WO2022021270A1 - 一种波束管理方法、波束管理装置及存储介质 - Google Patents

一种波束管理方法、波束管理装置及存储介质 Download PDF

Info

Publication number
WO2022021270A1
WO2022021270A1 PCT/CN2020/106070 CN2020106070W WO2022021270A1 WO 2022021270 A1 WO2022021270 A1 WO 2022021270A1 CN 2020106070 W CN2020106070 W CN 2020106070W WO 2022021270 A1 WO2022021270 A1 WO 2022021270A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
beam management
flight
time
flight time
Prior art date
Application number
PCT/CN2020/106070
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202211446922.6A priority Critical patent/CN116017681A/zh
Priority to EP20947780.1A priority patent/EP4192141A4/en
Priority to US18/003,037 priority patent/US20230246683A1/en
Priority to PCT/CN2020/106070 priority patent/WO2022021270A1/zh
Priority to CN202080001800.9A priority patent/CN112020885B/zh
Priority to BR112022026987A priority patent/BR112022026987A2/pt
Priority to JP2022581668A priority patent/JP7546083B2/ja
Priority to KR1020237001952A priority patent/KR20230025884A/ko
Publication of WO2022021270A1 publication Critical patent/WO2022021270A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0257Hybrid positioning
    • G01S5/0268Hybrid positioning by deriving positions from different combinations of signals or of estimated positions in a single positioning system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/086Weighted combining using weights depending on external parameters, e.g. direction of arrival [DOA], predetermined weights or beamforming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0251Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity
    • H04W52/0254Power saving arrangements in terminal devices using monitoring of local events, e.g. events related to user activity detecting a user operation or a tactile contact or a motion of the device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a beam management method, a beam management device, and a storage medium.
  • the positioning measurement for the terminal in the connected (connected) state is discussed, and the reference signals for positioning purposes are defined, including the downlink positioning reference signal (Positioning Reference Signal, PRS) and uplink sounding reference signal (Sounding Reference Signal, SRS) used for positioning.
  • PRS Positioning Reference Signal
  • SRS Sounding Reference Signal
  • the line of sight (LOS) diameter is very important, and the measurement of the LOS diameter can effectively improve the positioning accuracy. Regardless of whether the signal strength value, time value or angle value is measured, to achieve the highest positioning accuracy, it is necessary to measure the LOS diameter. But in fact, LOS trails are not necessarily all. Therefore, in the positioning discussion of Rel-16, I hope to find the first arrival path as much as possible, that is, the earliest arriving path.
  • the present disclosure provides a beam management method, a beam management device and a storage medium.
  • a beam management method is provided, applied to a first device, including:
  • Receive reference signal configuration information measure the reference signal based on the reference signal configuration information and feed back a measurement result, where the measurement result includes first path-of-arrival information of the beam corresponding to the reference signal.
  • the first path of arrival information indicates that the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information indicates that the beam corresponding to the reference signal is not the first path of arrival.
  • the first path of arrival information includes time-of-flight information of the reference signal.
  • the flight time information includes sorting information in which multiple arrival paths are sorted in order according to the flight time.
  • the time-of-flight information includes a time-of-flight value.
  • the time-of-flight value includes an absolute value of the time-of-flight, and/or a relative value of the time-of-flight relative to the absolute value of the flight time.
  • the time-of-flight value includes a specified value, and/or a relative value to the specified value.
  • the absolute value or specified value of the flight time corresponds to the reference signal with the shortest flight time.
  • the flight time includes one-way flight time or two-way flight time.
  • the measurement result further includes a reference signal identifier.
  • the reference signal identifier is determined based on a signal strength value and/or a time of flight.
  • the reference signal identifier corresponds to one or more reference signals with the strongest signal strength value among the measured signal strength values, and/or the reference signal identifier corresponds to the shortest flight time among the measured flight times. and/or the reference signal identifies one or more reference signals corresponding to the maximum weighted sum between the measured signal strength value and the time of flight.
  • a beam management method is provided, applied to a second device, including:
  • the first path of arrival information indicates that the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information indicates that the beam corresponding to the reference signal is not the first path of arrival.
  • the first path of arrival information includes time-of-flight information of the reference signal.
  • the flight time information includes sorting information in which multiple arrival paths are sorted in order according to the flight time.
  • the time-of-flight information includes a time-of-flight value.
  • the time-of-flight value includes an absolute value of the time-of-flight, and/or a relative value of the time-of-flight relative to the absolute value of the flight time.
  • the time-of-flight value includes a specified value, and/or a relative value to the specified value.
  • the absolute value or specified value of the flight time corresponds to the reference signal with the shortest flight time.
  • the flight time includes one-way flight time or two-way flight time.
  • the measurement result further includes a reference signal identifier.
  • the reference signal identifier is determined based on a signal strength value and/or a time of flight.
  • the reference signal identifier corresponds to one or more reference signals with the strongest signal strength value among the measured signal strength values, and/or the reference signal identifier corresponds to the shortest flight time among the measured flight times. and/or the reference signal identifies one or more reference signals corresponding to the maximum weighted sum between the measured signal strength value and the time of flight.
  • a beam management apparatus applied to a first device, including:
  • a receiving unit for receiving reference signal configuration information; a measuring unit for measuring reference signals based on the reference signal configuration information; a sending unit for feeding back measurement results, where the measurement results include the beams corresponding to the reference signals information of the first arrival path.
  • the first path of arrival information indicates that the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information indicates that the beam corresponding to the reference signal is not the first path of arrival.
  • the first path of arrival information includes time-of-flight information of the reference signal.
  • the flight time information includes sorting information in which multiple arrival paths are sorted in order according to the flight time.
  • the time-of-flight information includes a time-of-flight value.
  • the time-of-flight value includes an absolute value of the time-of-flight, and/or a relative value of the time-of-flight relative to the absolute value of the flight time.
  • the time-of-flight value includes a specified value, and/or a relative value to the specified value.
  • the absolute value or specified value of the flight time corresponds to the reference signal with the shortest flight time.
  • the flight time includes one-way flight time or two-way flight time.
  • the measurement result further includes a reference signal identifier.
  • the reference signal identifier is determined based on a signal strength value and/or a time of flight.
  • the reference signal identifier corresponds to one or more reference signals with the strongest signal strength value among the measured signal strength values, and/or the reference signal identifier corresponds to the shortest flight time among the measured flight times. and/or the reference signal identifies one or more reference signals corresponding to the maximum weighted sum between the measured signal strength value and the time of flight.
  • a beam management apparatus which is applied to a second device, including:
  • a sending unit configured to send reference signal configuration information
  • a receiving unit configured to receive a measurement result that the first device measures and feeds back the reference signal based on the reference signal configuration information, where the measurement result includes the beam corresponding to the reference signal information of the first arrival path.
  • the first path of arrival information indicates that the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information indicates that the beam corresponding to the reference signal is not the first path of arrival.
  • the first path of arrival information includes time-of-flight information of the reference signal.
  • the flight time information includes sorting information in which multiple arrival paths are sorted in order according to the flight time.
  • the time-of-flight information includes a time-of-flight value.
  • the time-of-flight value includes an absolute value of the time-of-flight, and/or a relative value of the time-of-flight relative to the absolute value of the flight time.
  • the time-of-flight value includes a specified value, and/or a relative value to the specified value.
  • the absolute value or specified value of the flight time corresponds to the reference signal with the shortest flight time.
  • the flight time includes one-way flight time or two-way flight time.
  • the measurement result further includes a reference signal identifier.
  • the reference signal identifier is determined based on a signal strength value and/or a time of flight.
  • the reference signal identifier corresponds to one or more reference signals with the strongest signal strength value among the measured signal strength values, and/or the reference signal identifier corresponds to the shortest flight time among the measured flight times. and/or the reference signal identifies one or more reference signals corresponding to the maximum weighted sum between the measured signal strength value and the time of flight.
  • a beam management apparatus including:
  • processor ; memory for storing processor-executable instructions;
  • the processor is configured to: execute the first aspect or the beam management method described in any implementation manner of the first aspect.
  • a beam management apparatus including:
  • processor ; memory for storing processor-executable instructions;
  • the processor is configured to: execute the second aspect or the beam management method described in any implementation manner of the second aspect.
  • a non-transitory computer-readable storage medium when an instruction in the storage medium is executed by a processor of a first device, the first device can execute the first aspect or the first On the one hand, the beam management method described in any one of the embodiments.
  • a non-transitory computer-readable storage medium when an instruction in the storage medium is executed by a processor of a second device, the second device can execute the second aspect or the first In the second aspect, the beam management method described in any one of the implementation manners.
  • the measurement result of measuring the reference signal and feeding back includes the first arrival path information of the beam corresponding to the reference signal, and the first arrival path may be used to determine the first arrival path It is convenient to determine the first arrival path as soon as possible, reduce the power consumption of the terminal, reduce the positioning delay and improve the positioning accuracy.
  • Fig. 1 is a flowchart showing a beam management method according to an exemplary embodiment.
  • Fig. 2 is a flow chart of a beam management method according to an exemplary embodiment.
  • FIG. 3 is a schematic diagram of a synchronous clock and an absolute clock according to an exemplary embodiment.
  • Fig. 4 is a block diagram of a beam management apparatus according to an exemplary embodiment.
  • Fig. 5 is a block diagram of a beam management apparatus according to an exemplary embodiment.
  • Fig. 6 is a block diagram of an apparatus for beam management according to an exemplary embodiment.
  • Fig. 7 is a block diagram of an apparatus for beam management according to an exemplary embodiment.
  • the terminal communicates with wireless network equipment such as wireless access equipment and core network equipment based on a cellular network, and can implement a positioning measurement function.
  • wireless network equipment such as wireless access equipment and core network equipment based on a cellular network
  • the reference signals used for positioning may include, for example, PRS for downlink positioning and SRS for uplink positioning.
  • the positioning measurement includes terminal measurement and wireless network device measurement, and the measurement value includes signal strength measurement value, signal transmission time value, and channel arrival or departure angle value.
  • the measurement value of the LOS diameter can effectively improve the positioning accuracy, so it is necessary to measure the LOS diameter in order to achieve the highest positioning accuracy when measuring the signal strength value, time value or angle value.
  • LOS trails are not necessarily all.
  • the earliest arriving path is the closest to the LOS path or is the LOS. Therefore, in the positioning discussion of Rel-16, it is hoped that the first arrival path can be determined as much as possible, that is, the earliest arrival path, also called the first arrival path.
  • the base station needs to use each transmission beam (Tx beam) to send the positioning reference signal, and for each base station Tx beam sent For the positioning reference signal, the terminal needs to use each of its own receiving beams (Rx beam) to receive the positioning reference information sent by the Tx beam, so as to finally obtain the first path of arrival. Therefore, in the worst case, the number of reference signals to be measured for determining the first arrival path is the product of the Tx beam number of the base station and the Rx beam number of the terminal.
  • the number of reference signals to be measured for determining the first arrival path is the product of the Tx beam number of the terminal and the Rx beam number of the base station.
  • the more reference signals that need to be measured the more energy the terminal consumes, the longer the time required for positioning measurement, the greater the positioning delay and the worse the positioning accuracy.
  • the Tx beam and Rx beam corresponding to the first arrival path can be determined during beam management in the early stage, so that the measurement time can be reduced during measurement. number of reference signals.
