WO2022018822A1 - 数値制御装置および機械学習装置 - Google Patents
数値制御装置および機械学習装置 Download PDFInfo
- Publication number
- WO2022018822A1 WO2022018822A1 PCT/JP2020/028250 JP2020028250W WO2022018822A1 WO 2022018822 A1 WO2022018822 A1 WO 2022018822A1 JP 2020028250 W JP2020028250 W JP 2020028250W WO 2022018822 A1 WO2022018822 A1 WO 2022018822A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work
- cutting tool
- cutting
- unit
- wear amount
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/406—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
- G05B19/4065—Monitoring tool breakage, life or condition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/20—Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
- B23Q15/28—Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece with compensation for tool wear
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/22—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
- B23Q17/2233—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work for adjusting the tool relative to the workpiece
- B23Q17/2241—Detection of contact between tool and workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0952—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
- B23Q17/0961—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring power, current or torque of a motor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q17/00—Arrangements for observing, indicating or measuring on machine tools
- B23Q17/09—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
- B23Q17/0952—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
- B23Q17/0985—Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/33—Director till display
- G05B2219/33034—Online learning, training
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37252—Life of tool, service life, decay, wear estimation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37256—Wear, tool wear
Definitions
- the present disclosure relates to a numerical control device and a machine learning device for estimating the amount of wear of a cutting tool used by a machine tool.
- a machine tool that processes a workpiece using a cutting tool is controlled by a numerical control device.
- this machine tool is machined for a long period of time, the cutting edge of the cutting tool is worn, so that the workpiece of the finished product has a large dimensional error.
- the machine tool operator periodically measures the amount of wear of the cutting tool.
- Patent Document 1 estimates the actual amount of wear of the cutting tool from the data showing the correlation between the rate of change of the motor load current when the cutting tool collides with the workpiece and the amount of wear of the cutting tool. is doing.
- the amount of wear of the cutting tool is estimated without considering the mounting abnormality of the work, the shape abnormality of the work, and the like. That is, in the technique of Patent Document 1, the motor load is caused by an increase in the motor load current due to wear of the cutting tool and a change in the cutting area of the work due to an abnormality in the mounting of the work or an abnormality in the shape of the work. It cannot be distinguished from the increase in current, and the amount of wear cannot be estimated accurately.
- the present disclosure has been made in view of the above, and an object of the present disclosure is to obtain a numerical control device capable of accurately estimating the amount of wear of a cutting tool.
- the numerical control device of the present disclosure includes a control unit that controls a machine tool based on a machining program and a load current value of a motor that drives a cutting tool used by the machine tool.
- a state observation unit that observes state variables including the cutting position of the cutting tool on the work, the tool type that is the type of cutting tool, the work type that is the type of work, and the work temperature that is the temperature of the work.
- the numerical control device of the present disclosure is a data set created based on a combination of a data acquisition unit that acquires a wear amount measurement result, which is the result of measuring the wear amount of a cutting tool, and a state variable and a wear amount measurement result.
- a learning unit for generating a learning model for estimating the wear amount of the cutting tool from the state variable is provided.
- the numerical control device has the effect of being able to accurately estimate the amount of wear of the cutting tool.
- FIG. 1 is a diagram showing a configuration of a control system including the numerical control device according to the first embodiment.
- the control system 100A includes a numerical control (NC) device 1A and a machine tool 2A.
- NC numerical control
- the numerical control device 1A is a computer that controls the machine tool 2A.
- the machine tool 2A is a device that processes a workpiece, which is a workpiece, using a cutting tool.
- the machine tool 2A includes a drive unit 31, an HMI (Human Machine Interface) screen 32, a temperature sensor 33, and a wear amount measuring device 34.
- HMI Human Machine Interface
- the drive unit 31 drives the motor.
- the motor driven by the drive unit 31 is a servo motor and a spindle motor.
- the drive unit 31 sends the load current value of the servomotor as the motor load current value 41 to the numerical control device 1A.
- the drive unit 31 sends the load current value of the spindle motor to the numerical control device 1A as the motor load current value 41.
- the HMI screen 32 is a screen that displays information input by the operator.
- the HMI screen 32 is connected to an input device (not shown) that receives information input by the operator, and displays information sent from the input device. Examples of input devices are mice, keyboards, and the like.
- the information input by the operator to the input device is the tool type 42 and the work type 43.
- the tool type 42 and the work type 43 displayed on the HMI screen 32 are sent to the numerical control device 1A.
- the tool type 42 is information indicating the type of the cutting tool
- the work type 43 is information indicating the type of the work.
- the work type 43 includes information on the material of the work, information on the shape of the work, information on the size of the work, and the like.
- the tool type 42 and the work type 43 may be set by any method. In the following description, a case where the tool type 42 and the work type 43 input to the input device are sent to the HMI screen 32, and the tool type 42 and the work type 43 are sent from the HMI screen 32 to the numerical control device 1A will be described. ..
- the temperature sensor 33 is an example of a temperature detection device capable of measuring the temperature of the work.
- the temperature sensor 33 sends the measured temperature as the work temperature 44 to the numerical control device 1A.
- the wear amount measuring device 34 is a device that measures the wear amount of the cutting tool.
- the wear amount measuring device 34 is a caliper or the like that manually measures the wear amount of the cutting tool
- the wear amount measurement result 45 which is the measurement result of the wear amount
- the wear amount measuring device 34 is input to the numerical control device 1A by the operator.
- the wear amount measuring device 34 is a device that automatically measures the wear amount of the cutting tool
- the wear amount measuring device 34 sends the wear amount measurement result 45 to the numerical control device 1A.
- the wear amount measuring device 34 When the wear amount measuring device 34 is a manual measuring device, the wear amount measuring device 34 is arranged outside the machine tool 2A, and when the wear amount measuring device 34 is an automatic measuring device, the wear amount measuring device 34 , Arranged inside the machine tool 2A. In the following description, a case where the wear amount measuring device 34 is an automatic measuring device and the wear amount measurement result 45 is sent from the wear amount measuring device 34 to the numerical control device 1A will be described.
- the numerical control device 1A includes a machine learning device 10, a control unit 21, and an estimated wear amount reflecting unit 22.
- the control unit 21 controls the machine tool 2A by using the machining program 20. Further, when the machining program 20 is executed, the control unit 21 calculates a cutting coordinate value 40 indicating a cutting position (tool coordinates) on the work by the cutting tool based on the machining program 20. The control unit 21 sends the cutting coordinate value 40 to the machine learning device 10.
- the machine learning device 10 is a computer that learns the amount of wear of the cutting tool based on the information acquired when the workpiece is machined by the cutting tool.
- the machine learning device 10 has a function of learning the amount of wear of the cutting tool and a function of estimating the amount of wear of the cutting tool using the learning result.
- the machine learning device 10 outputs the estimated wear amount 75, which is the estimation result, to the estimated wear amount reflecting unit 22.
- the machine learning device 10 includes a state observation unit 11A, a data acquisition unit 12, and a learning unit 13.
- the state observation unit 11A acquires the motor load current value 41, the tool type 42, the work type 43, and the work temperature 44 from the machine tool 2A.
- the state observation unit 11A acquires the motor load current value 41 from the drive unit 31, and acquires the tool type 42 and the work type 43 from the HMI screen 32. Further, the state observation unit 11A acquires the work temperature 44 from the temperature sensor 33. Further, the state observation unit 11A acquires the cutting coordinate value 40 from the control unit 21. The state observation unit 11A sends the acquired cutting coordinate value 40, motor load current value 41, tool type 42, work type 43, and work temperature 44 to the learning unit 13.
- the data acquisition unit 12 acquires the wear amount measurement result 45 from the wear amount measuring device 34.
- the data acquisition unit 12 sends the acquired wear amount measurement result 45 to the learning unit 13.
- the learning unit 13 measures the amount of wear output from the state observation unit 11A, the cutting coordinate value 40, the motor load current value 41, the tool type 42, the work type 43, the work temperature 44, and the data acquisition unit 12.
- the estimated wear amount 75 is learned based on the data set created based on the combination of the results 45.
- the data set is data in which state variables and determination data are associated with each other.
- the cutting coordinate value 40, the motor load current value 41, the tool type 42, the work type 43, and the work temperature 44 are state variables
- the wear amount measurement result 45 is the determination data.
- the learning unit 13 learns the estimated wear amount 75 by updating a learning model such as a neural network.
- the learning unit 13 adjusts the learning model so that the wear amount measurement result 45 is output from the learning model when the state variable is input to the learning model.
- the learning unit 13 stores this learning model.
