WO2022020990A1 - 一种钻石、钻石的合成方法以及设备 - Google Patents

一种钻石、钻石的合成方法以及设备 Download PDF

Info

Publication number
WO2022020990A1
WO2022020990A1 PCT/CN2020/104805 CN2020104805W WO2022020990A1 WO 2022020990 A1 WO2022020990 A1 WO 2022020990A1 CN 2020104805 W CN2020104805 W CN 2020104805W WO 2022020990 A1 WO2022020990 A1 WO 2022020990A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
synthesis
synthetic material
diamond
pressure
Prior art date
Application number
PCT/CN2020/104805
Other languages
English (en)
French (fr)
Inventor
蔡博
蔡棽
Original Assignee
蔡博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蔡博 filed Critical 蔡博
Priority to PCT/CN2020/104805 priority Critical patent/WO2022020990A1/zh
Publication of WO2022020990A1 publication Critical patent/WO2022020990A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/06Processes using ultra-high pressure, e.g. for the formation of diamonds; Apparatus therefor, e.g. moulds or dies
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond

Definitions

  • the present disclosure relates to the technical field of inorganic material preparation, and in particular, to a method and equipment for synthesizing diamonds and diamonds.
  • Diamond also known as diamond, and cubic boron nitride belong to the same superhard material.
  • Diamond is a customary interpretation in the field of engineering material applications, while in the jewelry industry it is mostly called diamond. It is a mineral composed of carbon elements and is an allotrope of graphite. Diamond is the hardest substance naturally occurring in nature, with a Mohs hardness of 10 and a microhardness of 10,000kg/mm 2 . The microhardness is 1,000 times higher than that of quartz and 150 times higher than that of corundum. Diamonds can be divided into natural diamonds and man-made diamonds, known as the "king of materials” and “extreme functional materials", widely used in jewelry, industry and many high-tech fields.
  • the traditional diamond synthesis method has the problems of high synthesis difficulty and high synthesis cost.
  • the present disclosure provides a method and equipment for synthesizing diamonds and diamonds.
  • the method has the advantages of low synthesis difficulty, easy industrialization, and low synthesis cost.
  • the equipment can realize the method to synthesize diamonds, and the synthesis process has low difficulty and low cost. Low.
  • Embodiments of the present disclosure provide a method for synthesizing diamonds configured to convert synthetic materials into diamonds, the method for synthesizing diamonds comprising:
  • Synthesis method for binary synthesis conditions in a non-oxidizing atmosphere, at a pressure equal to 0, applying a magnetic field to the synthetic material and heating to a high temperature to convert the synthetic material into diamond; or,
  • Synthesis method of ternary synthesis conditions In a non-oxidizing atmosphere, when the pressure is greater than 0, a magnetic field and pressure are applied to the synthetic material and heated to a high temperature to convert the synthetic material into diamond.
  • the synthetic material includes a carbon material having an sp2 hybrid state.
  • a catalyst is added to the synthetic material; preferably, the catalyst is an elemental metal or alloy corresponding to a transition group element; preferably, the transition group element is iron, nickel, manganese or cobalt.
  • the magnetic field is a constant magnetic field, an alternating magnetic field, or a combination of a constant magnetic field and an alternating magnetic field; preferably, the constant magnetic field includes a permanent magnetic field and a DC electromagnetic field; preferably, the alternating magnetic field is an AC electromagnetic field.
  • the magnetic induction intensity of the magnetic field is not less than 6 mT; preferably, the magnetic induction intensity of the magnetic field is not less than 11 mT; preferably, the magnetic induction intensity of the magnetic field is not less than 20 mT.
  • the heating adopts electric heating; preferably, it is a combination of one or more of resistance heating, electromagnetic induction heating, microwave heating, laser heating, electric arc heating and plasma arc heating.
  • the heating method includes one or a combination of direct heating and indirect heating.
  • the heating temperature is not less than 1350°C; preferably, the heating temperature range is 1350-1900°C; preferably, the heating temperature range is 1650-3000°C; preferably, the heating The temperature is not less than 2000 °C.
  • the heating temperature is between 1350-1900 ° C
  • the magnetic induction intensity of the magnetic field is not less than 6mT
  • the synthetic material is transformed into Diamond.
  • the heating temperature is between 1650-3000° C.
  • the magnetic induction intensity of the magnetic field is not less than 10 mT
  • the synthetic material is directly transformed into diamond.
  • the synthetic material is heated to a temperature of not less than 2000° C. with a high-temperature flame, the magnetic induction intensity of the magnetic field is not less than 20 mT, and the synthetic material is directly transformed into nanometers.
  • Granular diamond powder material preferably, the high temperature flame is generated by a plasma arc; preferably, the high temperature flame is a neutral flame or a reducing flame formed by the reaction of combustible gas and oxygen; preferably, acetylene, propane, A flame formed by the reaction of gas or natural gas with oxygen.
  • the synthetic material is graphite, and a catalyst is added to the synthetic material; the heating temperature is 1380-1600 ° C, and the magnetic induction intensity of the magnetic field is It is 6-10mT, the synthesis time is more than 10 minutes, and the synthetic material is transformed into rough diamond with 80/120 mesh grade particle size under the action of catalyst catalysis.
  • the synthetic material is graphite
  • the heating temperature is 2000°C
  • the magnetic induction intensity of the magnetic field is Not less than 16mT
  • the pressure applied to the synthetic material is 500MPa
  • the synthesis time is more than 20 minutes
  • the synthetic material is directly transformed into rough diamonds with a particle size of 40/100 mesh.
  • a magnetic field and pressure are continuously applied to the synthetic material, and the magnetic induction intensity of the applied magnetic field is equal to the equivalent pressure of 1 GPa per 1-3 mT, and the equivalent pressure after the magnetic induction intensity is converted.
  • the sum of the applied pressure is not less than 5GPa, and the heating temperature is between 1350-1900°C, and the synthetic material is converted into diamond under the action of catalyst catalysis.
  • a magnetic field and pressure are continuously applied to the synthetic material, and the magnetic induction intensity of the applied magnetic field is equal to the equivalent pressure of 1 GPa according to 1-3mT, and the equivalent pressure after the conversion of the magnetic induction intensity and The sum of the applied pressure is not less than 11GPa, and the heating temperature is between 1650-3000°C, and the synthetic material is directly transformed into diamond.
  • Embodiments of the present disclosure also provide a diamond synthesis device configured to realize the above-mentioned diamond synthesis method, wherein,
  • the diamond synthesis equipment includes a container, a heater, a thermal insulation layer and a magnet; the container is configured to accommodate the synthetic material and isolate the air; the heater is arranged on the outside of the container, and is configured to The synthetic material in the container is heated; the thermal insulation layer is arranged on the outside of the heater; the two magnetic poles of the magnet are respectively located at both ends of the container, so that the magnetic lines of force of the magnet pass through the container, thereby applying a magnetic field to the composite material within the container; or,
  • the diamond synthesis equipment includes a vacuum chamber, a container, a heater, a thermal insulation layer, a magnet and an energized voltage head;
  • the container is located in the vacuum chamber and is configured to accommodate the synthetic material;
  • the heater is arranged at the the outer side of the container, and is configured to heat the synthetic material in the container;
  • the insulation layer is arranged on the outer side of the heater;
  • the two magnetic poles of the magnet are respectively located at both ends of the container, so that the the magnetic lines of force of the magnet pass through the container to apply a magnetic field to the synthetic material within the container, the energization head is configured to energize and apply pressure to the synthetic material within the container; or,
  • the diamond synthesis equipment includes a non-oxidizing atmosphere isolation cover, a cooling settling device, a plasma gun torque, a plasma device and a solenoid magnetic field coil; the non-oxidizing atmosphere isolation cover is arranged above the cooling settling device, and is located in the the lower part of the plasma gun moment; the cooling and sedimentation device is configured to accommodate pure water; the front end of the plasma gun moment and the concentric outer side of the plasma arc of the plasma equipment are provided with the solenoid magnetic field coil; the plasma equipment The front end of the plasma arc extends into the cooling settling device; the powder feeder of the plasma equipment continuously injects the synthetic material into the plasma gun torque through the synthetic material injection port; or,
  • the diamond synthesizing equipment includes a six-sided top synthetic press host, an electromagnet coil and a container; Iron coil, the lateral top hammer of the main body of the six-sided top synthetic press becomes a magnet conducting body and forms a lateral magnetic pole indenter, and the two heating top hammers of the six-sided top synthetic press main body form an axial energized voltage head ;
  • the container is located in the main body of the six-sided top synthetic press, and is configured to accommodate synthetic materials.
  • Embodiments of the present disclosure also provide a diamond prepared by the above-mentioned method for synthesizing a diamond.
  • the beneficial effects of the embodiments of the present disclosure include, for example:
  • the process of establishing a magnetic field and a high temperature environment is simple and easy, and complex and expensive ultra-high pressure equipment is not required.
  • the method is simple, easy to achieve large-scale industrial production, and low in synthesis cost.
  • ternary synthesis conditions For the synthesis method of ternary synthesis conditions, it is the synthesis mode of magnetic field, pressure and high temperature. Due to the addition of “magnetodynamic conditions", the kinetic conditions of the pressure applied to the synthesis materials (including catalysts) can be reduced, or not reduced. A larger energy level jump can be obtained by applying pressure, and the synthetic material can be directly converted. On the whole, the synthesis difficulty is low and the cost is low.
  • the device can realize the method for synthesizing diamond, and has simple structure and low synthesis cost.
  • Fig. 1 is a binary phase diagram of temperature and pressure of carbon, and the magnetic induction intensity B is used to replace the pressure axis P;
  • Fig. 3 is three kinds of synthetic method configuration schematic diagrams under ternary synthesis condition
  • Fig. 4 is the schematic diagram of the synthetic equipment of diamond provided by the present disclosure embodiment 1;
  • Fig. 5 is the synthetic diamond single crystal product picture of embodiment 1;
  • Fig. 6 is the Raman spectrum detection result figure that embodiment 1 synthesizes diamond single crystal
  • Fig. 7 is the schematic diagram of the synthetic equipment of the diamond that the present disclosure embodiment 2 provides;
  • Fig. 8 is the synthetic diamond single crystal product picture of embodiment 2;
  • Fig. 9 is the Raman spectrum detection result figure that embodiment 2 synthesizes diamond single crystal
  • Fig. 10 is the schematic diagram of the synthetic equipment of the diamond that the present disclosure embodiment 3 provides;
  • Fig. 11 is the SEM picture that embodiment 3 synthesizes diamond powder
  • Fig. 12 is the Raman spectrum detection result diagram of the synthetic diamond powder of embodiment 3.
  • Fig. 13 is the schematic diagram of the synthetic equipment of diamond provided by the present disclosure embodiment 4.
  • Figure 14 is a picture of "Yuanshi” synthesized by researchers at Ehime University in Japan and Sumitomo Electric Industrial Co., Ltd.
  • Cubic boron nitride which is the same superhard material as diamond, is currently industrially produced by ultra-high pressure and high temperature synthesis methods.
  • Wentorf synthesized cubic boron nitride for the first time.
  • the pure hexagonal boron nitride (HBN) is directly transformed into cubic boron nitride (CBN).
  • the temperature and pressure required to use ammonium borate as the catalyst are the lowest.