  • the measurement of beam management in Rel-16 only includes the measurement of the signal strength of the beam, and the signal strength includes the reference signal received power of Layer 1 (Layer1-Reference Signal Received Power, L1-RSRP)/The received signal strength of Layer 1 Indication (Layer1-Received Signal Strength Indication, L1-RSSI).
  • the result of the measurement report includes the reference signal ID and L1-RSRP/L1-RSSI.
  • the first arrival path can be determined based on the first arrival path information (such as the signal flight time), but the measurement and reporting of the existing beam management do not include the flight time of the signal on each path, so the first arrival path cannot be found in advance.
  • the arrival path is used for the transmission of positioning reference signals, which leads to the need to send and measure a large number of positioning reference signals to find the first arrival path, thereby increasing the power consumption of the terminal, prolonging the positioning measurement time, and reducing the positioning accuracy.
  • an embodiment of the present disclosure provides a beam management method.
  • the reference signal measurement is performed and the feedback measurement result includes the first path of arrival information of the beam corresponding to the reference signal, and the subsequent path of arrival information is based on the first path of arrival information. Determining the first arrival path facilitates the determination of the first arrival path as soon as possible, reduces the power consumption of the terminal, reduces the positioning delay and improves the positioning accuracy.
  • the first path of arrival information represents whether the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information includes flight time information of the reference signal.
  • the base station when performing reference signal measurement, not only the signal strength of the feedback reference signal, but also the flight time of the feedback reference signal is measured. Therefore, the base station can configure a reference signal for positioning measurement according to the signal strength and flight time, for example, configure a positioning reference signal with a short flight time as much as possible. Therefore, the terminal can find the first arrival path as soon as possible when performing the positioning measurement, thereby reducing the energy consumption of the terminal, and at the same time reducing the positioning delay and improving the positioning accuracy.
  • the beam measurement method provided by the embodiments of the present disclosure can be applied between devices that perform beam management and perform reference signal transmission interaction.
  • it may be between a network device such as a base station and a terminal.
  • a network device such as a base station and a terminal.
  • a device that receives and measures reference signals and feeds back measurement results is referred to as a first device, such as a terminal, and a device that sends reference signals and configures reference signals is referred to as a second device, such as a base station and other network equipment.
  • the first device involved in the present disclosure may be a terminal.
  • a terminal may also be referred to as terminal equipment, user equipment (User Equipment, UE), mobile station (Mobile Station, MS), mobile terminal (Mobile Terminal, MT), etc. It is a device that provides voice and/or data connectivity to users.
  • the device for example, the terminal may be a handheld device with a wireless connection function, a vehicle-mounted device, an Internet of Things (Internet of Things, IoT) device, an Industrial Internet of Things (IIoT) device, and the like.
  • IoT Internet of Things
  • IIoT Industrial Internet of Things
  • some examples of terminals are: Smartphone (Mobile Phone), Pocket Personal Computer (PPC), PDA, Personal Digital Assistant (PDA), notebook computer, tablet computer, wearable device, or Vehicle equipment, etc.
  • the first device when it is a vehicle networking (V2X) communication system, the first device may also be an in-vehicle device. It should be understood that the embodiments of the present disclosure do not limit the specific technology and
  • the second device includes a wireless network device that communicates based on a cellular network, for example, may include a radio access network device such as a base station, or a core network device such as a location management function (LMF).
  • a radio access network device such as a base station
  • a core network device such as a location management function (LMF).
  • LMF location management function
  • the wireless access network equipment involved in the present disclosure may be: a base station, an evolved node B (evolved node B, base station), a home base station, an access point (access point) in a wireless fidelity (wireless fidelity, WIFI) system , AP), wireless relay node, wireless backhaul node, transmission point (TP) or transmission and reception point (TRP), etc., it can also be a gNB in the NR system, or it can also be a A component or part of equipment that constitutes a base station, etc.
  • the second device may also be a terminal, such as a vehicle-mounted device.
  • the second device may also be a wireless local area network device that communicates based on WLAN, a Bluetooth device that communicates based on Bluetooth (Bluetooth), or a UWB device that communicates based on Ultra Wide Band (UWB). equipment.
  • the second type of positioning node may also be a sensor that communicates based on one or more wireless communication technologies among WLAN, Bluetooth and UWB. It should be understood that, in the embodiments of the present disclosure, the specific technology and specific device form adopted by the second device are not limited.
  • Fig. 1 is a flowchart of a beam management method according to an exemplary embodiment. As shown in Fig. 1 , the beam management method is used in a first device and includes the following steps.
  • step S11 reference signal configuration information is received.
  • step S12 the reference signal is measured based on the reference signal configuration information, and the measurement result is fed back, where the measurement result includes first path-of-arrival information of the beam corresponding to the reference signal.
  • the reference signal configuration information may be sent by the second device and received by the first device.
  • Fig. 2 is a flowchart of a beam management method according to an exemplary embodiment. As shown in Fig. 2 , the beam management method is used in a second device and includes the following steps.
  • step S21 reference signal configuration information is sent.
  • step S22 a measurement result obtained by the first device measuring and feeding back the reference signal based on the reference signal configuration information is received, where the measurement result includes first path-of-arrival information of the beam corresponding to the reference signal.
  • the second device sends reference signal configuration information
  • the first device receives the reference signal configuration information to measure the reference signal and feed back a measurement result, where the measurement result includes first path-of-arrival information of the beam corresponding to the reference signal.
  • the second device receives the measurement result that the first device measures and feeds back the reference signal based on the reference signal configuration information.
  • the reference signal for positioning measurement for example, try to configure a positioning reference signal with a short flight time. Therefore, the first device can find the first arrival path as soon as possible during the positioning measurement process, reduce the energy consumption of the terminal, and also reduce the positioning delay and improve the positioning accuracy.
  • Embodiments of the present disclosure The beam management methods involved in the embodiments of the present disclosure will be described below in combination with practical applications.
  • the reference signal configuration information sent by the second device may include, for example, a reference signal identifier (ID), a time domain location, a frequency domain location, etc., and may also include a reference signal Purpose (eg for beam management), and whether repeat transmission is enabled (repetition on or off). Where repetition is on, it indicates that the second device is repeatedly sending multiple reference signals with the same Tx beam, that is, the Tx beams of the multiple reference signals are the same. In this case, the first device can use its own different Rx beams to receive the multiple reference signals, and find out its own best Rx beam.
  • the reference signal configuration information may further include a transmission reception point (Transmission Reception Point, TRP) ID or a cell ID corresponding to the reference signal, and the cell ID may be a serving cell ID or a neighbor cell ID of the first device.
  • the reference signal identifier may be a synchronization signal block (Synchronization Signal Block, SSB) identifier, a channel state information reference signal (Channel-state information RS, CSI-RS) identifier, a PRS identifier or an SRS identifier.
  • the first device receives the reference signal configuration information to measure the beam corresponding to the reference signal.
  • the measurement of the beam corresponding to the reference signal by the first device includes determining first path-of-arrival information corresponding to the beam.
  • the first path of arrival information may represent whether the beam corresponding to the reference signal is the first path of arrival.
  • the first path of arrival information indicates that the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information indicates that the beam corresponding to the reference signal is not the first path of arrival.
  • the first path of arrival information may be embodied as yes or no, that is, the reference signal identifies whether the corresponding beam is the first path of arrival, and the feedback information indicates yes or no.
  • the first path of arrival information may include time-of-flight information of the reference signal.
  • the reference signal measurement performed by the embodiment of the present disclosure may include measuring the time-of-flight of each reference signal.
  • the flight time information in the embodiment of the present disclosure includes sorting information in which multiple arrival paths are sequenced according to the flight time.
  • the first arrival path information is embodied in the order of flight times from small to large.
  • the shortest flight time is the first arrival path (take 2 bits as an example, for example, marked with 00)
  • the second shortest is the second arrival path (for example, marked with 01)
  • the third shortest is the third arrival path (for example, marked with 11). )
  • the time-of-flight information in the embodiment of the present disclosure includes a time-of-flight value, that is, the first arrival path information is embodied as a time-of-flight value.
  • the time-of-flight value includes an absolute value of the time-of-flight, and/or a relative value of the time-of-flight relative to the absolute value of the flight time.
  • the absolute value of the flight time corresponds to the reference signal with the shortest flight time.
  • the first arrival path information corresponding to the shortest flight time value is indicated as the absolute value of the shortest flight time
  • the first arrival path information corresponding to other flight time values is indicated as a relative value relative to the absolute value of the shortest flight time.
  • the time-of-flight value includes a specified value, and/or a relative value to the specified value.
  • the specified value corresponds to the reference signal with the shortest flight time.
  • the first arrival path information indication corresponding to the shortest flight time value is 0, and the first arrival path information indication corresponding to other flight time values is a relative value with respect to 0.
  • the measurement of the beams corresponding to the reference signals in this embodiment of the present disclosure includes measuring the signal strength of each reference signal.
  • the first device measures the signal strength and time-of-flight of each reference signal, and the first device stores the following one-to-one correspondence of reference signal identifiers, receive beams, signal strength values, and time-of-flight elements.
  • the correspondence between the reference signal identifier, the receiving beam, the signal strength value, and the flight time may be as shown in Table 1 below.
  • the measurement result fed back by the first device may further include a reference signal identifier.
  • the reference signal identifier may be a synchronization signal block (Synchronization Signal Block, SSB) identifier, a channel state information reference signal (Channel-state information RS, CSI-RS) identifier, or a PRS identifier or an SRS identifier.
  • SSB Synchronization Signal Block
  • Channel-state information RS Channel state information reference signal
  • PRS identifier PRS identifier or an SRS identifier.
  • the measurement result fed back by the first device may further include a transmission reception point (Transmission Reception Point, TRP) identifier and/or a cell identifier.
  • TRP Transmission Reception Point
  • the cell identifier may be the serving cell identifier or the neighbor cell identifier.
  • reference signal identifier may also have a corresponding relationship with the signal strength.
  • the first device may feed back a set number of reference signal identifiers with the strongest signal strength, and/or feed back a set number of reference signal identifiers with the shortest signal flight time.
  • the first device feeds back N (N is a natural number, for example, N is 1, 2 or 4) reference signal identifiers and signal strength values with the strongest signal strength.
  • N is 1, the feedback measurement result includes the identifier of the reference signal with the strongest signal strength and the corresponding signal strength value, and the signal strength value may be the absolute value of the signal strength value corresponding to the reference signal with the strongest signal strength.
  • N is greater than 1, the feedback measurement result includes the identifier of the reference signal with the strongest signal strength and the absolute value of the corresponding signal strength value, and other signals whose signal strength values are relative to the absolute value of the signal strength with the strongest signal strength value. Intensity relative value.
  • the measurement result fed back by the first device further includes the flight time.
  • the reference signal identification included in the measurement is determined based on the signal strength value and/or the time of flight. It can also be understood that there is a corresponding relationship between the signal strength value, the flight time and the reference signal identifier.
  • the reference signal identifier corresponds to the reference signal with the strongest signal strength value among the measured signal strength values, that is, the measurement result may include the reference signal identifiers, signal strength values, signal strength values, and N reference signals with the strongest signal strength values. flight time value.