- the learning unit 13 When the learning unit 13 receives a state variable from the state observation unit 11A in the utilization stage (estimation stage), the learning unit 13 inputs this state variable into the learning model. In this case, the learning model outputs the estimated wear amount 75 corresponding to the state variable. The learning unit 13 sends the estimated wear amount 75 to the estimated wear amount reflecting unit 22.
- the estimated wear amount reflecting unit 22 calculates the correction amount 76 based on the estimated wear amount 75.
- the correction amount 76 is a position correction amount of the cutting tool for correcting the machining position of the work by the cutting tool.
- the correction amount 76 is used to eliminate the machining error of the work due to the wear of the cutting tool.
- the estimated wear amount reflecting unit 22 which is a reflecting unit, sends the correction amount 76 to the control unit 21 to reflect the correction amount 76 at the position of the cutting tool.
- the control unit 21 controls the machine tool 2A while correcting the position of the cutting tool using the correction amount 76.
- FIG. 2 is a flowchart showing a processing procedure of machine learning by the machine learning device according to the first embodiment.
- the tool type 42 and the work type 43 used for machining the work are set in advance using the HMI screen 32.
- the state observation unit 11A acquires the tool type 42 and the work type 43 from the HMI screen 32 (step S10).
- the control unit 21 calculates the cutting coordinate value 40 based on the machining program 20.
- the state observation unit 11A acquires the cutting coordinate value 40 from the control unit 21 (step S20). Further, the state observing unit 11A acquires the motor load current value 41 from the drive unit 31 (step S30) and the work temperature 44 from the temperature sensor 33 (step S40).
- the state observation unit 11A transmits the acquired data to the learning unit 13 (step S50).
- the data transmitted by the state observation unit 11A to the learning unit 13 is a cutting coordinate value 40, a motor load current value 41, a tool type 42, a work type 43, and a work temperature 44.
- the data acquisition unit 12 acquires the wear amount measurement result 45 from the wear amount measuring device 34 (step S60).
- the data acquisition unit 12 transmits the acquired data to the learning unit 13 (step S70). That is, the data acquisition unit 12 transmits the wear amount measurement result 45 to the learning unit 13.
- the processes of steps S10 to S70 may be executed in any order.
- the learning unit 13 learns the estimated wear amount 75 based on the data acquired by the state observation unit 11A and the data acquisition unit 12 (step S80). That is, the learning unit 13 generates a learning model based on a data set in which state variables and determination data are associated with each other. The learning unit 13 stores the learning model.
- FIG. 3 is a flowchart showing a procedure for estimating the estimated wear amount by the machine learning device according to the first embodiment. Of the processes shown in FIG. 3, the same processes as those shown in FIG. 2 will be omitted.
- steps S10 to S50 are the same as during machine learning.
- step S50 after the state observation unit 11A transmits the acquired data to the learning unit 13, the learning unit 13 estimates the estimated wear amount 75 based on the learning model and the data acquired by the state observation unit 11A.
- Step S90 the learning unit 13 estimates the estimated wear amount 75 based on the state variables and the learning model.
- the learning unit 13 determines the estimated wear amount 75 from the state variables acquired from the state observation unit 11A based on the learning result (learning model) generated by using the data set in which the state variables and the determination data are associated with each other. presume.
- the learning unit 13 may update the learning model when estimating the estimated wear amount 75. In other words, the learning unit 13 may learn the estimated wear amount 75 while estimating the estimated wear amount 75.
- the learning unit 13 sends the estimated estimated wear amount 75 to the estimated wear amount reflecting unit 22.
- the estimated wear amount reflecting unit 22 calculates a correction amount 76 for correcting the position of the cutting tool based on the acquired estimated wear amount 75.
- the estimated wear amount reflecting unit 22 sends the calculated correction amount 76 to the control unit 21.
- the control unit 21 controls the machine tool 2A by using the correction amount 76 and the machining program 20.
- the machine learning device 10 uses the cutting coordinate value 40 to determine whether the change in the motor load current value 41 is due to the wear of the cutting tool or the change in the cutting area.
- the machine learning device 10 determines that the motor load current value 41 has changed due to wear of the cutting tool when the motor load current value 41 changes at the timing when the cutting coordinate value 40 becomes a preset normal coordinate. do. In this case, the machine learning device 10 adjusts the learning model so that the estimated wear amount 75 approaches the wear amount measurement result 45. That is, the machine learning device 10 adjusts the learning model so that the closer the cutting coordinate value 40 is to the normal coordinate, the closer the estimated wear amount 75 is to the wear amount measurement result 45.
- the machine learning device 10 when the motor load current value 41 changes at a timing when the cutting coordinate value 40 is not a normal coordinate set in advance, the cutting area changes due to a work mounting error or the like. It is determined that the motor load current value 41 has changed. In this case, the machine learning device 10 adjusts the learning model so that the estimated wear amount 75 does not approach the wear amount measurement result 45. That is, the machine learning device 10 adjusts the learning model so that the farther the cutting coordinate value 40 is from the normal coordinates, the farther the estimated wear amount 75 is from the wear amount measurement result 45.
- the machine learning device 10 adjusts the learning model based on the tool type 42 and the work type 43.
- the machine learning device 10 adjusts the learning model based on the work temperature 44.
- the machine learning device 10 is used to learn the cutting coordinate value 40, the motor load current value 41, the tool type 42, the work type 43, and the estimated wear amount 75 corresponding to the work temperature 44.
- the machine learning device 10 may be, for example, a device connected to the numerical control device 1A via a network and separate from the numerical control device 1A. Further, the machine learning device 10 may be built in the numerical control device 1A. Further, the machine learning device 10 may exist on the cloud server.
- the learning unit 13 learns the estimated wear amount 75 by so-called supervised learning according to, for example, a neural network model.
- supervised learning is a model in which a large number of data sets of a certain input and a result (label) are given to a learning device, the features in those data sets are learned, and the result is estimated from the input.
- a neural network is composed of an input layer consisting of a plurality of neurons, an intermediate layer (hidden layer) consisting of a plurality of neurons, and an output layer consisting of a plurality of neurons.
- the intermediate layer may be one layer or two or more layers.
- FIG. 4 is a diagram showing a configuration of a neural network used by the machine learning device according to the first embodiment.
- a three-layer neural network as shown in FIG. 4, when a plurality of inputs are input to the input layers X1 to X3, the values are multiplied by the weights w11 to w16 and input to the intermediate layers Y1 and Y2. , The result is further multiplied by the weights w21 to w26 and output from the output layers Z1 to Z3. This output result varies depending on the values of the weights w11 to w16 and the weights w21 to w26.
- the neural network of the first embodiment is according to a data set created based on a combination of a cutting coordinate value 40, a motor load current value 41, a tool type 42, a work type 43, a work temperature 44, and a wear amount measurement result 45.
- the estimated wear amount 75 is learned by so-called supervised learning.
- the neural network inputs the cutting coordinate value 40, the motor load current value 41, the tool type 42, the work type 43, and the work temperature 44, and the result output from the output layers Z1 to Z3 is the wear amount measurement result 45.
- the estimated wear amount 75 is learned by adjusting the weights w11 to w16 and w21 to w26 so as to approach.
- the learning unit 13 stores a neural network in which the weights w11 to w16 and w21 to w26 are adjusted.
- the neural network can also learn the estimated wear amount 75 by so-called unsupervised learning.
- Unsupervised learning is to learn how the input data is distributed by giving a large amount of input data to the machine learning device, and input data without giving the corresponding teacher data (output data). It is a method of learning a device that performs compression, classification, shaping, etc.
- unsupervised learning the features in those datasets can be clustered among similar people. Unsupervised learning can use this result to predict the output by setting some criteria and allocating the output to optimize it.
- semi-supervised learning in which only a part of the input and output data sets exist, and the others are input-only data. This is the case.
- the learning unit 13 may learn the estimated wear amount 75 according to the data sets created for the plurality of numerical control devices 1A.
- the learning unit 13 may acquire a data set from a plurality of machine tools 2A used at the same site, or data collected from a plurality of machine tools 2A operating independently at different sites. The set may be used to learn the estimated wear amount 75.
- a machine learning device that has learned the estimated wear amount 75 for a certain numerical control device is attached to another numerical control device, and the estimated wear amount 75 is relearned and updated for the other numerical control device. You may do it.
- deep learning which learns the extraction of the feature amount itself
- the learning unit 13 can also be used, and the learning unit 13 can use other known methods such as inheritance.
- Machine learning may be performed according to target programming, functional logic programming, support vector machines, and the like.
- FIG. 5 is a diagram showing an example of a hardware configuration that realizes the machine learning device according to the first embodiment.