  • the required pressure is 5GPa at 1500°C, and the temperature range is 600-700°C when the pressure is 6GPa.
  • Dynamic pressure method There are three methods to synthesize diamond by dynamic pressure method, namely shock wave method, detonation wave method and detonation method. At present, the most widely used detonation method is the detonation method.
  • the raw material of the detonation method is high-energy explosives, and the temperature and pressure are provided by the detonation pressure and detonation temperature during the detonation of the explosives.
  • the negative oxygen balance explosive detonates in the airtight container (about 1 microsecond)
  • part of the carbon molecules in C, H, O, and N that make up the explosive is oxidized by the oxygen of the explosive itself, and the unoxidized rich free carbon is in the Nanodiamonds are transformed into nanodiamonds under specific high temperature and ultra-high pressure in the crystal transformation region.
  • the carbon element is in the form of droplets and crystallizes into spherical nanodiamonds.
  • the method is currently limited to the production of nanodiamond materials.
  • High temperature and high pressure method Graphite is directly transformed into diamond under ultra-high pressure above 13GPa and high temperature above 2000°C. At present, human beings still have established such a high ultra-high pressure static pressure to directly convert graphite into diamond single crystal production practice.
  • Catalytic high pressure method commonly known as “static pressure method”, also known as ultra-high pressure and high temperature (HPHT) method, that is, under ultra-high pressure and high temperature conditions, the metal catalyst participates in the catalytic action to convert graphite into diamond single crystal.
  • the ultra-high pressure and high temperature diamond synthesis equipment of the method requires ultra-high pressure hydraulic equipment and ultra-high pressure molds to establish an ultra-high pressure pressure of more than 5GPa on the synthetic block, and at the same time, electrically heat the synthetic block to make the synthetic rod reach a high temperature condition above 1350°C. Under suitable ultra-high pressure and high temperature conditions, the graphite in the synthetic rod is transformed into a diamond single crystal under the catalytic action of a metal catalyst.
  • the pressure produces kinetic conditions
  • the high temperature produces thermodynamic conditions.
  • the kinetic conditions and thermodynamic conditions reach the energy level transition condition of graphite from low energy level to high energy level, graphite changes from sp2 hybrid state to The sp3 hybridization state of diamonds.
  • the synthetic block of catalyzed high pressure (HPHT) method is to use pyrophyllite block as a container, put into a synthetic column composed of metal catalyst and graphite, and have conductive plugs at both ends.
  • the pyrophyllite plays the role of sealing, pressure transmission and heat preservation, and the conductive plug is heated by the opposite top hammer.
  • CVD method commonly known as chemical vapor deposition (Chemical Vapor Deposition, referred to as CVD) method.
  • Common CVD methods include thermal chemical deposition (TCVD) and plasma chemical vapor deposition (PCVD).
  • Plasma chemical vapor deposition can be divided into direct current plasma chemical vapor deposition (DC-PCVD) method, radio frequency plasma chemical vapor deposition (RF-PCVD) method, microwave plasma chemical vapor deposition (MPCVD) method and microwave electron cyclotron Resonance plasma enhanced chemical vapor deposition (ECR-PCVD) method, etc.
  • the CVD method is a method of decomposing raw materials under high temperature conditions to generate active particles such as carbon atoms or methyl groups, and depositing and growing diamond films or crystals on the substrate (substrate) material under certain process conditions.
  • the synthetic material used in the above "static pressing" synthetic diamond is graphite or carbon with sp2 hybridization state as synthetic material, and even diamond micropowder is used as carbon source, and daughter crystals can also be added. Doping elements such as boron, carbon, and sulfur.
  • the metal catalysts in the synthetic materials are metal elements or alloys of transition group elements of iron, nickel, cobalt, and chromium.
  • the catalyst for the synthesis of cubic boron nitride is generally borate ammonium salt material, but there are many kinds of materials that can be used as its catalyst.
  • the production of nanodiamonds by the "detonation method” involves special industrial management of the use of explosives, and the production efficiency is low.
  • the “high pressure and high temperature method” is extremely difficult in view of the fact that the ultra-high pressure and high temperature equipment has to reach the synthesis pressure of more than 11GPa.
  • the diameter of the high-pressure cylinder has reached 800-1000mm, the thrust of a single cylinder can reach 5000-7500 tons, and the maximum diameter of the synthetic cavity can only reach about 60mm, and the diameter of the cylinder will be increased in the future to increase the thrust and expand the synthetic cavity.
  • the cost of ultra-high pressure and high temperature equipment is high, accounting for more than 90% of the total cost. Its critical carbide die is also an important limiting factor. What's more, the "limited compression stroke" of ultra-high pressure and high temperature synthesis equipment is an insurmountable technical barrier, which makes it impossible to synthesize diamonds with large particles for a long time. Also, it is extremely difficult to synthesize "doped" semiconductor diamond/CBN or colored diamond, which requires a clean synthesis environment and precise doping control.
  • the "CVD" method can grow diamond/CBN films or single crystals on the substrate, but the growth rate is slow and the cost is high.
  • the traditional diamond synthesis method has the problems of high synthesis difficulty and high synthesis cost.
  • the embodiments of the present disclosure provide a method for synthesizing diamonds, which can effectively improve this problem.
  • the embodiment of the present disclosure proposes to introduce a "magnetic field" condition into the traditional synthesis system, and the carbon atoms in the thermal vibration of the synthetic material under the action of the magnetic field generate a "magnetodynamic condition".
  • the thermodynamic condition generated by heating the synthetic material the magnetodynamic condition generated by the magnetic field and the dynamic condition generated by the pressure satisfy the energy level transition condition of the synthetic material to diamond, the synthetic material is transformed into diamond.
  • This embodiment provides a method for synthesizing diamonds, including the following two methods, both of which can transform synthetic materials into diamonds under the condition of having a magnetic field.
  • MFHT magnetic field high temperature
  • MPHT pressure and high temperature
  • the synthesis method of the magnetic field high temperature (MFHT) binary synthesis condition can also be referred to as the synthesis method of the binary synthesis condition. , turning the synthetic material into diamonds.
  • MFHT magnetic field high temperature
  • the synthesis method of magnetic field, pressure and high temperature (MPHT) ternary synthesis conditions can also be referred to as the synthesis method of ternary synthesis conditions, which includes the following steps: in a non-oxidizing atmosphere, when the pressure is greater than 0, apply a magnetic field and pressure to the synthetic material and heated to high temperatures, turning the synthetic material into diamonds.
  • MPHT high temperature
  • the ultra-high pressure and high temperature synthetic diamond mentioned above is the ultra-high pressure and high temperature (HPHT) binary synthesis condition when the magnetic induction intensity of the magnetic field of the ternary synthesis condition is equal to 0.
  • the deep-rooted traditional theory of the origin of natural diamonds has always been believed to be a single crystal composed of carbon elements formed in the deep part of the earth under high pressure and high temperature conditions. 's cause.
  • people have only studied the formation of diamonds by carbon under the binary conditions of high pressure and high temperature, ignoring the important condition that the earth has a magnetic field.
  • the deep part of the earth has a constant geomagnetic field, so the formation of natural diamonds must also have the conditions of "the effect of the earth's magnetic field", and the magnetic field conditions can promote chemical reactions. Therefore, the genesis theory of natural diamonds should be a ternary condition of "geocentric pressure + earth's magnetic field + earth's core high temperature".
  • the maximum value of the magnetic induction intensity on the earth's surface is about 0.6Gs. If the magnetic field intensity inside the earth is 50 times the ground value, then the approximate average value of the magnetic induction intensity inside the earth is about 3mT; because the magnetic field inside the earth is also uneven , then in the diamond generation area with high magnetic induction intensity, the magnetic induction intensity will be higher than the average value, for example, it will reach several mT or more. According to several years of synthetic experiments using "magnetic field + high temperature", the magnetic induction intensity above 6mT and high temperature conditions are sufficient to convert carbon into diamond.
  • the ternary formation conditions of magnetic field, pressure, and high temperature of natural diamonds are the best demonstrations of the ternary synthesis conditions of the embodiments of the present disclosure.
  • the embodiment of the present disclosure focuses on the binary synthesis conditions of MFHT, and the synthetic material is heated to a high temperature to make the synthetic material reach a certain thermodynamic condition; at the same time, a magnetic field is applied to the high-temperature synthetic material, and the magnetic field acts on the high-temperature synthetic material to generate an energy level jump.
  • the inventor defines the energy-level transition condition produced by the magnetic field acting on the high-temperature synthetic material as "magnetodynamic condition”. When the sum of thermodynamic and magnetodynamic conditions reaches the energy level transition of the synthetic material, the synthetic material is transformed into diamond.
  • MFHT magnetic field high temperature
  • the above-mentioned high temperature and high pressure can be used to synthesize diamond, and cubic boron nitride can also be synthesized, and the binary synthesis condition of the embodiment of the present disclosure is that the magnetic induction intensity B can be used to replace the ultra-high pressure P, then,
  • the synthesis method of the embodiment of the present disclosure can also synthesize diamond and cubic boron nitride.
  • FIG. 1 in the “activated CVD method” synthesis region of the binary phase diagram of carbon, magnetic field conditions are introduced to form a magnetic field MF+ The "MFCVD" synthesis method of CVD.
  • the synthetic material of synthetic diamond is a carbon material with sp2 hybridization state, and a catalyst can also be added.
  • the carbon material is generally natural graphite and artificial graphite (collectively referred to as graphite).
  • a catalyst can also be added to the synthetic material as a catalyst to reduce the synthesis conditions, specifically:
  • Synthetic diamonds select the elemental metals of transition group elements such as iron, nickel, manganese, cobalt or their alloys as catalysts, which are the same as the metal catalysts used for synthetic diamonds mentioned above; the specific amount of catalyst added is the same as the above-mentioned components. This is obvious to technicians in the same industry.
  • P>0 magnetic field, pressure and high temperature (MPHT) ternary synthesis conditions for the method of applying pressure to the synthetic material the above-mentioned six-sided top and two-sided top ultra-high pressure method can be used.
  • Heating synthetic materials for example, optionally, the heating temperature range is not less than 1350°C (the melting point temperature of the catalyst), optionally, the heating temperature range is 1350-1900°C, optionally, the heating temperature range is 1650°C -3000°C, optionally, the heating temperature is not less than 2000°C.
  • the division of the three temperature ranges is actually roughly divided into three synthesis regions, that is, each temperature region corresponding to the magnetic field high temperature solvent synthesis method, the magnetic field high temperature composite material direct conversion method and the magnetic field high temperature composite material continuous synthesis method in Figure 2, respectively. It will be described in detail in each of the following embodiments.
  • the heating of synthetic materials includes one or a combination of direct heating and indirect heating