  • the reference signal identifier corresponds to one or more reference signals with the shortest flight time among the measured flight times, that is, the measurement result may include the reference signal identifiers and signal strength values of the N reference signals with the shortest flight time. , the flight time value.
  • the reference signal identifies one or more reference signals corresponding to the maximum weighted sum between the measured signal strength value and the time-of-flight.
  • the signal strength and the flight time are respectively multiplied by a weighted value to obtain a weighted sum, and the reference signal identifiers, signal strength values, and flight time values of the N reference signals with the largest weighted sum are fed back.
  • N mentioned above is a positive integer greater than or equal to 1.
  • one or more arrival paths may be measured. If the first device can distinguish the arrival times between multiple paths, then the first A device can measure multiple time-of-flight values.
  • the first device when the first device measures the multipath, it uses the first arrival path in the multipath.
  • One path is the main one.
  • the first arrival path information represents the sorting information of the time of flight, when the multipath is measured, the first path in the multipath is dominant.
  • the first device may feed back the time-of-flight value and signal strength value of multiple paths, or feed back the time-of-flight value and signal strength value of one path, or The values of multiple diameters are weighted and averaged and then fed back.
  • the flight time fed back by the first device to the second device may be a one-way flight time, a two-way flight time, or a one-way flight time and a two-way flight time.
  • the flight time includes one-way flight time. Assuming that the time when the second device sends the reference signal is T1, and the time when the first device receives the reference signal is T2, then the flight time is T2-T1.
  • T1 there may be various ways of defining T1 in the embodiments of the present disclosure. In one way, it is defined based on synchronous clocks.
  • the first device and the second device are synchronous systems, and the synchronous clocks of the two devices are shown in FIG. 3 .
  • the concept of downlink synchronization is that the base station sends the reference signal at the starting position of slot#0, and the terminal receives the reference signal at the starting position of slot#0, then the slot#0 on the terminal side
  • the difference between the starting position of and the starting position of slot #0 on the base station side is the transmission time of the reference signal.
  • T2-T1 is 0. If not, T2-T1 may be a positive value, and May be negative. Therefore, the definition of T1 here is that after the first device is synchronized with the second device (mainly downlink synchronization, that is, the first device performs synchronization according to the reference signal sent by the second device), the first device considers that the second device sends the reference signal. Time, which is the time displayed by the synchronized clock.
  • T1 may be defined based on an absolute clock.
  • the time of the absolute clock of the second device at time T1 (see Figure 3), the time of the absolute clock of the first device is exactly the same as the time of the absolute clock of the second device, so the second device is required to convert the time of the clock at the time of T1.
  • the time is notified to the first device (it may be a displayed notification, such as sending time information; or it may be implicit, such as different reference signal IDs/frequency domains/sequences represent different times).
  • the time of the clock when the first device receives the reference signal and the time of the clock at time T1 are the one-way flight time.
  • T1 may be another reference time.
  • T1 is the time when the first device receives the reference signal sent by the third device, then the time when the first device receives the reference signal from the second device is T2, so that The output T2-T1 means that the first device receives the time difference between the reference signal from the second device and the reference signal from the third device.
  • the second device sends the reference signal and the first device measures the time as an example for description, but in the actual execution process, the first device can also send the reference signal and the second device measures the time. If necessary, the result of measuring the time also needs to be sent to the other party.
  • the definition of T1 is different, and the meaning of the corresponding time-of-flight value will be different. Therefore, the time-of-flight value involved in the embodiments of the present disclosure may be a general time measurement value. In some cases, the time measurement value is the flight time, and in some cases, the time measurement value is the received time difference value.
  • the flight time includes two-way flight time. For example, the time when the second device sends the first reference signal is T1, the time when the first device receives the first reference signal is T2, the time when the first device sends the second reference signal is T3, and the time when the second device receives the second reference signal is T3. The time is T4, then the two-way flight time is T4-T1-(T3-T2).
  • the first device needs to send the value of T3-T2 to the second device.
  • the two-way flight time may be measured by the first device, may also be measured by the second device, or may be measured by both. If necessary, the result of measuring the time also needs to be sent to the other party.
  • the beam management method provided by the embodiment of the present disclosure is used for positioning, and mainly includes that in beam measurement and feedback, in addition to feeding back a reference signal ID and signal strength, a time-of-flight measurement value is also fed back.
  • the configuration of the reference signal for positioning purposes so that the first arrival path can be found as soon as possible when the first device is positioned and measured, thereby reducing the positioning delay and improving the positioning accuracy.
  • the beam management method provided by the embodiments of the present disclosure can be applied to the implementation process of the interaction between the first device and the second device.
  • the implementation process of the beam management method implemented by the interaction between the first device and the second device reference may be made to the relevant descriptions of the foregoing embodiments, and details are not described herein again.
  • an embodiment of the present disclosure also provides a beam management apparatus.
  • the beam management apparatus includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present disclosure can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered beyond the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 4 is a block diagram of a beam management apparatus according to an exemplary embodiment. 4 , the beam management apparatus 100 is applied to the first device, and includes a receiving unit 101 , a measuring unit 102 and a sending unit 103 .
  • the receiving unit 101 is configured to receive reference signal configuration information.
  • the measuring unit 102 is configured to measure the reference signal based on the reference signal configuration information.
  • the sending unit 103 is configured to feed back a measurement result, where the measurement result includes first path-of-arrival information of the beam corresponding to the reference signal.
  • the first path of arrival information indicates that the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information indicates that the beam corresponding to the reference signal is not the first path of arrival.
  • the first path of arrival information includes time-of-flight information of the reference signal.
  • the flight time information includes sorting information in which multiple arrival paths are sequenced according to the flight time.
  • the time-of-flight information includes a time-of-flight value.
  • the time-of-flight value includes an absolute value of the time-of-flight, and/or a relative value of the time-of-flight relative to the absolute value of the flight time.
  • the time-of-flight value includes a specified value, and/or a relative value to the specified value.
  • the absolute value or specified value of the flight time corresponds to the reference signal with the shortest flight time.
  • the flight time includes one-way flight time or two-way flight time.
  • the measurement result further includes a reference signal identifier.
  • the reference signal identification is determined based on the signal strength value and/or the time of flight.
  • the reference signal identifier corresponds to one or more reference signals with the strongest signal strength value among the measured signal strength values, and/or the reference signal identifier corresponds to one or more reference signals with the shortest flight time among the measured flight times. a reference signal. And/or the reference signal identifies one or more reference signals corresponding to the maximum weighted sum between the measured signal strength values and the time of flight.
  • Fig. 5 is a block diagram of a beam management apparatus according to an exemplary embodiment.
  • the beam management apparatus 200 is applied to the second device, and includes a sending unit 201 and a receiving unit 202 .
  • the sending unit 201 is configured to send reference signal configuration information.
  • the receiving unit 202 is configured to receive a measurement result that the first device measures and feeds back the reference signal based on the reference signal configuration information, where the measurement result includes first path-of-arrival information of the beam corresponding to the reference signal.
  • the first path of arrival information indicates that the beam corresponding to the reference signal is the first path of arrival, or the first path of arrival information indicates that the beam corresponding to the reference signal is not the first path of arrival.
  • the first path of arrival information includes time-of-flight information of the reference signal.
  • the flight time information includes sorting information in which multiple arrival paths are sequenced according to the flight time.
  • the time-of-flight information includes a time-of-flight value.
  • the time-of-flight value includes an absolute value of the time-of-flight, and/or a relative value of the time-of-flight relative to the absolute value of the flight time.
  • the time-of-flight value includes a specified value, and/or a relative value to the specified value.
  • the absolute value or specified value of the flight time corresponds to the reference signal with the shortest flight time.
  • the flight time includes one-way flight time or two-way flight time.
  • the measurement result further includes a reference signal identifier.
  • the reference signal identification is determined based on the signal strength value and/or the time of flight.
  • the reference signal identifier corresponds to one or more reference signals with the strongest signal strength value among the measured signal strength values, and/or the reference signal identifier corresponds to one or more reference signals with the shortest flight time among the measured flight times. a reference signal. And/or the reference signal identifies one or more reference signals corresponding to the maximum weighted sum between the measured signal strength value and the time of flight.
  • FIG. 6 is a block diagram of an apparatus 300 for beam management according to an exemplary embodiment.
  • apparatus 300 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the apparatus 300 may include one or more of the following components: a processing component 302, a memory 304, a power component 306, a multimedia component 308, an audio component 310, an input/output (I/O) interface 312, a sensor component 314, and communication component 316 .
  • the processing component 302 generally controls the overall operation of the device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to perform all or some of the steps of the methods described above. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • Memory 304 is configured to store various types of data to support operations at device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, and the like. Memory 304 may be implemented by any type of volatile or non-volatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to device 300 .
  • Multimedia component 308 includes screens that provide an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front-facing camera and/or a rear-facing camera. When the apparatus 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 310 is configured to output and/or input audio signals.
  • audio component 310 includes a microphone (MIC) that is configured to receive external audio signals when device 300 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signal may be further stored in memory 304 or transmitted via communication component 316 .
  • audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing status assessment of various aspects of device 300 .
  • the sensor assembly 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor assembly 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the orientation or acceleration/deceleration of the device 300 and the temperature change of the device 300 .
  • Sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 316 is configured to facilitate wired or wireless communication between apparatus 300 and other devices.
  • Device 300 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 304 including instructions, executable by the processor 320 of the apparatus 300 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • FIG. 7 is a block diagram of an apparatus 400 for beam management according to an exemplary embodiment.
  • the apparatus 400 may be provided as a network device such as a base station or the like.
  • apparatus 400 includes a processing component 422, which further includes one or more processors, and a memory resource, represented by memory 432, for storing instructions executable by the processing component 422, such as an application program.
  • An application program stored in memory 432 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above-described methods.
  • Device 400 may also include a power supply assembly 426 configured to perform power management of device 400 , a wired or wireless network interface 450 configured to connect device 400 to a network, and an input output (I/O) interface 458 .
  • Device 400 may operate based on an operating system stored in memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a non-transitory computer-readable storage medium including instructions such as a memory 432 including instructions, executable by the processing component 422 of the apparatus 400 to perform the method described above is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are only used to distinguish the same type of information from one another, and do not imply a particular order or level of importance. In fact, the expressions “first”, “second” etc. are used completely interchangeably.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information, without departing from the scope of the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