- the machine learning device 10 can be realized by an input device 103, a processor 101, a memory 102, a display device 105, and an output device 104.
- processor 101 is a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, DSP (Digital Signal Processor)) or system LSI (Large Scale Integration).
- memory 102 are RAM (Random Access Memory) and ROM (Read Only Memory).
- the machine learning device 10 is realized by the processor 101 reading and executing a learning program that can be executed by a computer for executing the operation of the machine learning device 10 stored in the memory 102. It can be said that the learning program, which is a program for executing the operation of the machine learning device 10, causes the computer to execute the procedure or method of the machine learning device 10.
- the learning program executed by the machine learning device 10 has a modular configuration including a state observation unit 11A, a data acquisition unit 12, and a learning unit 13, and these are loaded on the main storage device, and these are the main units. Generated on storage.
- the input device 103 receives the state variables motor load current value 41, tool type 42, work type 43, and work temperature 44 from the machine tool 2A and inputs them to the processor 101. Further, the input device 103 receives the wear amount measurement result 45, which is the determination data, from the machine tool 2A and inputs it to the processor 101. Further, the input device 103 receives the cutting coordinate value 40, which is a state variable, from the control unit 21 and inputs it to the processor 101.
- the memory 102 is used as a temporary memory when the processor 101 executes various processes.
- the memory 102 stores the cutting coordinate value 40, the motor load current value 41, the tool type 42, the work type 43, the work temperature 44, the wear amount measurement result 45, the estimated wear amount 75, and the like.
- the output device 104 outputs the estimated wear amount 75 and the like to the estimated wear amount reflecting unit 22.
- the display device 105 displays the cutting coordinate value 40, the motor load current value 41, the tool type 42, the work type 43, the work temperature 44, the wear amount measurement result 45, the estimated wear amount 75, and the like.
- An example of the display device 105 is a liquid crystal monitor.
- the learning program is a file in an installable format or an executable format, and may be stored in a computer-readable storage medium and provided as a computer program product. Further, the learning program may be provided to the machine learning device 10 via a network such as the Internet. It should be noted that some of the functions of the machine learning device 10 may be realized by dedicated hardware such as a dedicated circuit, and some may be realized by software or firmware. Further, the numerical control device 1A can also be realized by the same hardware configuration as the machine learning device 10.
- the machine tool 2A performs machining with the work fixed in the machine tool 2A, but in addition to the mounting error when mounting the work, the size of the work itself, the variation in the shape of the work, the deformation of the work due to the temperature change of the work, etc. It may occur. Due to these factors, the cutting area of the work changes even in the same machining, so that the amount of wear of the cutting tool also changes. Further, as the cutting tool wears, the resistance between the work and the cutting tool increases, so that the motor load current value 41 required for machining increases. Further, if the mounting error of the work or the variation in the shape of the work is large, there is a concern that the work accuracy of the finished product may be affected.
- the numerical control device 1A is based on the motor load current value 41, the work temperature 44, and the cutting coordinate value 40 in order to consider the influence of the work mounting error, the work shape variation, and the like. Since the estimated wear amount 75 is estimated, the estimated wear amount 75 of the cutting tool can be estimated with high accuracy. Therefore, the numerical control device 1A can calculate the highly accurate correction amount 76 based on the estimated wear amount 75 estimated with high accuracy.
- the numerical control device 1A can be continuously operated for a long period of time without the manual operation of the operator, which leads to an improvement in productivity.
- the numerical control device 1A includes a state observation unit 11A, a data acquisition unit 12, and a learning unit 13. Then, the state observation unit 11 includes a motor load current value 41, a cutting coordinate value 40 which is a cutting position on the work by the cutting tool, a tool type 42, a work type 43, and a work temperature 44. Is observing. Further, the data acquisition unit 12 has acquired the wear amount measurement result 45, which is the result of measuring the wear amount of the cutting tool. Further, the learning unit 13 generates a learning model for estimating the wear amount of the cutting tool from the state variable according to the data set created based on the combination of the state variable and the wear amount measurement result 45.
- the numerical control device 1A estimates the amount of wear in consideration of the work mounting abnormality, the work shape abnormality, and the like by using the cutting coordinate value 40, the motor load current value 41, and the work temperature 44. Therefore, the amount of wear of the cutting tool can be estimated accurately.
- the numerical control device detects an abnormality in the work such as an abnormality in the mounting position of the work and an abnormality in the shape of the work.
- FIG. 6 is a diagram showing a configuration of a control system including the numerical control device according to the second embodiment.
- the components that achieve the same functions as the numerical control device 1A of the first embodiment shown in FIG. 1 are designated by the same reference numerals, and duplicate description will be omitted.
- the control system 100B has a numerical control device 1B and a machine tool 2B.
- the numerical control device 1B is a computer that controls the machine tool 2B.
- the numerical control device 1B has a function of detecting an abnormality in the mounting position of the work and a function of calculating the amount of mounting error of the work.
- the machine tool 2B is a device for machining a workpiece with a cutting tool, similar to the machine tool 2A.
- the machine tool 2A includes a drive unit 31 and an HMI screen 32.
- the information input by the operator to the input device connected to the HMI screen 32 is the tool type 42, the work type 43, and the error threshold 46.
- the error threshold value 46 is a threshold value for determining whether or not the amount of mounting error of the work is within the allowable range. That is, the error threshold value 46 is a threshold value for determining whether or not to issue a warning with respect to the amount of mounting error of the work.
- the amount of error in mounting the work is calculated based on the cutting start coordinates, which is the start position of cutting on the work by the cutting tool. The difference between the normal cutting start coordinates and the actual cutting start coordinates is the amount of work mounting error.
- the numerical control device 1B includes a control unit 21, a state observation unit 11B, an abnormality determination device 50, and an error amount calculation device 60.
- the abnormality determination device 50, the error amount calculation device 60, and the numerical control device 1B can be realized by the same hardware configuration as the machine learning device 10.
- the state observation unit 11B of the numerical control device 1B acquires the motor load current value 41, the tool type 42, the work type 43, and the error threshold value 46 from the machine tool 2B.
- the state observation unit 11B acquires the motor load current value 41 from the drive unit 31, and acquires the tool type 42, the work type 43, and the error threshold value 46 from the HMI screen 32. Further, the state observation unit 11B acquires the cutting coordinate value 40 from the control unit 21. The state observation unit 11B sends the acquired cutting coordinate value 40, motor load current value 41, tool type 42, work type 43, and error threshold value 46 to the abnormality determination device 50.
- the abnormality determination device 50 is a device that determines whether or not the work mounting error amount, the work shape, or the like exceeds a preset error threshold value 46.
- the error amount calculation device 60 is a device for calculating the mounting error amount of the work.
- the abnormality determination device 50 has a mounting abnormality determination unit 52 and a warning display unit 51. Further, the error amount calculation device 60 has an error amount calculation unit 62 and a calculation result display unit 61.
- the mounting abnormality determination unit 52 receives the motor load current value 41, the cutting coordinate value 40, the tool type 42, the work type 43, and the error threshold value 46 output from the state observation unit 11B.
- the mounting abnormality determination unit 52 detects the cutting start coordinate, which is the cutting start position, based on the motor load current value 41 and the cutting coordinate value 40.
- FIG. 7 is a diagram for explaining the cutting start coordinates for the work having no mounting error detected by the numerical control device according to the second embodiment.
- FIG. 8 is a diagram for explaining the cutting start coordinates for the work having a mounting error detected by the numerical control device according to the second embodiment.
- the Z-axis direction is the vertical direction and the XY plane parallel to the upper surface of the processing table 85 on which the work 80 is mounted is a horizontal plane. That is, the two axes in the plane parallel to the upper surface of the processing table 85 and orthogonal to each other are defined as the X axis and the Y axis. Further, the axis orthogonal to the X-axis and the Y-axis is defined as the Z-axis.
- FIG. 7 shows a case where the work 80 is mounted straight with respect to the processing table 85 without being tilted.
- FIG. 8 shows a case where the work 80 is attached in an inclined state with respect to the processing table 85.
- the cutting tool 71 processes the work 80 from the Z-axis direction. In this case, the cutting tool 71 moves from the upper side of the work 80 and comes into contact with the work 80.
- the cutting tool 71 starts machining the work 80 after coming into contact with the work 80 at the desired cutting start coordinates (X1, Z1).
- the motor load current value 41 suddenly rises at the cutting start coordinates (X1, Z1).
- the cutting tool 71 processes the machining area 81 extending in the Z-axis direction of the work 80 by executing the machining on the work 80 in the Z-axis direction.
- the cutting tool 71 comes into contact with the work 80 at cutting start coordinates (X2, Z2) different from the desired cutting start coordinates (X1, Z1), and then the cutting tool 71 is contacted with the work 80. Processing of the work 80 is started.