  • the heating method is selected from various methods that can realize heating. From the perspective of technical implementation, alternatively, the heating method is various electric heating, such as directly energized resistance heating, electromagnetic induction heating, microwave heating, laser heating, arc heating And one or more combination of plasma arc heating, etc. Of course, other forms of heating in the prior art can also be used.
  • the above-mentioned direct heating refers to the direct energization of the synthetic material or the direct heating of the synthetic material by the plasma arc; and the indirect heating refers to the heat transfer heating performed by the heat conduction of the heating body on the outer periphery of the synthetic material.
  • the magnetic field applied to the composite material can be a constant magnetic field or an alternating magnetic field or a combination thereof.
  • the constant magnetic field includes a permanent magnetic field and a DC electromagnetic field
  • the alternating magnetic field may be an AC electromagnetic field, which will be described in the following embodiments.
  • the magnetic induction intensity of the magnetic field is not less than 6mT.
  • the magnetic induction intensity of the magnetic field is not less than 6mT, which corresponds to area 1 in Figure 2.
  • the magnetic induction intensity of the magnetic field is not less than 11mT, which corresponds to the 2 area of Fig. 2 .
  • the magnetic induction intensity of the magnetic field is not less than 20mT, which corresponds to the 3 area in Figure 2.
  • micropressures where the kinetic conditions for pressure generation are negligible.
  • the pressure P>0 is 0-10 GPa, and optionally, the intensity of the pressure is 5-10 GPa.
  • the magnetic induction intensity of the applied magnetic field is equal to the equivalent pressure of 1GPa per 1-3mT.
  • the sum of the equivalent pressure and the applied pressure after conversion of the magnetic induction intensity is not less than 5GPa.
  • the insufficient kinetic conditions of the pressure are partly provided by the magnetodynamic conditions generated by the magnetic field on the high-temperature synthetic materials, and the synthetic materials are transformed into diamonds under the catalytic action of catalysts.
  • the magnetic induction intensity of the applied magnetic field is equal to the equivalent pressure of 1GPa according to 1-3mT, and the sum of the equivalent pressure and the applied pressure after conversion of the magnetic induction intensity is not less than 11GPa, and the heating temperature is 1650-3000 Between °C, the magnetodynamic conditions generated by the magnetic field on the high-temperature synthetic material increase the energy level transition condition to the point where the synthetic material is directly transformed into diamond.
  • MFHT binary conditions of magnetic field high temperature
  • MPHT magnetic field pressure high temperature
  • the synthetic material 304 is a cylinder made of a mixture of graphite and a catalyst, and is placed in a container 305.
  • the container 305 can isolate the air and prevent the synthetic material 304 and the synthetic diamond from being oxidized; in FIG.
  • a heater is provided outside the container 305 303, the synthetic material 304 is indirectly heated; there is also a thermal insulation layer 302 on the outside of the heater 303 to avoid and reduce heat loss; at the upper and lower ends of the synthetic material 304, there is also a pair of magnetic poles (constituting the magnet 301), and its magnetic lines of force pass through it. Through the synthetic material 304, a magnetic field is applied to the synthetic material 304.
  • a diamond synthesis equipment corresponding to this method includes a container 305, a heater 303, a thermal insulation layer 302 and a magnet 301; the container 305 is configured to accommodate the synthetic material 304 and isolates the air; the heater 303 is arranged outside the container 305, And it is configured to heat the synthetic material 304 in the container 305; the thermal insulation layer 302 is arranged on the outside of the heater 303; A magnetic field is applied to the composite material 304 within the container 305 .
  • Synthetic diamond graphite + catalyst, heating temperature: 1380-1600°C; magnetic induction intensity: 6-10mT, synthesis time: more than 10 minutes.
  • Figure 5 is a picture of the synthesized diamond single crystal.
  • FIG. 6 is a graph of the Raman detection result of the synthesized diamond single crystal, which is confirmed to be a diamond.
  • the matching of the heating of the synthetic material and the applied magnetic field will determine the growth rate and quality of the crystal, and the synthesis time will determine the size of the synthesized crystal. It is understandable that the diamond synthesized within a few minutes may have a very small particle size, usually a few minutes.
  • the synthesis time of up to tens of minutes can synthesize larger-sized mesh-sized diamonds, while jewelry-grade carat-sized diamonds require several days or even tens of days to synthesize.
  • the synthesis time of the present embodiment is more than 10 minutes, and the main particle size of synthesis is about 80/120 mesh with a coarse range. Substituting magnetic induction for pressure conforms to the synthesis rule mentioned above.
  • the synthetic material 304 is directly heated and combined with a magnetic field, and the synthetic material 304 is directly synthesized into a diamond single crystal product.
  • the graphite material is placed in the container 305, the heater 303 is arranged outside the container 305 to heat the synthetic material 304, and the heat preservation layer 302 is provided outside the container 305 to avoid and reduce Heat loss; outside the insulation layer 302, there are at least a pair of magnets 301, which can apply a magnetic field to the synthetic material 304; at the upper and lower ends of the synthetic material 304, there is an on-voltage head 501, which is electrically connected by the direct heating power supply and the pressure head , the voltage head 501 applies pressure to the synthetic material 304 and achieves electrical contact; the synthetic material 304 is energized and heated to a high temperature, the magnet 301 applies a magnetic field to the synthetic material 304 heated to a high temperature, and the current that is heated to the synthetic material 304 also generates a symbiotic magnetic field Acts on synthetic material 304.
  • a diamond synthesis equipment corresponding to this method includes a vacuum chamber 502, a container 305, a heater 303, a thermal insulation layer 302, a magnet 301 and an on-voltage head 501;
  • the container 305 is located in the vacuum chamber 502 and is configured to accommodate synthetic materials 304;
  • the heater 303 is arranged on the outer side of the container 305, and is configured to heat the synthetic material 304 in the container 305;
  • the thermal insulation layer 302 is arranged on the outer side of the heater 303;
  • the energization head 501 is configured to energize and apply pressure to the synthetic material 304 within the container 305 so that the magnetic field lines of the magnet 301 pass through the container 305 to apply a magnetic field to the synthetic material 304 within the container 305 .
  • the power supply 306 shown in FIG. 7 is a direct heating power supply, and is configured to supply power to the heater 303 and the energization head 501 .
  • Synthetic diamond The synthetic material is graphite, the direct heating temperature is 2000°C, the total magnetic induction intensity is not less than 16mT, the vacuum degree is less than 10 -2 Pa, the pressure applied to the synthetic material by the power-on head is 500MPa, the synthesis time is more than 20 minutes, and the synthetic main particle size is In the 40/100 mesh with a coarse range.
  • Figure 8 is a picture of the synthesized diamond.
  • FIG. 9 is the Raman detection result of the synthesized diamond single crystal, which is confirmed to be diamond.
  • a vacuum chamber is added to realize a non-oxidizing atmosphere, and a pressure is applied to the synthetic material with an on-voltage head, so as to ensure that the synthetic material is always in a dense state.
  • the synthetic material, temperature and magnetic induction intensity parameters of Example 1 can be used, and the same diamond product can also be synthesized.
  • the direct and continuous conversion synthesis method of high-temperature synthetic material in magnetic field is adopted.
  • the synthetic material 304 of graphite powder is injected into the plasma arc through the synthetic material injection port 604 for heating and a magnetic field is applied.
  • the equipment for implementing the device is a plasma spraying or spheroidizing plasma equipment, and a plasma gun torque that can feed powder is used.
  • a linear solenoid magnetic field coil 602 At the front end of the plasma gun torque and the concentric outer side of the plasma arc, there is a linear solenoid magnetic field coil 602, and the front end of the plasma arc extends into the plasma arc.
  • the cooling settling device 601 In the cooling settling device 601; the cooling settling device 601 is equipped with pure water, and the flame flow at the front end of the plasma arc (that is, the plasma flame flow 401) is sprayed into the water; there is also a non-oxidizing atmosphere isolation cover between the plasma gun moment and the cooling settling device 601 603:
  • the graphite powder is continuously injected into the plasma gun torque by the powder feeder of the plasma equipment, and is instantly heated to a high temperature with the plasma arc.
  • the linear solenoid magnetic field coil 602 acts on the graphite powder in the high-temperature plasma arc, and its synthesis changes.
  • the time is the time for the graphite powder to pass through the plasma arc, which is generally in microseconds, and the synthesized particle size is in the nanometer to micrometer range.
  • the plasma arc is a "crystal transformation zone", and the graphite powder is transformed through the crystal transformation zone.
  • the converted diamond micropowder is then sprayed into the water of the cooling settling device 601 with the plasma arc to cool down, and is deposited in the water; since the ion gas is generally argon, nitrogen and hydrogen, it diffuses into a non-oxidizing atmosphere with the plasma arc Inside the isolation cover 603, the plasma arc and the cooling settling device 601 are ensured to be in a non-oxidizing atmosphere to prevent oxidation.
  • the above-mentioned flame flow can be understood as a high-temperature flame, which is generated by the above-mentioned plasma arc.
  • it can also be a neutral flame or a reducing flame formed by the reaction of combustible gas and oxygen; preferably, it is A flame formed by the reaction of acetylene, propane, gas or natural gas with oxygen.
  • a diamond synthesis equipment corresponding to this method includes a non-oxidizing atmosphere isolation cover 603, a cooling settling device 601, a plasma gun torque, a plasma equipment and a solenoid magnetic field coil 602; the non-oxidizing atmosphere isolation cover 603 is arranged on the cooling settling device 601.
  • the cooling sedimentation device 601 is configured to accommodate pure water; the front end of the plasma gun moment and the concentric outer side of the plasma arc of the plasma equipment have a solenoid magnetic field coil 602; The front end extends into the cooling settling device 601 ; the powder feeder of the plasma equipment continuously injects the synthetic material into the plasma gun torque through the synthetic material injection port 604 .
  • carbonized nitrogen (C 3 N 4 ) products can also be synthesized; the synthetic material adopts carbon-containing gas, such as methane gas, and is prepared in the same proportion according to the chemical equilibrium formula of the synthetic reaction of carbon dioxide.
  • carbon-containing gas such as methane gas
  • FIG. 11 is a SEM electron microscope picture of the diamond micropowder material synthesized in this example.
  • Fig. 12 is the Raman spectrum detection result of the synthesized diamond fine powder, and it is confirmed that the diamond fine powder is present.
  • the advantages of this method for synthesizing diamond or cubic boron nitride powder materials are: adjusting the temperature and arc speed of the plasma arc, as well as the injection amount of the synthetic material, corresponding to the above-mentioned "detonation method" synthetic diamond powder, Equivalent to continuously adjustable detonation temperature, detonation pressure and detonation time, a wide range of synthesis conditions can be obtained, which is beneficial to the synthesis of products with a wide particle size range from nanometer to micrometer. Another outstanding advantage is that continuous synthesis can be achieved with extremely high productivity.
  • the magnetic field pressure high temperature ternary condition synthesis method is used, and pressure (P ⁇ 0) is also applied to the synthetic material, so that the synthetic material can synthesize diamond products under the conditions of magnetic field, pressure and high temperature, including synthetic material + catalyst and synthetic material Materials are directly transformed in two ways.