本公开是关于一种波束管理方法、波束管理装置及存储介质。波束管理方法应用于第一设备,包括:接收参考信号配置信息;基于所述参考信号配置信息对参考信号进行测量并反馈测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。本公开便于定位测量过程中尽快确定出第一到达径,减少终端功耗,也能减少定位时延并提高定位精度。

Description

一种波束管理方法、波束管理装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种波束管理方法、波束管理装置及存储介质。
背景技术
相关技术中,在新无线(New Radio,NR)Rel-16中,讨论了针对连接(connected)状态下的终端的定位测量,定义了定位用途参考信号,包括下行定位参考信号(Positioning Reference Signal,PRS)和上行用于定位的探测参考信号(Sounding Reference Signal,SRS)。对于定位来说,视线(line of sight,LOS)径是非常重要的,LOS径的测量值能够有效提高定位精度。不管测量的是信号强度值、时间值还是角度值,要达到最高定位精度,都需要进行LOS径的测量。但事实上,LOS径不一定都有。所以在Rel-16的定位讨论中,希望尽量能找到first arrival path,即最早到达的路径。
相关技术中,为了找到first arrival path,需要发送大量的定位用途参考信号进行定位测量,然而需要测量的参考信号数目越多,终端越耗能,定位测量需要的时间越长,从而定位时延越大,定位精度越差。
发明内容
为克服相关技术中存在的问题,本公开提供一种波束管理方法、波束管理装置及存储介质。
根据本公开实施例第一方面,提供一种波束管理方法,应用于第一设备,包括:
接收参考信号配置信息;基于所述参考信号配置信息对参考信号进行测量并反馈测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
一种实施方式中,所述第一到达径信息表征所述参考信号对应波束为第一到达径,或者所述第一到达径信息表征所述参考信号对应波束为非第一到达径。
一种实施方式中,所述第一到达径信息中包括有参考信号的飞行时间信息。
一种实施方式中,所述飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
一种实施方式中,所述飞行时间信息包括飞行时间值。
一种实施方式中,所述飞行时间值包括飞行时间绝对值,和/或相对所述飞行时间绝对值的飞行时间相对值。
一种实施方式中,所述飞行时间值包括指定数值,和/或相对所述指定数值的相对数值。
一种实施方式中,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
一种实施方式中,所述飞行时间包括单向飞行时间或双向飞行时间。
一种实施方式中,所述测量结果中还包括参考信号标识。
一种实施方式中,所述参考信号标识基于信号强度值和/或飞行时间确定。
一种实施方式中,所述参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或所述参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号;和/或所述参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。
根据本公开实施例第二方面,提供一种波束管理方法,应用于第二设备,包括:
发送参考信号配置信息;接收第一设备基于所述参考信号配置信息对参考信号进行测量并反馈的测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
一种实施方式中,所述第一到达径信息表征所述参考信号对应波束为第一到达径,或者所述第一到达径信息表征所述参考信号对应波束为非第一到达径。
一种实施方式中,所述第一到达径信息中包括有参考信号的飞行时间信息。
一种实施方式中,所述飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
一种实施方式中,所述飞行时间信息包括飞行时间值。
一种实施方式中,所述飞行时间值包括飞行时间绝对值,和/或相对所述飞行时间绝对值的飞行时间相对值。
一种实施方式中,所述飞行时间值包括指定数值,和/或相对所述指定数值的相对数值。
一种实施方式中,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
一种实施方式中,所述飞行时间包括单向飞行时间或双向飞行时间。
一种实施方式中,所述测量结果中还包括参考信号标识。
一种实施方式中,所述参考信号标识基于信号强度值和/或飞行时间确定。
一种实施方式中,所述参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或所述参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号;和/或所述参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。
根据本公开实施例第三方面,提供一种波束管理装置,应用于第一设备,包括:
接收单元,用于接收参考信号配置信息;测量单元,用于基于所述参考信号配置信息对参考信号进行测量;发送单元,用于反馈测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
一种实施方式中,所述第一到达径信息表征所述参考信号对应波束为第一到达径,或者所述第一到达径信息表征所述参考信号对应波束为非第一到达径。
一种实施方式中,所述第一到达径信息中包括有参考信号的飞行时间信息。
一种实施方式中,所述飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
一种实施方式中,所述飞行时间信息包括飞行时间值。
一种实施方式中,所述飞行时间值包括飞行时间绝对值,和/或相对所述飞行时间绝对值的飞行时间相对值。
一种实施方式中,所述飞行时间值包括指定数值,和/或相对所述指定数值的相对数值。
一种实施方式中,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
一种实施方式中,所述飞行时间包括单向飞行时间或双向飞行时间。
一种实施方式中,所述测量结果中还包括参考信号标识。
一种实施方式中,所述参考信号标识基于信号强度值和/或飞行时间确定。
一种实施方式中,所述参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或所述参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号;和/或所述参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。
根据本公开实施例第四方面,提供一种波束管理装置,应用于第二设备,包括:
发送单元,用于发送参考信号配置信息;接收单元,用于接收第一设备基于所述参考信号配置信息对参考信号进行测量并反馈的测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
一种实施方式中,所述第一到达径信息表征所述参考信号对应波束为第一到达径,或者所述第一到达径信息表征所述参考信号对应波束为非第一到达径。
一种实施方式中,所述第一到达径信息中包括有参考信号的飞行时间信息。
一种实施方式中,所述飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
一种实施方式中,所述飞行时间信息包括飞行时间值。
一种实施方式中,所述飞行时间值包括飞行时间绝对值,和/或相对所述飞行时间绝对值的飞行时间相对值。
一种实施方式中,所述飞行时间值包括指定数值,和/或相对所述指定数值的相对数值。
一种实施方式中,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
一种实施方式中,所述飞行时间包括单向飞行时间或双向飞行时间。
一种实施方式中,所述测量结果中还包括参考信号标识。
一种实施方式中,所述参考信号标识基于信号强度值和/或飞行时间确定。
一种实施方式中,所述参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或所述参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号;和/或所述参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。
根据本公开实施例第五方面,提供一种波束管理装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的波束管理方法。
根据本公开实施例第六方面,提供一种波束管理装置,包括:
处理器;用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的波束管理方法。
根据本公开实施例第七方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由第一设备的处理器执行时,使得第一设备能够执行第一方面或者第一方面任意一种实施方式中所述的波束管理方法。
根据本公开实施例第八方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由第二设备的处理器执行时,使得第二设备能够执行第二方面或者第二方面任意一种实施方式中所述的波束管理方法。
本公开的实施例提供的技术方案可以包括以下有益效果:对参考信号进行测量并反馈的测量结果中包括有参考信号对应波束的第一到达径信息,第一到达径可以用于确定第一到达径,便于尽快确定出第一到达径,减少终端功耗,也能减少定位时延并提高定位精度。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种波束管理方法的流程图。
图2是根据一示例性实施例示出的一种波束管理方法的流程图。
图3是根据一示例性实施例示出的同步时钟和绝对时钟示意图。
图4是根据一示例性实施例示出的一种波束管理装置的框图。
图5是根据一示例性实施例示出的一种波束管理装置的框图。
图6是根据一示例性实施例示出的一种用于波束管理的装置的框图。
图7是根据一示例性实施例示出的一种用于波束管理的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
相关技术中,终端基于蜂窝网络与无线接入设备、核心网设备等无线网络设备进行通信,可以实现定位测量功能。例如,在NR Rel-16中,主要讨论了针对连接态(connected)下的终端的定位测量,定义了用于定位的参考信号。用于定位的参考信号例如可以包括用于下行定位的PRS、用于上行定位的SRS。而定位测量包括终端测量和无线网络设备测量,测量值包括信号强度测量值,信号传输时间值以及信道到达或出发的角度值。
