WO2022019203A1 - トランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備 - Google Patents

トランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備 Download PDF

Info

Publication number
WO2022019203A1
WO2022019203A1 PCT/JP2021/026569 JP2021026569W WO2022019203A1 WO 2022019203 A1 WO2022019203 A1 WO 2022019203A1 JP 2021026569 W JP2021026569 W JP 2021026569W WO 2022019203 A1 WO2022019203 A1 WO 2022019203A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
plate portion
cooling
transition piece
header
Prior art date
Application number
PCT/JP2021/026569
Other languages
English (en)
French (fr)
Inventor
泰希 木下
剣太郎 ▲徳▼山
健太 谷口
紘幸 榊
Original Assignee
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱パワー株式会社 filed Critical 三菱パワー株式会社
Priority to US17/921,811 priority Critical patent/US20230175439A1/en
Priority to DE112021003843.5T priority patent/DE112021003843T5/de
Priority to KR1020227036745A priority patent/KR20220155387A/ko
Priority to CN202180030253.1A priority patent/CN115461532A/zh
Priority to JP2022537960A priority patent/JP7336599B2/ja
Publication of WO2022019203A1 publication Critical patent/WO2022019203A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/16Cooling of plants characterised by cooling medium
    • F02C7/18Cooling of plants characterised by cooling medium the medium being gaseous, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • F01D9/023Transition ducts between combustor cans and first stage of the turbine in gas-turbine engines; their cooling or sealings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/005Combined with pressure or heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/126Baffles or ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/35Combustors or associated equipment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/204Heat transfer, e.g. cooling by the use of microcircuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to a transition piece that defines a flow path through which combustion gas flows, a combustor, a gas turbine, and a gas turbine facility including the transition piece.
  • the combustor of the gas turbine is equipped with a transition piece that defines the flow path of the combustion gas, and a main body that injects fuel together with air into the transition piece.
  • the transition piece has a cylindrical shape around the combustor axis. In this transition piece, the fuel is burned and the combustion gas generated by the combustion of the fuel flows. Therefore, the inner peripheral surface of the transition piece is exposed to extremely high temperature combustion gas.
  • the combustion cylinder (transition piece) of the combustor disclosed in Patent Document 1 below is formed with a plurality of passages through which a cooling medium flows.
  • the passage includes a header extending in the circumferential direction with respect to the combustor axis, a plurality of upstream cooling passages extending from the header to the upstream side of the axis, and a plurality of downstream cooling passages extending from the header to the downstream side of the axis. ing.
  • the header is provided to change the number of upstream cooling passages and the like with respect to the number of downstream cooling passages.
  • transition piece is required to have a certain level of durability, it is desired to reduce its manufacturing cost.
  • an object of the present invention is to provide a transition piece capable of suppressing manufacturing cost while ensuring durability, a combustor equipped with the transition piece, and a gas turbine equipped with the combustor.
  • the transition piece as one aspect of the invention for achieving the above object is A transition piece that is formed in a cylindrical shape around an axis that is curved in a virtual plane so as to follow the axis, and defines the circumference of a combustion gas flow path through which combustion gas flows from the upstream side to the downstream side in the axial direction in which the axis extends. Is.
  • This transition piece has a pair of side plate portions facing the virtual plane and facing each other across the axis line, and the downstream portion in the axis line with respect to the upstream side portion with the axis line as a reference.
  • the side portion is arranged inside the bend, which is the curved side, and is connected to the end of the inside of the bend of the pair of side plates, and the inside of the bend is opposite to the inside of the bend with reference to the axis. It has a curved outer plate portion that is arranged on the outer side of the curved side, faces the curved inner plate portion with the axis line interposed therebetween, and is connected to the curved outer plate portion of the pair of the side plate portions.
  • Each of the curved inner plate portion, the curved outer plate portion, and the pair of side plate portions is composed of a plurality of cooling passages extending in the axial direction and arranging in the circumferential direction with respect to the axial line through which cooling media flow.
  • the plurality of passage groups for each of the curved inner plate portion, the curved outer plate portion, and the pair of side plate portions are arranged in the axial direction, and the header is arranged between the axial directions in the plurality of passage groups. ing.
  • the plurality of passage groups for each of the curved inner plate portion, the curved outer plate portion, and the pair of side plate portions communicate with each other via the header arranged between the plurality of passage groups. ..
  • the plurality of cooling passages constituting the first passage group located on the most downstream side.
  • a medium inlet into which the cooling medium flows is formed.
  • a medium outlet through which the cooling medium flows out is formed.
  • the number of the at least one header of the curved inner plate portion is smaller than the number of the at least one header of the curved outer plate portion and the pair of side plate portions.
  • the cooling medium flows into each of the first cooling passages of the curved inner plate portion, the curved outer plate portion, and the pair of side plate portions from these inlets. After that, the cooling medium in each part passes through at least one header in each part, and then flows out of the transition piece from the outlet of the final cooling passage of each part. The cooling medium in each part flows from the downstream side to the upstream side. In this process, the transition piece is cooled by the cooling medium, while the cooling medium is heated.
  • the header in order to maintain the cooling capacity of the cooling medium flowing from the downstream side to the upstream side by changing the number of cooling passages on the upstream side with respect to the number of cooling passages on the downstream side with reference to the header, the header is used. It is provided.
  • the curved inner plate portion is arranged on the innermost bend, so that the length in the axial direction is the shortest. Therefore, even if the number of at least one header of the curved inner plate portion is smaller than the number of at least one header of the curved outer plate portion and the pair of side plate portions, each cooling of the curved outer plate portion and the pair of side plate portions is performed. It is possible to suppress a decrease in the cooling capacity of the cooling medium flowing in the cooling passage of the curved inner plate portion with respect to the cooling capacity of the cooling medium flowing in the passage.
  • the cooling medium flowing through the passage in the curved outer plate portion and the pair of side plate portions is used. It is possible to suppress a decrease in the cooling capacity of the cooling medium flowing through the passage of the curved inner plate portion with respect to the cooling capacity of the above.
  • the manufacturing cost can be suppressed while ensuring the durability.
  • the transition piece of the above-described embodiment includes a burner for ejecting fuel and compressed air into the combustion gas flow path.
  • the gas turbine as one aspect of the invention for achieving the above object is
  • the combustor of the above-described embodiment includes a compressor that compresses air and sends compressed air to the combustor, a turbine driven by the combustion gas generated by the combustor, and an intermediate casing.
  • the compressor has a compressor rotor that can rotate around a rotor axis, and a compressor casing that covers the outer periphery of the compressor rotor.
  • the turbine has a turbine rotor that can rotate around the rotor axis and a turbine casing that covers the outer periphery of the turbine rotor.
  • the compressor rotor and the turbine rotor are connected to each other to form a gas turbine rotor.
  • the compressor casing and the turbine casing are connected to each other via the intermediate casing.
  • the transition piece of the combustor is arranged in the intermediate casing so that the curved outer plate portion faces the gas turbine rotor and the curved inner plate portion faces the intermediate casing.
  • the gas turbine equipment as one aspect of the invention for achieving the above object is The gas turbine of the above embodiment, a cooler that cools a part of the air compressed by the compressor, and the air cooled by the cooler are boosted and the pressurized air is used as the cooling medium, and the inside of the bend is used.
  • a plate portion, the curved outer plate portion, and a boost compressor for sending to the first cooling passage provided for each of the pair of side plate portions are provided.
  • the manufacturing cost of the transition piece can be suppressed while ensuring the durability of the transition piece.
  • FIG. 3 is a sectional view taken along line IV-IV in FIG. It is a development view of the transition piece of one Embodiment which concerns on this invention.
  • FIG. 5 is a sectional view taken along line VI-VI in FIG.
  • FIG. 5 is a sectional view taken along line VII-VII in FIG.
  • the gas turbine equipment of the present embodiment includes a gas turbine 10.
  • the gas turbine 10 is composed of a compressor 20 that compresses the outside air Ao to generate compressed air A, a plurality of combustors 40 that burn fuel F in the compressed air A to generate combustion gas G, and combustion gas G.
  • a turbine 30 for driving is provided.
  • the compressor 20 has a compressor rotor 21 that rotates about the rotor axis Ar, a compressor casing 24 that covers the outer peripheral side of the compressor rotor 21, and a plurality of stationary blade rows 25.
  • the direction in which the rotor axis Ar extends is defined as the rotor axis direction Da.
  • one side in the rotor axis direction Da is referred to as the rotor axis upstream side Dau, and the other side is referred to as the rotor axis downstream side Dad.
  • the turbine 30 has a turbine rotor 31 that rotates about the rotor axis Ar, a turbine casing 34 that covers the outer peripheral side of the turbine rotor 31, and a plurality of stationary blade rows 35.
  • the compressor 20 is arranged on the Dau on the upstream side of the rotor axis with respect to the turbine 30.
  • the compressor rotor 21 and the turbine rotor 31 are located on the same rotor axis Ar and are connected to each other to form the gas turbine rotor 11.
  • a rotor of a generator GEN is connected to the gas turbine rotor 11.
  • the gas turbine 10 further includes an intermediate casing 13 disposed between the compressor casing 24 and the turbine casing 34. Compressed air A from the compressor 20 flows into the intermediate casing 13.
  • the plurality of combustors 40 are attached to the intermediate casing 13 so as to be aligned in the circumferential direction with respect to the rotor axis Ar.
  • the compressor casing 24, the intermediate casing 13, and the turbine casing 34 are connected to each other to form the gas turbine casing 14.
  • the compressor rotor 21 has a rotor shaft 22 extending in the rotor axis direction Da about the rotor axis Ar, and a plurality of blade rows 23 attached to the rotor shaft 22.
  • the plurality of blade rows 23 are arranged in the rotor axial direction Da.
  • Each blade row 23 is composed of a plurality of blades arranged in the circumferential direction with respect to the rotor axis Ar.
  • a stationary blade row 25 of any one of the plurality of stationary blade rows 25 is arranged on the Dad on the downstream side of each rotor axis of the plurality of rotor blade rows 23.
  • Each stationary blade row 25 is provided inside the compressor casing 24.
  • Each of the stationary blade rows 25 is configured to have a plurality of stationary blades arranged in the circumferential direction with respect to the rotor axis Ar.
  • the turbine rotor 31 has a rotor shaft 32 extending in the rotor axis direction Da about the rotor axis Ar, and a plurality of blade rows 33 attached to the rotor shaft 32.
  • the plurality of blade rows 33 are arranged in the rotor axial direction Da.
  • Each blade row 33 is composed of a plurality of blades arranged in the circumferential direction with respect to the rotor axis Ar.
  • One of the plurality of blade rows 35 is arranged on the upstream Dau of each rotor axis of the plurality of blade rows 33.
  • Each stationary blade row 35 is provided inside the turbine casing 34.
  • Each of the stationary blade rows 35 is configured to have a plurality of stationary blades arranged in the circumferential direction with respect to the rotor axis Ar.
  • the gas turbine equipment includes a cooler 15 and a boost compressor 16 in addition to the gas turbine 10 described above.
  • the intermediate casing 13 and the suction port of the boost compressor 16 are connected by an air extraction line 18.
  • the bleed air line 18 is provided with a cooler 15.
  • the discharge port of the boost compressor 16 and the combustor 40 are connected by a cooling air line 19.
  • the cooling air line 19 is provided with a control valve 17 for adjusting the flow rate of the cooling air.
  • a part of the compressed air A discharged from the compressor 20 of the gas turbine 10 and flowing into the intermediate casing 13 flows into the bleed air line 18.
  • the compressed air A is cooled by the cooler 15, boosted by the boost compressor 16, and sent to the combustor 40 as the cooling air Ai.
  • the combustor 40 includes a tubular transition piece 50 that defines the periphery of the combustion gas flow path 49, a cooling air jacket 44, an acoustic attenuator 45, and fuel F in the transition piece 50. It has a main body 41 that ejects compressed air A, and a main body 41.
  • the main body 41 has a plurality of burners 42 that eject fuel F and compressed air A into the transition piece 50, and a frame 43 that surrounds the plurality of burners 42.
  • the plurality of burners 42 are fixed to the frame 43.
  • the frame 43 is fixed to the intermediate casing 13.
  • the transition piece 50 is formed in a cylindrical shape around the combustor axis Ac along the combustor axis Ac.
  • the direction in which the combustor axis Ac extends is defined as the combustor axis direction Dca, and of the two sides facing the opposite sides in the combustor axis direction Dca, one is the combustor axis upstream side Dcu and the other side is the other side. Dcd on the downstream side of the combustor axis.
  • the acoustic attenuator 45 forms an acoustic space on the outer peripheral side of the transition piece 50 in cooperation with the space demarcation portion 46 which is a part of the transition piece 50 and the space demarcation portion 46. It has an acoustic cover 48 and the like.
  • the space demarcation portion 46 of the transition piece 50 here is a portion of the transition piece 50 on the upstream side of the combustor axis line Dcu, and is a portion extending in the circumferential direction with respect to the combustor axis line Ac.
  • the acoustic cover 48 covers the space demarcation portion 46 of the transition piece 50 from the outer peripheral side of the transition piece 50.
  • the space demarcation portion 46 of the transition piece 50 is formed with an acoustic hole 47 penetrating from the outer peripheral side to the inner peripheral side.
  • the cooling air jacket 44 covers a part of the transition piece 50 and forms a cooling air space on the outer peripheral side of the transition piece 50.
  • a part of the transition piece 50 is a portion of the transition piece 50 on the downstream side Dcd of the combustor axis, and is a portion extending in the circumferential direction with respect to the combustor axis Ac.
  • a cooling air line 19 is connected to the cooling air jacket 44.
  • the transition piece 50 is formed by bending the plywood 51 into a cylindrical shape.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG.
  • the plywood 51 has an outer plate 52 and an inner plate 54.
  • one surface forms the outer peripheral surface 52o and the other surface forms the joint surface 52c.
  • the outer peripheral surface 52o of the outer plate 52 forms the outer peripheral surface 52o of the transition piece 50.
  • one surface forms a joint surface 54c and the other surface forms an inner peripheral surface 54i.
  • the joint surface 52c of the outer plate 52 is formed with a plurality of long grooves 53 recessed on the outer peripheral surface 52o side and long in a certain direction.
  • the outer plate 52 and the inner plate 54 are joined to each other by brazing or the like to form a plywood 51.
  • the opening of the long groove 53 formed in the outer plate 52 is closed by the inner plate 54, and the inside of the long groove 53 becomes a passage 55 through which the cooling air Ai flows.
  • the combustor axis Ac is located in the virtual plane Pv including the rotor axis Ar.
  • this combustor axis Ac (hereinafter, simply referred to as axis Ac)
  • the portion of the combustor axis upstream side Dcu (hereinafter, simply referred to as upstream side Dcu) is referred to as the combustor axis downstream side Dcd (hereinafter, simply referred to as downstream side Dcd). It gradually extends toward the rotor axis Ar.
  • the portion of the downstream Dcd extends in a direction substantially parallel to the rotor axis Ar.
  • this axis Ac the portion of the downstream Dcd in the axis Ac is bent with respect to the portion of the upstream Dcu in the axis Ac in the virtual plane Pv.
  • the side where the axis line Ac is bent is referred to as a bent inner Dci.
  • This curved inner Dci is a side in the virtual plane Pv away from the rotor axis Ar with respect to the axis Ac.
  • the side opposite to the curved inner Dci is defined as the curved outer Dco.
  • This curved outer Dco is a side in the virtual plane Pv that approaches the rotor axis Ar with reference to the axis Ac.
  • the transition piece 50 having a cylindrical shape along the axis line Ac is also bent around the axis line Ac.
  • the transition piece 50 has four regions arranged in the circumferential direction Dcc with respect to the axis line Ac.
  • One of the four regions is the curved inner plate portion 60a, as shown in FIGS. 3 and 4. Further, the other region of the four regions is the curved outer plate portion 60b. The remaining two regions of the four regions are a pair of side plate portions 60c.
  • the pair of side plate portions 60c face the virtual plane Pv and face each other with the axis line Ac interposed therebetween.
  • the curved inner plate portion 60a is arranged on the curved inner Dci with reference to the axis line Ac, and is connected to the end of the curved inner Dci of the pair of side plate portions 60c.
  • the curved outer plate portion 60b is arranged on the curved outer Dco with reference to the axis Ac, faces the curved inner plate portion 60a with the axis Ac interposed therebetween, and is connected to the end of the curved outer Dco of the pair of side plate portions 60c. ..