  • pressure P ⁇ 0
  • the pressure of the synthetic material 304 adopts the six-sided top synthetic press host mode commonly used in the existing industry, and the electromagnet coils 701 are added to the rear ends of the four lateral top hammers of the ultra-high pressure die assembly, and the lateral The top hammer becomes a magnetic conductor to become a lateral magnetic pole indenter 702 , and the two heating top hammers on the other axis are used as an axial energized voltage head 703 ; the composite material 304 and the container 305 still use the original structure.
  • a diamond synthesizing equipment corresponding to this method includes a six-sided top synthetic press main body, an electromagnet coil 701 and a container 305; Equipped with an electromagnet coil 701, the lateral top hammer of the main body of the six-sided top synthesis press becomes a magnetic conductor and forms a lateral magnetic pole indenter 702, and the two heating top hammers of the six-sided top synthesis press main body form an axial energization voltage
  • the head 703 ; the container 305 is located in the main body of the six-sided top synthetic press and is configured to accommodate the synthetic material 304 .
  • Magnetic field pressure high temperature solvent method synthesis When the synthetic material mixed with catalyst is heated to a high temperature and a magnetic field is applied, then pressure is applied to the synthetic material, and the pressure is lower than the above-mentioned high temperature and high pressure synthesis pressure, generally lower than 5GPa , the dynamic conditions provided by the pressure are insufficient at this time, and the insufficient part is supplemented by the magnetodynamic conditions of the magnetic field applied to the synthetic material, so that it can reach the overall energy level transition condition.
  • the magnetic induction intensity of the applied magnetic field is equal to the equivalent pressure of 1GPa per 1-3mT, the sum of the equivalent pressure after the conversion of the magnetic induction intensity and the applied pressure is not less than 5GPa, and the temperature applied at the same time is between 1350-1900°C,
  • the synthetic materials are converted into diamonds under the action of catalyst catalysis.
  • the advantage of this embodiment is that the working pressure of the original ultra-high pressure and high temperature synthesis equipment can be greatly reduced, and even the magnetic pole indenter and the energization head can be manufactured without expensive cemented carbide materials.
  • the pressure value is used to 50% of the ultra-high pressure synthesis pressure, and the insufficient dynamic conditions are supplemented by the magnetodynamic conditions of the magnetic field acting on the high-temperature synthesis material, which greatly reduces the ultra-high pressure equipment load and prolongs the life.
  • Carbide top hammers can also be made of high-strength steel, and the pressure structure of the "six-sided top" can also be relatively simple and lightweight.
  • Magnetic field pressure Direct synthesis of high-temperature synthetic materials When the synthetic material is heated to a high temperature and a magnetic field is applied, pressure is applied to the synthetic material. The pressure is the pressure that enters the above-mentioned high-temperature and high-pressure synthesis, generally 5-10GPa. At this time, a magnetic field is applied to the synthetic material to increase the magnetodynamic conditions, so that the overall energy level transition condition reaches the synthetic material and directly transforms into diamond.
  • the magnetic induction intensity of the applied magnetic field is equal to the equivalent pressure of 1GPa per 1-3mT, the sum of the equivalent pressure after the magnetic induction intensity conversion and the applied pressure is not less than 11GPa, and the temperature applied at the same time is between 1650-3000°C , which turns synthetic materials directly into diamonds.
  • the advantage of this embodiment is that the conversion energy level of the synthetic material can be greatly improved, so that the above-mentioned ultra-high pressure and high temperature synthesis equipment can break through the existing synthesis pressure limit, and the synthetic material can be directly converted into diamond.
  • the "Yuanshi" synthesized by researchers from Ehime University in Japan and Sumitomo Electric Industrial Co., Ltd., as shown in Figure 14, is a direct conversion of graphite.
  • the synthesis equipment is extremely difficult to synthesize.
  • This embodiment can make the ordinary ultra-high pressure and high temperature synthesis equipment reach the equivalent pressure of 15GPa, so that it can easily synthesize large-sized "yuan stone" products.
  • the above-mentioned "two-sided top” synthetic press mode can also be used, and an electromagnetic coil is added behind the two pressurized and energized top hammers on one axis, and the top hammers also become magnetic poles, so that the two The top hammer becomes a pressurized electromagnetic pole indenter, which is easy to understand and implement for technicians in the same industry.
  • cubic boron nitride (CBN) single crystal and powder materials can also be synthesized.
  • the conditions of synthetic diamond and cubic boron nitride there are differences in the conditions of synthetic diamond and cubic boron nitride, and the conditions for synthesis are lower than those of diamond.
  • the lower limit temperature for synthesizing cubic boron nitride is 600°C, therefore, the heating temperature can be between 600-1900°C.
  • Cubic boron nitride (CBN for short) is an inorganic crystal material that is extremely rare in nature and can only be synthesized basically. It is a "diamond" that has been widely used in the field of machining. Moreover, CBN is a typical III-V group compound with an electron rate of 1010 ⁇ cm and a thermal conductivity of 13W/(cm.K). It can withstand a high temperature of 1200°C and has a direct bandgap of the widest 6.4eV. It is a very excellent thermal conductivity. , optoelectronic and semiconductor materials, which have broad application prospects in the field of microelectronics.
  • FIG. 1 the temperature and pressure binary phase diagram of carbon shown in Figure 1, the abscissa represents the temperature, the ordinate represents the pressure, and the activated CVD method, the catalytic high pressure method, the high temperature and high pressure method, and the detonation method are shown respectively. corresponding synthesis conditions.
  • Zone 1 The temperature range is 1350-1900°C, and the magnetic induction intensity is greater than or equal to 6mT.
  • Zone 2 The temperature range is 1650-3000°C, and the magnetic induction intensity is greater than or equal to 10mT.
  • Zone 3 The temperature range is greater than or equal to 2000°C, and the magnetic induction intensity is greater than or equal to 20mT.
  • the conditions are high temperature (HT), pressure (HP) and magnetic field (MF).
  • HT high temperature
  • HP pressure
  • MF magnetic field
  • three different synthesis methods can be formed.
  • the magnetic induction intensity is 0, the conditions of high temperature and high pressure are used, that is, the synthesis method of high temperature and high pressure.
  • the pressure is 0, the conditions of a magnetic field and a high temperature, that is, a magnetic field high temperature synthesis method are used.
  • the pressure is not 0 and the magnetic induction intensity is not 0, the conditions of magnetic field, high pressure and high temperature are used, that is, the magnetic field pressure high temperature synthesis method.
  • the diamond synthesis equipment shown in FIG. 4 includes a container 305 , a heater 303 , a thermal insulation layer 302 and a magnet 301 .
  • the container 305 is configured to contain the synthetic material 304, and is insulated from air.
  • the heater 303 is disposed outside the container 305 and is configured to heat the synthetic material 304 within the container 305 .
  • the heat insulating layer 302 is provided outside the heater 303 .
  • the two magnetic poles (N pole and S pole) of the magnet 301 are located at two ends of the container 305 respectively, so that the magnetic field lines of the magnet 301 pass through the container 305 to apply a magnetic field to the synthetic material 304 in the container 305 .
  • FIG. 5 shows a single crystal product of diamond synthesized by the equipment in FIG. 4 .
  • FIG. 6 shows the Raman spectrum detection result of the diamond single crystal synthesized by the equipment in FIG. 4, which is determined to be diamond.
  • the diamond synthesis equipment shown in FIG. 7 includes a vacuum chamber 502 , a container 305 , a heater 303 , a thermal insulation layer 302 , a magnet 301 , a voltage head 501 and a power source 306 ;
  • the container 305 is located in the vacuum chamber 502 inside and configured to receive synthetic material 304 .
  • the vacuum chamber 502 is provided with a vacuum port 503 , and the vacuum chamber 502 is evacuated through the vacuum port 503 .
  • the heater 303 is disposed outside the container 305 and is configured to heat the synthetic material 304 within the container 305 .
  • the heat insulating layer 302 is provided outside the heater 303 .
  • the two magnetic poles of the magnet 301 are located at the two ends of the container 305 respectively, so that the magnetic field lines of the magnet 301 pass through the container 305, thereby applying a magnetic field to the synthetic material 304 in the container 305, and the voltage head 501 is configured to apply a magnetic field to the synthetic material in the container 305.
  • 304 Apply pressure.
  • the power supply 306 is configured to power the heater 303 and the energization head 501 .
  • FIG. 8 shows a single crystal product of diamond synthesized by the equipment in FIG. 7 .
  • FIG. 9 shows the Raman spectrum detection result of the diamond single crystal synthesized by the equipment in FIG. 7, which is determined to be diamond.
  • the diamond synthesis equipment shown in FIG. 10 includes a non-oxidizing atmosphere isolation cover 603 , a cooling settling device 601 , a plasma gun torque, a plasma equipment and a solenoid magnetic field coil 602 .
  • the non-oxidizing atmosphere isolation cover 603 is arranged above the cooling settling device 601 and below the moment of the plasma gun; the cooling settling device 601 is configured to accommodate pure water.
  • the front end of the plasma gun moment and the concentric outer side of the plasma arc of the plasma equipment are provided with a solenoid magnetic field coil 602 ;
  • the powder feeder of the plasma equipment continuously injects the synthetic material into the plasma gun torque through the synthetic material injection port 604 .
  • the ion gas interface 605 of the plasma apparatus is configured to pass ion gas, so that the ion gas can diffuse into the non-oxidizing atmosphere isolation cover 603 along with the plasma arc.
  • the plasma arc is created between the cathode 801 and the anode 802 of the plasma apparatus.
  • the plasma flame 401 of the plasma equipment can be sprayed into the pure water in the cooling and sedimentation device 601 .
  • FIG. 11 shows the diamond powder synthesized by the equipment in FIG. 10 .
  • FIG. 12 shows the Raman spectrum detection result of the diamond powder synthesized by the equipment in FIG. 10 , and it is confirmed that there is diamond powder.
  • the diamond synthesis equipment shown in FIG. 13 includes a six-sided top synthesis press host, an electromagnet coil 701 , a container 305 and a power source 306 .
  • Electromagnet coils 701 are added to the rear ends of the four lateral top hammers of the ultra-high pressure die assembly of the main body of the six-sided top synthetic press machine, and the lateral top hammers of the six-sided top synthetic press main body become magnetic conductors and form lateral magnetic poles
  • the pressure head 702 and the two heating head hammers of the main body of the six-sided top synthesis press form an axially energized pressure head 703 .
  • a container 305 is located within the main body of the six-sided top synthetic press and is configured to contain the synthetic material 304 .
  • the power supply 306 is configured to power the axially energized voltage head 703 .
  • Fig. 14 shows the synthesized "yuanshi" picture.
  • the value and range of the magnetic induction intensity given in the embodiments of the present invention are based on the results of the comprehensive judgment of the inventor's test conditions and detection instruments. If the test conditions and detection instruments are changed, the value and range of the magnetic induction intensity may occur. Variety.
  • the present disclosure provides a method and equipment for synthesizing diamonds and diamonds.
  • the method for synthesizing the diamond is low in difficulty and cost, and the equipment is simple.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

一种钻石、钻石的合成方法以及设备,该方法包括:在非氧化气氛中,在压力等于0时,对合成材料施加磁场并加热到高温,将合成材料转变为钻石。或,在非氧化气氛中,在压力大于0时,对合成材料施加磁场和压力并加热到高温,将合成材料转变为钻石。该合成方法合成难度低、成本低。

Description

一种钻石、钻石的合成方法以及设备 技术领域
本公开涉及无机材料制备技术领域,具体而言,涉及一种钻石、钻石的合成方法以及设备。
背景技术
钻石,也称金刚石,和立方氮化硼同属于超硬材料。
金刚石,是在工程材料应用领域的习惯称谓,而在珠宝界则多称为钻石,它是一种由碳元素组成的矿物,是石墨的同素异形体。钻石是自然界中天然存在的最坚硬的物质,摩氏硬度10,显微硬度10000kg/mm 2,显微硬度比石英高1000倍,比刚玉高150倍。钻石可分为天然钻石和人造钻石,被誉为“材料之王”和“极限功能材料”,广泛应用于珠宝业、工业以及诸多高科技领域。
传统的钻石的合成方法存在合成难度大、合成成本高等问题。
发明内容
本公开提供了一种钻石、钻石的合成方法以及设备,该方法具有合成难度低、易于工业化、合成成本低等优点,该设备可以通过实现该方法以合成钻石,合成的过程难度低且成本也低。
本公开的实施例可以这样实现:
本公开的实施例提供了一种钻石的合成方法,配置成将合成材料转变为钻石,所述钻石的合成方法包括:
二元合成条件的合成方法:在非氧化气氛中,在压力等于0时,对所述合成材料施加磁场并加热到高温,将所述合成材料转变为钻石;或,
三元合成条件的合成方法:在非氧化气氛中,在压力大于0时,对所述合成材料施加磁场和压力并加热到高温,将所述合成材料转变为钻石。
可选地,所述合成材料包括具有sp2杂化状态的碳材料。
可选地,在所述合成材料中加入触媒;优选地,所述触媒为过渡族元素所对应的单质金属或合金;优选地,所述过渡族元素为铁、镍、锰或钴。
可选地,所述磁场为恒定磁场、交变磁场或恒定磁场和交变磁场的组合;优选地,所述恒定磁场包括永久磁场和直流电磁场;优选地,所述交变磁场为交流电磁场。
可选地,所述磁场的磁感应强度不小于6mT;优选地,所述磁场的磁感应强度不小于11mT;优选地,所述磁场的磁感应强度不小于20mT。
可选地,所述加热采用电加热的方式;优选地,为电阻加热、电磁感应加热、微波加热、激光加热、电弧加热和等离子弧加热中的一种或多种组合。
可选地,所述加热的方式包括直接加热和间接加热中的一种或两种组合。
可选地,所述加热的温度不小于1350℃;优选地,所述加热的温度范围为1350-1900℃;优选地,所述加热的温度范围为1650-3000℃;优选地,所述加热的温度不小于2000℃。
可选地,在所述二元合成条件的合成方法中,所述加热的温度为1350-1900℃之间,所述磁场的磁感应强度不小于6mT,所述合成材料在触媒催化作用下转变为钻石。
可选地,在所述二元合成条件的合成方法中,所述加热的温度为1650-3000℃之间,所述磁场的磁感应强度不小于10mT,所述合成材料直接转变为钻石。
可选地,在所述二元合成条件的合成方法中,所述合成材料随高温火焰加热到温度不小于2000℃,所述磁场的磁感应强度不小于20mT,所述合成材料直接转变成纳微米粒度的钻石粉体材料;优选地,所述高温火焰由等离子弧产生;优选地,所述高温火焰为可燃气与氧反应形成的中性火焰或还原性火焰;优选地,为乙炔、丙烷、煤气或天然气与氧反应形成的火焰。
可选地,在所述二元合成条件的合成方法中,所述合成材料为石墨,并在所述合成材料中加入触媒;所述加热的温度为1380-1600℃,所述磁场的磁感应强度为6-10mT,合成的时间为10分钟以上,所述合成材料在触媒催化作用下转变为80/120目级粒度以粗钻石。
可选地,在所述二元合成条件的合成方法中,在真空度小于10 -2Pa的条件下,所述合成材料为石墨,所述加热的温度为2000℃,所述磁场的磁感应强度不小于16mT,对所述合成材料施加压力为500MPa,合成的时间为20分钟以上,所述合成材料直接转变为40/100目级粒度以粗钻石。
可选地,在所述三元合成条件的合成方法中,对所述合成材料持续施加磁场和压力,施加磁场的磁感应强度按照每1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于5GPa,同时加热的温度在1350-1900℃之间,所述合成材料在触媒催化作用下转变为钻石。
可选地,在所述三元合成条件的合成方法中,对所述合成材料持续施加磁场和压力,施加磁场的磁感应强度按照1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于11GPa,同时加热的温度在1650-3000℃之间,合成材料直接转变为钻石。
本公开的实施例还提供了一种钻石的合成设备,配置成实现上述的钻石的合成方法,其中,
所述钻石的合成设备包括容器、加热器、保温层以及磁铁;所述容器配置成容置所述合成材料,并隔绝空气;所述加热器设置在所述容器的外侧,且配置成对所述容器内的合成材料加热;所述保温层设置在所述加热器的外侧;所述磁铁的两个磁极分别位于所述容器的两端,以使所述磁铁的磁力线穿过所述容器,从而对所述容器内的合成材料施加磁场;或,
所述钻石的合成设备包括真空室、容器、加热器、保温层、磁铁以及通电压头;所述容器位于所述真空室内,并配置成容置所述合成材料;所述加热器设置在所述容器的外侧,且配置成对所述容器内的合成材料加热;所述 保温层设置在所述加热器的外侧;所述磁铁的两个磁极分别位于所述容器的两端,以使所述磁铁的磁力线穿过所述容器,从而对所述容器内的合成材料施加磁场,所述通电压头配置成对所述容器内的合成材料通电和施加压力;或,
所述钻石的合成设备包括非氧化气氛隔离罩、降温沉降装置、等离子枪矩、等离子设备以及螺线管磁场线圈;所述非氧化气氛隔离罩设置在所述降温沉降装置的上方,且位于所述等离子枪矩的下方;所述降温沉降装置配置成容置纯水;所述等离子枪矩的前端以及所述等离子设备的等离子弧的同心外侧具有所述螺线管磁场线圈;所述等离子设备的等离子弧的前端伸入到所述降温沉降装置中;所述等离子设备的送粉器通过合成材料注入口将所述合成材料连续注入到所述等离子枪矩中;或,
所述钻石的合成设备包括六面顶合成压机主机、电磁铁线圈以及容器;所述六面顶合成压机主机的超高压模具组件的四只侧向顶锤后端加装有所述电磁铁线圈,所述六面顶合成压机主机的侧向顶锤成为了导磁体且形成侧向磁极压头,所述六面顶合成压机主机的两只加热顶锤形成轴向通电压头;所述容器位于六面顶合成压机主机内,且配置成容置合成材料。
本公开的实施例还提供了一种钻石,其由上述的钻石的合成方法制备而成。
与现有技术相比,本公开实施例的有益效果包括,例如:
对于二元合成条件的合成方法,建立磁场和高温环境的过程简单容易,不需要复杂昂贵的超高压设备,该方法简单,易于实现大工业生产、合成成本低。
对于三元合成条件的合成方法,则为磁场、压力、高温合成模式,由于增加了“磁致动力学条件”,可以降低对合成材料(包括触媒)施加的压力的动力学条件,或者不降低压力而获得更大的能级跃变,使合成材料直接转化。整体来看,合成难度较低、成本低。
该设备可以实现钻石的合成方法,并且结构简单,合成成本低。
附图说明
为了更清楚地说明本公开具体实施方案,下面将对具体实施方式或背景技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为碳的温度压力二元相图,标识用磁感应强度B替代压力轴P;
图2为在P=0时,二元合成条件下的三个合成区域示意图;
图3为在三元合成条件下的三种合成方法组态示意图;
图4为本公开实施例1提供的钻石的合成设备的示意图;
图5为实施例1合成出的钻石单晶产品图片;
图6为实施例1合成出钻石单晶的拉曼光谱检测结果图;
图7为本公开实施例2提供的钻石的合成设备的示意图;
图8为实施例2合成出的钻石单晶产品图片;
图9为实施例2合成出钻石单晶的拉曼光谱检测结果图;
图10为本公开实施例3提供的钻石的合成设备的示意图;
图11为实施例3合成出钻石粉体的SEM图片;
图12为实施例3合成的钻石粉体的拉曼光谱检测结果图;
图13为本公开实施例4提供的钻石的合成设备的示意图;
图14为日本爱媛大学研究人员与住友电器工业公司合作合成出的“媛石”图片。
附图标记:
301-磁铁;302-保温层;303-加热器;304-合成材料;305-容器;306-电源;401-等离子焰流;501-通电压头;502-真空室;503-真空接口;601-降温沉降装置;602-螺线管磁场线圈;603-非氧化气氛隔离罩;604-合成材料注入口;605-离子气接口;701-电磁铁线圈;702-侧向磁极压头;703-轴向通电压头;801-阴极;802-阳极。
具体实施方式
下面将结合附图和具体实施方式对本公开的技术方案进行清楚、完整地描述,但是本领域技术人员将会理解,下列所描述的实施例是本公开一部分实施例,而不是全部的实施例,仅用于说明本公开,而不应视为限制本公开的范围。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用设备或装置未注明生产厂商者,均为可以通过市售购买获得的常规产品。
人们受启于地球深部的碳在地球内部的高压高温条件下转变为钻石的形成机理,是碳从低能级向钻石结构的高能级转变需要超高压压力提供动力学条件和高温提供热力学条件。人们尝试用超高压高温方法来人工合成钻石,获得成功并一直探索人工合成钻石的各种方法。1955年,美国通用电气公司专门制造了高温高压静电设备,美国科学家霍尔等在1650℃和95000个大气压下,得到世界上第一批工业用人造钻石小晶体,从而开创了工业规模生产人造钻石磨料的先河。1963年12月6日,由我国自主研制的超高压六面顶设备研制成功了我国第一颗人造钻石。经过六十年的发展,世界上利用超高压高温(HPHT)技术人工合成钻石,已经形成了一个庞大的技术领域和产业。国外多采用“两面顶超高压高温”设备,我国钻石行业采用六面顶超高压高温设备的合成技术,其人造钻石单晶产能规模已经达到200亿克拉,占世界总产量的90%左右,成为钻石生产大国。
与钻石同属于超硬材料的立方氮化硼,目前也都是采用超高压高温合成方法进行工业化生产。1957年Wentorf首次人工合成立方氮化硼。在温度接近或高于1700℃,最低压强为11~12GPa时,由纯六方氮化硼(HBN)直接转变成立方氮化硼(CBN)。以硼酸铵盐作催化剂所需的温度和压力最低,在1500℃时所需压力为5GPa,而在压力为6GPa时其温度区间为600~700℃。
人们建立了碳和氮化硼的压力温度二元相图,并指导合成钻石和立方氮化硼的方法,截止目前,人造钻石生产方法大致分为“动压法”、“高温高压法”、“催化高压法”和“CVD法”等。而合成立方氮化硼则主要采用催化高压 法。
动压法:动压法合成钻石有三种方法,分别是冲击波法、爆轰波法和爆轰法。目前应用最多的是爆轰法,爆轰法的原料是高能炸药,温度和压力由炸药爆轰时的爆压、爆温提供。当负氧平衡炸药在密闭容器中爆轰的瞬间(约1微秒),组成炸药的C、H、O、N中的碳分子一部分被炸药自身的氧氧化,未被氧化的富裕游离碳在晶变区的特定高温、超高压下就转变成纳米钻石。在此温度压力下,碳元素呈液滴状,晶变为类球形纳米钻石。目前该方法限于生产纳米钻石材料。
高温高压法:石墨在大约13GPa以上的超高压和2000℃以上高温条件下,直接转变为钻石。目前人类尚有建立起如此高的超高压静压力,由石墨直接转变为钻石单晶体的生产实践,如日本爱媛大学研究人员与住友电器工业公司合作合成出的“媛石”。
催化高压法:一般称为“静压法”,也被称为超高压高温(HPHT)法,即在超高压高温条件下,由金属触媒参与催化作用使石墨转变为钻石单晶。该方法的超高压高温钻石合成设备,需要超高压液压设备和超高压模具,对合成块建立5GPa以上的超高压压力,同时对合成块电加热,使合成棒达到1350℃以上的高温条件。在合适的超高压、高温条件下,合成棒中的石墨在金属触媒的催化作用下转变成钻石单晶。根据超高压高温合成理论,压力产生动力学条件,高温产生热力学条件,在动力学条件和热力学条件达到石墨由低能级转变为高能级的能级跃变条件时,石墨由sp2杂化状态转变为钻石的sp3杂化状态。
催化高压(HPHT)法合成钻石的合成块,是用叶腊石块体作为容器,放入由金属触媒和石墨组成的合成柱,两端还具有导电堵头。叶腊石是起到密封、传压和保温的作用,而导电堵头则是由对置的顶锤对其通电加热。
CVD法:习惯称谓化学气相沉积(Chemical Vapor Deposition,简称CVD)法。常见的CVD方法包括:热化学沉积(TCVD)法和等离子体化学气相沉积(PCVD)法。等离子体化学气相沉积法又可以分为直流等离子体化学气相沉积(DC-PCVD)法、射频等离子体化学气相沉积(RF-PCVD)法、微波等离子体化学气相沉积(MPCVD)法及微波电子回旋共振等离子体增强化学气相沉积(ECR-PCVD)法等。CVD法是在高温条件下使原料分解,生成碳原子或甲基原子团等活性粒子,并在一定工艺条件下,在基材(衬底)材料上沉积生长钻石膜或晶体的方法。