相关技术中,LOS径的测量值能够有效提高定位精度,故在进行信号强度值、时间值或是角度值测量时,要达到最高定位精度,进行LOS径的测量有一定的必要性。但事实上,LOS径不一定都有。最早到达的路径最接近LOS径或者就是LOS。故,在Rel-16的定位讨论中,希望尽量能确定出first arrival path,即最早到达的路径,也称为第一到达径。
相关技术中,为了确定出第一到达径,需要发送大量的定位用途参考信号,比如以下行为例,基站需要使用各个发送波束(Tx beam)发送定位参考信号,而对于每个基站Tx beam发送的定位参考信号,终端需要使用自己的每个接收波束(Rx beam)都接收一下Tx beam发送的定位参考信息,以便最终获得第一到达径。故,最坏的情况下对应进行第一到达径确定需要测量的参考信号数目是基站的Tx beam数与终端的Rx beam数的乘积。而上行时,最坏的情况下,对应进行第一到达径确定需要测量的参考信号的数目是终端的Tx beam数与基站的Rx beam数的乘积。然而,需要测量的参考信号数目越多,终端越耗能,定位测量需要的时间越长,从而定位时延越大,定位精度越差。
为了减少获得第一到达径时终端的耗能,可以在前期进行波束管理(beam management)时,确定出第一到达径对应的Tx beam和Rx beam,进而使得在做测量时,可以减少测量的参考信号数目。但是,Rel-16中beam management的测量中只包含对beam的信号强度的测量,信号强度包括层一的参考信号接收功率(Layer1-Reference Signal  Received Power,L1-RSRP)/层一的接收信号强度指示(Layer1-Received Signal Strength Indication,L1-RSSI)。测量上报的结果包含参考信号ID和L1-RSRP/L1-RSSI。
相关技术中,基于第一到达径信息(例如信号飞行时间)可以确定出第一到达径,然而已有beam management的测量和上报不包含各个path上信号的飞行时间,所以不能提前找出第一到达径,用于定位用途参考信号的发送,导致需要发送和测量大量的定位参考信号,才能找出第一到达径,从而增大终端功耗,延长定位测量时间,降低定位精度等问题。
有鉴于此,本公开实施例提供一种波束管理方法,在进行波束管理过程中进行参考信号测量并反馈的测量结果中包括参考信号对应波束的第一到达径信息,后续基于第一到达径信息确定第一到达径,便于尽快确定出第一到达径,减少终端功耗,也能减少定位时延并提高定位精度。
一示例中,第一到达径信息表征参考信号对应波束是否为第一到达径,或者第一到达径信息包括有参考信号的飞行时间信息。
又一示例中,进行波束管理过程中,进行参考信号测量时,不仅测量反馈参考信号的信号强度,还要测量反馈参考信号的飞行时间。从而基站可以根据信号强度和飞行时间,来配置用于定位测量的参考信号,比如尽量配置飞行时间较短的定位参考信号。从而使得终端在进行定位测量时能尽快找到第一到达径,减少终端的能耗,同时也能减少定位时延提高定位精度。
本公开实施例提供的波束测量方法可以应用于进行波束管理并进行参考信号传输交互的设备间。例如,可以是基站等网络设备和终端之间。本公开实施例中为描述方便,将进行参考信号接收与测量并进行测量结果反馈的设备称为第一设备,例如终端,发送参考信号并进行参考信号配置的设备称为第二设备,例如基站等网络设备。
本公开中涉及的第一设备,可以是终端。终端也可以称为终端设备、用户设备(User Equipment,UE)、移动台(Mobile Station,MS)、移动终端(Mobile Terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,终端可以是具有无线连接功能的手持式设备、车载设备、物联网设备(Internet of Things,IoT)、工业物联网设备(Industry Internet of Things,IIoT)等。目前,一些终端的举例为:智能手机(Mobile Phone)、口袋计算机(Pocket Personal Computer,PPC)、掌上电脑、个人数字助理(Personal Digital Assistant,PDA)、笔记本电脑、平板电脑、可穿戴设备、或者车载设备等。此外,当为车联网(V2X)通信系统时,第一设备还可以是车载设备。应理解,本公开实施例对第一设备所采用的具体技术和具体设备形态不做限定。
本公开实施例中,第二设备包括基于蜂窝网络进行通信的无线网络设备,例如,可以 包括基站等无线接入网设备,也可以包括定位管理功能实体(LMF)等核心网设备。进一步的,本公开中涉及的无线接入网设备可以是:基站、演进型基站(evolved node B,基站)、家庭基站、无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为NR系统中的gNB,或者,还可以是构成基站的组件或一部分设备等。当为直连通信(D2D)、车联网(V2X)通信系统时,第二设备还可以是终端,例如车载设备。
本公开实施例中,第二设备也可以是基于WLAN进行通信的无线局域网设备、也可以是基于蓝牙(Bluetooth)通信的蓝牙设备,还可以是基于超宽带(Ultra Wide Band,UWB)通信的UWB设备。可以理解的是第二类型定位节点也可以是基于WLAN、Bluetooth以及UWB中的一种或多种无线通信技术进行通信的传感器。应理解,本公开的实施例中,对第二设备所采用的具体技术和具体设备形态不做限定。
图1是根据一示例性实施例示出的一种波束管理方法的流程图,如图1所示,波束管理方法用于第一设备中,包括以下步骤。
在步骤S11中,接收参考信号配置信息。
在步骤S12中,基于参考信号配置信息对参考信号进行测量并反馈测量结果,测量结果中包括参考信号对应波束的第一到达径信息。
本公开实施例中,参考信号配置信息可以由第二设备发送,并由第一设备接收。
图2是根据一示例性实施例示出的一种波束管理方法的流程图,如图2所示,波束管理方法用于第二设备中,包括以下步骤。
在步骤S21中,发送参考信号配置信息。
在步骤S22中,接收第一设备基于参考信号配置信息对参考信号进行测量并反馈的测量结果,测量结果中包括参考信号对应波束的第一到达径信息。
本公开实施例中,第二设备发送参考信号配置信息,第一设备接收参考信号配置信息对参考信号进行测量并反馈测量结果,在测量结果中包括参考信号对应波束的第一到达径信息。第二设备接收第一设备基于参考信号配置信息对参考信号进行测量并反馈的测量结果,测量结果中包括参考信号对应波束的第一到达径信息,可以后续根据第一到达径信息来配置用于定位测量的参考信号,比如尽量配置飞行时间较短的定位参考信号。从而使得第一设备在定位测量过程中能尽快找到first arrival path,减少终端的能耗,同时也能减少定位时延提高定位精度。
本公开实施例以下结合实际应用对本公开实施例中涉及的波束管理方法进行说明。
一种实施方式中,第二设备发送的参考信号配置信息(第一设备接收的参考信号配置信息)可以包括诸如参考信号标识(ID)、时域位置、频域位置等,还可以包括参考信号用途(比如用于波束管理),以及重复传输是否开启(repetition为on还是off)。其中,repetition为on表示第二设备以同一Tx beam在重复发送多个参考信号,即这多个参考信号的Tx beam一样。这种情况下,第一设备可以使用自己不同的Rx beam来接收这多个参考信号,找出自己最佳的Rx beam。repetition为off表示第二设备以不同Tx beam发送多个参考信号,即这多个参考信号的Tx beam不一样。参考信号配置信息还可以包含参考信号对应的发送接收点(Transmission Reception Point,TRP)ID或小区ID,小区ID可以是第一设备的服务小区ID或邻小区ID。参考信号标识可以是同步信号块(Synchronization Signal Block,SSB)标识、信道状态信息参考信号(Channel-state information RS,CSI-RS)标识,PRS标识或SRS标识。
本公开实施例中第一设备接收参考信号配置信息进行参考信号对应波束的测量。
本公开实施例中第一设备进行参考信号对应波束的测量包括确定波束对应的第一到达径信息。
本公开实施例中第一到达径信息可以表征参考信号对应波束是否为第一到达径。例如,第一到达径信息表征参考信号对应波束为第一到达径,或者第一到达径信息表征参考信号对应波束为非第一到达径。一示例中,第一到达径信息可以体现为是或否,即该参考信号标识对应的波束是否为第一到达径,反馈信息指示为是或否。
本公开实施例中第一到达径信息可以包括参考信号的飞行时间信息。
一种实施方式中,本公开实施例进行参考信号测量可以包括测量每个参考信号的飞行时间。
其中,本公开实施例中飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。一示例中,第一到达径信息体现为飞行时间从小到大的排序。飞行时间最短,则是第一到达径(以2bit为例,比如用00标识),第二短为第二到达径(比如用01标识),第三短为第三到达径(比如用11标识),……依此表示出多个排序的到达径。
其中,本公开实施例中飞行时间信息包括飞行时间值,即第一到达径信息体现为飞行时间值。一种实施方式中,飞行时间值包括飞行时间绝对值,和/或相对所述飞行时间绝对值的飞行时间相对值。一示例中,飞行时间绝对值对应飞行时间最短的参考信号。比如,最短飞行时间值对应的第一到达径信息指示为最短飞行时间的绝对值,其它飞行时间值对应的第一到达径信息指示为相对最短飞行时间绝对值的相对值。另一种实施方式中,飞行时间值包括指定数值,和/或相对指定数值的相对数值。一示例中,指定数值对应飞行时间 最短的参考信号。比如,最短飞行时间值对应的第一到达径信息指示为0,其它飞行时间值对应的第一到达径信息指示为相对0而言的相对值。
一种实施方式中,本公开实施例进行参考信号对应波束的测量包括测量每个参考信号的信号强度。
一种实施方式中,第一设备测量每个参考信号的信号强度和飞行时间,第一设备保存以下参考信号标识、接收波束、信号强度值以及飞行时间等多个元素的一一对应关系。一示例中,参考信号标识、接收波束、信号强度值以及飞行时间之间的对应关系可如下表1所示。
表1
Figure PCTCN2020106070-appb-000001
本公开实施例中,第一设备反馈的测量结果中还可以包括参考信号标识。该参考信号标识可以是同步信号块(Synchronization Signal Block,SSB)标识、信道状态信息参考信号(Channel-state information RS,CSI-RS)标识,也可以是PRS标识或SRS标识。