  • the curved inner plate portion 60a is arranged at the most curved inner Dci, so that the length of the combustor axial direction Dca (hereinafter, simply referred to as the axial direction Dca) is the shortest.
  • the curved inner plate portion 60a has two passage groups 61a and 66a and one header 69a.
  • the two passage groups 61a and 66a are arranged in the axial direction Dca.
  • the header 69a is located between the two passage groups 61a and 66a in the axial direction Dca.
  • the passage group 61a on the downstream side Dcd from the header 69a is referred to as the first passage group.
  • the remaining passage group 66a is used as the final passage group.
  • Each of the two passage groups 61a and 66a is composed of a plurality of cooling passages 62a and 67a extending in the axial direction Dca and lining up in the circumferential direction Dcc.
  • the header 69a extends in the circumferential direction Dcc.
  • the plurality of cooling passages 62a, 67a and the header 69a are all the above-mentioned passages 55 through which the cooling air Ai flows.
  • An inlet 63a is formed at the end of the downstream Dcd of the plurality of cooling passages (hereinafter referred to as the first cooling passage) 62a constituting the first passage group 61a.
  • the entrance 63a is opened at the outer peripheral surface 52o of the transition piece 50.
  • the plurality of first cooling passages 62a communicate with the cooling air space of the cooling air jacket 44 via the inlet 63a.
  • the end of the upstream Dcu of the plurality of first cooling passages 62a is connected to the header 69a.
  • the end of the downstream Dcd of the plurality of cooling passages (hereinafter referred to as the final cooling passage) 67a constituting the final passage group 66a is connected to the header 69a.
  • An outlet 68a is formed at the end of the upstream Dcu of the plurality of final cooling passages 67a.
  • the outlet 68a is opened at the outer peripheral surface 52o of the transition piece 50.
  • the plurality of final cooling passages 67a communicate with the space in the intermediate casing 13 via the outlet 68a.
  • the number of the plurality of final cooling passages 67a is smaller than the number of the plurality of first cooling passages 62a. Specifically, the number of the plurality of final cooling passages 67a is about half the number of the plurality of first cooling passages 62a.
  • the passage height of the portion 67ad of the downstream side Dcd of the final cooling passage 67a is H1
  • the passage width of the portion 67ad of the downstream side Dcd of the final cooling passage 67a is W.
  • the passage height H2 of the portion 67au on the upstream side Dcu of the final cooling passage 67a is slightly lower than the passage height H1 of the portion 67ad on the downstream side Dcd.
  • the passage width W of the portion 67au of the upstream side Dcu of the final cooling passage 67a is the same as the passage width W of the portion 67ad of the downstream side Dcd.
  • the cross-sectional area of the portion 67au of the upstream side Dcu of the final cooling passage 67a is slightly narrower than the cross-sectional area of the portion 67ad of the downstream side Dcd of the final cooling passage 67a. Further, the cross-sectional area of the portion 67ad of the downstream side Dcd of the final cooling passage 67a is substantially the same as the cross-sectional area of the first cooling passage 62a.
  • FIG. 6 is a sectional view taken along line VI-VI in FIG. 5, and FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • the portion 67ad of the downstream side Dcd of the final cooling passage 67a is a portion including the end of the downstream side Dcd of the final cooling passage 67a.
  • the portion 67au of the upstream side Dcu of the final cooling passage 67a is a portion including the end of the upstream side Dcu of the final cooling passage 67a and excluding the portion 67ad of the downstream side Dcd of the final cooling passage 67a.
  • the number of the plurality of final cooling passages 67a constituting the final passage group 66a of the Dcu upstream from the header 69a is the number of the first cooling passages 62a constituting the first passage group 61a of the Dcd downstream from the header 69a. Less than a number.
  • the cross-sectional area of the final cooling passage 67a is equal to or less than the cross-sectional area of the first cooling passage 62a. Therefore, assuming that the total cross-sectional area of the plurality of cooling passages per unit circumferential length is the passage density, the passage densities of the plurality of final cooling passages 67a constituting the final passage group 66a constitute the first passage group 61a. It is smaller than the passage density of the first cooling passage 62a.
  • the passage density of the final passage group 66a of the Dcu on the upstream side of the header 69a is 20% to 45% of the passage density of the first passage group 61a of the Dcd on the downstream side of the header 69a.
  • the curved outer plate portion 60b has three passage groups 61b, 64b, 66b and two headers 69bu, 69bd.
  • the three passage groups 61b, 64b, 66b are arranged in the axial direction Dca.
  • the passage group 61b on the most downstream side Dcd is referred to as the first passage group.
  • the passage group 66b on the most upstream side Dcu is designated as the final passage group.
  • the passage group 64b between the first passage group 61b and the final passage group 66b is referred to as a second passage group.
  • the two headers 69bu and 69bd are arranged in the axial direction Dca.
  • the downstream header 69bd is located between the first passage group 61b and the second passage group 64b in the axial direction Dca.
  • the upstream header 69bu is located between the second passage group 64b and the final passage group 66b in the axial direction Dca.
  • Each of the three passage groups 61b, 64b, 66b is composed of a plurality of cooling passages 62b, 65b, 67b extending in the axial direction Dca and lining up in the circumferential direction Dcc.
  • Each of the two headers 69bu and 69bd extends in the circumferential direction Dcc.
  • the plurality of cooling passages 62b, 65b, 67b and the plurality of headers 69bu, 69bd are all the above-mentioned passages 55 through which the cooling air Ai flows.
  • An inlet 63b is formed at the end of the downstream Dcd of a plurality of cooling passages (hereinafter referred to as the first cooling passage) 62b constituting the first passage group 61b of the curved outer plate portion 60b.
  • the entrance 63b is open at the outer peripheral surface 52o of the transition piece 50.
  • the plurality of first cooling passages 62b communicate with the cooling air space of the cooling air jacket 44 via the inlet 63b.
  • the ends of the upstream Dcu of the plurality of first cooling passages 62b are connected to the downstream header 69bd.
  • the end of the downstream Dcd of the plurality of cooling passages (hereinafter referred to as the second cooling passage) 65b constituting the second passage group 64b of the curved outer plate portion 60b is connected to the downstream header 69bd.
  • the end of the upstream Dcu of the plurality of second cooling passages 65b is connected to the upstream header 69bu.
  • the end of the downstream Dcd of the plurality of cooling passages (hereinafter referred to as the final cooling passage) 67b constituting the final passage group 66b of the curved outer plate portion 60b is connected to the upstream header 69bu.
  • An outlet 68b is formed at the end of the upstream Dcu of the plurality of final cooling passages 67b.
  • the outlet 68b is open at the outer peripheral surface 52o of the transition piece 50.
  • the plurality of final cooling passages 67b communicate with the space in the intermediate casing 13 via the outlet 68b.
  • the number of the plurality of second cooling passages 65b is smaller than the number of the plurality of first cooling passages 62b. Further, the number of the plurality of final cooling passages 67b is smaller than the number of the plurality of second cooling passages 65b. Specifically, the number of the plurality of final cooling passages 67b is about half the number of the plurality of second cooling passages 65b.
  • the cross-sectional area of the second cooling passage 65b is almost the same as the cross-sectional area of the first cooling passage 62b.
  • the cross-sectional area of the final cooling passage 67b is slightly narrower than the cross-sectional area of the second cooling passage 65b.
  • the cross-sectional areas of the first cooling passages 62a and 62b in the bent inner plate portion 60a and the bent outer plate portion 60b are substantially the same.
  • the passage densities of the plurality of second cooling passages 65b constituting the second passage group 64b of the downstream side Dcu upstream from the downstream side header 69bd in the curved outer plate portion 60b are downstream from the downstream side header 69bd in the curved outer plate portion 60b. It is smaller than the passage density of the plurality of first cooling passages 62b constituting the first passage group 61b of the side Dcd. Further, the passage densities of the plurality of final cooling passages 67b constituting the final passage group 66b of the upstream header 69bu in the curved outer plate portion 60b are the downstream Dcd of the upstream header 69bu in the curved outer plate portion 60b. It is smaller than the passage density of the plurality of second cooling passages 65b constituting the second passage group 64b.
  • the passage density of the final passage group 66b of the upstream Dcu from the upstream header 69bu is 20% to 45% of the passage density of the second passage group 64b of the downstream Dcd from the upstream header 69bu. be.
  • the pair of side plate portions 60c also has three passage groups 61c, 64c, 66c and two headers 69cu, 69cd, like the curved outer plate portion 60b.
  • the three passage groups 61c, 64c, and 66c are arranged in the axial direction Dca.
  • the passage group 66c on the most downstream side Dcd is referred to as the first passage group.
  • the passage group 66c on the most upstream side Dcu is set as the final passage group.
  • the passage group 64c between the first passage group 61c and the final passage group 66c is referred to as a second passage group.
  • the two headers 69cu and 69cd are arranged in the axial direction Dca.
  • the downstream header 69cd is located between the first passage group 61c and the second passage group 64c in the axial direction Dca.
  • the upstream header 69cu is located between the second passage group 64c and the final passage group 66c in the axial direction Dca.
  • Each of the three passage groups 61c, 64c, 66c is composed of a plurality of cooling passages 62c, 65c, 67c extending in the axial direction Dca and lining up in the circumferential direction Dcc.
  • Each of the two headers 69cu and 69cd extends in the circumferential direction Dcc.
  • the plurality of cooling passages 62c, 65c, 67c and the plurality of headers 69cu, 69cd are all the above-mentioned passages 55 through which the cooling air Ai flows.
  • An inlet 63c is formed at the end of the downstream Dcd of a plurality of cooling passages (hereinafter referred to as first cooling passages) 62c constituting the first passage group 61c of the pair of side plate portions 60c.
  • the entrance 63c is opened at the outer peripheral surface 52o of the transition piece 50.
  • the plurality of first cooling passages 62c communicate with the cooling air space of the cooling air jacket 44 via the inlet 63c.
  • the ends of the upstream Dcu of the plurality of first cooling passages 62c are connected to the downstream header 69cd.
  • the end of the downstream Dcd of the plurality of cooling passages (hereinafter referred to as the second cooling passage) 65c constituting the second passage group 64c of the pair of side plate portions 60c is connected to the downstream header 69cd.
  • the ends of the upstream Dcu of the plurality of second cooling passages 65c are connected to the upstream header 69cu.
  • the end of the downstream Dcd of the plurality of cooling passages (hereinafter referred to as the final cooling passage) 67c constituting the final passage group 66c of the pair of side plate portions 60c is connected to the upstream header 69cu.
  • An outlet 68c is formed at the end of the upstream Dcu of the plurality of final cooling passages 67c.
  • the outlet 68c is open at the outer peripheral surface 52o of the transition piece 50.
  • the plurality of final cooling passages 67c communicate with the space in the intermediate casing 13 via the outlet 68c.
  • the number of the plurality of second cooling passages 65c is smaller than the number of the plurality of first cooling passages 62c. Further, the number of the plurality of final cooling passages 67c is smaller than the number of the plurality of second cooling passages 65c. Specifically, the number of the plurality of final cooling passages 67c is about half the number of the plurality of second cooling passages 65c.
  • the cross-sectional area of the second cooling passage 65c is almost the same as the cross-sectional area of the first cooling passage 62c.
  • the cross-sectional area of the final cooling passage 67c is slightly narrower than the cross-sectional area of the second cooling passage 65c.
  • the cross-sectional areas of the first cooling passages 62a, 62b, 62c in the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c are substantially the same.
  • the passage density of the plurality of second cooling passages 65c constituting the second passage group 64c of the downstream side Dcu upstream from the downstream side header 69cd in the pair of side plate portions 60c is downstream from the downstream side header 69cd in the pair of side plate portions 60c. It is smaller than the passage density of the plurality of first cooling passages 62c constituting the first passage group 61c of the side Dcd. Further, the passage densities of the plurality of final cooling passages 67c constituting the final passage group 66c of the upstream side Dcu from the upstream side header 69cu in the pair of side plate portions 60c are the passage densities of the downstream side Dcd from the upstream side header 69cu in the pair of side plate portions 60c. It is smaller than the passage density of the plurality of second cooling passages 65c constituting the second passage group 64c.
  • the passage density of the final passage group 66c of the upstream Dcu from the upstream header 69cu is 20% to 45% of the passage density of the second passage group 64c of the downstream Dcd from the upstream header 69cu. be.
  • the plurality of first cooling passages 62c constituting the first passage group 61c of the above have substantially the same cross-sectional area and substantially the same length of the axial Dca.
  • the compressor 20 compresses the outside air Ao to generate compressed air A.
  • the compressed air A is discharged from the compressor 20 into the intermediate casing 13.
  • the compressed air A in the intermediate casing 13 flows into the burner 42 of the combustor 40.
  • the fuel F also flows into the burner 42 from the outside.
  • the burner 42 ejects the compressed air A together with the fuel F into the transition piece 50.
  • the fuel F is burned in the compressed air A to generate the combustion gas G.
  • the combustion gas G passes through the combustion gas flow path 49 in the transition piece 50 and is sent from the transition piece 50 to the turbine 30.
  • the turbine 30 is driven by the combustion gas G.
  • a part of the compressed air A in the intermediate casing 13 flows into the cooler 15 via the bleed air line 18 and is cooled by the cooler 15.
  • the cooled compressed air A is boosted by the boost compressor 16 and sent to the transition piece 50 of the combustor 40 as cooling air Ai via the cooling air line 19 and the cooling air jacket 44.
  • the inner peripheral surface 54i of the transition piece 50 is exposed to an extremely high temperature combustion gas G. Therefore, in the present embodiment, the cooling air Ai as a cooling medium is sent to the transition piece 50 to cool the transition piece 50.
  • a part of the cooling air Ai in the cooling air jacket 44 is a plurality of first cooling passages 62a, 62b, 62c constituting the first passage groups 61a, 61b, 61c of the curved outer plate portion 60b and the pair of side plate portions 60c.
  • the cooling air Ai that has flowed into the first cooling passages 62a, 62b, 62c flows toward the upstream Dcu. In this process, the cooling air Ai exchanges heat with the transition piece 50. As a result, the transition piece 50 is cooled while the cooling air Ai is heated.
  • the cooling air Ai flowing through the plurality of first cooling passages 62b, 62c constituting the first passage groups 61b, 61c of the curved outer plate portion 60b and the pair of side plate portions 60c is the curved outer plate portion 60b and the pair of side plates. It flows into the downstream headers 69bd and 69cd of the portion 60c.
  • the cooling air Ai that has flowed into the downstream headers 69bd and 69cd of the curved outer plate portion 60b and the pair of side plate portions 60c constitutes the second passage group 64b and 64c of the curved outer plate portion 60b and the pair of side plate portions 60c. It flows into a plurality of second cooling passages 65b and 65c.
  • the cooling flowing through the plurality of second cooling passages 65b, 65c constituting the second passage group 64b, 64c is lower than the passage density of the first passage group 61b, 61c.
  • the flow velocity of the air Ai is faster than the flow velocity of the cooling air Ai flowing through the plurality of first cooling passages 62b, 62c constituting the first passage group 61b, 61c. Therefore, the heat transfer coefficient between the cooling air Ai flowing through the plurality of second cooling passages 65b and 65c and the portion where the second passage group 64b and 64c is formed in the transition piece 50 is the plurality of first cooling.
  • the heat transfer coefficient between the cooling air Ai flowing through the passages 62b and 62c and the portion of the transition piece 50 in which the first passage groups 61b and 61c are formed is substantially equal to or higher than that of the heat transfer coefficient.
  • the cooling air Ai flowing through the plurality of second cooling passages 65b, 65c constituting the second passage groups 64b, 64c of the curved outer plate portion 60b and the pair of side plate portions 60c is the curved outer plate portion 60b and the pair of side plates. It flows into the upstream headers 69bu and 69cu of the unit 60c.
  • the cooling air Ai that has flowed into the upstream headers 69bu and 69cu of the curved outer plate portion 60b and the pair of side plate portions 60c constitutes a plurality of final passage groups 66b and 66c of the curved outer plate portion 60b and the pair of side plate portions 60c. It flows into the final cooling passages 67b and 67c of the above.
  • the cooling air Ai flowing through the plurality of final cooling passages 67b and 67c constituting the final passage groups 66b and 66c The flow velocity is faster than the flow velocity of the cooling air Ai flowing through the plurality of second cooling passages 65b, 65c constituting the second passage group 64b, 64c. Therefore, the heat transfer coefficient between the cooling air Ai flowing through the plurality of final cooling passages 67b and 67c and the portion where the final passage groups 66b and 66c are formed in the transition piece 50 is the heat transfer coefficient between the plurality of second cooling passages 65b. , 65c
  • the heat transfer coefficient between the cooling air Ai flowing through the 65c and the portion of the transition piece 50 where the second passage groups 64b and 64c are formed is almost equal to or higher than the heat transfer coefficient.
  • the cooling air Ai flowing through the plurality of final cooling passages 67b, 67c constituting the final passage groups 66b, 66c of the curved outer plate portion 60b and the pair of side plate portions 60c is the outlets 68b, 68c of the final cooling passages 67b, 67c. Outflows into the intermediate casing 13.
  • the curved outer plate portion 60b and the pair of side plate portions 60c in the transition piece 50 can be sufficiently cooled.
  • a part of the cooling air Ai in the cooling air jacket 44 flows into the first cooling passage 62a from the inlets 63a of the plurality of first cooling passages 62a constituting the first passage group 61a of the curved inner plate portion 60a.
  • the cooling air Ai that has flowed into the first cooling passage 62a flows toward the upstream side Dcu.
  • the cooling air Ai exchanges heat with the transition piece 50.
  • the transition piece 50 is cooled while the cooling air Ai is heated.
  • the cooling air Ai that has flowed through the plurality of first cooling passages 62a constituting the first passage group 61a of the curved inner plate portion 60a flows into the header 69a of the curved inner plate portion 60a.
  • the cooling air Ai flowing into the header 69a flows into a plurality of final cooling passages 67a constituting the final passage group 66a of the curved inner plate portion 60a.
  • the cooling air Ai that has flowed into the final cooling passage 67a flows toward the upstream Dcu. In this process, the cooling air Ai exchanges heat with the transition piece 50. As a result, the transition piece 50 is cooled while the cooling air Ai is heated.
  • the flow velocity of the cooling air Ai flowing through the plurality of final cooling passages 67a constituting the final passage group 66a is the flow velocity of the first passage group 61a. It is faster than the flow velocity of the cooling air Ai flowing through the plurality of first cooling passages 62a constituting the above. Therefore, the heat transfer coefficient between the cooling air Ai flowing through the plurality of final cooling passages 67a and the portion of the transition piece 50 in which the final passage group 66a is formed is the cooling air flowing through the plurality of first cooling passages 62a.
  • the heat transfer coefficient between Ai and the portion of the transition piece 50 in which the first passage group 61a is formed is approximately equal to or higher than that of the heat transfer coefficient.
  • the cross-sectional area of the portion 67au of the upstream side Dcu of the final cooling passage 67a of the curved inner plate portion 60a is smaller than the cross-sectional area of the portion 67ad of the downstream side Dcd of the final cooling passage 67a. Therefore, the flow velocity of the cooling air Ai flowing through the portion 67au of the upstream side Dcu of the final cooling passage 67a is faster than the flow velocity of the cooling air Ai flowing through the portion 67ad of the downstream side Dcd of the final cooling passage 67a.
  • the heat transfer coefficient between the cooling air Ai flowing through the portion 67au of the upstream side Dcu of the final cooling passage 67a and the circumference of the portion 67au of the upstream side Dcu of the final cooling passage 67a in the transition piece 50 is the heat transfer coefficient of the final cooling passage 67a.
  • the heat transfer coefficient between the cooling air Ai flowing through the downstream Dcd portion 67ad and around the downstream Dcd portion 67ad of the final cooling passage 67a in the transition piece 50 is approximately equal or higher.
  • the cooling passages 67a, 65b, 67b of the upstream Dcu with respect to the number of the cooling passages 62a, 62b, 65b, 62c, 65c of the downstream Dcd Headers 69a, 69bu, 69bd, 69cu, 69cd are provided in order to maintain the cooling capacity of the cooling medium flowing from the downstream side Dcd to the upstream side Dcu by changing the number of 65c, 67c and the like.
  • the number of headers 69a of the curved inner plate portion 60a is one, the number of headers 69bu and 69bd of the curved outer plate portion 60b and the number of headers 69cu and 69cd of the pair of side plate portions 60c are two. be. That is, the number of headers 69a of the curved inner plate portion 60a is smaller than the number of headers 69bu, 69bd, 69cu, 69cd of the curved outer plate portion 60b and the pair of side plate portions 60c.
  • the curved inner plate portion 60a is arranged in the most curved inner Dci, so that the length of the axial direction Dca is the shortest. Therefore, the total passage length including the length of the first cooling passage 62a of the curved inner plate portion 60a and the length of the final cooling passage 67a is the length of the first cooling passage 62b and the second cooling passage of the curved outer plate portion 60b.
  • the curved inner plate in the transition piece 50 is simplified.
  • the portion 60a can be sufficiently cooled.
  • the manufacturing cost of the transition piece 50 can be suppressed while ensuring the durability of the transition piece 50.
  • the outlets 68a, 68b, 68c of the final cooling passages 67a, 67b, 67c are provided on the outer peripheral surface 52o of the transition piece 50 at the portion of the Dcd on the downstream side of the space demarcation portion 46 of the acoustic attenuator 45. Is forming. Therefore, in the above embodiment, the cooling air Ai passing through the final cooling passages 67a, 67b, 67c of the transition piece 50 enters the intermediate casing 13 from the outlets 68a, 68b, 68c of the final cooling passages 67a, 67b, 67c. leak.
  • outlets 68a, 68b, 68c of the final cooling passages 67a, 67b, 67c may be formed in the space demarcation portion 46 of the acoustic attenuator 45 on the outer peripheral surface 52o of the transition piece 50.
  • the cooling air Ai passing through the final cooling passages 67a, 67b, 67c of the transition piece 50 flows into the acoustic space from the outlets 68a, 68b, 68c of the final cooling passages 67a, 67b, 67c, and then the acoustic attenuator. It flows into the combustion gas flow path 49 of the transition piece 50 through the acoustic hole 47 of the 45.
  • the number of headers 69a of the curved inner plate portion 60a is one, and the number of headers 69bu, 69bd, 69cu, 69cd of the curved outer plate portion 60b and the pair of side plate portions 60c is two, respectively. ..
  • the number of headers of the curved outer plate portion 60b and the pair of side plate portions 60c is larger than the number of headers of the curved inner plate portion 60a, the number of headers of the curved inner plate portion 60a may be two or more. good.
  • the transition piece 50 in the first aspect is Combustion gas flow that is formed in a cylindrical shape around the curved axis Ac in the virtual plane Pv so as to follow the axis Ac, and the combustion gas G flows from the upstream side Dcu to the downstream side Dcd in the axial direction Dca where the axis Ac extends.
  • the axis line Ac is based on the pair of side plate portions 60c facing the virtual plane Pv and facing each other across the axis line Ac and the axis line Ac.
  • the inner plate portion 60a and the curved inner plate portion 60a are arranged on the curved outer side Dco on the opposite side of the curved inner Dci with the axis line Ac as a reference, and face the curved inner plate portion 60a with the axis line Ac in between, and the pair of the side plates. It has a curved outer plate portion 60b connected to the end of the curved outer Dco of the portion 60c.
  • Each of the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c extends in the axial direction Dca and a plurality of cooling passages through which the cooling medium flows along the circumferential direction Dcc with respect to the axial line Ac.
  • the plurality of passage groups 61a, 66a, 61b, 64b, 66b, 61c, 64c, 66c for each of the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c are in the axial direction Dca.
  • the headers 69a, 69bu, 69bd, 69cu, 69cd are arranged side by side between the axial Dca in the plurality of passage groups 61a, 66a, 61b, 64b, 66b, 61c, 64c, 66c.
  • the plurality of passage groups 61a, 66a, 61b, 64b, 66b, 61c, 64c, 66c for each of the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c are the plurality of passage groups. They communicate with each other via the headers 69a, 69bu, 69bd, 69cu, 69cd arranged between 61a, 66a, 61b, 64b, 66b, 61c, 64c, 66c.
  • the cooling medium flows into the end of the downstream Dcd of the plurality of first cooling passages 62a, 62b, 62c which are the plurality of cooling passages constituting the first passage group 61a, 61b, 61c located in the Dcd.
  • the medium inlets 63a, 63b, 63c are formed.
  • the outlets 68a, 68b, 68c are formed.
  • the number of the at least one header 69a of the bent inner plate portion 60a is smaller than the number of the at least one header 69bu, 69bd, 69cu, 69cd of the bent outer plate portion 60b and the pair of side plate portions 60c.
  • the cooling medium flows into the first cooling passages 62a, 62b, 62c of the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c from these inlets 63a, 63b, 63c. ..
  • the cooling medium in each part passes through at least one header 69a, 69bu, 69bd, 69cu, 69cd in each part, and then goes out of the transition piece 50 from the outlets 68a, 68b, 68c of the final cooling passages 67a, 67b, 67c of each part. Leaked into.
  • the cooling medium in each part flows from the downstream Dcd toward the upstream Dcu. In this process, the transition piece 50 is cooled by the cooling medium, while the cooling medium is heated.
  • the cooling passages 67a, 65b, 67b, 65c of the upstream Dcu with respect to the number of the cooling passages 62a, 62b, 65b, 62c, 65c of the downstream Dcd.
  • Headers 69a, 69bu, 69bd, 69cu, 69cd are provided in order to maintain the cooling capacity of the cooling medium flowing from the downstream side Dcd to the upstream side Dcu by changing the number of, 67c and the like.
  • the curved inner plate portion 60a is arranged at the most curved inner Dci, so that the length of the axial direction Dca is long. The shortest. Therefore, even if the number of at least one header 69a of the curved inner plate portion 60a is smaller than the number of at least one header 69bu, 69bd, 69cu, 69cd of the curved outer plate portion 60b and the pair of side plate portions 60c, the bending is performed.
  • the inside of the cooling passages 62a, 67a of the curved inner plate portion 60a is It is possible to suppress a decrease in the cooling capacity of the flowing cooling medium. Therefore, in this embodiment, even if the configuration of the passage in the curved inner plate portion 60a is simplified from the configuration of the passage in the curved outer plate portion 60b and the pair of side plate portions 60c, the curved outer plate portion 60b and the pair of side plate portions 60c. It is possible to suppress a decrease in the cooling capacity of the cooling medium flowing through the passage of the curved inner plate portion 60a with respect to the cooling capacity of the cooling medium flowing through the passage.
  • the manufacturing cost can be suppressed while ensuring the durability.
  • each portion of the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c communicates with the headers 69a, 69bu, 69bd, 69cu, 69cd and the header 69a.
  • 69bu, 69bd, 69cu, 69cd in the unit circumferential direction in the plurality of cooling passages 67a, 65b, 67b, 65c, 67c constituting the passage group 66a, 64b, 66b, 64c, 66c of the upstream Dcu.
  • the passage density which is the total cross-sectional area of the plurality of cooling passages 67a, 65b, 67b, 65c, 67c per length, communicates with the headers 69a, 69bu, 69bd, 69cu, 69cd and the headers 69a, 69bu, 69bd.
  • 69cu, 69cd is smaller than the passage density in the plurality of cooling passages 62a, 62b, 65b, 62c, 65c constituting the passage group 61a, 61b, 64b, 61c, 64c of the downstream Dcd.
  • the passage density of the passage groups 66a, 64b, 66b, 64c, 66c on the upstream side Dcu is lower than the passage density of the passage groups 61a, 61b, 64b, 61c, 64cc on the downstream side Dcd. Therefore, the flow velocity of the cooling air Ai flowing through the plurality of cooling passages 67a, 65b, 67b, 65c, 67c constituting the passage group 66a, 64b, 66b, 64c, 66c on the upstream side Dcu is the passage group 61a on the downstream side Dcd.
  • 61b, 64b, 61c, 64c which is faster than the flow velocity of the cooling air Ai flowing through the plurality of cooling passages 62a, 62b, 65b, 62c, 65c. Therefore, the cooling air Ai flowing through the plurality of cooling passages 67a, 65b, 67b, 65c, 67c constituting the passage group 66a, 64b, 66b, 64c, 66c of the upstream side Dcu and the passage group of the upstream side Dcu in the transition piece 50.
  • the heat transfer coefficient between the portions where 66a, 64b, 66b, 64c, and 66c are formed is the plurality of cooling passages 62a, 62b, which constitute the passage group 61a, 61b, 64b, 61c, 64c of the downstream Dcd. Almost the same as the heat transfer coefficient between the cooling air Ai flowing through 65b, 62c, 65c and the portion of the transition piece 50 where the passage groups 61a, 61b, 64b, 61c, 64c of the downstream Dcd are formed. , Or expensive.
  • the transition piece 50 in the third aspect is in the transition piece 50 of the second aspect, in each portion of the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c, the passage density in the final passage groups 66a, 66b, 66c is the final passage. It is 25% to 45% of the passage density in the passage groups 62a, 64b, 64c located on the downstream Dcd of the headers 69a, 69bu, 69cu with which the groups 66a, 66b, 66c communicate.
  • the transition piece 50 in the fourth aspect is In the transition piece 50 of any one of the first aspect to the third aspect, the header 69a, 69bu, in each portion of the curved inner plate portion 60a, the curved outer plate portion 60b, and the pair of side plate portions 60c, A plurality of cooling passages 67a, which communicate with 69bd, 69cu, 69cd and constitute the passage group 66a, 64b, 66b, 64c, 66c of the upstream Dcu with reference to the headers 69a, 69bu, 69bd, 69cu, 69cd, The numbers of 65b, 67b, 65c, 67c communicate with the headers 69a, 69bu, 69bd, 69cu, 69cd and the passage group 61a of the downstream side Dcd with reference to the headers 69a, 69bu, 69bd, 69cu, 69cd. , 61b, 64b, 61c, 64c, which is
  • the passage group 66a Of the upstream Dcu.
  • the number of the plurality of cooling passages 67a, 65b, 67b, 65c, 67c constituting the 64b, 66b, 64c, 66c constitutes the plurality of cooling passages 62a, 61b, 64b, 61c, 64c of the downstream Dcd passage group 61a, 61b, 64b, 61c, 64c. , 62b, 65b, 62c, 65c.
  • the flow velocity of the cooling air Ai flowing through the plurality of cooling passages 67a, 65b, 67b, 65c, 67c constituting the passage group 66a, 64b, 66b, 64c, 66c on the upstream side Dcu is the passage group 61a on the downstream side Dcd. , 61b, 64b, 61c, 64c, which is faster than the flow velocity of the cooling air Ai flowing through the plurality of cooling passages 62a, 62b, 65b, 62c, 65c.
  • the heat transfer coefficient between the portions where 66a, 64b, 66b, 64c, and 66c are formed is the plurality of cooling passages 62a, 62b, which constitute the passage group 61a, 61b, 64b, 61c, 64c of the downstream Dcd.
  • each cross-sectional area of the upstream Dcu portion 67au in the plurality of final cooling passages 67a of the curved inner plate portion 60a is It is smaller than any cross-sectional area of the portion 67ad of the downstream Dcd in the plurality of final cooling passages 67a of the curved inner plate portion 60a.
  • the cross-sectional area of the portion 67au of the upstream side Dcu of the final cooling passage 67a of the curved inner plate portion 60a is smaller than the cross-sectional area of the portion 67ad of the downstream side Dcd of the final cooling passage 67a. Therefore, the flow velocity of the cooling air Ai flowing through the portion 67au of the upstream side Dcu of the final cooling passage 67a is faster than the flow velocity of the cooling air Ai flowing through the portion 67ad of the downstream side Dcd of the final cooling passage 67a.
  • the heat transfer coefficient between the cooling air Ai flowing through the portion 67au of the upstream side Dcu of the final cooling passage 67a and the circumference of the portion 67au of the upstream side Dcu of the final cooling passage 67a in the transition piece 50 is the heat transfer coefficient of the final cooling passage 67a.
  • the heat transfer coefficient between the cooling air Ai flowing through the downstream Dcd portion 67ad and around the downstream Dcd portion 67ad of the final cooling passage 67a in the transition piece 50 is approximately equal or higher.
  • the transition piece 50 in the sixth aspect is In the transition piece 50 of any one of the first aspect to the fifth aspect, the number of the at least one header 69a of the bent inner plate portion 60a is 1, and the bent outer plate portion 60b and the bent outer plate portion 60b.
  • the number of the at least one header 69bu, 69bd, 69cu, 69cd of the pair of side plate portions 60c is 2 or more.
  • the combustor in the above embodiment is grasped as follows, for example.
  • the combustor 40 in the seventh aspect is A transition piece 50 according to any one of the first to sixth aspects, and a burner 42 for ejecting fuel F and compressed air A into the combustion gas flow path 49 are provided.
  • the gas turbine in the above embodiment is grasped as follows, for example.
  • the gas turbine 10 in the eighth aspect is An intermediate between the combustor 40 of the seventh aspect, the compressor 20 that compresses air and sends the compressed air A to the combustor 40, and the turbine 30 driven by the combustion gas G generated by the combustor 40.
  • a casing 13 is provided.
  • the compressor 20 has a compressor rotor 21 that can rotate around the rotor axis Ar, and a compressor casing 24 that covers the outer periphery of the compressor rotor 21.
  • the turbine 30 has a turbine rotor 31 that can rotate around the rotor axis Ar, and a turbine casing 34 that covers the outer periphery of the turbine rotor 31.
  • the compressor rotor 21 and the turbine rotor 31 are connected to each other to form a gas turbine rotor 11.
  • the compressor casing 24 and the turbine casing 34 are connected to each other via the intermediate casing 13.
  • the transition piece 50 of the combustor 40 is arranged in the intermediate casing 13 so that the curved outer plate portion 60b faces the gas turbine rotor 11 and the curved inner plate portion 60a faces the intermediate casing 13. Has been done.
  • the gas turbine equipment in the above embodiment is grasped as follows, for example.
  • the gas turbine equipment in the ninth aspect is The gas turbine 10 of the eighth aspect, the cooler 15 that cools a part of the air compressed by the compressor 20, and the air cooled by the cooler 15 are boosted to cool the boosted air.
  • the bent inner plate portion 60a, the bent outer plate portion 60b, and a boost compressor 16 for sending to the first cooling passages 62a, 62b, 62c provided for each of the pair of side plate portions 60c are provided.
  • the manufacturing cost of the transition piece can be suppressed while ensuring the durability of the transition piece.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

トランジションピースは、軸線を挟んで互いに対向している一対の側板部と、前記軸線を基準にして、前記軸線中で上流側の部分に対して下流側の部分が曲がっている曲り内側に配置されている曲り内側板部と、前記軸線を基準にして、前記曲り内側と反対側の曲り外側に配置されている曲り外側板部と、を有する。前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部のそれぞれは、軸線方向に延び且つ周方向に並んで冷却媒体が流れる複数の冷却通路で構成される複数の通路群と、前記周方向に延びて前記冷却媒体が流れる少なくとも一のヘッダと、を有する。前記曲り内側板部の前記少なくとも一のヘッダの数は、前記曲り外側板部及び前記一対の側板部の前記少なくとも一のヘッダの数より少ない。

Description

トランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備
 本発明は、燃焼ガスが流れる流路を画定するトランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備に関する。
 本願は、2020年7月20日に、日本国に出願された特願2020-123954号に基づき優先権を主張し、この内容をここに援用する。
 ガスタービンの燃焼器は、燃焼ガスの流路を画定するトランジションピースと、このトランジションピース内に空気と共に燃料を噴射する本体と、を備えている。トランジションピースは、燃焼器軸線周りに筒状を成している。このトランジションピース内では、燃料が燃焼すると共に、燃料の燃焼で生成された燃焼ガスが流れる。このため、トランジションピースの内周面は、極めて高温の燃焼ガスに晒される。
 そこで、例えば、以下の特許文献1に開示されている燃焼器の燃焼筒(トランジションピース)には、冷却媒体が流れる複数の通路が形成されている。通路としては、燃焼器軸線に対する周方向に延びるヘッダと、このヘッダから軸線上流側に延びる複数の上流側冷却通路と、このヘッダから軸線下流側に延びる複数の下流側冷却通路と、を有している。ヘッダは、下流側冷却通路の数に対する上流側冷却通路の数等を変えるために設けられている。
特開2007-107541号公報
 トランジションピースには、一定以上の耐久性を確保することが要求される一方で、その製造コストを抑えることが望まれる。
 そこで、本発明は、耐久性を確保しつつも、製造コストを抑えることができるトランジションピース、これを備える燃焼器、及び燃焼器を備えるガスタービンを提供することを目的とする。
 上記目的を達成するための発明に係る一態様としてのトランジションピースは、
 仮想平面内で曲がっている軸線の周りに前記軸線に沿うよう筒状に形成され、前記軸線が延びる軸線方向の上流側から下流側に燃焼ガスが流れる燃焼ガス流路の周囲を画定するトランジションピースである。このトランジションピースは、前記仮想平面と対向し、且つ前記軸線を挟んで互いに対向している一対の側板部と、前記軸線を基準にして、前記軸線中で前記上流側の部分に対して前記下流側の部分が曲がっている側である曲り内側に配置され、前記一対の側板部の前記曲り内側の端に接続されている曲り内側板部と、前記軸線を基準にして、前記曲り内側と反対側の曲り外側に配置され、前記軸線を挟んで前記曲り内側板部と対向し、前記一対の前記側板部の前記曲り外側の端に接続されている曲り外側板部と、を有する。前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部のそれぞれは、前記軸線方向に延び且つ前記軸線に対する周方向に並んで冷却媒体が流れる複数の冷却通路で構成される複数の通路群と、前記周方向に延びて前記冷却媒体が流れる少なくとも一のヘッダと、を有する。前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の通路群は、前記軸線方向に並び、前記複数の通路群における前記軸線方向の間に前記ヘッダが配置されている。前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の通路群は、前記複数の通路群の間に配置された前記ヘッダを介して、互に連通している。前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の通路群のうち、最も前記下流側に位置する第一通路群を構成する前記複数の冷却通路である複数の第一冷却通路の前記下流側の端には、前記冷却媒体が流入する媒体入口が形成されている。前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の前記通路群のうち、最も前記上流側に位置する最終通路群を構成する前記複数の冷却通路である複数の最終冷却通路の前記上流側の端には、前記冷却媒体が流出する媒体出口が形成されている。前記曲り内側板部の前記少なくとも一のヘッダの数は、前記曲り外側板部及び前記一対の側板部の前記少なくとも一のヘッダの数より少ない。
 本態様では、曲り内側板部、曲り外側板部、及び一対の側板部の各第一冷却通路には、これらの入口から冷却媒体が流入する。その後、各部内の冷却媒体は、各部における少なくとも一のヘッダを経てから、各部の最終冷却通路の出口からトランジションピース外に流出する。各部内の冷却媒体は、下流側から上流側に向かって流れる。この過程で、トランジションピースは冷却媒体により冷却される一方で、冷却媒体は加熱される。
 本態様では、ヘッダを基準にして、下流側の冷却通路の数に対する上流側の冷却通路の数等を変えて、下流側から上流側に流れる冷却媒体の冷却能力を維持するために、ヘッダが設けられている。
 本態様では、曲り内側板部、曲り外側板部、及び一対の側板部のうち、曲り内側板部は、最も曲り内側に配置されているため、軸線方向の長さが最も短い。このため、曲り外側板部及び一対の側板部の少なくとも一のヘッダの数より、曲り内側板部の少なくとも一のヘッダの数を少なくしても、曲り外側板部及び一対の側板部の各冷却通路内を流れる冷却媒体の冷却能力に対して、曲り内側板部の冷却通路内を流れる冷却媒体の冷却能力の低下を抑えることができる。よって、本態様では、曲り内側板部における通路の構成を、曲り外側板部及び一対の側板部における通路の構成より簡略化しても、曲り外側板部及び一対の側板部における通路を流れる冷却媒体の冷却能力に対して、曲り内側板部の通路を流れる冷却媒体の冷却能力の低下を抑えることができる。
 このため、本態様では、耐久性を確保しつつも、製造コストを抑えることができる。
 上記目的を達成するための発明に係る一態様としての燃焼器は、
 前記態様のトランジションピースと、前記燃焼ガス流路内に燃料と圧縮空気とを噴出するバーナと、を備える。
 上記目的を達成するための発明に係る一態様としてのガスタービンは、
 前記態様の燃焼器と、空気を圧縮して、前記燃焼器に圧縮空気を送る圧縮機と、前記燃焼器で生成された燃焼ガスで駆動するタービンと、中間ケーシングと、を備える。前記圧縮機は、ロータ軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータの外周を覆う圧縮機ケーシングと、を有する。前記タービンは、前記ロータ軸線を中心として回転可能なタービンロータと、前記タービンロータの外周を覆うタービンケーシングと、を有する。前記圧縮機ロータと前記タービンロータとは、互に接続されて、ガスタービンロータを成す。前記圧縮機ケーシングと前記タービンケーシングとは、前記中間ケーシングを介して互いに接続されている。前記燃焼器の前記トランジションピースは、前記曲り外側板部が前記ガスタービンロータと対向し、前記曲り内側板部が前記中間ケーシングと対向するよう、前記中間ケーシング内に配置されている。
 上記目的を達成するための発明に係る一態様としてのガスタービン設備は、
 前記態様のガスタービンと、前記圧縮機で圧縮された空気の一部を冷却する冷却器と、前記冷却器で冷却された空気を昇圧して、昇圧した空気を前記冷却媒体として、前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎に有する前記第一冷却通路に送るブースト圧縮機と、を備える。
 本発明に係る一態様では、トランジションピースの耐久性を確保しつつも、その製造コストを抑えることができる。
本発明に係る一実施形態におけるガスタービン設備の構成を示す模式図である。 本発明に係る一実施形態におけるガスタービンの燃焼器周りの断面図である。 本発明に係る一実施形態におけるトランジションピースの斜視図である。 図3におけるIV-IV線断面図である。 本発明に係る一実施形態のトランジションピースの展開図である。 図5におけるVI-VI線断面図である。 図5におけるVII-VII線断面図である。
 以下、本発明のガスタービン設備の一実施形態について、図面を参照して詳細に説明する。
 「ガスタービン設備の実施形態」
 本実施形態のガスタービン設備は、図1に示すように、ガスタービン10を備えている。このガスタービン10は、外気Aoを圧縮して圧縮空気Aを生成する圧縮機20と、燃料Fを圧縮空気A中で燃焼させ燃焼ガスGを生成する複数の燃焼器40と、燃焼ガスGにより駆動するタービン30と、を備える。
 圧縮機20は、ロータ軸線Arを中心として回転する圧縮機ロータ21と、圧縮機ロータ21の外周側を覆う圧縮機ケーシング24と、複数の静翼列25と、を有する。ここで、ロータ軸線Arが延びる方向をロータ軸線方向Daとする。また、ロータ軸線方向Daにおける一方側をロータ軸線上流側Dau、他方側をロータ軸線下流側Dadとする。タービン30は、ロータ軸線Arを中心として回転するタービンロータ31と、タービンロータ31の外周側を覆うタービンケーシング34と、複数の静翼列35と、を有する。
 圧縮機20は、タービン30に対してロータ軸線上流側Dauに配置されている。圧縮機ロータ21とタービンロータ31とは、同一ロータ軸線Ar上に位置し、互いに接続されてガスタービンロータ11を成す。このガスタービンロータ11には、例えば、発電機GENのロータが接続されている。ガスタービン10は、さらに、圧縮機ケーシング24とタービンケーシング34との間に配置されている中間ケーシング13を備えている。この中間ケーシング13内には、圧縮機20からの圧縮空気Aが流入する。複数の燃焼器40は、ロータ軸線Arに対する周方向に並んで、中間ケーシング13に取り付けられている。圧縮機ケーシング24と中間ケーシング13とタービンケーシング34とは、互いに接続されてガスタービンケーシング14を成す。
 圧縮機ロータ21は、ロータ軸線Arを中心としてロータ軸線方向Daに延びるロータ軸22と、このロータ軸22に取り付けられている複数の動翼列23と、を有する。複数の動翼列23は、ロータ軸線方向Daに並んでいる。各動翼列23は、いずれも、ロータ軸線Arに対する周方向に並んでいる複数の動翼で構成されている。複数の動翼列23の各ロータ軸線下流側Dadには、複数の静翼列25のうちいずれか一の静翼列25が配置されている。各静翼列25は、圧縮機ケーシング24の内側に設けられている。各静翼列25は、いずれも、ロータ軸線Arに対する周方向に並んでいる複数の静翼を有して構成されている。
 タービンロータ31は、ロータ軸線Arを中心としてロータ軸線方向Daに延びるロータ軸32と、このロータ軸32に取り付けられている複数の動翼列33と、を有する。複数の動翼列33は、ロータ軸線方向Daに並んでいる。各動翼列33は、いずれも、ロータ軸線Arに対する周方向に並んでいる複数の動翼で構成されている。複数の動翼列33の各ロータ軸線上流側Dauには、複数の静翼列35のうちいずれか一の静翼列35が配置されている。各静翼列35は、タービンケーシング34の内側に設けられている。各静翼列35は、いずれも、ロータ軸線Arに対する周方向に並んでいる複数の静翼を有して構成されている。
 ガスタービン設備は、以上で説明したガスタービン10の他、冷却器15と、ブースト圧縮機16と、を備える。中間ケーシング13とブースト圧縮機16の吸込口とは、抽気ライン18で接続されている。この抽気ライン18には、冷却器15が設けられている。ブースト圧縮機16の吐出口と燃焼器40とは、冷却空気ライン19で接続されている。この冷却空気ライン19には、冷却空気の流量を調節する調節弁17が設けられている。ガスタービン10の圧縮機20から吐出され、中間ケーシング13内に流入した圧縮空気Aの一部は、抽気ライン18に流入する。この圧縮空気Aは、冷却器15で冷却されてから、ブースト圧縮機16で昇圧され、冷却空気Aiとして、燃焼器40に送られる。
 燃焼器40は、図2に示すように、燃焼ガス流路49の周囲を画定する筒状のトランジションピース50と、冷却空気ジャケット44と、音響減衰器45と、トランジションピース50内に燃料F及び圧縮空気Aを噴出する本体41と、を有する。
 本体41は、トランジションピース50内に燃料F及び圧縮空気Aを噴出する複数のバーナ42と、複数のバーナ42を囲む枠43と、を有する。複数のバーナ42は、この枠43に固定されている。この枠43は、中間ケーシング13に固定されている。
 トランジションピース50は、燃焼器軸線Acの周りに燃焼器軸線Acに沿うように筒状に形成されている。ここで、燃焼器軸線Acが延びる方向を燃焼器軸線方向Dcaとし、この燃焼器軸線方向Dcaで互い相反する側を向く二つ側のうち、一方を燃焼器軸線上流側Dcu、他方の側を燃焼器軸線下流側Dcdとする。
 音響減衰器45は、図2及び図3に示すように、トランジションピース50の一部である空間画定部46と、この空間画定部46と共同してトランジションピース50の外周側に音響空間を形成する音響カバー48と、を有する。ここでのトランジションピース50の空間画定部46は、トランジションピース50中の燃焼器軸線上流側Dcuの部分であって、燃焼器軸線Acに対する周方向に広がっている部分である。音響カバー48は、トランジションピース50の外周側からトランジションピース50の空間画定部46を覆う。トランジションピース50の空間画定部46には、外周側から内周側に貫通する音響孔47が形成されている。
 冷却空気ジャケット44は、トランジションピース50の一部を覆い、トランジションピース50の外周側に冷却空気空間を形成する。トランジションピース50の一部は、トランジションピース50中の燃焼器軸線下流側Dcdの部分であって、燃焼器軸線Acに対する周方向に広がっている部分である。この冷却空気ジャケット44には、冷却空気ライン19が接続されている。
 トランジションピース50は、図4に示すように、合板51を湾曲させて、筒状にしたものである。なお、図4は、図3におけるIV-IV線断面図である。合板51は、外側板52と内側板54とを有する。外側板52で相反する方向を向いている一対の面のうち、一方の面が外周面52oを成し、他方の面が接合面52cを成す。外側板52の外周面52oは、トランジションピース50の外周面52oを成す。また、内側板54で相反する方向を向いている一対の面のうち、一方の面が接合面54cを成し、他方の面が内周面54iを成す。外側板52の接合面52cには、外周面52o側に凹み、一定の方向に長い複数の長溝53が形成されている。外側板52と内側板54とは、互いの接合面52c,54c相互がろう付け等で接合されて、合板51を形成する。外側板52と内側板54との接合により、外側板52に形成されている長溝53の開口が内側板54により塞がり、この長溝53内は冷却空気Aiが流れる通路55になる。
 燃焼器軸線Acは、図3に示すように、ロータ軸線Arを含む仮想平面Pv内に位置する。この燃焼器軸線Ac(以下、単に軸線Acとする)中で燃焼器軸線上流側Dcu(以下、単に上流側Dcuとする)の部分は、燃焼器軸線下流側Dcd(以下、単に下流側Dcdとする)に向かうに連れて次第にロータ軸線Arに近づく方向に延びている。一方、この軸線Ac中で、下流側Dcdの部分は、ロータ軸線Arとほぼ平行な方向に延びている。よって、この軸線Acは、仮想平面Pv内で、軸線Ac中の上流側Dcuの部分に対して軸線Ac中の下流側Dcdの部分が曲がっている。ここで、この軸線Acを基準にして、この軸線Acが曲がっている側を曲り内側Dciとする。この曲り内側Dciは、仮想平面Pv内において、軸線Acを基準にして、ロータ軸線Arから離れる側である。また、この軸線Acを基準にして、曲り内側Dciと反対側を曲り外側Dcoとする。この曲り外側Dcoは、仮想平面Pv内において、軸線Acを基準にして、ロータ軸線Arに近づく側である。
 以上のように、軸線Acが曲がっているため、この軸線Ac周りに軸線Acに沿うように筒状を成しているトランジションピース50も曲がっている。
 トランジションピース50は、軸線Acに対する周方向Dccに並ぶ四つの領域を有する。四つの領域のうちの一領域は、図3及び図4に示すように、曲り内側板部60aである。また、四つの領域のうちの他の一領域は、曲り外側板部60bである。四つの領域のうちの残りの二領域は、一対の側板部60cである。
 一対の側板部60cは、仮想平面Pvと対向し、且つ軸線Acを挟んで互いに対向している。曲り内側板部60aは、軸線Acを基準にして曲り内側Dciに配置され、一対の側板部60cの曲り内側Dciの端に接続されている。曲り外側板部60bは、軸線Acを基準にして曲り外側Dcoに配置され、軸線Acを挟んで曲り内側板部60aと対向し、一対の側板部60cの曲り外側Dcoの端に接続されている。四つの領域のうち、曲り内側板部60aは、最も曲り内側Dciに配置されているため、燃焼器軸線方向Dca(以下、単に軸線方向Dcaとする)の長さが最も短い。
 曲り内側板部60aは、図5に示すように、二つの通路群61a,66aと、一つのヘッダ69aと、を有する。二つの通路群61a,66aは、軸線方向Dcaに並んでいる。ヘッダ69aは、軸線方向Dcaにおける二つの通路群61a,66aの間に位置している。ここで、二つの通路群61a,66aのうち、ヘッダ69aよりも下流側Dcdの通路群61aを第一通路群とする。また、残りの通路群66aを最終通路群とする。二つの通路群61a,66aのそれぞれは、軸線方向Dcaに延び、周方向Dccに並ぶ複数の冷却通路62a,67aで構成される。ヘッダ69aは、周方向Dccに延びている。複数の冷却通路62a,67a及びヘッダ69aは、いずれも、冷却空気Aiが流れる前述の通路55である。
 第一通路群61aを構成する複数の冷却通路(以下、第一冷却通路とする)62aの下流側Dcdの端には、入口63aが形成されている。この入口63aは、トランジションピース50の外周面52oで開口している。複数の第一冷却通路62aは、入口63aを介して、冷却空気ジャケット44の冷却空気空間と連通している。複数の第一冷却通路62aの上流側Dcuの端は、ヘッダ69aに接続されている。
 最終通路群66aを構成する複数の冷却通路(以下、最終冷却通路とする)67aの下流側Dcdの端は、ヘッダ69aに接続されている。複数の最終冷却通路67aの上流側Dcuの端には、出口68aが形成されている。この出口68aは、トランジションピース50の外周面52oで開口している。複数の最終冷却通路67aは、出口68aを介して、中間ケーシング13内の空間と連通している。
 複数の最終冷却通路67aの数は、複数の第一冷却通路62aの数より少ない。具体的には、複数の最終冷却通路67aの数は、複数の第一冷却通路62aの数の約半分の数である。
 ここで、図6に示すように、最終冷却通路67aの下流側Dcdの部分67adの通路高さをH1とし、最終冷却通路67aの下流側Dcdの部分67adの通路幅をWとする。図7に示すように、最終冷却通路67aの上流側Dcuの部分67auの通路高さH2は、下流側Dcdの部分67adの通路高さH1よりわずかに低い。また、最終冷却通路67aの上流側Dcuの部分67auの通路幅Wは、下流側Dcdの部分67adの通路幅Wと同じである。よって、最終冷却通路67aの上流側Dcuの部分67auの断面積は、最終冷却通路67aの下流側Dcdの部分67adの断面積よりわずかに狭い。また、最終冷却通路67aの下流側Dcdの部分67adの断面積は、第一冷却通路62aの断面積とほぼ同じである。
 なお、図6は、図5におけるVI-VI線断面図であり、図7は、図5におけるVII-VII線断面図である。また、最終冷却通路67aの下流側Dcdの部分67adとは、最終冷却通路67aの下流側Dcdの端を含む部分である。また、最終冷却通路67aの上流側Dcuの部分67auとは、最終冷却通路67aの上流側Dcuの端を含み、最終冷却通路67aの下流側Dcdの部分67adを除く部分である。
 前述したように、ヘッダ69aより上流側Dcuの最終通路群66aを構成する複数の最終冷却通路67aの数は、ヘッダ69aより下流側Dcdの第一通路群61aを構成する第一冷却通路62aの数より少ない。また、最終冷却通路67aの断面積は、第一冷却通路62aの断面積以下である。このため、単位周方向長さ当たりの複数の冷却通路の総断面積を通路密度とすると、最終通路群66aを構成する複数の最終冷却通路67aの通路密度は、第一通路群61aを構成する第一冷却通路62aの通路密度より小さい。
 曲り内側板部60aにおいて、ヘッダ69aより上流側Dcuの最終通路群66aの通路密度は、このヘッダ69aより下流側Dcdの第一通路群61aの通路密度の20%から45%である。
 曲り外側板部60bは、図5に示すように、三つの通路群61b,64b,66bと、二つのヘッダ69bu,69bdと、を有する。三つの通路群61b,64b,66bは、軸線方向Dcaに並んでいる。ここで、三つの通路群61b,64b,66bのうち、最も下流側Dcdの通路群61bを第一通路群とする。三つの通路群61b,64b,66bのうち、最も上流側Dcuの通路群66bを最終通路群とする。第一通路群61bと最終通路群66bとの間の通路群64bを第二通路群とする。二つのヘッダ69bu,69bdは、軸線方向Dcaに並んでいる。二つのヘッダ69bu,69bdのうち、下流側ヘッダ69bdは、軸線方向Dcaにおける第一通路群61bと第二通路群64bとの間に位置している。二つのヘッダ69bu,69bdのうち、上流側ヘッダ69buは、軸線方向Dcaにおける第二通路群64bと最終通路群66bとの間に位置している。三つの通路群61b,64b,66bのそれぞれは、軸線方向Dcaに延び、周方向Dccに並ぶ複数の冷却通路62b,65b,67bで構成される。二つのヘッダ69bu,69bdのそれぞれは、周方向Dccに延びている。複数の冷却通路62b,65b,67b及び複数のヘッダ69bu,69bdは、いずれも、冷却空気Aiが流れる前述の通路55である。
 曲り外側板部60bの第一通路群61bを構成する複数の冷却通路(以下、第一冷却通路とする)62bの下流側Dcdの端には、入口63bが形成されている。この入口63bは、トランジションピース50の外周面52oで開口している。複数の第一冷却通路62bは、入口63bを介して、冷却空気ジャケット44の冷却空気空間と連通している。複数の第一冷却通路62bの上流側Dcuの端は、下流側ヘッダ69bdに接続されている。
 曲り外側板部60bの第二通路群64bを構成する複数の冷却通路(以下、第二冷却通路とする)65bの下流側Dcdの端は、下流側ヘッダ69bdに接続されている。複数の第二冷却通路65bの上流側Dcuの端は、上流側ヘッダ69buに接続されている。
 曲り外側板部60bの最終通路群66bを構成する複数の冷却通路(以下、最終冷却通路とする)67bの下流側Dcdの端は、上流側ヘッダ69buに接続されている。複数の最終冷却通路67bの上流側Dcuの端には、出口68bが形成されている。この出口68bは、トランジションピース50の外周面52oで開口している。複数の最終冷却通路67bは、出口68bを介して、中間ケーシング13内の空間と連通している。
 複数の第二冷却通路65bの数は、複数の第一冷却通路62bの数より少ない。また、複数の最終冷却通路67bの数は、複数の第二冷却通路65bの数より少ない。具体的には、複数の最終冷却通路67bの数は、複数の第二冷却通路65bの数の約半分の数である。
 第二冷却通路65bの断面積は、第一冷却通路62bの断面積とほぼ同じである。最終冷却通路67bの断面積は、第二冷却通路65bの断面積より僅かに狭い。なお、曲り内側板部60a及び曲り外側板部60bにおける各第一冷却通路62a,62bの断面積は、互に、ほぼ同じである。
 このため、曲り外側板部60bにおける下流側ヘッダ69bdより上流側Dcuの第二通路群64bを構成する複数の第二冷却通路65bの通路密度は、曲り外側板部60bにおける下流側ヘッダ69bdより下流側Dcdの第一通路群61bを構成する複数の第一冷却通路62bの通路密度より小さい。また、曲り外側板部60bにおける上流側ヘッダ69buより上流側Dcuの最終通路群66bを構成する複数の最終冷却通路67bの通路密度は、曲り外側板部60bにおける上流側ヘッダ69buより下流側Dcdの第二通路群64bを構成する複数の第二冷却通路65bの通路密度より小さい。
 曲り外側板部60bにおいて、上流側ヘッダ69buより上流側Dcuの最終通路群66bの通路密度は、この上流側ヘッダ69buより下流側Dcdの第二通路群64bの通路密度の20%から45%である。
 一対の側板部60cも、曲り外側板部60bと同様、三つの通路群61c,64c,66cと、二つのヘッダ69cu,69cdと、を有する。三つの通路群61c,64c,66cは、軸線方向Dcaに並んでいる。ここで、三つの通路群61c,64c,66cのうち、最も下流側Dcdの通路群66cを第一通路群とする。また、三つの通路群61c,64c,66cのうち、最も上流側Dcuの通路群66cを最終通路群とする。第一通路群61cと最終通路群66cとの間の通路群64cを第二通路群とする。二つのヘッダ69cu,69cdは、軸線方向Dcaに並んでいる。二つのヘッダ69cu,69cdのうち、下流側ヘッダ69cdは、軸線方向Dcaにおける第一通路群61cと第二通路群64cとの間に位置している。二つのヘッダ69cu,69cdのうち、上流側ヘッダ69cuは、軸線方向Dcaにおける第二通路群64cと最終通路群66cとの間に位置している。三つの通路群61c,64c,66cのそれぞれは、軸線方向Dcaに延び、周方向Dccに並ぶ複数の冷却通路62c,65c,67cで構成される。二つのヘッダ69cu,69cdのそれぞれは、周方向Dccに延びている。複数の冷却通路62c,65c,67c及び複数のヘッダ69cu,69cdは、いずれも、冷却空気Aiが流れる前述の通路55である。
 一対の側板部60cの第一通路群61cを構成する複数の冷却通路(以下、第一冷却通路とする)62cの下流側Dcdの端には、入口63cが形成されている。この入口63cは、トランジションピース50の外周面52oで開口している。複数の第一冷却通路62cは、入口63cを介して、冷却空気ジャケット44の冷却空気空間と連通している。
複数の第一冷却通路62cの上流側Dcuの端は、下流側ヘッダ69cdに接続されている。
 一対の側板部60cの第二通路群64cを構成する複数の冷却通路(以下、第二冷却通路とする)65cの下流側Dcdの端は、下流側ヘッダ69cdに接続されている。複数の第二冷却通路65cの上流側Dcuの端は、上流側ヘッダ69cuに接続されている。
 一対の側板部60cの最終通路群66cを構成する複数の冷却通路(以下、最終冷却通路とする)67cの下流側Dcdの端は、上流側ヘッダ69cuに接続されている。複数の最終冷却通路67cの上流側Dcuの端には、出口68cが形成されている。この出口68cは、トランジションピース50の外周面52oで開口している。複数の最終冷却通路67cは、出口68cを介して、中間ケーシング13内の空間と連通している。
 複数の第二冷却通路65cの数は、複数の第一冷却通路62cの数より少ない。また、複数の最終冷却通路67cの数は、複数の第二冷却通路65cの数より少ない。具体的には、複数の最終冷却通路67cの数は、複数の第二冷却通路65cの数の約半分の数である。
 第二冷却通路65cの断面積は、第一冷却通路62cの断面積とほぼ同じである。最終冷却通路67cの断面積は、第二冷却通路65cの断面積より僅かに狭い。なお、曲り内側板部60a、曲り外側板部60b、及び一対の側板部60cにおける各第一冷却通路62a,62b,62cの断面積は、互に、ほぼ同じである。
 このため、一対の側板部60cにおける下流側ヘッダ69cdより上流側Dcuの第二通路群64cを構成する複数の第二冷却通路65cの通路密度は、一対の側板部60cにおける下流側ヘッダ69cdより下流側Dcdの第一通路群61cを構成する複数の第一冷却通路62cの通路密度より小さい。また、一対の側板部60cにおける上流側ヘッダ69cuより上流側Dcuの最終通路群66cを構成する複数の最終冷却通路67cの通路密度は、一対の側板部60cにおける上流側ヘッダ69cuより下流側Dcdの第二通路群64cを構成する複数の第二冷却通路65cの通路密度より小さい。
 一対の側板部60cにおいて、上流側ヘッダ69cuより上流側Dcuの最終通路群66cの通路密度は、この上流側ヘッダ69cuより下流側Dcdの第二通路群64cの通路密度の20%から45%である。
 曲り内側板部60aの第一通路群61aを構成する複数の第一冷却通路62a、曲り外側板部60bの第一通路群61bを構成する複数の第一冷却通路62b、及び一対の側板部60cの第一通路群61cを構成する複数の第一冷却通路62cは、相互に、断面積がほぼ同じで、且つ軸線方向Dcaの長さもほぼ同じである。
 次に、以上で説明したガスタービン設備の動作について説明する。
 圧縮機20は、外気Aoを圧縮して圧縮空気Aを生成する。この圧縮空気Aは、圧縮機20から中間ケーシング13内に吐出される。中間ケーシング13内の圧縮空気Aは、燃焼器40のバーナ42内に流入する。また、このバーナ42には、外部から燃料Fも流入する。バーナ42は、燃料Fと共に圧縮空気Aをトランジションピース50内に噴出する。トランジションピース50内では、圧縮空気A中で燃料Fが燃焼し、燃焼ガスGが生成される。この燃焼ガスGは、トランジションピース50内の燃焼ガス流路49を通り、トランジションピース50からタービン30に送られる。タービン30は、この燃焼ガスGにより駆動する。
 中間ケーシング13内の圧縮空気Aの一部は、抽気ライン18を介して、冷却器15に流入し、この冷却器15で冷却される。冷却された圧縮空気Aは、ブースト圧縮機16で昇圧され、冷却空気ライン19及び冷却空気ジャケット44を介して、冷却空気Aiとして、燃焼器40のトランジションピース50に送られる。
 トランジションピース50の内周面54iは、極めて高温の燃焼ガスGに晒される。このため、本実施形態では、トランジションピース50に冷却媒体としての冷却空気Aiを送り、このトランジションピース50を冷却する。
 冷却空気ジャケット44内の冷却空気Aiの一部は、曲り外側板部60b及び一対の側板部60cの各第一通路群61a,61b,61cを構成する複数の第一冷却通路62a,62b,62cの入口63a,63b,63cから、第一冷却通路62a,62b,62c内に流入する。第一冷却通路62a,62b,62c内に流入した冷却空気Aiは、上流側Dcuに向かって流れる。この過程で、冷却空気Aiは、トランジションピース50と熱交換する。この結果、トランジションピース50は冷却される一方で、冷却空気Aiが加熱される。
 曲り外側板部60b及び一対の側板部60cの各第一通路群61b,61cを構成する複数の第一冷却通路62b,62c内を流れた冷却空気Aiは、曲り外側板部60b及び一対の側板部60cの各下流側ヘッダ69bd,69cdに流入する。曲り外側板部60b及び一対の側板部60cの各下流側ヘッダ69bd,69cdに流入した冷却空気Aiは、曲り外側板部60b及び一対の側板部60cの各第二通路群64b,64cを構成する複数の第二冷却通路65b,65c内に流入する。第二冷却通路65b,65c内に流入した冷却空気Aiは、上流側Dcuに向かって流れる。この過程で、冷却空気Aiは、トランジションピース50と熱交換する。この結果、トランジションピース50は冷却される一方で、冷却空気Aiが加熱される。
 第二通路群64b,64cの通路密度は、第一通路群61b,61cの通路密度よりも低いたいため、第二通路群64b,64cを構成する複数の第二冷却通路65b,65cを流れる冷却空気Aiの流速は、第一通路群61b,61cを構成する複数の第一冷却通路62b,62cを流れる冷却空気Aiの流速よりも速い。このため、複数の第二冷却通路65b,65cを流れる冷却空気Aiとトランジションピース50中で第二通路群64b,64cが形成されている部分との間の熱伝達率は、複数の第一冷却通路62b,62cを流れる冷却空気Aiとトランジションピース50中で第一通路群61b,61cが形成されている部分との間の熱伝達率に対して、ほぼ同等、又は高い。
 曲り外側板部60b及び一対の側板部60cの各第二通路群64b,64cを構成する複数の第二冷却通路65b,65c内を流れた冷却空気Aiは、曲り外側板部60b及び一対の側板部60cの各上流側ヘッダ69bu,69cuに流入する。曲り外側板部60b及び一対の側板部60cの各上流側ヘッダ69bu,69cuに流入した冷却空気Aiは、曲り外側板部60b及び一対の側板部60cの各最終通路群66b,66cを構成する複数の最終冷却通路67b,67c内に流入する。最終冷却通路67b,67c内に流入した冷却空気Aiは、上流側Dcuに向かって流れる。この過程で、冷却空気Aiは、トランジションピース50と熱交換する。この結果、トランジションピース50は冷却される一方で、冷却空気Aiが加熱される。
 最終通路群66b,66cの通路密度は、第二通路群64b,64cの通路密度よりも低いたいため、最終通路群66b,66cを構成する複数の最終冷却通路67b,67cを流れる冷却空気Aiの流速は、第二通路群64b,64cを構成する複数の第二冷却通路65b,65cを流れる冷却空気Aiの流速よりも速い。このため、複数の最終冷却通路67b,67cを流れる冷却空気Aiとトランジションピース50中で最終通路群66b,66cが形成されている部分との間の熱伝達率は、複数の第二冷却通路65b,65cを流れる冷却空気Aiとトランジションピース50中で第二通路群64b,64cが形成されている部分との間の熱伝達率に対して、ほぼ同等、又は高い。
 曲り外側板部60b及び一対の側板部60cの各最終通路群66b,66cを構成する複数の最終冷却通路67b,67c内を流れた冷却空気Aiは、最終冷却通路67b,67cの出口68b,68cから中間ケーシング13内に流出する。
 以上のように、本実施形態では、トランジションピース50中の曲り外側板部60b及び一対の側板部60cを十分に冷却することができる。
 冷却空気ジャケット44内の冷却空気Aiの一部は、曲り内側板部60aの第一通路群61aを構成する複数の第一冷却通路62aの入口63aから、第一冷却通路62a内に流入する。第一冷却通路62a内に流入した冷却空気Aiは、上流側Dcuに向かって流れる。この過程で、冷却空気Aiは、トランジションピース50と熱交換する。この結果、トランジションピース50は冷却される一方で、冷却空気Aiが加熱される。
 曲り内側板部60aの第一通路群61aを構成する複数の第一冷却通路62a内を流れた冷却空気Aiは、曲り内側板部60aのヘッダ69aに流入する。このヘッダ69aに流入した冷却空気Aiは、曲り内側板部60aの最終通路群66aを構成する複数の最終冷却通路67a内に流入する。最終冷却通路67a内に流入した冷却空気Aiは、上流側Dcuに向かって流れる。この過程で、冷却空気Aiは、トランジションピース50と熱交換する。この結果、トランジションピース50は冷却される一方で、冷却空気Aiが加熱される。
 最終通路群66aの通路密度は、第一通路群61aの通路密度よりも低いたいため、最終通路群66aを構成する複数の最終冷却通路67aを流れる冷却空気Aiの流速は、第一通路群61aを構成する複数の第一冷却通路62aを流れる冷却空気Aiの流速よりも速い。このため、複数の最終冷却通路67aを流れる冷却空気Aiとトランジションピース50中で最終通路群66aが形成されている部分との間の熱伝達率は、複数の第一冷却通路62aを流れる冷却空気Aiとトランジションピース50中で第一通路群61aが形成されている部分との間の熱伝達率に対して、ほぼ同等、又は高い。
 しかも、本実施形態では、曲り内側板部60aの最終冷却通路67aの上流側Dcuの部分67auの断面積は、この最終冷却通路67aの下流側Dcdの部分67adの断面積より小さい。このため、最終冷却通路67aの上流側Dcuの部分67auを流れる冷却空気Aiの流速は、最終冷却通路67aの下流側Dcdの部分67adを流れる冷却空気Aiの流速より速い。よって、最終冷却通路67aの上流側Dcuの部分67auを流れる冷却空気Aiとトランジションピース50中で最終冷却通路67aの上流側Dcuの部分67au周りとの間の熱伝達率は、最終冷却通路67aの下流側Dcdの部分67adを流れる冷却空気Aiとトランジションピース50中で最終冷却通路67aの下流側Dcdの部分67ad周りのとの間の熱伝達率に対して、ほぼ同等、又は高い。
 本実施形態では、ヘッダ69a,69bu,69bd,69cu,69cdを基準にして、下流側Dcdの冷却通路62a,62b,65b,62c,65cの数に対する上流側Dcuの冷却通路67a,65b,67b,65c,67cの数等を変えて、下流側Dcdから上流側Dcuに流れる冷却媒体の冷却能力を維持するために、ヘッダ69a,69bu,69bd,69cu,69cdが設けられている。
 本実施形態では、曲り内側板部60aのヘッダ69aの数が一つであり、曲り外側板部60bのヘッダ69bu,69bdの数及び一対の側板部60cのヘッダ69cu,69cdの数が二つのである。すなわち、曲り内側板部60aのヘッダ69aの数は、曲り外側板部60b及び一対の側板部60cのヘッダ69bu,69bd,69cu,69cdの数より少ない。前述したように、トランジションピース50で、周方向Dccに並ぶ四つの領域のうち、曲り内側板部60aは、最も曲り内側Dciに配置されているため、軸線方向Dcaの長さが最も短い。このため、曲り内側板部60aの第一冷却通路62aの長さと最終冷却通路67aの長さとを併せた総通路長は、曲り外側板部60bの第一冷却通路62bの長さと第二冷却通路65bの長さと最終冷却通路67bとを併せた総流路長、及び、一対の側板部60cの第一冷却通路62cの長さと第二冷却通路65cの長さと最終冷却通路67cとを併せた総流路長より短くなる。よって、曲り外側板部60b及び一対の側板部60cのヘッダ69bu,69bd,69cu,69cdの数より、曲り内側板部60aのヘッダ69aの数を少なくしても、曲り外側板部60b及び一対の側板部60cの各冷却通路62b,65b,67b,62c,65c,67c内を流れる冷却空気Aiの冷却能力に対して、曲り内側板部60aの冷却通路62a,67a内を流れる冷却空気Aiの冷却能力の低下を抑えることができる。
 この結果、本実施形態では、曲り内側板部60aにおける通路の構成を、曲り外側板部60b及び一対の側板部60cにおける通路の構成よりも、簡略化しても、トランジションピース50中の曲り内側板部60aを十分に冷却することができる。
 よって、本実施形態では、トランジションピース50の耐久性を確保しつつも、トランジションピース50の製造コストを抑えることができる。
 「変形例」
 以上の実施形態では、トランジションピース50の外周面52oであって、音響減衰器45の空間画定部46より下流側Dcdの部分に、最終冷却通路67a,67b,67cの出口68a,68b,68cを形成している。このため、以上の実施形態では、トランジションピース50の最終冷却通路67a,67b,67cを通った冷却空気Aiは、最終冷却通路67a,67b,67cの出口68a,68b,68cから中間ケーシング13内に流出する。しかしながら、トランジションピース50の外周面52oであって、音響減衰器45の空間画定部46に、最終冷却通路67a,67b,67cの出口68a,68b,68cを形成してもよい。この場合、トランジションピース50の最終冷却通路67a,67b,67cを通った冷却空気Aiは、最終冷却通路67a,67b,67cの出口68a,68b,68cから音響空間内に流入した後、音響減衰器45の音響孔47から、トランジションピース50の燃焼ガス流路49内に流入する。
 以上の実施形態では、曲り内側板部60aのヘッダ69aの数が一つであり、曲り外側板部60b及び一対の側板部60cのヘッダ69bu,69bd,69cu,69cdの数がそれぞれ二つのである。しかしながら、曲り外側板部60b及び一対の側板部60cのそれぞれヘッダの数が、曲り内側板部60aのヘッダの数より多ければ、曲り内側板部60aのヘッダの数は二つ以上であってもよい。
 「付記」
 以上の実施形態におけるトランジションピースは、例えば、以下のように把握される。
(1)第一態様におけるトランジションピース50は、
 仮想平面Pv内で曲がっている軸線Acの周りに前記軸線Acに沿うよう筒状に形成され、前記軸線Acが延びる軸線方向Dcaの上流側Dcuから下流側Dcdに燃焼ガスGが流れる燃焼ガス流路49の周囲を画定するトランジションピース50において、前記仮想平面Pvと対向し、且つ前記軸線Acを挟んで互いに対向している一対の側板部60cと、前記軸線Acを基準にして、前記軸線Ac中で前記上流側Dcuの部分に対して前記下流側Dcdの部分が曲がっている側である曲り内側Dciに配置され、前記一対の側板部60cの前記曲り内側Dciの端に接続されている曲り内側板部60aと、前記軸線Acを基準にして、前記曲り内側Dciと反対側の曲り外側Dcoに配置され、前記軸線Acを挟んで前記曲り内側板部60aと対向し、前記一対の前記側板部60cの前記曲り外側Dcoの端に接続されている曲り外側板部60bと、を有する。前記曲り内側板部60a、前記曲り外側板部60b、及び前記一対の側板部60cのそれぞれは、前記軸線方向Dcaに延び且つ前記軸線Acに対する周方向Dccに並んで冷却媒体が流れる複数の冷却通路62a,67a,62b,65b,67b,62c,65c,67cで構成される複数の通路群61a,66a,61b,64b,66b,61c,64c,66cと、前記周方向Dccに延びて前記冷却媒体が流れる少なくとも一のヘッダ69a,69bu,69bd,69cu,69cdと、を有する。前記曲り内側板部60a、前記曲り外側板部60b、及び前記一対の側板部60c毎の前記複数の通路群61a,66a,61b,64b,66b,61c,64c,66cは、前記軸線方向Dcaに並び、前記複数の通路群61a,66a,61b,64b,66b,61c,64c,66cにおける前記軸線方向Dcaの間に前記ヘッダ69a,69bu,69bd,69cu,69cdが配置されている。前記曲り内側板部60a、前記曲り外側板部60b、及び前記一対の側板部60c毎の前記複数の通路群61a,66a,61b,64b,66b,61c,64c,66cは、前記複数の通路群61a,66a,61b,64b,66b,61c,64c,66cの間に配置された前記ヘッダ69a,69bu,69bd,69cu,69cdを介して、互に連通している。前記曲り内側板部60a、前記曲り外側板部60b、及び前記一対の側板部60c毎の前記複数の通路群61a,66a,61b,64b,66b,61c,64c,66cのうち、最も前記下流側Dcdに位置する第一通路群61a,61b,61cを構成する前記複数の冷却通路である複数の第一冷却通路62a,62b,62cの前記下流側Dcdの端には、前記冷却媒体が流入する媒体入口63a,63b,63cが形成されている。前記曲り内側板部60a、前記曲り外側板部60b、及び前記一対の側板部60c毎の前記複数の前記通路群61a,66a,61b,64b,66b,61c,64c,66cのうち、最も前記上流側Dcuに位置する最終通路群66a,66b,66cを構成する前記複数の冷却通路である複数の最終冷却通路67a,67b,67cの前記上流側Dcuの端には、前記冷却媒体が流出する媒体出口68a,68b,68cが形成されている。前記曲り内側板部60aの前記少なくとも一のヘッダ69aの数は、前記曲り外側板部60b及び前記一対の側板部60cの前記少なくとも一のヘッダ69bu,69bd,69cu,69cdの数より少ない。
 本態様では、曲り内側板部60a、曲り外側板部60b、及び一対の側板部60cの各第一冷却通路62a,62b,62cには、これらの入口63a,63b,63cから冷却媒体が流入する。その後、各部内の冷却媒体は、各部における少なくとも一のヘッダ69a,69bu,69bd,69cu,69cdを経てから、各部の最終冷却通路67a,67b,67cの出口68a,68b,68cからトランジションピース50外に流出する。各部内の冷却媒体は、下流側Dcdから上流側Dcuに向かって流れる。この過程で、トランジションピース50は冷却媒体により冷却される一方で、冷却媒体は加熱される。
 本態様では、ヘッダ69a,69bu,69bd,69cu,69cdを基準にして、下流側Dcdの冷却通路62a,62b,65b,62c,65cの数に対する上流側Dcuの冷却通路67a,65b,67b,65c,67cの数等を変えて、下流側Dcdから上流側Dcuに流れる冷却媒体の冷却能力を維持するために、ヘッダ69a,69bu,69bd,69cu,69cdが設けられている。
 本態様では、曲り内側板部60a、曲り外側板部60b、及び一対の側板部60cのうち、曲り内側板部60aは、最も曲り内側Dciに配置されているため、軸線方向Dcaの長さが最も短い。このため、曲り外側板部60b及び一対の側板部60cの少なくとも一のヘッダ69bu,69bd,69cu,69cdの数より、曲り内側板部60aの少なくとも一のヘッダ69aの数を少なくしても、曲り外側板部60b及び一対の側板部60cの各冷却通路62b,65b,67b,62c,65c,67c内を流れる冷却媒体の冷却能力に対して、曲り内側板部60aの冷却通路62a,67a内を流れる冷却媒体の冷却能力の低下を抑えることができる。よって、本態様では、曲り内側板部60aにおける通路の構成を、曲り外側板部60b及び一対の側板部60cにおける通路の構成より簡略化しても、曲り外側板部60b及び一対の側板部60cにおける通路を流れる冷却媒体の冷却能力に対して、曲り内側板部60aの通路を流れる冷却媒体の冷却能力の低下を抑えることができる。
 このため、本態様では、耐久性を確保しつつも、製造コストを抑えることができる。
(2)第二態様におけるトランジションピース50は、
 前記第一態様のトランジションピース50において、曲り内側板部60a、曲り外側板部60b、及び一対の側板部60cの各部では、前記ヘッダ69a,69bu,69bd,69cu,69cdに連通し且つ前記ヘッダ69a,69bu,69bd,69cu,69cdを基準にして前記上流側Dcuの前記通路群66a,64b,66b,64c,66cを構成する複数の冷却通路67a,65b,67b,65c,67cにおける、単位周方向長さ当たりの前記複数の冷却通路67a,65b,67b,65c,67cの総断面積である通路密度が、前記ヘッダ69a,69bu,69bd,69cu,69cdに連通し且つ前記ヘッダ69a,69bu,69bd,69cu,69cdを基準にして前記下流側Dcdの前記通路群61a,61b,64b,61c,64cを構成する複数の冷却通路62a,62b,65b,62c,65cにおける、前記通路密度より小さい。
 本態様では、上流側Dcuの通路群66a,64b,66b,64c,66cの通路密度が、下流側Dcdの通路群61a,61b,64b,61c,64ccの通路密度よりも低い。このため、上流側Dcuの通路群66a,64b,66b,64c,66cを構成する複数の冷却通路67a,65b,67b,65c,67cを流れる冷却空気Aiの流速は、下流側Dcdの通路群61a,61b,64b,61c,64cを構成する複数の冷却通路62a,62b,65b,62c,65cを流れる冷却空気Aiの流速よりも速い。よって、上流側Dcuの通路群66a,64b,66b,64c,66cを構成する複数の冷却通路67a,65b,67b,65c,67cを流れる冷却空気Aiとトランジションピース50中で上流側Dcuの通路群66a,64b,66b,64c,66cが形成されている部分との間の熱伝達率は、下流側Dcdの通路群61a,61b,64b,61c,64cを構成する複数の冷却通路62a,62b,65b,62c,65cを流れる冷却空気Aiとトランジションピース50中で下流側Dcdの通路群61a,61b,64b,61c,64cが形成されている部分との間の熱伝達率に対して、ほぼ同等、又は高い。
(3)第三態様におけるトランジションピース50は、
 前記第二態様のトランジションピース50において、曲り内側板部60a、曲り外側板部60b、及び一対の側板部60cの各部では、前記最終通路群66a,66b,66cにおける前記通路密度が、前記最終通路群66a,66b,66cが連通する前記ヘッダ69a,69bu,69cuの下流側Dcdに位置する通路群62a,64b,64cにおける前記通路密度の25%から45%である。
(4)第四態様におけるトランジションピース50は、
 前記第一態様から前記第三態様のうちのいずれか一態様のトランジションピース50において、曲り内側板部60a、曲り外側板部60b、及び一対の側板部60cの各部では、前記ヘッダ69a,69bu,69bd,69cu,69cdに連通し且つ前記ヘッダ69a,69bu,69bd,69cu,69cdを基準にして前記上流側Dcuの前記通路群66a,64b,66b,64c,66cを構成する複数の冷却通路67a,65b,67b,65c,67cの数が、前記ヘッダ69a,69bu,69bd,69cu,69cdに連通し且つ前記ヘッダ69a,69bu,69bd,69cu,69cdを基準にして前記下流側Dcdの前記通路群61a,61b,64b,61c,64cを構成する複数の冷却通路62a,62b,65b,62c,65cの数より少ない。
 本態様では、上流側Dcuの通路群66a.64b,66b,64c,66cを構成する複数の冷却通路67a,65b,67b,65c,67cの数が、下流側Dcdの通路群61a,61b,64b,61c,64cを構成する複数の冷却通路62a,62b,65b,62c,65cの数より少ない。このため、上流側Dcuの通路群66a,64b,66b,64c,66cを構成する複数の冷却通路67a,65b,67b,65c,67cを流れる冷却空気Aiの流速は、下流側Dcdの通路群61a,61b,64b,61c,64cを構成する複数の冷却通路62a,62b,65b,62c,65cを流れる冷却空気Aiの流速よりも速い。よって、上流側Dcuの通路群66a,64b,66b,64c,66cを構成する複数の冷却通路67a,65b,67b,65c,67cを流れる冷却空気Aiとトランジションピース50中で上流側Dcuの通路群66a,64b,66b,64c,66cが形成されている部分との間の熱伝達率は、下流側Dcdの通路群61a,61b,64b,61c,64cを構成する複数の冷却通路62a,62b,65b,62c,65cを流れる冷却空気Aiとトランジションピース50中で下流側Dcdの通路群61a,61b,64b,61c,64cが形成されている部分との間の熱伝達率に対して、ほぼ同等、又は高い。
(5)第五態様におけるトランジションピース50は、
 前記第一態様から前記第四態様のうちのいずれか一態様のトランジションピース50において、前記曲り内側板部60aが有する前記複数の最終冷却通路67aにおける前記上流側Dcuの部分67auの各断面積は、前記曲り内側板部60aが有する複数の前記最終冷却通路67aにおける前記下流側Dcdの部分67adのいずれの断面積よりも小さい。
 曲り内側板部60aの最終冷却通路67aの上流側Dcuの部分67auの断面積は、この最終冷却通路67aの下流側Dcdの部分67adの断面積より小さい。このため、最終冷却通路67aの上流側Dcuの部分67auを流れる冷却空気Aiの流速は、最終冷却通路67aの下流側Dcdの部分67adを流れる冷却空気Aiの流速より速い。よって、最終冷却通路67aの上流側Dcuの部分67auを流れる冷却空気Aiとトランジションピース50中で最終冷却通路67aの上流側Dcuの部分67au周りとの間の熱伝達率は、最終冷却通路67aの下流側Dcdの部分67adを流れる冷却空気Aiとトランジションピース50中で最終冷却通路67aの下流側Dcdの部分67ad周りのとの間の熱伝達率に対して、ほぼ同等、又は高い。
(6)第六態様におけるトランジションピース50は、
 前記第一態様から前記第五態様のうちのいずれか一態様のトランジションピース50において、前記曲り内側板部60aの前記少なくとも一のヘッダ69aの数は、1であり、前記曲り外側板部60b及び前記一対の側板部60cの前記少なくとも一のヘッダ69bu,69bd,69cu,69cdの数は、2以上である。
 以上の実施形態における燃焼器は、例えば、以下のように把握される。
(7)第七態様における燃焼器40は、
 前記第一態様から前記第六態様のうちのいずれか一態様のトランジションピース50と、前記燃焼ガス流路49内に燃料Fと圧縮空気Aとを噴出するバーナ42と、を備える。
 以上の実施形態におけるガスタービンは、例えば、以下のように把握される。
(8)第八態様におけるガスタービン10は、
 前記第七態様の燃焼器40と、空気を圧縮して、前記燃焼器40に圧縮空気Aを送る圧縮機20と、前記燃焼器40で生成された燃焼ガスGで駆動するタービン30と、中間ケーシング13と、を備える。前記圧縮機20は、ロータ軸線Arを中心として回転可能な圧縮機ロータ21と、前記圧縮機ロータ21の外周を覆う圧縮機ケーシング24と、を有する。前記タービン30は、前記ロータ軸線Arを中心として回転可能なタービンロータ31と、前記タービンロータ31の外周を覆うタービンケーシング34と、を有する。前記圧縮機ロータ21と前記タービンロータ31とは、互に接続されて、ガスタービンロータ11を成す。前記圧縮機ケーシング24と前記タービンケーシング34とは、前記中間ケーシング13を介して互いに接続されている。前記燃焼器40の前記トランジションピース50は、前記曲り外側板部60bが前記ガスタービンロータ11と対向し、前記曲り内側板部60aが前記中間ケーシング13と対向するよう、前記中間ケーシング13内に配置されている。
 以上の実施形態におけるガスタービン設備は、例えば、以下のように把握される。
(9)第九態様におけるガスタービン設備は、
 前記第八態様のガスタービン10と、前記圧縮機20で圧縮された空気の一部を冷却する冷却器15と、前記冷却器15で冷却された空気を昇圧して、昇圧した空気を前記冷却媒体として、前記曲り内側板部60a、前記曲り外側板部60b、及び前記一対の側板部60c毎に有する前記第一冷却通路62a,62b,62cに送るブースト圧縮機16と、を備える。
 本開示の一態様では、トランジションピースの耐久性を確保しつつも、その製造コストを抑えることができる。
10:ガスタービン
11:ガスタービンロータ
13:中間ケーシング
14:ガスタービンケーシング
15:冷却器
16:ブースト圧縮機
17:調節弁
18:抽気ライン
19:冷却空気ライン
20:圧縮機
21:圧縮機ロータ
22:ロータ軸
23:動翼列
24:圧縮機ケーシング
25:静翼列
30:タービン
31:タービンロータ
32:ロータ軸
33:動翼列
34:タービンケーシング
35:静翼列
40:燃焼器
41:本体
42:バーナ
43:枠
44:冷却空気ジャケット
45:音響減衰器
46:空間画定部
47:音響孔
48:音響カバー
49:燃焼ガス流路
50:トランジションピース
51:合板
52:外側板
52o:外周面
52c:接合面
53:長溝
54:内側板
54i:内周面
54c:接合面
55:通路
60a:曲り内側板部
61a:(曲り内側板部の)第一通路群
62a:(曲り内側板部の)第一冷却通路
63a:(曲り内側板部の)入口
66a:(曲り内側板部の)最終通路群
67a:(曲り内側板部の)最終冷却通路
68a:(曲り内側板部の)出口
67ad:(最終冷却通路の)下流側の部分
67au:(最終冷却通路の)上流側の部分
69a:(曲り内側板部の)ヘッダ
60b:曲り外側板部
61b,:(曲り外側板部の)第一通路群
62b:(曲り外側板部の)第一冷却通路
63b:(曲り外側板部の)入口
64b:(曲り外側板部の)第二通路群
65b:(曲り外側板部の)第二冷却通路
66b:(曲り外側板部の)最終通路群
67b:(曲り外側板部の)最終冷却通路
68b:(曲り外側板部の)出口
69bd:(曲り外側板部の)下流側ヘッダ
69bu:(曲り外側板部の)上流側ヘッダ
60c:側板部
61c:(側板部の)第一通路群
62c:(側板部の)第一冷却通路
63c:(側板部の)入口
64c:(側板部の)第二通路群
65c:(側板部の)第二冷却通路
66c:(側板部の)最終通路群
67c:(側板部の)最終冷却通路
68c:(側板部の)出口
69cd:(側板部の)下流側ヘッダ
69cu:(側板部の)上流側ヘッダ
Ao:外気
A:圧縮空気
Ai:冷却空気(冷却媒体)
F:燃料
G:燃焼ガス
Ar:ロータ軸線
Da:ロータ軸線方向
Dau:ロータ軸線上流側
Dad:ロータ軸線下流側
Pv:仮想平面
Ac:燃焼器軸線(又は単に軸線)
Dca:燃焼器軸線方向(又は単に軸線方向)
Dcu:上流側
Dcd:下流側
Dcc:周方向
Dci:曲り内側
Dco:曲り外側

Claims (9)

  1.  仮想平面内で曲がっている軸線の周りに前記軸線に沿うよう筒状に形成され、前記軸線が延びる軸線方向の上流側から下流側に燃焼ガスが流れる燃焼ガス流路の周囲を画定するトランジションピースにおいて、
     前記仮想平面と対向し、且つ前記軸線を挟んで互いに対向している一対の側板部と、
     前記軸線を基準にして、前記軸線中で前記上流側の部分に対して前記下流側の部分が曲がっている側である曲り内側に配置され、前記一対の側板部の前記曲り内側の端に接続されている曲り内側板部と、
     前記軸線を基準にして、前記曲り内側と反対側の曲り外側に配置され、前記軸線を挟んで前記曲り内側板部と対向し、前記一対の前記側板部の前記曲り外側の端に接続されている曲り外側板部と、
     を有し、
     前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部のそれぞれは、前記軸線方向に延び且つ前記軸線に対する周方向に並んで冷却媒体が流れる複数の冷却通路で構成される複数の通路群と、前記周方向に延びて前記冷却媒体が流れる少なくとも一のヘッダと、を有し、
     前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の通路群は、前記軸線方向に並び、前記複数の通路群における前記軸線方向の間に前記ヘッダが配置され、
     前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の通路群は、前記複数の通路群の間に配置された前記ヘッダを介して、互に連通し、
     前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の通路群のうち、最も前記下流側に位置する第一通路群を構成する前記複数の冷却通路である複数の第一冷却通路の前記下流側の端には、前記冷却媒体が流入する媒体入口が形成され、
     前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎の前記複数の前記通路群のうち、最も前記上流側に位置する最終通路群を構成する前記複数の冷却通路である複数の最終冷却通路の前記上流側の端には、前記冷却媒体が流出する媒体出口が形成され、
     前記曲り内側板部の前記少なくとも一のヘッダの数は、前記曲り外側板部及び前記一対の側板部の前記少なくとも一のヘッダの数より少ない、
     トランジションピース。
  2.  請求項1に記載のトランジションピースにおいて、
     曲り内側板部、曲り外側板部、及び一対の側板部の各部では、前記ヘッダに連通し且つ前記ヘッダを基準にして前記上流側の前記通路群を構成する複数の冷却通路における、単位周方向長さ当たりの前記複数の冷却通路の総断面積である通路密度が、前記ヘッダに連通し且つ前記ヘッダを基準にして前記下流側の前記通路群を構成する複数の冷却通路における、前記通路密度より小さい、
     トランジションピース。
  3.  請求項2に記載のトランジションピースにおいて、
     曲り内側板部、曲り外側板部、及び一対の側板部の各部では、前記最終通路群における前記通路密度が、前記最終通路群が連通する前記ヘッダの下流側に位置する通路群における前記通路密度の25%から45%である、
     トランジションピース。
  4.  請求項1から3のいずれか一項に記載のトランジションピースにおいて、
     曲り内側板部、曲り外側板部、及び一対の側板部の各部では、前記ヘッダに連通し且つ前記ヘッダを基準にして前記上流側の前記通路群を構成する複数の冷却通路の数が、前記ヘッダに連通し且つ前記ヘッダを基準にして前記下流側の前記通路群を構成する複数の冷却通路の数より少ない、
     トランジションピース。
  5.  請求項1から4のいずれか一項に記載のトランジションピースにおいて、
     前記曲り内側板部が有する前記複数の最終冷却通路における前記上流側の部分の各断面積は、前記曲り内側板部が有する複数の前記最終冷却通路における前記下流側の部分のいずれの断面積よりも小さい、
     トランジションピース。
  6.  請求項1から5のいずれか一項に記載のトランジションピースにおいて、
     前記曲り内側板部の前記少なくとも一のヘッダの数は、1であり、
     前記曲り外側板部及び前記一対の側板部の前記少なくとも一のヘッダの数は、2以上である、
     トランジションピース。
  7.  請求項1から6のいずれか一項に記載のトランジションピースと、
     前記燃焼ガス流路内に燃料と圧縮空気とを噴出するバーナと、
     を備える燃焼器。
  8.  請求項7に記載の燃焼器と、
     空気を圧縮して、前記燃焼器に圧縮空気を送る圧縮機と、
     前記燃焼器で生成された燃焼ガスで駆動するタービンと、
     中間ケーシングと、
     を備え、
     前記圧縮機は、ロータ軸線を中心として回転可能な圧縮機ロータと、前記圧縮機ロータの外周を覆う圧縮機ケーシングと、を有し、
     前記タービンは、前記ロータ軸線を中心として回転可能なタービンロータと、前記タービンロータの外周を覆うタービンケーシングと、を有し、
     前記圧縮機ロータと前記タービンロータとは、互に接続されて、ガスタービンロータを成し、
     前記圧縮機ケーシングと前記タービンケーシングとは、前記中間ケーシングを介して互いに接続され、
     前記燃焼器の前記トランジションピースは、前記曲り外側板部が前記ガスタービンロータと対向し、前記曲り内側板部が前記中間ケーシングと対向するよう、前記中間ケーシング内に配置されている、
     ガスタービン。
  9.  請求項8に記載のガスタービンと、
     前記圧縮機で圧縮された空気の一部を冷却する冷却器と、
     前記冷却器で冷却された空気を昇圧して、昇圧した空気を前記冷却媒体として、前記曲り内側板部、前記曲り外側板部、及び前記一対の側板部毎に有する前記第一冷却通路に送るブースト圧縮機と、
     を備えるガスタービン設備。
PCT/JP2021/026569 2020-07-20 2021-07-15 トランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備 WO2022019203A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/921,811 US20230175439A1 (en) 2020-07-20 2021-07-15 Transition piece, combustor provided therewith, gas turbine, and gas turbine equipment
DE112021003843.5T DE112021003843T5 (de) 2020-07-20 2021-07-15 Übergangsstück, damit versehene Brennkammer, Gasturbine und Gasturbinenausrüstung
KR1020227036745A KR20220155387A (ko) 2020-07-20 2021-07-15 트랜지션 피스, 이것을 구비하는 연소기, 가스 터빈, 및 가스 터빈 설비
CN202180030253.1A CN115461532A (zh) 2020-07-20 2021-07-15 过渡连接件、具备过渡连接件的燃烧器、燃气涡轮机及燃气涡轮机设备
JP2022537960A JP7336599B2 (ja) 2020-07-20 2021-07-15 トランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-123954 2020-07-20
JP2020123954 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022019203A1 true WO2022019203A1 (ja) 2022-01-27

Family

ID=79729509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026569 WO2022019203A1 (ja) 2020-07-20 2021-07-15 トランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備

Country Status (6)

Country Link
US (1) US20230175439A1 (ja)
JP (1) JP7336599B2 (ja)
KR (1) KR20220155387A (ja)
CN (1) CN115461532A (ja)
DE (1) DE112021003843T5 (ja)
WO (1) WO2022019203A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7326399B2 (ja) * 2021-09-30 2023-08-15 三菱重工業株式会社 トランジションピース、燃焼器及びガスタービンエンジン

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085077A (ja) * 1994-06-15 1996-01-12 Hirakawa Guidom:Kk 空冷式管巣燃焼型コンバスタ−を備えたガスタ−ビン装置
JP2012047181A (ja) * 2011-10-31 2012-03-08 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器およびガスタービン
JP2013072316A (ja) * 2011-09-27 2013-04-22 Mitsubishi Heavy Ind Ltd 燃焼器の尾筒、これを備えているガスタービン、及び尾筒の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209448B2 (ja) 2007-01-31 2009-01-14 三菱重工業株式会社 燃焼器尾筒の冷却構造
CN106164444A (zh) * 2014-04-25 2016-11-23 三菱日立电力系统株式会社 燃气涡轮机燃烧器和具备该燃烧器的燃气涡轮机
JP6245757B2 (ja) * 2014-05-22 2017-12-13 三菱日立パワーシステムズ株式会社 冷却装置、これを備えているガスタービン設備、冷却装置の運転方法
KR102185668B1 (ko) 2019-01-30 2020-12-02 스노우 주식회사 이미지 파일의 픽셀 변환을 통한 압축율 향상 방법 및 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085077A (ja) * 1994-06-15 1996-01-12 Hirakawa Guidom:Kk 空冷式管巣燃焼型コンバスタ−を備えたガスタ−ビン装置
JP2013072316A (ja) * 2011-09-27 2013-04-22 Mitsubishi Heavy Ind Ltd 燃焼器の尾筒、これを備えているガスタービン、及び尾筒の製造方法
JP2012047181A (ja) * 2011-10-31 2012-03-08 Mitsubishi Heavy Ind Ltd ガスタービン燃焼器およびガスタービン

Also Published As

Publication number Publication date
JPWO2022019203A1 (ja) 2022-01-27
CN115461532A (zh) 2022-12-09
US20230175439A1 (en) 2023-06-08
DE112021003843T5 (de) 2023-05-04
KR20220155387A (ko) 2022-11-22
JP7336599B2 (ja) 2023-08-31

Similar Documents

Publication Publication Date Title
EP0698724B1 (en) Cooling circuit for turbine stator vane trailing edge
US6094905A (en) Cooling apparatus for gas turbine moving blade and gas turbine equipped with same
EP2258925B1 (en) Cooling arrangements
JP4641916B2 (ja) 隅部が冷却されるタービンノズル
US5394687A (en) Gas turbine vane cooling system
EP1116861B1 (en) A cooling circuit for a gas turbine bucket
US6435814B1 (en) Film cooling air pocket in a closed loop cooled airfoil
US7028486B2 (en) Coolant recovery type gas turbine
US20120159954A1 (en) Transition piece and gas turbine
US6394749B2 (en) Apparatus and methods for relieving thermally induced stresses in inner and outer bands of thermally cooled turbine nozzle stages
WO2022019203A1 (ja) トランジションピース、これを備える燃焼器、ガスタービン、及びガスタービン設備
US9062561B2 (en) Endwall component for a turbine stage of a gas turbine engine
JP2016142163A (ja) トランジションピース、これを備える燃焼器、及び燃焼器を備えるガスタービン
EP0965726B1 (en) Refrigerant recovery type gas turbine
JP2011069365A (ja) キャビティを備えたロータを有する蒸気タービン
US2849988A (en) Rotary devices and casing structures therefor
KR101663306B1 (ko) 가스터빈 디스크
KR102140781B1 (ko) 열교환장치 및 이를 포함하는 가스 터빈
US11098597B2 (en) Internally-cooled turbomachine component
JP2005105817A (ja) 燃焼器およびガスタービン
JPH0726903A (ja) 冷媒回収型ガスタービン

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846923

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227036745

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022537960

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21846923

Country of ref document: EP

Kind code of ref document: A1