,根据说明书中以上的所有说明可知,本发明实施例中的激光点阵系统还可以应用与医学手术,或者工业检测等领域,本发明实施例中不再一一列举,只要使得在相应领域的具体设备中应用本发明实施例的激光点阵系统时,将激光点阵系统的扫描位置设置于操作位置并启动激光点阵系统的激光源10以及启动扫描透镜20的往复运动即可在操作位置形成做续的二维激光点阵。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (15)

  1. 一种激光点阵系统,其特征在于,包括:激光源以及设置于所述激光源的出光方向的扫描光学装置,所述扫描光学装置受驱可分别沿与所述出光方向垂直的第一方向和第二方向往复运动,以使激光束经过所述扫描光学装置在扫描位置形成二维激光点阵,其中,所述第一方向与所述第二方向垂直。
  2. 如权利要求1所述的激光点阵系统,其特征在于,所述扫描光学装置为扫描透镜,所述扫描透镜的入光面包括沿第一方向平行连续设置的多列第一微扫描单元,所述扫描透镜的出光面包括沿第二方向平行连续设置的多列第二微扫描单元,通过相邻两列所述第一微扫描单元或所述第二微扫描单元的激光束向不同角度出射。
  3. 如权利要求2所述的激光点阵系统,其特征在于,所述第一微扫描单元和/或所述第二微扫描单元为柱面镜或者锯齿棱镜。
  4. 如权利要求3所述的激光点阵系统,其特征在于,所述扫描透镜包括沿所述激光源出光方向依次设置的第一扫描透镜和第二扫描透镜,所述第一微扫描单元设置于所述第一扫描透镜的入光侧或出光侧,所述第二微扫描单元设置于所述第二扫描透镜的出光侧或入光侧,所述第一扫描透镜和所述第二扫描透镜贴合或间隔设置。
  5. 如权利要求2所述的激光点阵系统,其特征在于,通过一列所述第一微扫描单元的激光束向第一方向的同一角度出射,和/或,通过一列所述第二微扫描单元的激光束向在第二方向的同一角度出射。
  6. 如权利要求5所述的激光点阵系统,其特征在于,所述第一微扫描单元在所述扫描透镜上沿第二方向轴对称设置,所述第二微扫描单元在所述扫描透镜上沿第一方向轴对称设置。
  7. 如权利要求3所述的激光点阵系统,其特征在于,所述第一微扫描单元沿第二方向划分有多个子单元,和/或,所述第二微扫描单元沿第一方向划分有多个子单元,所述子单元为柱面单元,所述子单元具有在所述第一方向的曲率和在所述第二方向的曲率。
  8. 如权利要求1所述的激光点阵系统,其特征在于,所述扫描光学装置为扫描透镜,所述扫描透镜的入光面或出光面包括多个微透射单元,所述微透射单元由第一透射单元和第二透射单元拼接而成,所述第一透射单元用于将入射的激光束向第一方向折射后透过,所述第二透射单元用于将入射的激光束向第二方向折射后透过。
  9. 如权利要求1所述的激光点阵系统,其特征在于,所述扫描光学装置为扫描反射镜,所述扫描反射镜的反射面包括多个微反射单元,所述微反射单元由第一反射单元和第二反 射单元拼接而成,所述第一反射单元用于将激光束沿第一方向反射,所述第二反射单元用于将激光束沿第二方向反射。
  10. 如权利要求9所述的激光点阵系统,其特征在于,所述第一反射单元和所述第二反射单元分别为第一棱镜面和第二棱镜面,多个所述第一棱镜面与主光轴在第一方向的夹角角度不同,多个所述第二棱镜面与主光轴在第二方向的夹角角度不同。
  11. 如权利要求9所述的激光点阵系统,其特征在于,所述第一反射单元和所述第二反射单元分别为第一弧面和第二弧面,所述第一反射单元和所述第二反射单元分别具有第一方向和第二方向的曲率。
  12. 如权利要求1所述的激光点阵系统,其特征在于,在所述激光源与所述扫描光学装置之间还设置有准直镜组,所述准直镜组包括沿出光方向依次设置的快轴准直镜和慢轴准直镜,用于分别对所述激光源出射的激光束进行快轴准直和慢轴准直。
  13. 如权利要求1所述的激光点阵系统,其特征在于,所述扫描光学装置设置在固定框内,所述固定框上设置有步进电机,所述步进电机的驱动端与所述扫描光学装置连接,以驱动所述扫描光学装置沿第一方向和/或第二方向移动。
  14. 一种形成激光点阵的方法,其特征在于,包括:
    扫描光学装置分别沿相互垂直的第一方向和第二方向运动;
    激光束经运动的所述扫描光学装置扫描出射并在扫描位置形成二维激光点阵。
  15. 一种激光点阵治疗仪,其特征在于,包括如权利要求1至13任一项的激光点阵系统。
PCT/CN2020/108514 2020-07-31 2020-08-11 一种激光点阵系统及方法、激光点阵治疗仪 WO2022021477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010765086.2A CN111939485B (zh) 2020-07-31 2020-07-31 一种激光点阵系统、激光点阵治疗仪
CN202010765086.2 2020-07-31

Publications (1)

Publication Number Publication Date
WO2022021477A1 true WO2022021477A1 (zh) 2022-02-03

Family

ID=73338659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/108514 WO2022021477A1 (zh) 2020-07-31 2020-08-11 一种激光点阵系统及方法、激光点阵治疗仪

Country Status (2)

Country Link
CN (3) CN114904152A (zh)
WO (1) WO2022021477A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112505983B (zh) * 2020-12-03 2022-04-12 嘉兴驭光光电科技有限公司 用于实现激光点阵的微棱镜光学元件及投射模组
CN113985603B (zh) * 2021-12-22 2022-04-22 苏州旭创科技有限公司 光束扫描系统
CN115268095B (zh) * 2022-09-22 2023-03-14 杭州灵西机器人智能科技有限公司 一种光源光学系统及线激光扫描方法
CN115236853B (zh) * 2022-09-22 2023-08-29 杭州灵西机器人智能科技有限公司 一种线性光源光学系统以及线激光扫描方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776462A (zh) * 2005-12-01 2006-05-24 苏州大学 用于激光二维线性扫描的光学镜头
CN102589476A (zh) * 2012-02-13 2012-07-18 天津大学 高速扫描整体成像三维测量方法
EP2371328B1 (en) * 2010-03-31 2013-10-02 Nidek Co., Ltd Ophthalmic laser treatment apparatus
CN105892044A (zh) * 2016-06-08 2016-08-24 西安炬光科技股份有限公司 一种形成激光点阵的方法及系统
CN110849812A (zh) * 2019-10-16 2020-02-28 东南大学 一种高效率激光超声扫描成像检测和超声数据处理的方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6245494A (ja) * 1985-08-23 1987-02-27 Nec Corp レ−ザビ−ムスポツトの2次元走査装置
DE69232124T2 (de) * 1991-05-14 2002-03-14 Seiko Epson Corp., Tokio/Tokyo Bilderzeugungsgerät
JPH0815167A (ja) * 1994-06-24 1996-01-19 Canon Inc 異物検査装置及びそれを用いた半導体デバイスの製造 方法
KR0144427B1 (ko) * 1994-11-30 1998-10-01 이형도 광 주사장치
US6248988B1 (en) * 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
JP2000346745A (ja) * 1999-06-08 2000-12-15 Mitsubishi Rayon Co Ltd 2次元配列レンズアレイのmtf測定方法及び測定装置
CN2522092Y (zh) * 2001-04-02 2002-11-27 华中科技大学 激光变焦传输点阵扫描装置
JP4365548B2 (ja) * 2001-08-29 2009-11-18 住友大阪セメント株式会社 輝点アレイ発生装置及び監視装置
EP1525972B1 (de) * 2003-10-21 2006-08-02 Leister Process Technologies Verfahren und Vorrichtung zum Erwärmen von Kunststoffen mittels Laserstrahlen
JP4400429B2 (ja) * 2004-11-22 2010-01-20 株式会社デンソー レーザビームスキャナ
CN103412465B (zh) * 2013-07-01 2015-04-15 中国科学院上海光学精密机械研究所 步进扫描投影光刻机的照明系统
CN204650118U (zh) * 2014-09-23 2015-09-16 武阳 一种整行扫描式激光投影显示装置
JP6813769B2 (ja) * 2015-05-29 2021-01-13 ミツミ電機株式会社 光走査制御装置
CN105215546B (zh) * 2015-10-28 2017-05-24 武汉铱科赛科技有限公司 一种激光扫描填充系统及其扫描填充方法
CN105846311B (zh) * 2016-05-23 2019-03-05 华中科技大学 一种半导体激光器
CN108303038B (zh) * 2017-12-21 2020-02-21 天津大学 基于二维光学点阵的反射型面形测量方法和装置
CN209086575U (zh) * 2018-12-06 2019-07-09 上海高意激光技术有限公司 激光准直镜
CN110142405B (zh) * 2019-03-29 2021-06-18 西北大学 二维面阵激光3d金属打印机及其文件转换、打印控制方法
CN109917354B (zh) * 2019-04-26 2020-06-02 上海禾赛光电科技有限公司 激光雷达的接收装置、激光雷达及其回波处理方法
CN110560936B (zh) * 2019-07-26 2022-01-07 青岛理工大学 一种皮革制品阵列透气孔的激光并行加工装置及加工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1776462A (zh) * 2005-12-01 2006-05-24 苏州大学 用于激光二维线性扫描的光学镜头
EP2371328B1 (en) * 2010-03-31 2013-10-02 Nidek Co., Ltd Ophthalmic laser treatment apparatus
CN102589476A (zh) * 2012-02-13 2012-07-18 天津大学 高速扫描整体成像三维测量方法
CN105892044A (zh) * 2016-06-08 2016-08-24 西安炬光科技股份有限公司 一种形成激光点阵的方法及系统
CN110849812A (zh) * 2019-10-16 2020-02-28 东南大学 一种高效率激光超声扫描成像检测和超声数据处理的方法

Also Published As

Publication number Publication date
CN114904152A (zh) 2022-08-16
CN111939485A (zh) 2020-11-17
CN114904151A (zh) 2022-08-16
CN111939485B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
WO2022021477A1 (zh) 一种激光点阵系统及方法、激光点阵治疗仪
US5805748A (en) Laser beam shaping system
US8439901B2 (en) Fractional scanner for dermatological treatments
US7230968B2 (en) Semiconductor laser device and solid-state laser device using same
KR20190034589A (ko) 레이저 라인 조명
US10444521B2 (en) Device for machining material by means of laser radiation
CN114740630B (zh) 一种扫描光学系统及激光应用终端
RU2686384C2 (ru) Устройство для формирования лазерного излучения
WO2020114229A1 (zh) 激光雷达光学系统及扫描方法
JP2011520292A (ja) 高輝度ダイオード出力の方法及びデバイス
JP2023524372A (ja) 光学モジュール及び医用レーザ装置
WO2015134931A1 (en) High brightness multijunction diode stacking
CN113258415B (zh) 一种脉冲激光光谱时序合成系统及方法
CN112475638B (zh) 一种基于轴锥透镜的激光微孔加工系统和方法
JP5785248B2 (ja) レーザスキャニングシステム、ヘアカッティング装置、及びその方法
CN110824698A (zh) 光学模组和激光模块
CN113126061A (zh) 一种激光雷达及其扫描方法
JP5921343B2 (ja) レーザ照射装置
US11899136B2 (en) Increasing VCSEL projector spatial resolution
CN107402450B (zh) 一种三维阶梯棱镜光束压缩装置
CN105892044B (zh) 一种形成激光点阵的方法及系统
CN211426929U (zh) 光学模组和激光模块
CN112558315B (zh) 一种多路分光系统
CN219677761U (zh) 一种激光设备
CN117553908A (zh) 一种线光斑光学扫描模组、装置和激光探测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947681

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947681

Country of ref document: EP

Kind code of ref document: A1