进一步的,本公开实施例中第一设备反馈的测量结果中还可以包括发送接收点(Transmission Reception Point,TRP)标识和/或小区标识。该小区标识可以是服务小区标识,也可以是邻小区标识。
本公开实施例中,第一设备反馈的参考信号标识与第一到达径信息之间具有对应关系。或者,参考信号标识与参考信号的飞行时间信息之间具有对应关系。
进一步的,参考信号标识也可以与信号强度之间具有对应关系。
本公开实施例中,第一设备可以将信号强度最强的设定数量的参考信号标识进行反馈,和/或将信号飞行时间最短的设定数量的参考信号标识进行反馈。
一示例中,第一设备反馈的是信号强度最强的N(N为自然数,比如N取值为1,2或4)个参考信号标识以及信号强度值。当N为1时,反馈的测量结果中包括信号强度最强的参考信号的标识以及对应的信号强度值,该信号强度值可以是信号强度最强的参考信号对应的信号强度值的绝对值。N大于1时,反馈的测量结果中包括信号强度最强的参考信号的标识以及对应的信号强度值的绝对值,以及其他信号强度值相对信号强度值最强的信 号强度绝对值而言的信号强度相对值。
本公开实施例中,第一设备反馈的测量结果中进一步包括有飞行时间。测量结果中包括的参考信号标识基于信号强度值和/或飞行时间确定。也可以理解为是信号强度值、飞行时间和参考信号标识之间具有对应关系。
一种实施方式中,参考信号标识对应测量得到的信号强度值中信号强度值最强的参考信号,即测量结果中可以包括信号强度最强的N个参考信号的参考信号标识、信号强度值、飞行时间值。另一种实施方式中,参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号,即测量结果中可以包括飞行时间最短的N个参考信号的参考信号标识、信号强度值、飞行时间值。又一种实施方式中,参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。即,将信号强度和飞行时间分别乘以一个加权值得到加权和,反馈加权和最大的N个参考信号的参考信号标识、信号强度值、飞行时间值。
可以理解的是,本公开实施例中上述涉及的N的取值为大于或等于1的正整数。
本公开实施例中,对于每个参考信号和第一设备的Rx beam,可能测量出一个或多个到达径,如果第一设备能区分出多个径(path)之间的到达时间,那么第一设备可以测量出多个飞行时间值。
本公开实施例一种实施方式中,如果第一到达径信息表针参考信号对应波束为第一到达径或者为非第一到达径,当第一设备测量到多径时,以多径中的第一径为主。另一种实施方式中,如果第一到达径信息表征飞行时间的排序信息,则在测量到多径时,以多径中的第一径为主。又一种实施方式中,如果第一到达径信息表征飞行时间值,则第一设备可以反馈多个径的飞行时间值和信号强度值或者反馈一个径的飞行时间值和信号强度值,或者将多个径的值进行加权平均后再反馈。
进一步的,本公开实施例中第一设备向第二设备反馈的飞行时间可以是单向飞行时间,也可以是双向飞行时间,或者也可以是单向飞行时间和双向飞行时间。
一种实施方式中,飞行时间包括单向飞行时间。假设第二设备发送参考信号的时间为T1,第一设备接收参考信号的时间为T2,那么飞行时间为T2-T1。
本公开实施例中针对T1的定义方式可以有多种方式。一种方式中,基于同步时钟定义。其中,第一设备和第二设备为同步系统,两个设备的同步时钟见图3所示。比如第一设备为终端,第二设备为基站时,下行同步的概念就是基站在slot#0起始位置发送参考信号,终端在slot#0起始位置接收参考信号,那么终端侧的slot#0的起始位置与基站侧的slot#0的起始位置就是相差为参考信号的传输时间。所以,如果第二设备发送参考信号的Tx beam 和第一设备接收参考信号的Rx beam跟当时下行同步时的一样,那么T2-T1就是0,如果不一样,T2-T1可能为正值,也可能为负值。所以这里T1的定义就是第一设备与第二设备同步(主要是下行同步即第一设备根据第二设备发送的参考信号进行同步)后,第一设备端处认为的第二设备发送参考信号的时间,即同步时钟显示的时间。
另一种实施方式中,T1可以基于绝对时钟定义。第二设备T1时刻绝对clock时钟的时间(见图3),第一设备处绝对clock的时间跟第二设备处绝对clock的时间是完全一样的,所以这里需要第二设备将T1时刻clock时钟的时间通知给第一设备(可以是显示的通知,比如发送时间信息;也可以是隐示的,比如不同参考信号ID/频域/序列等表示不同的时间)。第一设备收到参考信号时clock的时间跟T1时刻clock时钟的时间就是单向飞行时间。
又一种实施方式中,T1可以为一个其它的参考时间,比如T1就是第一设备接收第三设备发送的参考信号的时间,那么第一设备接收第二设备的参考信号的时间为T2,这样出来的T2-T1的意思就是第一设备接收来自第二设备参考信号和第三设备参考信号的时间差值。
可以理解的是,上述示例中以第二设备发送参考信号,第一设备测量时间为例进行说明,但实际执行过程中也可以是第一设备发送参考信号,第二设备测量时间。如果有必要,测量时间的结果还需要发送给对方。
本公开实施例中,T1定义不同,对应的飞行时间值的意义会有不同。故,本公开实施例中涉及的飞行时间值可以是通用时间测量值,有些情况时间测量值为飞行时间,有些情况时间测量值为接收时间差值。
一种实施方式中,飞行时间包括双向飞行时间。例如,第二设备发送第一参考信号的时间为T1,第一设备接收第一参考信号的时间为T2,第一设备发送第二参考信号的时间为T3,第二设备接收第二参考信号的时间为T4,那么双向飞行时间为T4-T1-(T3-T2)。
可以理解的是,本公开实施例中,若飞行时间包括双向飞行时间,则需要第一设备将T3-T2的值发送给第二设备。
进一步可以理解的是,本公开实施例中双向飞行时间可以是第一设备测量,也可以是第二设备测量,还可以是两者都测量。如果有需要,测量时间的结果还需要发送给对方。
本公开实施例提供的波束管理方法,用于定位,主要包括beam测量和反馈中除了反馈参考信号ID和信号强度之外,还要反馈飞行时间测量值,用于第二设备根据时间测量值进行定位用途参考信号的配置,以便第一设备定位测量时,尽快找到first arrival path,从而减少定位时延并提高定位精度。
可以理解的是,本公开实施例提供的波束管理方法,可以应用于第一设备和第二设备进行交互的实施过程中。对于第一设备和第二设备交互实现波束管理方法的实施过程可参阅上述实施例的相关描述,在此不再赘述。
基于相同的构思,本公开实施例还提供一种波束管理装置。
可以理解的是,本公开实施例提供的波束管理装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图4是根据一示例性实施例示出的一种波束管理装置框图。参照图4,波束管理装置100应用于第一设备,包括接收单元101、测量单元102和发送单元103。
接收单元101,用于接收参考信号配置信息。测量单元102,用于基于参考信号配置信息对参考信号进行测量。发送单元103,用于反馈测量结果,测量结果中包括参考信号对应波束的第一到达径信息。
一种实施方式中,第一到达径信息表征参考信号对应波束为第一到达径,或者第一到达径信息表征参考信号对应波束为非第一到达径。
一种实施方式中,第一到达径信息中包括有参考信号的飞行时间信息。
一种实施方式中,飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
一种实施方式中,飞行时间信息包括飞行时间值。
一种实施方式中,飞行时间值包括飞行时间绝对值,和/或相对飞行时间绝对值的飞行时间相对值。
一种实施方式中,飞行时间值包括指定数值,和/或相对指定数值的相对数值。
一种实施方式中,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
一种实施方式中,飞行时间包括单向飞行时间或双向飞行时间。
一种实施方式中,测量结果中还包括参考信号标识。
一种实施方式中,参考信号标识基于信号强度值和/或飞行时间确定。
一种实施方式中,参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号。和/或参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大 的一个或多个参考信号。
图5是根据一示例性实施例示出的一种波束管理装置框图。参照图5,波束管理装置200应用于第二设备,包括发送单元201和接收单元202。
发送单元201,用于发送参考信号配置信息。接收单元202,用于接收第一设备基于参考信号配置信息对参考信号进行测量并反馈的测量结果,测量结果中包括参考信号对应波束的第一到达径信息。
一种实施方式中,第一到达径信息表征参考信号对应波束为第一到达径,或者第一到达径信息表征参考信号对应波束为非第一到达径。
一种实施方式中,第一到达径信息中包括有参考信号的飞行时间信息。
一种实施方式中,飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
一种实施方式中,飞行时间信息包括飞行时间值。
一种实施方式中,飞行时间值包括飞行时间绝对值,和/或相对飞行时间绝对值的飞行时间相对值。
一种实施方式中,飞行时间值包括指定数值,和/或相对指定数值的相对数值。
一种实施方式中,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
一种实施方式中,飞行时间包括单向飞行时间或双向飞行时间。
一种实施方式中,测量结果中还包括参考信号标识。
一种实施方式中,参考信号标识基于信号强度值和/或飞行时间确定。
一种实施方式中,参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号。和/或参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图6是根据一示例性实施例示出的一种用于波束管理的装置300的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图6,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)的接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个 组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图7是根据一示例性实施例示出的一种用于波束管理的装置400的框图。例如,装置400可以被提供为一网络设备,例如基站等。参照图7,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口450被配置为将装置400连接到网络,和一个输入输出(I/O)接口458。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁 带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (36)