以上“静压法”合成钻石所采用的合成材料是用石墨或者具有sp2杂化状态的碳为合成材料,甚至采用钻石微粉作为碳源,还可以加入子晶,进一步的,还可以具有微量的硼、碳、硫等掺杂元素。合成材料中的金属触媒是过渡族元素的铁、镍、钴、铬的金属元素或合金。合成立方氮化硼的触媒一般是硼酸氨盐类材料,但还有诸多的材料种类可以作为其触媒。
如上所述,“爆轰法”生产纳米钻石涉及到炸药的使用的特种行业管理,而生产的效能低。“高压高温法”鉴于超高压高温设备要达到11GPa以上的合成压力,合成难度极大。行业生产规模最大的“催化高压法”合成钻石,经过六十年的发展,目前从设备到工艺技术可以说达到了极致,为了扩大合成腔体提高产能,其六面顶超高压高温设备的超高压油缸直径已经达到了800-1000mm,单缸推力可达5000-7500吨,而合成腔体最大直径也只能达到 60mm左右,以后再增大油缸直径来增大推力并扩大合成腔体,会愈加困难。超高压高温设备成本高昂,占据总造价的90%以上。其关键的硬质合金模具也是重要的限制因素。更为甚者超高压高温合成设备的“压缩行程受限”是不可逾越的技术壁垒,造成不能超长时间合成来生产大颗粒的钻石。还有,要合成“掺杂”的半导体钻石/CBN或彩钻,需要洁净的合成环境和精确地掺杂控制,也是极其困难的。“CVD”法可以在衬底上生长钻石/CBN膜或单晶体,但生长速度缓慢,成本高。
传统的钻石的合成方法存在合成难度大、合成成本高等问题。有鉴于此,本公开实施例提供了一种钻石的合成方法,可以有效地改善该问题。
本公开实施例提出了在传统合成体系中再引入“磁场”条件,合成材料在高温下处于热振动的碳原子在磁场作用下,产生“磁致动力学条件”。当对合成材料加热产生的热力学条件和磁场作用产生的磁致动力学条件以及压力产生的动力学条件至少两个条件满足合成材料向钻石的能级跃变条件时,合成材料转变为钻石。
本实施例提供了一种钻石的合成方法,包括以下两种方法,这两种方法均可以将合成材料在具有磁场条件下转变为钻石。
这两种方法分别为磁场高温(MFHT)二元合成条件的合成方法以及磁场、压力和高温(MPHT)三元合成条件的合成方法。
磁场高温(MFHT)二元合成条件的合成方法也可以简称二元合成条件的合成方法,其包括以下步骤:在非氧化气氛中,在压力等于0时,对该合成材料施加磁场并加热到高温,将该合成材料转变为钻石。
磁场、压力和高温(MPHT)三元合成条件的合成方法也可以简称三元合成条件的合成方法,其包括以下步骤:在非氧化气氛中,在压力大于0时,对合成材料施加磁场和压力并加热到高温,将合成材料转变为钻石。
可以理解的,当压力等于0时,是指认为常压和真空(负压)下压力产生的动力学条件等于零,或认为小的压力产生的动力学条件可以忽略不计,小的压力是指对合成材料施加压紧密实或保证电接触导电的压力,该压力产生的动力学条件可以忽略不计,认为等于0。上述提到的超高压高温合成钻石,是三元合成条件之磁场的磁感应强度等于0时的超高压高温(HPHT)二元合成条件。
三元合成条件能够成立可以由天然钻石的成因条件予以证明:
人们根深蒂固的传统天然钻石成因理论,一直认为是在地球深部受到高压、高温条件下形成的一种由碳元素组成的单质晶体,在研究钻石成因时,只关注了地球内部的高压高温是天然钻石的成因。多年来,人们只研究碳在高压高温的二元条件下形成钻石,而忽略了地球具有磁场这一重要条件。而地球深部恰恰是具有恒定的地磁场,那么天然钻石的成因势必还具有“地球磁场的作用”条件,而磁场条件是可以促进化学反应的。所以天然钻石的成因理论应该是“地心压力+地球磁场+地心高温”的三元条件。据查地球表面的磁感应强度较大值约0.6Gs,如果按照地球内部的磁场强度是地面值的50倍,那么地球内部的磁感应强度的大概均值约是3mT左右;由于地球内部的磁场也是不均匀的,那么在磁感应强度较高的钻石生成区域,磁感应强度会高于均值,例如会达到数个mT以上。根据数年来采用“磁场+高温”的合成试验,6mT以上的磁感应强度和高温条件足以使碳转变为钻石。另一个 佐证是,如碳同位素分析显示巴西的钻石是地壳起源的,地球内部的压力没有那么高,应该是有地球磁场的磁感应强度又贡献了转化条件所致。可以解释的另一个问题是,天然钻石在高温岩浆里向地表运动过程中,压力释放,高温为什么没有使钻石消失或石墨化,原来唯一的假设是这种从地下向地表的输运过程非常快,而实际情况是岩浆在接近地表几公里时才以极快的速度喷发,可以推断为是地球磁场保护了钻石不被消失和石墨化。
所以,天然钻石的磁场、压力、高温的三元成因条件是本公开实施例的三元合成条件最好的实证。
本公开实施例对MFHT二元合成条件作为重点,对合成材料加热到高温,使合成材料达到一定的热力学条件;同时再对高温的合成材料施加磁场,磁场作用于高温合成材料,产生能级跃变条件,发明人把磁场作用于高温的合成材料产生的能级跃变条件定义为“磁致动力学条件”。当热力学条件和磁致动力学条件之和达到合成材料的能级跃变时,合成材料转变为钻石。
图1为上述的碳的温度压力二元条件相图,图中标识用磁场的磁感应强度B来替换其压力坐标轴P,在P=0时,粗略获得在磁感应强度和温度的B、T二元相图概念。
图2是P=0时,磁场高温(MFHT)二元合成条件给出的三个大致的合成区域,即:B不小于6mT、T不小于1350-1900℃的磁场高温溶媒法合成区域,B不小于10mT、T不小于1650-3000℃的磁场高温合成材料直接转化法合成区域以及B不小于20mT、T不小于2000℃的磁场高温合成材料连续转化合成区域。
结合图3,所以,对于三元合成条件的合成方法,在磁场MF=0时,为上述提到的高压高温(HPHT)合成方法。在P=0时,是磁场高温(MFHT)二元合成方法。在MF≠0、P≠0时,是磁场压力高温(MPHT)三元合成方法。
需要进而说明的是,上述提到的采用高温高压可以合成钻石,也可以合成立方氮化硼,而本公开实施例的二元合成条件是可以用磁感应强度B来替代超高压压力P,那么,本公开实施例的合成方法同样可以合成钻石和立方氮化硼,可选地,在图1中,碳的二元相图的“激活CVD法”合成区域,再引入磁场条件,形成磁场MF+CVD的“MFCVD”合成方法。
下面将给与更详细的说明。
合成钻石的合成材料是具有sp2杂化状态的碳材料,还可以加入触媒,碳材料一般是天然石墨和人造石墨(统称为石墨)。
在合成材料中还可以加入触媒做催化剂来降低合成条件,具体是:
合成钻石选用过渡族元素的铁、镍、锰、钴的单质金属或它们的合金做催化剂,同上述提到的合成钻石所用的金属触媒;具体关于触媒的加入量,同上述提到的组分配比,这对于同行业技术人员来说,是显而易见的。
P>0的磁场、压力和高温(MPHT)三元合成条件的对合成材料施加压力的方法,可以采用上述提到的六面顶和两面顶超高压施压的方法。
关于加热:
对合成材料加热,例如,可选地,加热的温度范围不小于1350℃(触媒的熔点温度),可选地,加热的温度 范围为1350-1900℃,可选地,加热的温度范围为1650-3000℃,可选地,加热的温度不小于2000℃。三个温度段范围的划分,其实是大致划分了三个合成区域,即分别对应图2的磁场高温溶媒合成法和磁场高温合成材料直接转化法以及磁场高温合成材料连续合成法的各个温度区域,在下述各个实施例会具体描述。
对合成材料加热包括直接加热和间接加热的一种或两种组合加热;
加热方式选自可以实现加热的各种方式,从技术实施角度来说,可选地,加热方式为各种电加热,如直接通电的电阻加热、电磁感应加热、微波加热、激光加热、电弧加热和等离子弧加热等中的一种或多种组合。当然了,现有技术中的其他形式的加热方式也可采用。
上述的直接加热,在下述实施例中,是指对合成材料直接通电或等离子弧对合成材料的直接加热;而间接加热是在合成材料外周采用加热体对其热传导进行的传热加热。
关于磁场:
对合成材料施加的磁场可以是恒定磁场或交变磁场或它们的组合。恒定磁场包括永久磁场和直流电磁场,交变磁场可以是交流电磁场,在下述实施例中会予以阐述。
一般地,磁场的磁感应强度不小于6mT。
当加热的温度为1350-1900℃之间时,磁场的磁感应强度不小于6mT,对应于图2的1区。
当加热的温度为1650-3000℃之间时,磁场的磁感应强度不小于11mT,对应于图2的2区。
当加热的温度不小于2000℃时,磁场的磁感应强度不小于20mT,对应于图2的3区。
关于压力:
认为压力产生的动力学条件等于0时的压力,P=0;
包括P≤0的负压和常压压力。
还包括压力产生的动力学条件可以忽略不计的微压。
上述的微压,例如压力的压强为0-500MPa的微压状态,是为了保证合成过程中合成材料转变为钻石过程中密度变化发生的体积收缩,施加该压力是为了保证合成材料的密实性,或者是为了保证对合成材料直接通电加热保证其电接触施加的微小压力,该微小压强对合成材料产生的动力学条件忽略不计,仍认为P=0。
认为压力产生的动力学条件大于0时的压力,P>0。
压力P>0的压强为0-10GPa,可选地,压力的强度为5-10GPa。
对合成材料持续施加磁场和压力,施加的磁场的磁感应强度按照每1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于5GPa,同时加热的温度在1350-1900℃之间,压力产生的动力学条件不足部分由磁场对高温合成材料产生的磁致动力学条件提供,合成材料在触媒催化作用下转变为钻石。
对合成材料持续施加磁场和压力,施加的磁场的磁感应强度按照1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于11GPa,同时加热的温度在1650-3000℃之间,磁场对高温合成材料 产生的磁致动力学条件再把能级跃变条件提高到合成材料直接转变为钻石。
下面将对磁场高温(MFHT)二元条件下在三个合成区域分别给出实施例,同时也给出磁场压力高温(MPHT)三元合成条件的实施例。
实施例1
如图4所示,采用磁场高温溶媒法,在常压下(P=0),对合成材料304间接加热和施加磁场,用于合成钻石单晶产品。合成材料304是用石墨和触媒混合制成的柱体,放在容器305中,容器305可以隔绝空气,避免合成材料304和合成的钻石发生氧化;图4中,采用在容器305外侧设置加热器303,对合成材料304实现间接加热;在加热器303外侧还具有保温层302,避免和减少热量损失;在合成材料304的上下两端,还具有一对磁极(构成磁铁301),其磁力线穿过合成材料304,对合成材料304施加磁场。
与该方法对应的一种钻石的合成设备包括容器305、加热器303、保温层302以及磁铁301;容器305配置成容置合成材料304,并隔绝空气;加热器303设置在容器305的外侧,且配置成对容器305内的合成材料304加热;保温层302设置在加热器303的外侧;磁铁301的两个磁极分别位于容器305的两端,以使磁铁301的磁力线穿过容器305,从而对容器305内的合成材料304施加磁场。
合成钻石:石墨+触媒,加热温度:1380-1600℃;磁感应强度:6-10mT,合成时间:10分钟以上。
图5为合成出的钻石单晶图片。
图6为合成出的钻石单晶的拉曼检测结果图,确认是钻石。
对合成材料加热和施加的磁场的高低匹配,会决定晶体的生长速度与质量,合成时间决定合成出的晶体尺寸,可以理解的,在数分钟内合成的钻石可能粒径很小,一般数分钟至数十分钟的合成时间可以合成较大粒径的目级粒度钻石,而珠宝级的克拉级钻石则需要数天甚至数十天的合成时间。本实施例合成时间10分钟以上,合成的 粒度约在80/120目以粗范围。用磁感应强度替代压力,符合上述提到的合成规律。
实施例2
如图7所示,采用磁场高温合成材料直接转化合成法,在负压下(P=0),对合成材料304进行直接加热方式和组合施加磁场,合成材料304直接合成钻石单晶产品。在真空室502内(即,真空条件),把石墨材料置于容器305中,采用在容器305外侧设置加热器303,对合成材料304实现加热,在容器305外侧具有保温层302,避免和减少热量损失;在保温层302外,至少有一对磁铁301,可以对合成材料304施加磁场;在合成材料304的上下两端,各具有一个通电压头501,由直接加热电源和压头实现电连接,通电压头501对合成材料304施加压力并实现电接触;对合成材料304通电加热到高温,磁铁301对加热到高温的合成材料304施加磁场,对合成材料304通电加热的电流也产生共生磁场作用于合成材料304。
与该方法对应的一种钻石的合成设备包括真空室502、容器305、加热器303、保温层302、磁铁301以及通电压头501;容器305位于真空室502内,并配置成容置合成材料304;加热器303设置在容器305的外侧,且配置成对容器305内的合成材料304加热;保温层302设置在加热器303的外侧;磁铁301的两个磁极分别位于 容器305的两端,以使磁铁301的磁力线穿过容器305,从而对容器305内的合成材料304施加磁场,通电压头501配置成对容器305内的合成材料304通电和施加压力。图7中示出的电源306为直接加热电源,配置成对加热器303以及通电压头501供电。
合成钻石:合成材料为石墨,直接加热温度2000℃,总磁感应强度不小于16mT,真空度小于10 -2Pa,通电压头对合成材料施加压力为500MPa,合成时间20分钟以上,合成的 粒度在40/100目以粗范围。
图8为合成出的钻石图片。
图9为合成出的钻石单晶的拉曼检测结果,确认是钻石。
本实施例比较实施例1,增加了真空室来实现非氧化气氛以及用通电压头对合成材料施加一个压力,以保证合成材料一直处于密实状态。该实施例可以用实施例1的合成材料和温度、磁感应强度参数,同样可以合成相同的钻石产品。
实施例3
如图10所示,采用磁场高温合成材料直接连续转化合成法,在常压下(P=0),让石墨粉的合成材料304通过合成材料注入口604注入到等离子弧加热并施加磁场,用于连续合成钻石。实施装置的设备为等离子喷涂或球化的等离子设备,采用可以送粉的等离子枪矩,在等离子枪矩前端和等离子弧的同心外侧,具有直线螺线管磁场线圈602,等离子弧的前端伸入到降温沉降装置601中;降温沉降装置601内装有纯水,等离子弧前端焰流(即,等离子焰流401)喷入水中;等离子枪矩和降温沉降装置601之间还具有非氧化气氛隔离罩603;由等离子设备的送粉器把石墨粉连续注入到等离子枪矩中,随等离子弧瞬间被加热到高温,同时直线螺线管磁场线圈602作用于高温等离子弧中的石墨粉,其合成转变时间为石墨粉通过等离子弧的时间,一般在微秒级,而合成的粒度在纳米至微米级范围,在高温和磁场作用下,等离子弧为“晶变区”,石墨粉经过晶变区转变为金刚石微粉;随后已经转化了的金刚石微粉随等离子弧喷入降温沉降装置601的水中降温,并在水中沉积;由于离子气一般是氩气、氮气和氢气等,随等离子弧扩散到非氧化气氛隔离罩603内,保证等离子弧和降温沉降装置601处于非氧化气氛,防止氧化发生。
需要说明的是,上述的焰流可以理解为高温火焰,由上述的等离子弧产生,其他实施例中,其也可以为可燃气与氧反应形成的中性火焰或还原性火焰;优选地,为乙炔、丙烷、煤气或天然气与氧反应形成的火焰。
与该方法对应的一种钻石的合成设备包括非氧化气氛隔离罩603、降温沉降装置601、等离子枪矩、等离子设备以及螺线管磁场线圈602;非氧化气氛隔离罩603设置在降温沉降装置601的上方,且位于等离子枪矩的下方;降温沉降装置601配置成容置纯水;等离子枪矩的前端以及等离子设备的等离子弧的同心外侧具有螺线管磁场线圈602;等离子设备的等离子弧的前端伸入到降温沉降装置601中;等离子设备的送粉器通过合成材料注入口604将合成材料连续注入到等离子枪矩中。
可以理解的,根据该合成方法的机理,推断也可以合成碳化氮(C 3N 4)产品;合成材料采用含碳气体,如甲烷气,并同时按碳化氮的合成反应化学平衡式同比例配比氮气,在等离子弧的高温和磁场作用下,合成出碳化氮 粉体材料。
连续合成纳微米粒度的钻石粉体材料:采用石墨粉作合成材料,等离子弧温度不小于5000℃,石墨粉在等离子中瞬间被加热到不小于2000℃高温,施加磁场的磁感应强度不小于20mT。
图11是该实施例合成出的钻石微粉材料的SEM电镜图片。
图12是合成出的钻石微粉的拉曼光谱检测结果,确认有钻石微粉。
该方法合成钻石或立方氮化硼粉体材料的优点是:调整等离子弧的温度和弧速,以及合成材料的注入量,对应于上述提到的“爆轰法”合成钻石粉体来说,相当于爆轰温度、爆轰压力和爆轰时间连续可调,可以获得宽泛的合成条件,有利于合成纳米级至微米级宽粒度范围的产品。另一个突出优点是可以实现连续合成,具有极高的产能。
实施例4
如图13所示,采用磁场压力高温三元条件合成法,还对合成材料施加压力(P≠0),使合成材料在磁场、压力和高温条件下合成钻石产品,包括合成材料+触媒和合成材料直接转化两种方式。图13中对合成材料304施压采用现有行业普遍采用的六面顶合成压机主机模式,在其超高压模具组件的四只侧向顶锤后端加装上电磁铁线圈701,侧向顶锤成为了导磁体使其变为侧向磁极压头702,原来另外一条轴线上的两只加热顶锤则作为轴向通电压头703;合成材料304和容器305仍采用原来的结构形式。
与该方法对应的一种钻石的合成设备包括六面顶合成压机主机、电磁铁线圈701以及容器305;六面顶合成压机主机的超高压模具组件的四只侧向顶锤后端加装有电磁铁线圈701,六面顶合成压机主机的侧向顶锤成为了导磁体且形成侧向磁极压头702,六面顶合成压机主机的两只加热顶锤形成轴向通电压头703;容器305位于六面顶合成压机主机内,且配置成容置合成材料304。
该实施例可以按两种压力分级下进行合成:
1.磁场压力高温溶媒法合成:在对混合有触媒的合成材料加热到高温并施加磁场时,再对合成材料施加压力,其压力是小于上述提到的高温高压合成的压力,一般低于5GPa,此时压力提供的动力学条件不足,而不足的部分由对合成材料施加的磁场具有的磁致动力学条件来补充,使之达到总的能级跃变条件。为了便于表述,对施加磁场的磁感应强度按照每1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于5GPa,同时施加的温度在1350-1900℃之间,使合成材料在触媒催化作用下转变为钻石。该实施方案的优点是可以大大降低原来超高压高温合成设备的工作压力,甚至磁极压头和通电压头都可以不用昂贵的硬质合金材料制造。例如,把压力值用到超高压合成压力的50%,而动力学条件不足的部分由磁场对高温合成材料作用的磁致动力学条件来补充,这样就大大降低超高压设备负荷,延长寿命,硬质合金顶锤也可以用高强度钢来制造,“六面顶”的施压结构也可以相对简单和轻量化。
2.磁场压力高温合成材料直接合成:在对合成材料加热到高温并施加磁场时,再对合成材料施加压力,其压力是进入到上述提到的高温高压合成的压力,一般是5-10GPa之间,此时再对合成材料施加磁场,增加了磁致动 力学条件,使总的能级跃变条件达到合成材料直接转变为钻石。为了便于表述,对施加的磁场的磁感应强度按照每1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于11GPa,同时施加的温度在1650-3000℃之间,使合成材料直接转变为钻石。该实施方案的优点是可以大大提高合成材料的转化能级,使上述提到的超高压高温合成设备突破现有的合成压力极限,使合成材料直接转变为钻石。日本爱媛大学研究人员与住友电器工业公司合作合成出的“媛石”,如图14所示,是石墨直接转化,其合成条件不低于15GPa,温度高于2000℃,需要极高压的大型合成设备,合成难度极高,该实施例可以使普通超高压高温合成设备达到15GPa的当量压力,使之可以容易合成出大尺寸“媛石”产品。
该实施例也可以使用上述提到的“两面顶”合成压机模式,在其一条轴线上的两只加压和通电的顶锤后方增加电磁线圈,顶锤则也成为了磁极,使两只顶锤成为加压通电磁极压头,这对同行业技术人员来说,容易理解和进行实施。
结合上述的钻石的合成方法,可以建立温和、洁净的合成环境,并能实现超长时间的合成,有利于实现掺杂和合成出用于功能材料应用领域的大颗粒钻石或立方氮化硼单晶体,应用于诸多高技术领域。
上述合成方法的实施例,当合成材料采用立方氮化硼(HBN)以及触媒,根据合成机理,同样可以合成立方氮化硼(CBN)单晶和粉体材料。一般地,合成钻石和立方氮化硼的条件存在差异,合成的条件要低于钻石。一般地,合成立方氮化硼的下限温度为600℃,因此,其加热的温度可以在600-1900℃之间。
立方氮化硼(简称CBN)是一种自然界极为稀少、基本上只能由人工合成的无机晶体材料,是一种在机械加工领域已经得到广泛应用的“钻石”。而且CBN是典型的III-V族化合物,电子率1010Ωcm,导热率13W/(cm.K),可以耐受1200℃的高温,并且具有最宽6.4eV的直接带隙,是十分优异的热导、光电和半导体材料,在微电子领域具有广泛应用前景。
需要说明的是,在不冲突的情况下,本公开的实施例中的特征可以相互结合。
在一些实施例中:
请参考图1:图1示出的碳的温度压力二元相图中,横坐标表示温度,纵坐标表示压强,分别示出了激活CVD法、催化高压法、高温高压法以及爆轰法等对应的合成条件。
请参考图2:图2示出的二元合成条件下的三个合成区域分别为1区、2区以及3区。1区:温度范围为1350-1900℃,磁感应强度为大于等于6mT。2区:温度范围为1650-3000℃,磁感应强度为大于等于10mT。3区:温度范围为大于等于2000℃,磁感应强度为大于等于20mT。
请参考图3:图3示出的三元合成条件的合成方法中,条件为高温(HT)、压力(HP)以及磁场(MF)。其中,可构成三种不同的合成方法,例如,当磁感应强度为0时,采用高温和高压的条件,即,为高温高压合成方法。当压力为0时,采用磁场和高温的条件,即,磁场高温合成方法。当压力不为0且磁感应强度不为0时,采用磁场、高压和高温的条件,即,磁场压力高温合成方法。
请参考图4:图4示出的钻石的合成设备中,其包括容器305、加热器303、保温层302以及磁铁301。容器305配置成容置合成材料304,并隔绝空气。加热器303设置在容器305的外侧,且配置成对容器305内的合成材料304加热。保温层302设置在加热器303的外侧。磁铁301的两个磁极(N极和S极)分别位于容器305的两端,以使磁铁301的磁力线穿过容器305,从而对容器305内的合成材料304施加磁场。
请参考图5:图5示出的为采用图4中的设备合成出的钻石的单晶产品。
请参考图6:图6示出的为采用图4中的设备合成出的钻石单晶的拉曼光谱检测结果图,确定是钻石。
请参考图7:图7示出的钻石的合成设备中,其包括真空室502、容器305、加热器303、保温层302、磁铁301、通电压头501以及电源306;容器305位于真空室502内,并配置成容置合成材料304。真空室502具备真空接口503,通过真空接口503实现对真空室502抽真空。加热器303设置在容器305的外侧,且配置成对容器305内的合成材料304加热。保温层302设置在加热器303的外侧。磁铁301的两个磁极分别位于容器305的两端,以使磁铁301的磁力线穿过容器305,从而对容器305内的合成材料304施加磁场,通电压头501配置成对容器305内的合成材料304施加压力。电源306配置成对加热器303以及通电压头501供电。
请参考图8:图8示出的为采用图7中的设备合成出的钻石的单晶产品。
请参考图9:图9示出的为采用图7中的设备合成出的钻石单晶的拉曼光谱检测结果图,确定是钻石。
请参考图10:图10示出的钻石的合成设备中,其包括非氧化气氛隔离罩603、降温沉降装置601、等离子枪矩、等离子设备以及螺线管磁场线圈602。非氧化气氛隔离罩603设置在降温沉降装置601的上方,且位于等离子枪矩的下方;降温沉降装置601配置成容置纯水。等离子枪矩的前端以及等离子设备的等离子弧的同心外侧具有螺线管磁场线圈602;等离子设备的等离子弧的前端伸入到降温沉降装置601中。等离子设备的送粉器通过合成材料注入口604将合成材料连续注入到等离子枪矩中。等离子设备的离子气接口605配置成通入离子气,使得离子气可以随等离子弧扩散到非氧化气氛隔离罩603内。该等离子弧由等离子设备的阴极801和阳极802之间产生。并且,等离子设备的等离子焰流401可以喷入降温沉降装置601内的纯水中。
请参考图11:图11示出的为采用图10中的设备合成出的钻石粉体。
请参考图12:图12示出的为采用图10中的设备合成出的钻石粉体的拉曼光谱检测结果图,确定有钻石粉体。
请参考图13:图13示出的钻石的合成设备中,其包括六面顶合成压机主机、电磁铁线圈701、容器305以及电源306。六面顶合成压机主机的超高压模具组件的四只侧向顶锤后端加装有电磁铁线圈701,六面顶合成压机主机的侧向顶锤成为了导磁体且形成侧向磁极压头702,六面顶合成压机主机的两只加热顶锤形成轴向通电压头703。容器305位于六面顶合成压机主机内,且配置成容置合成材料304。电源306配置成对轴向通电压头703供电。
请参考图14:图14示出的为合成出的“媛石”图片。
本发明的实施例中给定的磁感应强度的值和范围,是根据发明人试验条件和检测仪器的综合判定的结果,若试验条件和检测仪器发生改变,则磁感应强度的值和范围可能会发生变化。
尽管已用具体实施例来说明和描述了本公开,然而应意识到,以上各实施例仅用以说明本公开的技术方案,而非对其限制;本领域的普通技术人员应当理解:在不背离本公开的精神和范围的情况下,可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的范围;因此,这意味着在所附权利要求中包括属于本公开范围内的所有这些替换和修改。
工业实用性
综上所述,本公开提供了一种钻石、钻石的合成方法以及设备,合成该钻石的方法难度低、成本低,并且,该设备简单。

Claims (17)

  1. 一种钻石的合成方法,配置成将合成材料转变为钻石,其特征在于,所述钻石的合成方法包括:
    二元合成条件的合成方法:在非氧化气氛中,在压力等于0时,对所述合成材料施加磁场并加热到高温,将所述合成材料转变为钻石;或,
    三元合成条件的合成方法:在非氧化气氛中,在压力大于0时,对所述合成材料施加磁场和压力并加热到高温,将所述合成材料转变为钻石。
  2. 根据权利要求1所述的合成方法,其特征在于,所述合成材料包括具有sp2杂化状态的碳材料。
  3. 根据权利要求1或2所述的合成方法,其特征在于,在所述合成材料中加入触媒;优选地,所述触媒为过渡族元素所对应的单质金属或合金;优选地,所述过渡族元素为铁、镍、锰或钴。
  4. 根据权利要求1-3任一项所述的合成方法,其特征在于,所述磁场为恒定磁场、交变磁场或恒定磁场和交变磁场的组合;优选地,所述恒定磁场包括永久磁场和直流电磁场;优选地,所述交变磁场为交流电磁场。
  5. 根据权利要求1-4任一项所述的合成方法,其特征在于,所述磁场的磁感应强度不小于6mT;优选地,所述磁场的磁感应强度不小于11mT;优选地,所述磁场的磁感应强度不小于20mT。
  6. 根据权利要求1-5任一项所述的合成方法,其特征在于,所述加热采用电加热的方式;优选地,为电阻加热、电磁感应加热、微波加热、激光加热、电弧加热和等离子弧加热中的一种或多种组合。
  7. 根据权利要求1-6任一项所述的合成方法,其特征在于,所述加热的方式包括直接加热和间接加热中的一种或两种组合。
  8. 根据权利要求1-7任一项所述的合成方法,其特征在于,所述加热的温度不小于1350℃;优选地,所述加热的温度范围为1350-1900℃;优选地,所述加热的温度范围为1650-3000℃;优选地,所述加热的温度不小于2000℃。
  9. 根据权利要求1-8任一项所述的合成方法,其特征在于,在所述二元合成条件的合成方法中,所述加热的温度为1350-1900℃之间,所述磁场的磁感应强度不小于6mT,所述合成材料在触媒催化作用下转变为钻石。
  10. 根据权利要求1-8任一项所述的合成方法,其特征在于,在所述二元合成条件的合成方法中,所述加热的温度为1650-3000℃之间,所述磁场的磁感应强度不小于10mT,所述合成材料直接转变为钻石。
  11. 根据权利要求1-8任一项所述的合成方法,其特征在于,在所述二元合成条件的合成方法中,所述合成材料随高温火焰加热到温度不小于2000℃,所述磁场的磁感应强度不小于20mT,所述合成材料直接转变成纳微米粒度的钻石粉体材料;优选地,所述高温火焰由等离子弧产生;优选地,所述高温火焰为可燃气与氧反应形成的中性火焰或还原性火焰;优选地,为乙炔、丙烷、煤气或天然气与氧反应形成的火焰。
  12. 根据权利要求1-8任一项所述的合成方法,其特征在于,在所述二元合成条件的合成方法中,所述合成材料为石墨,并在所述合成材料中加入触媒;所述加热的温度为1380-1600℃,所述磁场的磁感应强度为6-10mT,合成的时间为10分钟以上,所述合成材料在触媒催化作用下转变为80/120目级粒度以粗钻石。
  13. 根据权利要求1-8任一项所述的合成方法,其特征在于,在所述二元合成条件的合成方法中,在真空度小于10 -2Pa的条件下,所述合成材料为石墨,所述加热的温度为2000℃,所述磁场的磁感应强度不小于16mT,对所述合成材料施加压力为500MPa,合成的时间为20分钟以上,所述合成材料直接转变为40/100目级粒度以粗钻石。
  14. 根据权利要求1-8任一项所述的合成方法,其特征在于,在所述三元合成条件的合成方法中,对所述合成材料持续施加磁场和压力,施加磁场的磁感应强度按照每1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于5GPa,同时加热的温度在1350-1900℃之间,所述合成材料在触媒催化作用下转变为钻石。
  15. 根据权利要求1-8任一项所述的合成方法,其特征在于,在所述三元合成条件的合成方法中,对所述合成材料持续施加磁场和压力,施加磁场的磁感应强度按照1-3mT等于1GPa的当量压力,磁感应强度换算后的当量压力和施加的压力之和不小于11GPa,同时加热的温度在1650-3000℃之间,合成材料直接转变为钻石。
  16. 一种钻石的合成设备,配置成实现如权利要求1-15任一项所述的钻石的合成方法,其特征在于,
    所述钻石的合成设备包括容器、加热器、保温层以及磁铁;所述容器配置成容置所述合成材料,并隔绝空气;所述加热器设置在所述容器的外侧,且配置成对所述容器内的合成材料加热;所述保温层设置在所述加热器的外侧;所述磁铁的两个磁极分别位于所述容器的两端,以使所述磁铁的磁力线穿过所述容器,从而对所述容器内的合成材料施加磁场;或,
    所述钻石的合成设备包括真空室、容器、加热器、保温层、磁铁以及通电压头;所述容器位于所述真空室内,并配置成容置所述合成材料;所述加热器设置在所述容器的外侧,且配置成对所述容器内的合成材料加热;所述保温层设置在所述加热器的外侧;所述磁铁的两个磁极分别位于所述容器的两端,以使所述磁铁的磁力线穿过所述容器,从而对所述容器内的合成材料施加磁场,所述通电压头配置成对所述容器内的合成材料通电和施加压力;或,
    所述钻石的合成设备包括非氧化气氛隔离罩、降温沉降装置、等离子枪矩、等离子设备以及螺线管磁场线圈;所述非氧化气氛隔离罩设置在所述降温沉降装置的上方,且位于所述等离子枪矩的下方;所述降温沉降装置配置成容置纯水;所述等离子枪矩的前端以及所述等离子设备的等离子弧的同心外侧具有所述螺线管磁场线圈;所述等离子设备的等离子弧的前端伸入到所述降温沉降装置中;所述等离子设备的送粉器通过合成材料注入口将所述合成材料连续注入到所述等离子枪矩中;或,
    所述钻石的合成设备包括六面顶合成压机主机、电磁铁线圈以及容器;所述六面顶合成压机主机的超高压模具组件的四只侧向顶锤后端加装有所述电磁铁线圈,所述六面顶合成压机主机的侧向顶锤成为了导磁体且形成侧向磁极压头,所述六面顶合成压机主机的两只加热顶锤形成轴向通电压头;所述容器位于六面顶合成压机主机内, 且配置成容置合成材料。
  17. 一种钻石,其特征在于,由权利要求1-15任一项所述的钻石的合成方法制备而成。
PCT/CN2020/104805 2020-07-27 2020-07-27 一种钻石、钻石的合成方法以及设备 WO2022020990A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/104805 WO2022020990A1 (zh) 2020-07-27 2020-07-27 一种钻石、钻石的合成方法以及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/104805 WO2022020990A1 (zh) 2020-07-27 2020-07-27 一种钻石、钻石的合成方法以及设备

Publications (1)

Publication Number Publication Date
WO2022020990A1 true WO2022020990A1 (zh) 2022-02-03

Family

ID=80037270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104805 WO2022020990A1 (zh) 2020-07-27 2020-07-27 一种钻石、钻石的合成方法以及设备

Country Status (1)

Country Link
WO (1) WO2022020990A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115738904A (zh) * 2022-11-04 2023-03-07 郑州佳睿福新材料科技有限公司 一种终极半导体钻石生产配方及其生产装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157296A (zh) * 1974-06-11 1975-12-19
CN1451604A (zh) * 2003-04-28 2003-10-29 大连理工大学 强磁场碳黑催化法制备纳米金刚石粉和金刚石片的方法
CN1480395A (zh) * 2003-07-02 2004-03-10 大连理工大学 强磁场碳黑催化法制备纳米金刚石和n金刚石粉的方法
WO2004025002A1 (fr) * 2002-09-12 2004-03-25 Skvortsov Vladimir Anatolievic Procede de synthese de diamants au moyen de champs magnetiques mono
CN103103609A (zh) * 2013-03-05 2013-05-15 黄美玲 N型金刚石半导体单晶及其生产方法
CN108529617A (zh) * 2017-03-06 2018-09-14 上海启发电子科技有限公司 一种纳米金刚石的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50157296A (zh) * 1974-06-11 1975-12-19
WO2004025002A1 (fr) * 2002-09-12 2004-03-25 Skvortsov Vladimir Anatolievic Procede de synthese de diamants au moyen de champs magnetiques mono
CN1451604A (zh) * 2003-04-28 2003-10-29 大连理工大学 强磁场碳黑催化法制备纳米金刚石粉和金刚石片的方法
CN1480395A (zh) * 2003-07-02 2004-03-10 大连理工大学 强磁场碳黑催化法制备纳米金刚石和n金刚石粉的方法
CN103103609A (zh) * 2013-03-05 2013-05-15 黄美玲 N型金刚石半导体单晶及其生产方法
CN108529617A (zh) * 2017-03-06 2018-09-14 上海启发电子科技有限公司 一种纳米金刚石的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEN BIN, LI, TING-JU; ZHANG, XING-GUO; DONG, CHUANG; YAO, SHAN; CAO, ZHI-QIANG; WANG, DE-HE; JI, SHOU-HUA; JIN, JUN-ZE: "n-Diamond Nanocrystal from Catalyzed Carbon Black in a High Magnetic Field", ACTA CHIMICA SINICA, ZHONGGUO KEXUEYUAN SHANGHAI YOUJI HUAXUE YANJIUSUO, CN, vol. 62, no. 23, 1 January 2004 (2004-01-01), CN , pages 2361 - 2364, XP055893727, ISSN: 0567-7351 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115738904A (zh) * 2022-11-04 2023-03-07 郑州佳睿福新材料科技有限公司 一种终极半导体钻石生产配方及其生产装置
CN115738904B (zh) * 2022-11-04 2023-08-18 佳睿福钻石(河南)有限公司 一种终极半导体钻石生产配方及其生产装置

Similar Documents

Publication Publication Date Title
CN103773985B (zh) 一种高效原位制备石墨烯增强铜基复合材料的方法
US5295402A (en) Method for achieving high pressure using isotopically-pure diamond anvils
CN103588182B (zh) 一种球形氮化铝粉体的制备方法
CN103043633A (zh) 一种制备六方氮化硼微纳米复合结构的方法
WO2007011019A1 (ja) 高硬度ダイヤモンド多結晶体及びその製造方法
WO2022020990A1 (zh) 一种钻石、钻石的合成方法以及设备
CN112030133A (zh) 一种金刚石及其制备方法和应用
Shenderova et al. Types of nanocrystalline diamond
CN113699405A (zh) 一种铸造原位生长石墨烯增强铜复合材料的制备方法
CN108854850B (zh) 一种个性化宝石级金刚石的合成工艺
CN111686637B (zh) 一种超硬材料的合成方法
Spitsyn et al. Origin, state of the art and some prospects of the diamond CVD
CN100480438C (zh) 单晶ain纳米链
CN106544642B (zh) 一种利用微波法制备碳化硅纳米线薄膜的方法
CN103103609B (zh) N型金刚石半导体单晶及其生产方法
Tzeng et al. Spiral hollow cathode plasma‐assisted diamond deposition
Zheng et al. Pressure induced structural transition of small carbon nano-onions
CN111470868B (zh) 一种高活性亚微米级碳化硼陶瓷粉体及其低温原位制备方法
Shul’zhenko et al. New Diamond-Based Superhard Materials. Production and Properties. Review
Sorb et al. Diamond: high-pressure synthesis
KR20160049093A (ko) 열플라즈마를 이용한 입방질화붕소 나노분말의 제조방법 및 이에 따라 제조되는 입방질화붕소 나노분말
Sankaran et al. Properties of Carbon Bulk Materials: Graphite and Diamond
CN101269978B (zh) 燃烧合成超细氮化镁粉末的方法
Schreck Growth of single crystal diamond wafers for future device applications
Xie et al. The structures, synthesis, properties, and applications of diamond

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20947406

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20947406

Country of ref document: EP

Kind code of ref document: A1