- the motor load current value 41 suddenly rises at the cutting start coordinates (X2, Z2).
- the cutting tool 71 processes the machining area 82 at the lower part of the work 80 by executing the machining on the work 80 in the Z-axis direction.
- the processing region 82 is a region different from the processing region 81.
- the cutting start coordinates change as compared with the case where there is no mounting error.
- the cutting start coordinates change as compared with the case where the shape of the work 80 does not vary.
- the cutting start coordinates are changed as compared with the case where the work 80 is not expanded or contracted.
- the abnormality of the work 80 is an abnormality of mounting the work 80 on the processing table 85, an abnormality of the shape of the work 80, or the like.
- the normal cutting start coordinates are different for each combination of the tool type 42 and the work type 43. Therefore, the mounting abnormality determination unit 52 determines whether or not there is an abnormality in the work 80 by using the cutting start coordinates at the normal time corresponding to the combination of the tool type 42 and the work type 43.
- the mounting abnormality determination unit 52 When the mounting abnormality determination unit 52 detects an abnormality, it sends abnormality information indicating the abnormality determination to the warning display unit 51. Further, the mounting abnormality determination unit 52 sends the start position error, the tool type 42, and the work type 43, which are the coordinate differences between the changed cutting start coordinates and the normal cutting start coordinates, to the error amount calculation unit 62.
- the warning display unit 51 Upon receiving the abnormality information from the mounting abnormality determination unit 52, the warning display unit 51 displays a warning indicating that the work 80 is abnormal, and informs the operator that there is a concern about the machining accuracy of the finished work 80. Warn and call attention.
- the warning display unit 51 is not limited to displaying the warning, and may output the warning by any method. For example, the warning display unit 51 may output a warning sound.
- the error amount calculation unit 62 Upon receiving the start position error from the mounting abnormality determination unit 52, the error amount calculation unit 62 assumes that the shape of the work 80 is normal, and based on the start position error, the tool type 42, and the work type 43, Calculate the amount of work mounting error.
- the error amount calculation unit 62 sends the work mounting error amount, which is the calculation result, to the calculation result display unit 61.
- the calculation result display unit 61 displays the received work mounting error amount and warns the operator that there is a concern about the machining accuracy of the finished work 80. And call attention. In this way, the numerical control device 1B warns the operator when there is an abnormality such as a work mounting error, so that it is possible to prevent the defective work 80 from flowing out.
- the numerical control devices 1A and 1B may be combined. That is, the numerical control device 1A may be provided with the abnormality determination device 50, or the numerical control device 1A may be provided with the abnormality determination device 50 and the error amount calculation device 60. Further, the numerical control device 1B may include the machine learning device 10, or the numerical control device 1B may include the machine learning device 10 and the estimated wear amount reflecting unit 22.
- the numerical control device 1B uses the cutting coordinate value 40, the motor load current value 41, and the error threshold value 46 to control the work such as an abnormality in the mounting position of the work and an abnormality in the shape of the work. Anomalies have been detected. As a result, the numerical control device 1B can output a warning or the like when an abnormality occurs in the work.
- the configuration shown in the above embodiments is an example, and can be combined with another known technique, can be combined with each other, and does not deviate from the gist. It is also possible to omit or change a part of the configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Abstract
数値制御装置(1A)が、工作機械(2A)を制御する制御部(21)と、工作機械(2A)が用いる切削工具を駆動するモータのモータ負荷電流値(41)と、切削工具によるワークへの切削位置である切削座標値(40)と、切削工具の種別であるツール種別(42)と、ワークの種別であるワーク種別(43)と、ワークの温度であるワーク温度(44)と、を含む状態変数を観測する状態観測部(11A)と、切削工具の摩耗量を計測した結果である摩耗量計測結果(45)を取得するデータ取得部(12)と、状態変数および摩耗量計測結果(45)の組み合わせに基づいて作成されるデータセットに従って、切削工具の摩耗量を学習する学習部(13)と、を備える。
Description
本開示は、工作機械が用いる切削工具の摩耗量を推定する数値制御装置および機械学習装置に関する。
切削工具を用いてワークを加工する工作機械は、数値制御装置によって制御される。この工作機械が長期間に渡って加工を行うと、切削工具の刃先が摩耗するので、完成品のワークは寸法誤差が大きくなる。この寸法誤差を抑えるため、工作機械のオペレータが、切削工具の摩耗量を定期的に計測している。
このような摩耗量のオペレータによる計測の手間を省くために、様々な取組が試みられている。特許文献1に記載の数値制御装置は、切削工具がワークに衝突した際のモータ負荷電流の変化率と切削工具の摩耗量との相関性を示すデータから、実際の切削工具の摩耗量を推定している。
しかしながら、上記特許文献1の技術では、ワークの取付異常およびワークの形状異常等を考慮せずに、切削工具の摩耗量を推定している。すなわち、上記特許文献1の技術では、切削工具の摩耗に伴うモータ負荷電流の増加と、ワークの取付異常またはワークの形状異常等に伴ってワークの切削領域が変化することを原因とするモータ負荷電流の増加とを区別できず、正確な摩耗量を推定することができない。
本開示は、上記に鑑みてなされたものであって、切削工具の摩耗量を正確に推定することができる数値制御装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本開示の数値制御装置は、加工プログラムに基づいて工作機械を制御する制御部と、工作機械が用いる切削工具を駆動するモータの負荷電流値と、切削工具によるワークへの切削位置と、切削工具の種別であるツール種別と、ワークの種別であるワーク種別と、ワークの温度であるワーク温度と、を含む状態変数を観測する状態観測部とを備える。また、本開示の数値制御装置は、切削工具の摩耗量を計測した結果である摩耗量計測結果を取得するデータ取得部と、状態変数および摩耗量計測結果の組み合わせに基づいて作成されるデータセットに従って、状態変数から切削工具の摩耗量を推定するための学習モデルを生成する学習部とを備える。
本開示にかかる数値制御装置は、切削工具の摩耗量を正確に推定することができるという効果を奏する。
以下に、本開示の実施の形態にかかる数値制御装置および機械学習装置を図面に基づいて詳細に説明する。
実施の形態1.
図1は、実施の形態1にかかる数値制御装置を備えた制御システムの構成を示す図である。制御システム100Aは、数値制御(NC:Numerical Control)装置1Aと、工作機械2Aとを有している。
図1は、実施の形態1にかかる数値制御装置を備えた制御システムの構成を示す図である。制御システム100Aは、数値制御(NC:Numerical Control)装置1Aと、工作機械2Aとを有している。
数値制御装置1Aは、工作機械2Aを制御するコンピュータである。工作機械2Aは、切削工具を用いて、被加工物であるワークを加工する装置である。工作機械2Aは、ドライブユニット31と、HMI(Human Machine Interface)画面32と、温度センサ33と、摩耗量計測装置34とを備えている。
ドライブユニット31は、モータを駆動する。ドライブユニット31が駆動するモータは、サーボモータおよび主軸モータである。サーボモータが切削工具を駆動する場合、ドライブユニット31は、サーボモータの負荷電流値をモータ負荷電流値41として数値制御装置1Aに送る。主軸モータが切削工具を駆動する場合、ドライブユニット31は、主軸モータの負荷電流値をモータ負荷電流値41として数値制御装置1Aに送る。
HMI画面32は、オペレータによって入力される情報を表示する画面である。HMI画面32は、オペレータによって入力される情報を受け付ける入力装置(図示せず)に接続されており、入力装置から送られてくる情報を表示する。入力装置の例は、マウス、キーボードなどである。
入力装置に対し、オペレータによって入力される情報は、ツール種別42およびワーク種別43である。HMI画面32に表示されるツール種別42およびワーク種別43は、数値制御装置1Aに送られる。ツール種別42は、切削工具の種類を示す情報であり、ワーク種別43は、ワークの種類を示す情報である。ワーク種別43には、ワークの素材の情報、ワークの形状の情報、ワークの大きさの情報などが含まれている。なお、ツール種別42およびワーク種別43は、何れの方法によって設定されてもよい。以下の説明では、入力装置に入力されたツール種別42およびワーク種別43が、HMI画面32に送られ、HMI画面32から数値制御装置1Aにツール種別42およびワーク種別43が送られる場合について説明する。
温度センサ33は、ワークの温度を測定することができる温度検出装置の一例である。温度センサ33は、測定した温度をワーク温度44として数値制御装置1Aに送る。
摩耗量計測装置34は、切削工具の摩耗量を計測する装置である。摩耗量計測装置34が手動で切削工具の摩耗量を計測するノギスなどである場合、摩耗量の計測結果である摩耗量計測結果45は、オペレータによって数値制御装置1Aに入力される。摩耗量計測装置34が、切削工具の摩耗量を自動で計測する装置である場合、摩耗量計測装置34が、摩耗量計測結果45を数値制御装置1Aに送る。
摩耗量計測装置34が手動計測の装置である場合、摩耗量計測装置34は、工作機械2Aの外部に配置され、摩耗量計測装置34が自動計測の装置である場合、摩耗量計測装置34は、工作機械2Aの内部に配置される。以下の説明では、摩耗量計測装置34が自動計測の装置であり、摩耗量計測装置34から数値制御装置1Aに摩耗量計測結果45が送られる場合について説明する。
数値制御装置1Aは、機械学習装置10と、制御部21と、推定摩耗量反映部22とを備えている。制御部21は、加工プログラム20を用いて工作機械2Aを制御する。また、制御部21は、加工プログラム20を実行する際に、加工プログラム20に基づいて、切削工具によるワークへの切削位置(工具座標)を示す切削座標値40を算出する。制御部21は、切削座標値40を機械学習装置10に送る。
機械学習装置10は、切削工具によってワークを加工する際に取得した情報に基づいて、切削工具の摩耗量を学習するコンピュータである。機械学習装置10は、切削工具の摩耗量を学習する機能と、学習結果を用いて切削工具の摩耗量を推定する機能とを有している。機械学習装置10は、推定結果である推定摩耗量75を、推定摩耗量反映部22に出力する。
機械学習装置10は、状態観測部11Aと、データ取得部12と、学習部13とを具備している。状態観測部11Aは、工作機械2Aから、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44を取得する。
具体的には、状態観測部11Aは、ドライブユニット31からモータ負荷電流値41を取得し、HMI画面32からツール種別42およびワーク種別43を取得する。また、状態観測部11Aは、温度センサ33からワーク温度44を取得する。また、状態観測部11Aは、制御部21から切削座標値40を取得する。状態観測部11Aは、取得した、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44を学習部13に送る。
データ取得部12は、摩耗量計測装置34から摩耗量計測結果45を取得する。データ取得部12は、取得した摩耗量計測結果45を学習部13に送る。
学習部13は、状態観測部11Aから出力される、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、ワーク温度44、および、データ取得部12から出力される摩耗量計測結果45の組合せに基づいて作成されるデータセットに基づいて、推定摩耗量75を学習する。ここで、データセットは、状態変数および判定データを互いに関連付けたデータである。実施の形態1では、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44が状態変数であり、摩耗量計測結果45が判定データである。
学習部13は、学習段階では、ニューラルネットワークなどの学習モデルを更新することによって、推定摩耗量75を学習する。学習部13は、状態変数を学習モデルに入力した場合に学習モデルから摩耗量計測結果45が出力されるよう、学習モデルを調整する。学習部13は、この学習モデルを記憶しておく。
学習部13は、活用段階(推定段階)では、状態観測部11Aから状態変数を受け付けると、この状態変数を学習モデルに入力する。この場合、学習モデルからは、状態変数に対応する推定摩耗量75が出力される。学習部13は、推定摩耗量75を推定摩耗量反映部22に送る。
推定摩耗量反映部22は、推定摩耗量75に基づいて、補正量76を算出する。補正量76は、切削工具によるワークの加工位置を補正するための、切削工具の位置補正量である。補正量76は、切削工具の摩耗に起因するワークの加工誤差を解消するために用いられる。
反映部である推定摩耗量反映部22は、補正量76を制御部21に送ることで、補正量76を切削工具の位置に反映させる。制御部21は、補正量76を用いて切削工具の位置を補正しながら、工作機械2Aの制御を行う。
つぎに、機械学習装置10による機械学習の処理手順および機械学習装置10による推定摩耗量75の推定処理手順について説明する。図2は、実施の形態1にかかる機械学習装置による機械学習の処理手順を示すフローチャートである。
ワークの加工に使用されるツール種別42およびワーク種別43は、予めHMI画面32を用いて設定される。状態観測部11Aは、HMI画面32からツール種別42およびワーク種別43を取得する(ステップS10)。
制御部21は、加工プログラム20の実行を開始すると、加工プログラム20に基づいて、切削座標値40を算出する。状態観測部11Aは、制御部21から切削座標値40を取得する(ステップS20)。また、状態観測部11Aは、モータ負荷電流値41をドライブユニット31から取得し(ステップS30)、ワーク温度44を温度センサ33から取得する(ステップS40)。状態観測部11Aは、取得したデータを学習部13に送信する(ステップS50)。状態観測部11Aが学習部13に送信するデータは、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44である。
機械学習時には、データ取得部12が、摩耗量計測装置34から摩耗量計測結果45を取得する(ステップS60)。データ取得部12は、取得したデータを学習部13に送信する(ステップS70)。すなわち、データ取得部12は、摩耗量計測結果45を学習部13に送信する。なお、ステップS10からS70の処理は、何れの順番で実行されてもよい。
学習部13は、状態観測部11Aおよびデータ取得部12によって取得されたデータに基づいて、推定摩耗量75を学習する(ステップS80)。すなわち、学習部13は、状態変数および判定データを互いに関連付けたデータセットに基づいて、学習モデルを生成する。学習部13は、学習モデルを記憶しておく。
図3は、実施の形態1にかかる機械学習装置による推定摩耗量の推定処理手順を示すフローチャートである。図3に示す処理のうち、図2に示した処理と同様の処理については、その説明を省略する。
推定摩耗量75を推定する際の機械学習装置10による処理のうち、ステップS10からS50までは、機械学習時と同じである。ステップS50において、状態観測部11Aが、取得したデータを学習部13に送信した後、学習部13は、学習モデル、および状態観測部11Aによって取得されたデータに基づいて、推定摩耗量75を推定する(ステップS90)。すなわち、学習部13は、状態変数および学習モデルに基づいて、推定摩耗量75を推定する。このように、学習部13は、状態変数および判定データを互いに関連付けたデータセットを用いて生成した学習結果(学習モデル)に基づき、状態観測部11Aから取得した状態変数から、推定摩耗量75を推定する。
なお、学習部13は、推定摩耗量75を推定する際にも、学習モデルを更新してもよい。換言すると、学習部13は、推定摩耗量75を推定しながら、推定摩耗量75の学習を行ってもよい。
学習部13は、推定した推定摩耗量75を推定摩耗量反映部22に送る。推定摩耗量反映部22は、取得した推定摩耗量75に基づいて、切削工具の位置を補正するための補正量76を算出する。推定摩耗量反映部22は、算出した補正量76を制御部21に送る。制御部21は、補正量76および加工プログラム20を用いて、工作機械2Aの制御を行う。
ここで、状態観測部11Aが取得する各データとデータ取得部12が取得する摩耗量計測結果45との関係について説明する。切削工具が摩耗し、切れ味が落ちるのに伴い、ワークと切削工具との間の抵抗が大きくなるので、モータ負荷電流値41が増加する。また、ワークの取付誤差、またはワーク形状のばらつき、ワークの膨張等によって、切削工具による切削領域が変化した場合にも、モータ負荷電流値41は変化する。
機械学習装置10は、モータ負荷電流値41の変化が、切削工具の摩耗によるものか、切削領域の変化によるものかを判別するために切削座標値40を用いる。
機械学習装置10は、切削座標値40が予め設定しておいた正常な座標となっているタイミングでモータ負荷電流値41が変化すると、切削工具の摩耗によってモータ負荷電流値41が変化したと判断する。この場合、機械学習装置10は、推定摩耗量75が、摩耗量計測結果45に近づくように学習モデルを調整する。すなわち、機械学習装置10は、切削座標値40が正常な座標に近いほど、推定摩耗量75が、摩耗量計測結果45に近づくように学習モデルを調整する。
一方、機械学習装置10は、切削座標値40が予め設定しておいた正常な座標ではないタイミングでモータ負荷電流値41が変化すると、ワークの取付誤差等によって切削領域が変化したことが原因でモータ負荷電流値41が変化したと判断する。この場合、機械学習装置10は、推定摩耗量75が、摩耗量計測結果45に近づかないように学習モデルを調整する。すなわち、機械学習装置10は、切削座標値40が正常な座標に遠いほど、推定摩耗量75が、摩耗量計測結果45から遠ざかるように学習モデルを調整する。
また、切削工具およびワークの材質または形状が変わると、同一の加工であっても、切削工具の摩耗量は変化する。このため、機械学習装置10は、ツール種別42およびワーク種別43に基づいて、学習モデルを調整する。
また、ワーク温度44が変化するとワーク自体が変形するので、ワーク温度44が変化すると切削領域が変化する。例えば、ワーク温度44が高くなると、ワークが膨張するので切削領域が大きくなる。この場合、ワーク温度44の上昇に伴ってモータ負荷電流値41も上昇する。すなわち、ワーク温度44が変化するとモータ負荷電流値41も変化する。このため、機械学習装置10は、ワーク温度44に基づいて、学習モデルを調整する。
このように、機械学習装置10は、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44に対応する推定摩耗量75を学習するために使用される。なお、機械学習装置10は、例えば、ネットワークを介して数値制御装置1Aに接続された、数値制御装置1Aとは別個の装置であってもよい。また、機械学習装置10は、数値制御装置1Aに内蔵されていてもよい。さらに、機械学習装置10は、クラウドサーバ上に存在していてもよい。
学習部13は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習により、推定摩耗量75を学習する。ここで、教師あり学習とは、ある入力と結果(ラベル)とのデータの組を大量に学習装置に与えることで、それらのデータセットにある特徴を学習し、入力から結果を推定するモデルをいう。
ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)、および複数のニューロンからなる出力層で構成される。中間層は、1層、または2層以上でもよい。
図4は、実施の形態1にかかる機械学習装置が用いるニューラルネットワークの構成を示す図である。例えば、図4に示すような3層のニューラルネットワークであれば、複数の入力が入力層X1~X3に入力されると、その値に重みw11~w16を掛けて中間層Y1,Y2に入力され、その結果にさらに重みw21~w26を掛けて出力層Z1~Z3から出力される。この出力結果は、重みw11~w16および重みw21~w26の値によって変わる。
実施の形態1のニューラルネットワークは、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、ワーク温度44、および摩耗量計測結果45の組合せに基づいて作成されるデータセットに従って、いわゆる教師あり学習により、推定摩耗量75を学習する。
すなわち、ニューラルネットワークは、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44を入力して出力層Z1~Z3から出力された結果が、摩耗量計測結果45に近づくように重みw11~w16,w21~w26を調整することで推定摩耗量75を学習する。学習部13は、重みw11~w16,w21~w26を調整したニューラルネットワークを記憶しておく。
また、ニューラルネットワークは、いわゆる教師なし学習によって、推定摩耗量75を学習することもできる。教師なし学習とは、入力データのみを大量に機械学習装置に与えることで、入力データがどのような分布をしているか学習し、対応する教師データ(出力データ)を与えなくても、入力データに対して圧縮、分類、整形等を行う装置を学習する手法である。教師なし学習では、それらのデータセットにある特徴を似た者同士にクラスタリングすること等ができる。教師なし学習は、この結果を使って、何らかの基準を設けてそれを最適にするような出力の割り当てを行うことで、出力の予測を実現することができる。また、教師なし学習と教師あり学習の中間的な問題設定として、半教師あり学習と呼ばれるものもあり、これは一部のみ入力および出力のデータの組が存在し、それ以外は入力のみのデータである場合がこれに当たる。
また、学習部13は、複数の数値制御装置1Aに対して作成されるデータセットに従って、推定摩耗量75を学習するようにしてもよい。なお、学習部13は、同一の現場で使用される複数の工作機械2Aからデータセットを取得してもよいし、あるいは、異なる現場で独立して稼働する複数の工作機械2Aから収集されるデータセットを利用して、推定摩耗量75を学習してもよい。さらに、データセットを収集する数値制御装置を途中で対象に追加し、あるいは、逆に対象から除去することも可能である。また、ある数値制御装置に関して、推定摩耗量75を学習した機械学習装置を、これとは別の数値制御装置に取りつけ、当該別の数値制御装置に関して推定摩耗量75を再学習して更新するようにしてもよい。
また、学習部13に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning:ディープラーニング)を用いることもでき、学習部13は、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、サポートベクターマシンなどに従って機械学習を実行してもよい。
ここで、機械学習装置10のハードウェア構成について説明する。図5は、実施の形態1にかかる機械学習装置を実現するハードウェア構成例を示す図である。機械学習装置10は、入力装置103、プロセッサ101、メモリ102、表示装置105、および出力装置104により実現することができる。
プロセッサ101の例は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)ともいう)またはシステムLSI(Large Scale Integration)である。メモリ102の例は、RAM(Random Access Memory)、ROM(Read Only Memory)である。
機械学習装置10は、プロセッサ101が、メモリ102で記憶されている機械学習装置10の動作を実行するための、コンピュータで実行可能な、学習プログラムを読み出して実行することにより実現される。機械学習装置10の動作を実行するためのプログラムである学習プログラムは、機械学習装置10の手順または方法をコンピュータに実行させるものであるともいえる。
機械学習装置10で実行される学習プログラムは、状態観測部11Aと、データ取得部12と、学習部13とを含むモジュール構成となっており、これらが主記憶装置上にロードされ、これらが主記憶装置上に生成される。
入力装置103は、状態変数である、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44を工作機械2Aから受け付けて、プロセッサ101に入力する。また、入力装置103は、判定データである摩耗量計測結果45を工作機械2Aから受け付けて、プロセッサ101に入力する。また、入力装置103は、状態変数である切削座標値40を制御部21から受け付けて、プロセッサ101に入力する。
メモリ102は、プロセッサ101が各種処理を実行する際の一時メモリに使用される。メモリ102は、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44、摩耗量計測結果45、推定摩耗量75などを記憶する。出力装置104は、推定摩耗量75などを推定摩耗量反映部22に出力する。
表示装置105は、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、およびワーク温度44、摩耗量計測結果45、推定摩耗量75などを表示する。表示装置105の例は、液晶モニタである。
学習プログラムは、インストール可能な形式または実行可能な形式のファイルで、コンピュータが読み取り可能な記憶媒体に記憶されてコンピュータプログラムプロダクトとして提供されてもよい。また、学習プログラムは、インターネットなどのネットワーク経由で機械学習装置10に提供されてもよい。なお、機械学習装置10の機能について、一部を専用回路などの専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。また、数値制御装置1Aについても、機械学習装置10と同様のハードウェア構成によって実現できる。
工作機械2Aは、ワークを工作機械2A内に固定した状態で加工を行うが、ワーク取付時の取付誤差に加え、ワーク自体のサイズ、ワーク形状のばらつき、ワークの温度変化によるワークの変形などが発生する場合がある。これらの要因により、同じ加工であってもワークの切削領域が変化するので、切削工具の摩耗量も変化する。また、切削工具が摩耗することによって、ワークと切削工具との間の抵抗が大きくなるので、加工に必要なモータ負荷電流値41が増加する。また、ワークの取付誤差、またはワーク形状のばらつき等が大きい場合、完成品のワーク精度に影響が出る懸念がある。
実施の形態1では、数値制御装置1Aが、ワークの取付誤差、またはワーク形状のばらつき等の影響を考慮するために、モータ負荷電流値41、ワーク温度44、および切削座標値40に基づいて、推定摩耗量75を推定しているので、高精度に切削工具の推定摩耗量75を推定することができる。したがって、数値制御装置1Aは、高精度に推定した推定摩耗量75に基づいて、高精度な補正量76を算出することができる。
算出された補正量76は、自動で制御部21に反映されるので、数値制御装置1Aは、オペレータの手動操作を介さず、長期間の連続稼働が可能となり、生産性の向上につながる。
このように実施の形態1では、数値制御装置1Aが、状態観測部11Aと、データ取得部12と、学習部13とを備えている。そして、状態観測部11が、モータ負荷電流値41と、切削工具によるワークへの切削位置である切削座標値40と、ツール種別42と、ワーク種別43と、ワーク温度44と、を含む状態変数を観測している。また、データ取得部12が、切削工具の摩耗量を計測した結果である摩耗量計測結果45を取得している。また、学習部13が、状態変数および摩耗量計測結果45の組み合わせに基づいて作成されるデータセットに従って、状態変数から切削工具の摩耗量を推定するための学習モデルを生成している。このように、数値制御装置1Aは、切削座標値40と、モータ負荷電流値41と、ワーク温度44とを用いて、ワークの取付異常およびワークの形状異常等を考慮した摩耗量を推定しているので、切削工具の摩耗量を正確に推定することができる。
実施の形態2.
つぎに、図6から図8を用いて実施の形態2について説明する。実施の形態2では、数値制御装置が、ワークの取付位置の異常、ワークの形状の異常等のワークの異常を検出する。
つぎに、図6から図8を用いて実施の形態2について説明する。実施の形態2では、数値制御装置が、ワークの取付位置の異常、ワークの形状の異常等のワークの異常を検出する。
図6は、実施の形態2にかかる数値制御装置を備えた制御システムの構成を示す図である。図6の各構成要素のうち図1に示す実施の形態1の数値制御装置1Aと同一機能を達成する構成要素については同一符号を付しており、重複する説明は省略する。
制御システム100Bは、数値制御装置1Bと、工作機械2Bとを有している。数値制御装置1Bは、工作機械2Bを制御するコンピュータである。数値制御装置1Bは、ワークの取付位置の異常等を検出する機能と、ワークの取付誤差量を算出する機能とを有している。工作機械2Bは、工作機械2Aと同様に、切削工具でワークを加工する装置である。工作機械2Aは、ドライブユニット31と、HMI画面32とを備えている。
HMI画面32に接続されている入力装置に対し、オペレータによって入力される情報は、ツール種別42、ワーク種別43、および誤差閾値46である。誤差閾値46は、ワークの取付誤差量が許容範囲内であるか否かを判定するための閾値である。すなわち、誤差閾値46は、ワークの取付誤差量に対して、警告を出すか否か判定するための閾値である。ワークの取付誤差量は、切削工具によるワークへの切削の開始位置である切削開始座標に基づいて、算出される。正常時の切削開始座標と、実際の切削開始座標との差が、ワークの取付誤差量である。
数値制御装置1Bは、制御部21と、状態観測部11Bと、異常判定装置50と、誤差量計算装置60とを備えている。異常判定装置50、誤差量計算装置60、および数値制御装置1Bは、機械学習装置10と同様のハードウェア構成によって実現できる。数値制御装置1Bの状態観測部11Bは、工作機械2Bから、モータ負荷電流値41、ツール種別42、ワーク種別43、および誤差閾値46を取得する。
具体的には、状態観測部11Bは、ドライブユニット31からモータ負荷電流値41を取得し、HMI画面32からツール種別42、ワーク種別43、および誤差閾値46を取得する。また、状態観測部11Bは、制御部21から切削座標値40を取得する。状態観測部11Bは、取得した、切削座標値40、モータ負荷電流値41、ツール種別42、ワーク種別43、および誤差閾値46を異常判定装置50に送る。
異常判定装置50は、ワークの取付誤差量またはワーク形状等が事前に設定しておいた誤差閾値46を超えているか否かの判定を行う装置である。誤差量計算装置60は、ワークの取付誤差量を計算する装置である。
異常判定装置50は、取付異常判定部52と、警告表示部51とを有している。また、誤差量計算装置60は、誤差量計算部62と、計算結果表示部61を有している。
取付異常判定部52は、状態観測部11Bから出力されるモータ負荷電流値41、切削座標値40、ツール種別42、ワーク種別43、および誤差閾値46を受け付ける。取付異常判定部52は、モータ負荷電流値41および切削座標値40に基づいて、切削の開始位置である切削開始座標を検知する。
ここで、切削開始座標について説明する。図7は、実施の形態2にかかる数値制御装置が検知する、取付誤差の無いワークへの切削開始座標を説明するための図である。図8は、実施の形態2にかかる数値制御装置が検知する、取付誤差の有るワークへの切削開始座標を説明するための図である。
図7および図8では、Z軸方向が鉛直方向であり、ワーク80が取付けられる加工テーブル85の上面に平行なXY平面が水平面である場合について説明する。すなわち、加工テーブル85の上面と平行な面内の2つの軸であって互いに直交する2つの軸をX軸およびY軸とする。また、X軸およびY軸に直交する軸をZ軸とする。
図7では、ワーク80が加工テーブル85に対して傾斜することなく真っすぐ取付けられた場合を示している。図8では、ワーク80が加工テーブル85に対して傾斜した状態で取付けられた場合を示している。
例えば、切削工具71は、Z軸方向からワーク80を加工する。この場合、切削工具71は、ワーク80の上側から移動してきて、ワーク80に接触する。
ワーク80の加工テーブル85への取付誤差が無い場合、切削工具71は、所望の切削開始座標(X1,Z1)でワーク80と接触した後に、ワーク80の加工を開始する。この場合、切削開始座標(X1,Z1)で切削工具71がワーク80に接触するので、切削開始座標(X1,Z1)でモータ負荷電流値41が急上昇する。そして、切削工具71は、ワーク80に対してZ軸方向に加工を実行することで、ワーク80のうちのZ軸方向に延びる加工領域81を加工する。
一方、ワーク80の加工テーブル85への取付誤差が有る場合、切削工具71は、所望の切削開始座標(X1,Z1)とは異なる切削開始座標(X2,Z2)でワーク80と接触した後に、ワーク80の加工を開始する。この場合、切削開始座標(X2,Z2)で切削工具71がワーク80に接触するので、切削開始座標(X2,Z2)でモータ負荷電流値41が急上昇する。そして、切削工具71は、ワーク80に対してZ軸方向に加工を実行することで、ワーク80のうちの下部にある加工領域82を加工する。加工領域82は、加工領域81とは異なる領域である。
このように、ワーク80の取付誤差がある場合、取付誤差がない場合と比べて切削開始座標が変化する。同様に、ワーク80の形状にばらつきがある場合、ワーク80の形状にばらつきが無い場合と比べて切削開始座標が変化する。また、ワーク80が膨張または収縮している場合も、ワーク80が膨張または収縮していない場合と比べて切削開始座標が変化する。
取付異常判定部52は、変化した切削開始座標(X2,Z2)と正常時の切削開始座標(X1,Z1)との差である座標差が、事前に設定された誤差閾値46を超えた場合に、ワーク80の異常と判定する。ワーク80の異常は、ワーク80の加工テーブル85への取付異常、ワーク80の形状異常などである。
正常時の切削開始座標は、ツール種別42とワーク種別43との組み合わせ毎に異なるものである。したがって、取付異常判定部52は、ツール種別42とワーク種別43との組み合わせに対応する、正常時の切削開始座標を用いて、ワーク80に異常があるか否かを判定する。
取付異常判定部52は、異常を検知した場合には、警告表示部51に、異常判定を示す異常情報を送る。また、取付異常判定部52は、変化した切削開始座標と正常時の切削開始座標との座標差である開始位置誤差、ツール種別42、およびワーク種別43を誤差量計算部62に送る。
警告表示部51は、取付異常判定部52から異常情報を受け取ると、ワーク80が異常であることを示す警告を表示し、オペレータに、完成品のワーク80の加工精度への懸念がある旨を警告し注意を促す。なお、警告表示部51は、警告の表示に限らず、何れの方法によって警告を出力してもよい。例えば、警告表示部51は、警告音を出力してもよい。
誤差量計算部62は、取付異常判定部52から開始位置誤差を受け取ると、ワーク80の形状は正常であると仮定したうえで、開始位置誤差、ツール種別42、およびワーク種別43に基づいて、ワーク取付誤差量を計算する。誤差量計算部62は、計算結果であるワーク取付誤差量を、計算結果表示部61に送る。計算結果表示部61は、誤差量計算部62からワーク取付誤差量を受け取ると、受け取ったワーク取付誤差量を表示し、オペレータに、完成品のワーク80の加工精度への懸念がある旨を警告し注意を促す。このように、数値制御装置1Bは、ワーク取付誤差等の異常がある場合にはオペレータに警告するので、完成品のワーク80の不良品が流出すること防止できる。
なお、数値制御装置1A,1Bを組合わせてもよい。すなわち、数値制御装置1Aが異常判定装置50を備えていてもよいし、数値制御装置1Aが異常判定装置50および誤差量計算装置60を備えていてもよい。また、数値制御装置1Bが、機械学習装置10を備えていてもよいし、数値制御装置1Bが、機械学習装置10および推定摩耗量反映部22を備えていてもよい。
このように実施の形態2では、数値制御装置1Bが、切削座標値40、モータ負荷電流値41、および誤差閾値46を用いて、ワークの取付位置の異常、ワークの形状の異常等のワークの異常を検出している。これにより、数値制御装置1Bは、ワークの異常が発生した場合には、警告等を出力することが可能となる。
以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1A,1B 数値制御装置、2A,2B 工作機械、10 機械学習装置、11A,11B 状態観測部、12 データ取得部、13 学習部、20 加工プログラム、21 制御部、22 推定摩耗量反映部、31 ドライブユニット、32 HMI画面、33 温度センサ、34 摩耗量計測装置、40 切削座標値、41 モータ負荷電流値、42 ツール種別、43 ワーク種別、44 ワーク温度、45 摩耗量計測結果、46 誤差閾値、50 異常判定装置、51 警告表示部、52 取付異常判定部、60 誤差量計算装置、61 計算結果表示部、62 誤差量計算部、71 切削工具、75 推定摩耗量、76 補正量、80 ワーク、81,82 加工領域、85 加工テーブル、100A,100B 制御システム、101 プロセッサ、102 メモリ、103 入力装置、104 出力装置、105 表示装置、X1~X3 入力層、Y1,Y2 中間層、Z1~Z3 出力層。
Claims (6)
- 加工プログラムに基づいて工作機械を制御する制御部と、
前記工作機械が用いる切削工具を駆動するモータの負荷電流値と、前記切削工具によるワークへの切削位置と、前記切削工具の種別であるツール種別と、前記ワークの種別であるワーク種別と、前記ワークの温度であるワーク温度と、を含む状態変数を観測する状態観測部と、
前記切削工具の摩耗量を計測した結果である摩耗量計測結果を取得するデータ取得部と、
前記状態変数および前記摩耗量計測結果の組み合わせに基づいて作成されるデータセットに従って、前記状態変数から前記切削工具の摩耗量を推定するための学習モデルを生成する学習部と、
を備えることを特徴とする数値制御装置。 - 前記学習部は、前記学習モデルを用いて、前記状態変数から前記切削工具の摩耗量を推定する、
ことを特徴とする請求項1に記載の数値制御装置。 - 前記学習部により推定された前記摩耗量に基づいて、前記切削工具の位置を補正する位置補正量を算出し、前記位置補正量を前記制御部に送ることで、前記位置補正量を前記切削工具の位置に反映させる反映部をさらに備える、
ことを特徴とする請求項2に記載の数値制御装置。 - 前記切削位置および前記負荷電流値に基づいて、前記切削工具が前記ワークへの加工を開始する座標である切削開始座標を算出するとともに、前記ワークが正常な状態で前記切削工具が前記ワークへの加工を開始する座標と、前記切削開始座標との間の差である座標差が、閾値を超えている場合に、警告を出力する異常判定装置をさらに備える、
ことを特徴とする請求項1から3の何れか1つに記載の数値制御装置。 - 前記ワークの形状が正常であると仮定した場合の前記ワークの取付誤差量を、前記座標差に基づいて推定し、前記取付誤差量を出力する誤差量計算装置をさらに備える、
ことを特徴とする請求項4に記載の数値制御装置。 - 工作機械が用いる切削工具を駆動するモータの負荷電流値と、前記切削工具によるワークへの切削位置と、前記切削工具の種別であるツール種別と、前記ワークの種別であるワーク種別と、前記ワークの温度であるワーク温度と、を含む状態変数を観測する状態観測部と、
前記切削工具の摩耗量を計測した結果である摩耗量計測結果を取得するデータ取得部と、
前記状態変数および前記摩耗量計測結果の組み合わせに基づいて作成されるデータセットに従って、前記状態変数から前記切削工具の摩耗量を推定するための学習モデルを生成する学習部と、
を備えることを特徴とする機械学習装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080098172.0A CN115244477B (zh) | 2020-07-21 | 2020-07-21 | 数控装置及机器学习装置 |
JP2020565500A JP6865908B1 (ja) | 2020-07-21 | 2020-07-21 | 数値制御装置および機械学習装置 |
DE112020007089.1T DE112020007089T5 (de) | 2020-07-21 | 2020-07-21 | Numerisches Steuerungsgerät und Maschinenlerngerät |
PCT/JP2020/028250 WO2022018822A1 (ja) | 2020-07-21 | 2020-07-21 | 数値制御装置および機械学習装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/028250 WO2022018822A1 (ja) | 2020-07-21 | 2020-07-21 | 数値制御装置および機械学習装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022018822A1 true WO2022018822A1 (ja) | 2022-01-27 |
Family
ID=75638875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/028250 WO2022018822A1 (ja) | 2020-07-21 | 2020-07-21 | 数値制御装置および機械学習装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6865908B1 (ja) |
CN (1) | CN115244477B (ja) |
DE (1) | DE112020007089T5 (ja) |
WO (1) | WO2022018822A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220080545A1 (en) * | 2020-09-16 | 2022-03-17 | Autodesk, Inc. | Even out wearing of machine components during machining |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019067137A (ja) * | 2017-09-29 | 2019-04-25 | ファナック株式会社 | 数値制御システム |
JP2019117458A (ja) * | 2017-12-26 | 2019-07-18 | ファナック株式会社 | 制御装置及び機械学習装置 |
JP2019139755A (ja) * | 2018-02-06 | 2019-08-22 | ファナック株式会社 | 研磨工具摩耗量予測装置、機械学習装置及びシステム |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3547564B2 (ja) | 1996-07-02 | 2004-07-28 | 三菱電機株式会社 | 数値制御装置および数値制御装置における工具長補正方法 |
JP4098761B2 (ja) * | 2004-08-17 | 2008-06-11 | ファナック株式会社 | 仕上げ加工方法 |
DE102019102250A1 (de) * | 2018-02-06 | 2019-08-08 | Fanuc Corporation | Vorhersagen der Abnutzung des Polierwerkzeugs, Maschinenlernvorrichtung und System |
-
2020
- 2020-07-21 DE DE112020007089.1T patent/DE112020007089T5/de active Pending
- 2020-07-21 CN CN202080098172.0A patent/CN115244477B/zh active Active
- 2020-07-21 WO PCT/JP2020/028250 patent/WO2022018822A1/ja active Application Filing
- 2020-07-21 JP JP2020565500A patent/JP6865908B1/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019067137A (ja) * | 2017-09-29 | 2019-04-25 | ファナック株式会社 | 数値制御システム |
JP2019117458A (ja) * | 2017-12-26 | 2019-07-18 | ファナック株式会社 | 制御装置及び機械学習装置 |
JP2019139755A (ja) * | 2018-02-06 | 2019-08-22 | ファナック株式会社 | 研磨工具摩耗量予測装置、機械学習装置及びシステム |
Also Published As
Publication number | Publication date |
---|---|
DE112020007089T5 (de) | 2023-02-16 |
CN115244477B (zh) | 2023-08-18 |
CN115244477A (zh) | 2022-10-25 |
JP6865908B1 (ja) | 2021-04-28 |
JPWO2022018822A1 (ja) | 2022-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5997330B1 (ja) | 主軸交換の要否を判定できる機械学習装置、主軸交換判定装置、制御装置、工作機械及び生産システム、並びに機械学習方法 | |
US10996650B2 (en) | Numerical control system | |
CN107111297B (zh) | 用于由至少一台计算机数控机器加工的工件的部件分析的计算机实现方法 | |
US20190041808A1 (en) | Controller and machine learning device | |
US20200293021A1 (en) | Method of optimizing machining simulation condition, machining simulation device, machining simulation system and program | |
US20210132578A1 (en) | Life expectancy prediction system for a tool | |
KR101957711B1 (ko) | 가공좌표계상 가공시간에 따라 가공위치와 물리적 가공절삭 특성값을 매핑하는 절삭특성맵을 활용하여 절삭상태를 지능적으로 감시 및 진단하고, 절삭조건을 제어할 수 있는 지능형 cnc공작기계 제어시스템 | |
US10940585B2 (en) | Vibration suppression device | |
US11966209B2 (en) | Simulator, numerical control device, and simulation method | |
US11698616B2 (en) | Managing apparatus and managing system | |
Kirby et al. | Development of a fuzzy-nets-based in-process surface roughness adaptive control system in turning operations | |
JP2020138265A (ja) | びびり振動判定装置、機械学習装置及びシステム | |
CN110614537B (zh) | 调整必要性判断装置 | |
US11314237B2 (en) | Managing apparatus and managing system | |
US11144040B2 (en) | Method for estimating error propagation | |
JP7473321B2 (ja) | シミュレーション装置、数値制御装置、及びシミュレーション方法 | |
US11556110B2 (en) | Method and device for generating tool paths | |
WO2022018822A1 (ja) | 数値制御装置および機械学習装置 | |
JP2019150932A (ja) | 衝突位置推定装置及び機械学習装置 | |
CN110340884B (zh) | 测定动作参数调整装置、机器学习装置以及系统 | |
JP6618656B1 (ja) | 保守支援システム、数値制御装置および保守支援システムの制御方法 | |
US20240176309A1 (en) | Machine learning device, acceleration and deceleration adjustment device, and computer-readable storage medium | |
JP7414855B2 (ja) | 支援装置 | |
WO2023062756A1 (ja) | シミュレーション装置、及びコンピュータが読み取り可能な記録媒体 | |
JP2024082532A (ja) | 異常検知装置、異常検知システム、異常検知方法及びプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020565500 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20946364 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20946364 Country of ref document: EP Kind code of ref document: A1 |