  1. 一种波束管理方法,其特征在于,应用于第一设备,包括:
    接收参考信号配置信息;
    基于所述参考信号配置信息对参考信号进行测量并反馈测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
  2. 根据权利要求1所述的波束管理方法,其特征在于,所述第一到达径信息表征所述参考信号对应波束为第一到达径,或者所述第一到达径信息表征所述参考信号对应波束为非第一到达径。
  3. 根据权利要求1所述的波束管理方法,其特征在于,所述第一到达径信息中包括有参考信号的飞行时间信息。
  4. 根据权利要求3所述的波束管理方法,其特征在于,所述飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
  5. 根据权利要求3所述的波束管理方法,其特征在于,所述飞行时间信息包括飞行时间值。
  6. 根据权利要求5所述的波束管理方法,其特征在于,所述飞行时间值包括飞行时间绝对值,和/或相对所述飞行时间绝对值的飞行时间相对值。
  7. 根据权利要求5所述的波束管理方法,其特征在于,所述飞行时间值包括指定数值,和/或相对所述指定数值的相对数值。
  8. 根据权利要求6或7所述的波束管理方法,其特征在于,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
  9. 根据权利要求3至8中任意一项所述的波束管理方法,其特征在于,所述飞行时间包括单向飞行时间或双向飞行时间。
  10. 根据权利要求1所述的波束管理方法,其特征在于,所述测量结果中还包括参考信号标识。
  11. 根据权利要求10所述的波束管理方法,其特征在于,所述参考信号标识基于信号强度值和/或飞行时间确定。
  12. 根据权利要求11所述的波束管理方法,其特征在于,所述参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或所述参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号;和/或所述参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。
  13. 一种波束管理方法,其特征在于,应用于第二设备,包括:
    发送参考信号配置信息;
    接收第一设备基于所述参考信号配置信息对参考信号进行测量并反馈的测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
  14. 根据权利要求13所述的波束管理方法,其特征在于,所述第一到达径信息表征所述参考信号对应波束为第一到达径,或者所述第一到达径信息表征所述参考信号对应波束为非第一到达径。
  15. 根据权利要求13所述的波束管理方法,其特征在于,所述第一到达径信息中包括有参考信号的飞行时间信息。
  16. 根据权利要求15所述的波束管理方法,其特征在于,所述飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
  17. 根据权利要求15所述的波束管理方法,其特征在于,所述飞行时间信息包括飞行时间值。
  18. 根据权利要求17所述的波束管理方法,其特征在于,所述飞行时间值包括飞行时间绝对值,和/或相对所述飞行时间绝对值的飞行时间相对值。
  19. 根据权利要求17所述的波束管理方法,其特征在于,所述飞行时间值包括指定数值,和/或相对所述指定数值的相对数值。
  20. 根据权利要求18或19所述的波束管理方法,其特征在于,飞行时间绝对值或指定数值,对应飞行时间最短的参考信号。
  21. 根据权利要求15至20中任意一项所述的波束管理方法,其特征在于,所述飞行时间包括单向飞行时间或双向飞行时间。
  22. 根据权利要求13所述的波束管理方法,其特征在于,所述测量结果中还包括参考信号标识。
  23. 根据权利要求22所述的波束管理方法,其特征在于,所述参考信号标识基于信号强度值和/或飞行时间确定。
  24. 根据权利要求23所述的波束管理方法,其特征在于,所述参考信号标识对应测量得到的信号强度值中信号强度值最强的一个或多个参考信号,和/或所述参考信号标识对应测量得到的飞行时间中飞行时间最短的一个或多个参考信号;和/或所述参考信号标识对应测量得到的信号强度值和飞行时间之间的加权和最大的一个或多个参考信号。
  25. 一种波束管理装置,其特征在于,应用于第一设备,包括:
    接收单元,用于接收参考信号配置信息;
    测量单元,用于基于所述参考信号配置信息对参考信号进行测量;
    发送单元,用于反馈测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
  26. 根据权利要求25所述的波束管理装置,其特征在于,所述第一到达径信息表征所述参考信号对应波束为第一到达径,或者所述第一到达径信息表征所述参考信号对应波束为非第一到达径。
  27. 根据权利要求25所述的波束管理装置,其特征在于,所述第一到达径信息中包括有参考信号的飞行时间信息。
  28. 根据权利要求27所述的波束管理装置,其特征在于,所述飞行时间信息包括多个到达径按照飞行时间长短进行顺序排序的排序信息。
  29. 根据权利要求27所述的波束管理装置,其特征在于,所述飞行时间信息包括飞行时间值。
  30. 根据权利要求25所述的波束管理装置,其特征在于,所述测量结果中还包括参考信号标识。
  31. 根据权利要求30所述的波束管理装置,其特征在于,所述参考信号标识基于信号强度值和/或飞行时间确定。
  32. 一种波束管理装置,其特征在于,应用于第二设备,包括:
    发送单元,用于发送参考信号配置信息;
    接收单元,用于接收第一设备基于所述参考信号配置信息对参考信号进行测量并反馈的测量结果,所述测量结果中包括所述参考信号对应波束的第一到达径信息。
  33. 一种波束管理装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至12中任意一项所述的波束管理方法。
  34. 一种波束管理装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求13至24中任意一项所述的波束管理方法。
  35. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由第一设备的处理器执行时,使得第一设备能够执行权利要求1至12中任意一项所述的波束管理方法。
  36. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由第二设备的处理 器执行时,使得第二设备能够执行权利要求13至24中任意一项所述的波束管理方法。
PCT/CN2020/106070 2020-07-31 2020-07-31 一种波束管理方法、波束管理装置及存储介质 WO2022021270A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202211446922.6A CN116017681A (zh) 2020-07-31 2020-07-31 一种波束管理方法、波束管理装置及存储介质
EP20947780.1A EP4192141A4 (en) 2020-07-31 2020-07-31 BEAM MANAGEMENT METHOD, BEAM MANAGEMENT DEVICE AND STORAGE MEDIUM
US18/003,037 US20230246683A1 (en) 2020-07-31 2020-07-31 Beam management method, beam management device and storage medium
PCT/CN2020/106070 WO2022021270A1 (zh) 2020-07-31 2020-07-31 一种波束管理方法、波束管理装置及存储介质
CN202080001800.9A CN112020885B (zh) 2020-07-31 2020-07-31 一种波束管理方法、波束管理装置及存储介质
BR112022026987A BR112022026987A2 (pt) 2020-07-31 2020-07-31 Método, aparelho e dispositivo de gerenciamento de feixe, e, mídia de armazenamento legível por computador não transitória
JP2022581668A JP7546083B2 (ja) 2020-07-31 2020-07-31 ビーム管理方法、ビーム管理装置、及び記憶媒体
KR1020237001952A KR20230025884A (ko) 2020-07-31 2020-07-31 빔 관리 방법, 빔 관리 장치 및 저장 매체 (beam management method, beam management device and storage medium)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/106070 WO2022021270A1 (zh) 2020-07-31 2020-07-31 一种波束管理方法、波束管理装置及存储介质

Publications (1)

Publication Number Publication Date
WO2022021270A1 true WO2022021270A1 (zh) 2022-02-03

Family

ID=73527415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/106070 WO2022021270A1 (zh) 2020-07-31 2020-07-31 一种波束管理方法、波束管理装置及存储介质

Country Status (7)

Country Link
US (1) US20230246683A1 (zh)
EP (1) EP4192141A4 (zh)
JP (1) JP7546083B2 (zh)
KR (1) KR20230025884A (zh)
CN (2) CN112020885B (zh)
BR (1) BR112022026987A2 (zh)
WO (1) WO2022021270A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220053353A1 (en) * 2020-08-14 2022-02-17 Samsung Electronics Co., Ltd. Method and apparatus for measurement and reporting for multi-beam operations
WO2022165695A1 (zh) * 2021-02-04 2022-08-11 华为技术有限公司 一种波束选择的方法及装置
WO2023131222A1 (zh) * 2022-01-07 2023-07-13 华为技术有限公司 通信方法以及通信装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690816A (zh) * 2015-06-05 2018-02-13 高通股份有限公司 对使用模糊小区的otdoa定位的支持
CN110574327A (zh) * 2017-05-05 2019-12-13 华为技术有限公司 用于波束成形通信系统中设备的网络定位的系统和方法
US20200110151A1 (en) * 2018-10-05 2020-04-09 Qualcomm Incorporated Simplified cell location information sharing for positioning purposes
CN111182579A (zh) * 2019-03-26 2020-05-19 维沃移动通信有限公司 定位测量信息上报方法、终端和网络设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125850B2 (en) * 2011-08-03 2021-09-21 Polte Corporation Systems and methods for determining a timing offset of emitter antennas in a wireless network
US20150045022A1 (en) * 2013-08-06 2015-02-12 Gaby Prechner Access points and methods for access point selection using an information data structure
US10070447B1 (en) * 2017-03-02 2018-09-04 Samsung Electronics Co., Ltd Method and apparatus for enhanced reference (RSTD) measurement for long term evolution (LTE) positioning
US10917184B2 (en) * 2018-05-29 2021-02-09 Qualcomm Incorporated Computing and reporting a relevance metric for a positioning beacon beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107690816A (zh) * 2015-06-05 2018-02-13 高通股份有限公司 对使用模糊小区的otdoa定位的支持
CN110574327A (zh) * 2017-05-05 2019-12-13 华为技术有限公司 用于波束成形通信系统中设备的网络定位的系统和方法
US20200110151A1 (en) * 2018-10-05 2020-04-09 Qualcomm Incorporated Simplified cell location information sharing for positioning purposes
CN111182579A (zh) * 2019-03-26 2020-05-19 维沃移动通信有限公司 定位测量信息上报方法、终端和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4192141A4 *

Also Published As

Publication number Publication date
KR20230025884A (ko) 2023-02-23
CN116017681A (zh) 2023-04-25
JP2023532561A (ja) 2023-07-28
EP4192141A4 (en) 2024-09-04
BR112022026987A2 (pt) 2023-01-24
JP7546083B2 (ja) 2024-09-05
CN112020885B (zh) 2022-12-09
US20230246683A1 (en) 2023-08-03
CN112020885A (zh) 2020-12-01
EP4192141A1 (en) 2023-06-07

Similar Documents

Publication Publication Date Title
WO2022193195A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2021114276A1 (zh) 波束测量方法及波束测量装置
WO2022021270A1 (zh) 一种波束管理方法、波束管理装置及存储介质
WO2022174461A1 (zh) 波束测量方法、波束测量装置及存储介质
WO2022016468A1 (zh) 定位测量方法、定位测量装置及存储介质
WO2022178734A1 (zh) 一种网络接入方法、网络接入装置及存储介质
WO2022226742A1 (zh) 一种寻呼消息监测方法、寻呼消息监测装置及存储介质
WO2022141646A1 (zh) 波束失败检测bfd资源的确定方法、装置及通信设备
WO2022183499A1 (zh) 波束失败检测方法、波束失败检测装置及存储介质
WO2022193303A1 (zh) 一种随机接入方法、随机接入装置及存储介质
WO2022165856A1 (zh) 一种信息上报方法、信息上报装置及存储介质
WO2022236639A1 (zh) 资源配置方法、装置、通信设备和存储介质
WO2021022453A1 (zh) 天线面板选择方法、装置及存储介质
WO2022193194A1 (zh) 一种带宽部分配置方法、带宽部分配置装置及存储介质
WO2021155511A1 (zh) 一种通信方法及装置
WO2018201392A1 (zh) 为多模终端配置工作模式的方法及装置
WO2020056667A1 (zh) 车联网同步方法及装置
WO2022027360A1 (zh) 一种通信处理方法、通信处理装置及存储介质
WO2024168908A1 (zh) 一种通信方法、装置及存储介质
WO2022016465A1 (zh) 定位测量方法、定位测量装置及存储介质
WO2022126555A1 (zh) 一种传输方法、传输装置及存储介质
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2021179126A1 (zh) 控制信令检测方法、控制信令检测装置及存储介质
RU2810556C1 (ru) Способ управления лучами, устройство управления лучами и носитель информации
WO2024007263A1 (zh) 一种测量方法、装置、设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947780

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022581668

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022026987

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20237001952

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112022026987

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221229

WWE Wipo information: entry into national phase

Ref document number: 2023100635

Country of ref document: RU

Ref document number: 2020947780

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2020947780

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE