WO2022018572A1 - 発光デバイス、発光装置、電子機器および照明装置 - Google Patents

発光デバイス、発光装置、電子機器および照明装置 Download PDF

Info

Publication number
WO2022018572A1
WO2022018572A1 PCT/IB2021/056265 IB2021056265W WO2022018572A1 WO 2022018572 A1 WO2022018572 A1 WO 2022018572A1 IB 2021056265 W IB2021056265 W IB 2021056265W WO 2022018572 A1 WO2022018572 A1 WO 2022018572A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
layer
electron
emitting device
transport region
Prior art date
Application number
PCT/IB2021/056265
Other languages
English (en)
French (fr)
Inventor
河野優太
植田藍莉
渡部剛吉
大澤信晴
鳥巣桂都
尾坂晴恵
瀬尾哲史
Original Assignee
株式会社半導体エネルギー研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社半導体エネルギー研究所 filed Critical 株式会社半導体エネルギー研究所
Priority to US18/016,717 priority Critical patent/US20230292544A1/en
Priority to CN202180049551.5A priority patent/CN115812350A/zh
Priority to JP2022538487A priority patent/JPWO2022018572A1/ja
Priority to KR1020237001957A priority patent/KR20230042271A/ko
Publication of WO2022018572A1 publication Critical patent/WO2022018572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/166Electron transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • H10K59/8722Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • One aspect of the present invention relates to an organic compound, a light emitting element, a light emitting device, a display module, a lighting module, a display device, a light emitting device, an electronic device, a lighting device, and an electronic device. It should be noted that one aspect of the present invention is not limited to the above technical fields.
  • the technical field of one aspect of the invention disclosed in the present specification and the like relates to a product, a method, or a manufacturing method.
  • one aspect of the invention relates to a process, machine, manufacture, or composition (composition of matter).
  • the technical fields of one aspect of the present invention disclosed in the present specification include semiconductor devices, display devices, liquid crystal display devices, light emitting devices, lighting devices, power storage devices, storage devices, image pickup devices, and the like.
  • the driving method or the manufacturing method thereof can be given as an example.
  • organic EL devices that utilize electroluminescence (EL) using organic compounds
  • EL layer organic compound layer
  • EL layer organic compound layer
  • Such a light emitting device is a self-luminous type, when used as a pixel of a display, it has advantages such as higher visibility and no need for a backlight as compared with a liquid crystal display, and is particularly suitable for a flat panel display. Further, it is a great advantage that the display using such a light emitting device can be manufactured thin and lightweight. Another feature is that the response speed is extremely fast.
  • these light emitting devices can form the light emitting layer continuously in two dimensions, light emission can be obtained in a planar manner. This is a feature that is difficult to obtain with a point light source represented by an incandescent lamp or an LED, or a line light source represented by a fluorescent lamp, and therefore has high utility value as a surface light source that can be applied to lighting or the like.
  • displays and lighting devices using light emitting devices are suitable for various electronic devices, but research and development are being carried out in search of light emitting devices having better characteristics.
  • Non-Patent Document 1 One of the problems often raised when talking about organic EL devices is the low light extraction efficiency.
  • the attenuation due to reflection caused by the difference in the refractive index of the adjacent layers is a major factor in reducing the efficiency of the light emitting device.
  • a configuration has been proposed in which a layer made of a low refractive index material is formed inside the EL layer (see, for example, Non-Patent Document 1).
  • the organic EL devices that have been commercialized are often manufactured by the vapor deposition method, but since the vapor deposition method is costly in terms of material efficiency and maintenance of the manufacturing atmosphere, the wet film deposition method should be applied. It is expected that it will be possible to manufacture at low cost.
  • One aspect of the present invention is to provide a light emitting device having high luminous efficiency.
  • one aspect of the present invention is to provide any of a light emitting device, a light emitting device, an electronic device, a display device, or an electronic device having low power consumption.
  • Another aspect of the present invention is to provide an inexpensive light emitting device.
  • Another object of the present invention is to provide a light emitting device that is inexpensive and has high luminous efficiency.
  • the present invention shall solve any one of the above-mentioned problems.
  • One aspect of the present invention has an anode, a cathode, and an EL layer located between the anode and the cathode, and the EL layer has a hole transport region, a light emitting layer, and an electron transport region.
  • the hole transport region is located between the anode and the light emitting layer
  • the electron transport region is located between the cathode and the light emitting layer
  • the hole transport region is a sulfone.
  • It has a layer formed by applying and firing an ink containing an acid compound
  • the electron transport region has an organic compound having electron transport property, and the wavelength of the organic compound having electron transport property is 455 nm.
  • It is a light emitting device having an ordinary light refractive index of 1.50 or more and 1.75 or less in light of 465 nm or less.
  • another aspect of the present invention has an anode, a cathode, and an EL layer located between the anode and the cathode, wherein the EL layer has a hole transport region, a light emitting layer, and electrons. It has a transport region, the hole transport region is located between the anode and the light emitting layer, the electron transport region is located between the cathode and the light emitting layer, and the hole transport The region has a layer formed by applying and firing an ink containing a sulfonic acid compound, and the electron transport region has an electron transportable organic compound and the electron transportable organic compound.
  • This is a light emitting device having an anode refractive index of 1.45 or more and 1.70 or less with respect to light having a wavelength of 633 nm.
  • the hole transport region has a layer formed by applying and firing a varnish containing the sulfonic acid compound and the secondary amine compound. It is a device.
  • the varnish described in the present specification and the like can be paraphrased as ink.
  • the ink described in the present specification and the like can be paraphrased as varnish.
  • another aspect of the present invention has an anode, a cathode, and an EL layer located between the anode and the cathode, wherein the EL layer has a hole transport region, a light emitting layer, and electrons.
  • the hole transport region has a transport region, the hole transport region is located between the anode and the light emitting layer, the electron transport region is located between the cathode and the light emitting layer, and the holer transport region is located.
  • the electron transporting region has an electron transporting organic compound
  • the electron transporting organic compound has a wavelength of 455 nm or more and 465 nm.
  • a light emitting device having an anode refractive index of 1.50 or more and 1.75 or less in the following light.
  • another aspect of the present invention has an anode, a cathode, and an EL layer located between the anode and the cathode, wherein the EL layer has a hole transport region, a light emitting layer, and electrons.
  • the hole transport region has a transport region, the hole transport region is located between the anode and the light emitting layer, the electron transport region is located between the cathode and the light emitting layer, and the hole transport region is located.
  • a sulfonic acid compound, a fluorine compound, or a metal oxide, and the electron transport region has an organic compound having an electron transport property, and the light of the organic compound having an electron transport property having a wavelength of 633 nm. It is a light emitting device having an anode of 1.45 or more and 1.70 or less.
  • a light emitting device in which a signal is detected.
  • the hole transport region has a mass range of ⁇ 2.0 to 241 or 161 or 81 less mass of the target ion in negative mode when MS analysis is performed. It is a light emitting device in which a signal is detected.
  • another aspect of the present invention is a light emitting device in which the iridium complex is contained in the light emitting layer in the above configuration.
  • another aspect of the present invention is a light emitting device in which the iridium complex exhibits green phosphorescence in the above configuration.
  • another aspect of the present invention is a light emitting device in which the iridium complex is an iridium complex represented by the following structural formula in the above configuration.
  • the electron-transporting organic compound has at least one 6-membered heteroaromatic ring containing nitrogen, two benzene rings, and one or more.
  • the electron transport region has an electron transport layer and an electron injection layer, and the electron injection layer is provided in contact with the cathode, and the electron is provided.
  • the transportable organic compound is a light emitting device contained in the electron transport layer.
  • another aspect of the present invention is, in the above configuration, a light emitting device in which the electron transport layer further comprises a metal complex of an alkali metal or an alkaline earth metal.
  • another aspect of the present invention is a light emitting device in which, in the above configuration, the electron transport layer is a metal complex of an alkali metal or an alkaline earth metal having a ligand further containing an 8-quinolinolat structure.
  • another aspect of the present invention is a light emitting device in which the metal complex of the alkali metal or the alkaline earth metal is a metal complex of lithium in the above configuration.
  • another aspect of the present invention is a light emitting device in which the electron injection layer contains a heteroaromatic compound in the above configuration.
  • the heteroaromatic compound is 2-phenyl-9- [3- (9-phenyl-1,10-phenanthroline-2-yl) phenyl] -1.
  • 10-Phenylanthroline is a light emitting device.
  • another aspect of the present invention is a light emitting device in which, in the above configuration, the electron injection layer further contains fluorine and sodium.
  • another aspect of the present invention is a light emitting device in which barium is contained in the electron injection layer in the above configuration.
  • another aspect of the present invention has a plurality of any light emitting devices, and the plurality of light emitting devices include at least a light emitting device that emits light in red and a light emitting device that emits light in green.
  • the light emitting layer of the light emitting device that emits red light and the light emitting layer of the light emitting device that emits green light contain iridium.
  • another aspect of the present invention is, in the above configuration, a light emitting device that emits light in red and a light emitting device in which light emitted from the light emitting device that emits green light is phosphorescent.
  • the plurality of light emitting devices further include a light emitting device that emits light in blue, and the light obtained from the light emitting device that emits blue light is fluorescence. It is a device.
  • another aspect of the present invention is a light emitting device having a plurality of any of the above light emitting devices.
  • another aspect of the present invention is a display device provided with any of the above light emitting devices.
  • another aspect of the present invention is an electronic device having any of the above light emitting devices, a sensor, an operation button, a speaker or a microphone.
  • another aspect of the present invention is a lighting device having any of the above light emitting devices and a housing.
  • the light emitting device in the present specification includes an image display device using a light emitting device. Further, a module in which a connector, for example, an anisotropic conductive film or TCP (Tape Carrier Package) is attached to the light emitting device, a module in which a printed wiring board is provided at the end of TCP, or a COG (Chip On Glass) method in the light emitting device. A module in which an IC (integrated circuit) is directly mounted may also be included in the light emitting device. Further, lighting equipment and the like may have a light emitting device.
  • a connector for example, an anisotropic conductive film or TCP (Tape Carrier Package) is attached to the light emitting device
  • a module in which a printed wiring board is provided at the end of TCP or a COG (Chip On Glass) method in the light emitting device.
  • COG Chip On Glass
  • a module in which an IC (integrated circuit) is directly mounted may also be included in the light emitting device. Further
  • a light emitting device having high luminous efficiency it is possible to provide a light emitting device having high luminous efficiency.
  • any of a light emitting device, a light emitting device, an electronic device, a display device, or an electronic device having low power consumption can be provided.
  • a novel organometallic complex can be provided.
  • metal complex applicable to a light emitting device having a low drive voltage.
  • metal complex having an electron transport layer having a low refractive index and applicable to a light emitting device having a low driving voltage it is possible to provide a metal complex having an electron transport layer having a low refractive index and applicable to a light emitting device having a low driving voltage.
  • FIG. 1A, 1B, 1C and 1D are schematic views of the light emitting device.
  • 2A and 2B are diagrams showing an active matrix type light emitting device.
  • 3A and 3B are diagrams showing an active matrix type light emitting device.
  • FIG. 4 is a diagram showing an active matrix type light emitting device.
  • 5A and 5B are diagrams showing a passive matrix type light emitting device.
  • 6A and 6B are diagrams showing a lighting device.
  • 7A, 7B1, 7B2 and 7C are diagrams representing electronic devices.
  • 8A, 8B and 8C are diagrams representing electronic devices.
  • FIG. 9 is a diagram showing a lighting device.
  • FIG. 10 is a diagram showing a lighting device.
  • FIG. 11 is a diagram showing an in-vehicle display device and a lighting device.
  • FIG. 12A and 12B are diagrams showing electronic devices.
  • 13A, 13B and 13C are diagrams representing electronic devices.
  • FIG. 14 is an absorption spectrum and an emission spectrum in a dehydrated acetone solution of Li-6mq.
  • FIG. 15 is data obtained by measuring the refractive index of mmtBumBPTzhn.
  • 16A to 16D are diagrams showing an example of a method for manufacturing a light emitting device.
  • FIG. 17 is a conceptual diagram illustrating a droplet ejection device.
  • FIG. 18 is an MS spectrum of NSO-2.
  • FIG. 19 is an ESR spectrum of a mixed thin film of NSO-2 and DPA, a single film of NSO-2, and a single film of DPA.
  • FIG. 1A shows a diagram showing a light emitting device according to an aspect of the present invention.
  • the light emitting device of one aspect of the present invention has an anode 101, a cathode 102, and an EL layer 103, and the EL layer 103 has a hole transport region 120, a light emitting layer 113, and an electron transport region 121. There is.
  • the hole transporting region 120 is shown with a hole injecting layer 111 and a hole transporting layer 112, and the electron transporting region 121 is shown with an electron transporting layer 114 and an electron injecting layer 115. It may not be provided, or another functional layer may be provided. Examples of other functional layers include a carrier block layer, an exciton block layer, a charge generation layer, and the like.
  • the light emitting layer 113 has at least a light emitting material
  • the electron transport region 121 has at least an organic compound having electron transportability.
  • the hole transport region 120 is assumed to include at least a part of a layer formed by a wet film forming method.
  • the hole transport region 120 has a layer in which the ink containing the material is formed by a wet film forming method such as an inkjet method.
  • the hole transport region 120 is formed by laminating a single layer or a plurality of layers from layers having desired functions such as a hole injection layer 111, a hole transport layer 112, and an electron block layer. It should be noted that not only the configuration in which one layer has one function but also the configuration in which a layer having a plurality of functions such as a hole injection transport layer is provided may be provided.
  • the hole transport region 120 has a function of transporting holes between the anode 101 and the light emitting layer 113, so that the hole transport region 120 has a skeleton having a relatively high hole transport property. It is preferable that the material is contained.
  • the skeleton having high hole transport properties include a ⁇ -electron-rich heteroaromatic ring skeleton such as an arylamine skeleton, a pyrrole skeleton, a carbazole skeleton, and a thiophene skeleton.
  • the hole transport region 120 includes two layers, a hole injection layer 111 and a hole transport layer 112.
  • a layer in contact with the anode 101 such as a hole injection layer 111 or a hole injection transport layer
  • the skeleton having high hole transport property contains a material exhibiting acceptability at the same time. Is preferable.
  • the material exhibiting the acceptability include a sulfonic acid compound, a fluorine compound, a trifluoroacetic acid compound, a propionic acid compound, and a metal oxide.
  • a polymer material having a desired function, a small molecule material, a dendrimer or the like may be used as it is, or an ink dispersed or dissolved in a solvent may be used.
  • an ink in which one or more kinds of monomers of the polymer material to be obtained are mixed may be applied, and after application by heating, energy light irradiation or the like, bonds such as cross-linking or condensation, polymerization, coordination and salt may be formed.
  • the ink may contain an organic compound having other functions such as a surfactant and a substance for adjusting viscosity.
  • a substituted or unsubstituted aryl group having 6 to 14 carbon atoms and a substituted or unsubstituted ⁇ -electron excess heteroaryl group having 6 to 12 carbon atoms can be used.
  • the aryl group for example, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthryl group and the like can be used, and a phenyl group is preferable because it has good solubility and is inexpensive.
  • heteroaryl group a carbazole skeleton, a pyrrole skeleton, a thiophene skeleton, a furan skeleton, an imidazole skeleton and the like can be used. Further, it is preferable to have a plurality of bonds mediated by arylamine or heteroarylamine because the film quality is improved, and an oligomer or a polymer may be used.
  • a part of the amine may be a tertiary amine, and it is preferable that the ratio of the secondary amine is larger than the ratio of the tertiary amine.
  • the number of amines is 1000 or less, more preferably 10 or less, and the molecular weight is preferably 100,000 or less. Further, when fluorine is substituted, the compatibility with the compound in which fluorine is substituted is improved, which is preferable.
  • an organic compound represented by the following general formula (Gam2) is preferable, and as the tertiary amine, for example, an organic compound represented by the following general formula (Gam3) is preferable.
  • Ar 11 to Ar 13 represents hydrogen, and other than that, a substituted or unsubstituted aromatic ring having 6 to 14 carbon atoms is represented, and Ar 14 to Ar 17 are substituted. Alternatively, it represents an unsubstituted aromatic ring having 6 to 14 carbon atoms.
  • Ar 12 and Ar 16 , Ar 14 and Ar 16 , Ar 11 and Ar 14 , Ar 14 and Ar 15 , Ar 15 and Ar 17 , and Ar 13 and Ar 17 may be coupled to each other to form a ring. .. Further, p represents an integer of 0 to 1000, and is preferably 0 to 3.
  • the molecular weight of the organic compound represented by the general formula (Gam2) is preferably 100,000 or less.
  • a benzene ring, a bisbenzene ring, a naphthalene ring, a fluorene ring, a phenanthrene ring, an anthracene ring and the like can be used.
  • Ar 21 to Ar 23 represent substituted or unsubstituted aryl groups having 6 to 14 carbon atoms, which may be bonded to each other to form a ring.
  • the substituent may be a group in which a plurality of diarylamino groups or carbazolyl groups are linked.
  • the secondary amine (having an NH group)
  • an organic compound represented by the following structural formulas (Am2-1) to (Am2-32) By mixing the amine compound with the sulfonic acid compound (p-doping), the conductivity is improved.
  • the secondary amine is preferable because it can form a bond with the mixed sulfonic acid compound by a dehydration reaction or the like.
  • the sulfonic acid compound or other mixed compound is a fluoride, if a fluoride is used as in the following structural formulas (Am2-1), (Am2-22) to (Am2-28), and (Am2-31). , The compatibility is improved, which is preferable.
  • a thiophene derivative may be used instead of the secondary amine.
  • Specific examples of the thiophene derivative include organic compounds represented by the following structural formulas (T-1) to (T-4), polythiophene and poly (3,4-ethylenedioxythiophene) ( PEDOT) is preferred.
  • the aryl sulfonic acid may have a sulfo group, and sulfonic acid or sulfonic acid salt, alkoxy sulfonic acid, halogenated sulfonic acid, and sulfonic acid anion can be used.
  • sulfo group a group as described above can be used. Even if you have multiple of these sulfo groups.
  • aryl group of the aryl sulfonic acid a substituted or unsubstituted aryl group having 6 to 16 carbon atoms can be used.
  • aryl group for example, a phenyl group, a biphenyl group, a naphthyl group, a fluorenyl group, a phenanthrenyl group, an anthryl group, a pyrenyl group and the like can be used, and the naphthyl group is preferable because it has good solubility and transportability in an organic solvent.
  • these aryl sulfonic acids may have a plurality of aryl groups, and it is preferable to have an aryl group substituted with fluorine because the LUMO level can be deeply adjusted (largely negatively).
  • it may have an ether bond, a sulfide bond, or a bond via an amine, and when it has a plurality of aryl groups, it is preferable to use these bonds because the solubility in an organic solvent is improved.
  • it when it has an alkyl group as a substituent, it may be bonded via an ether bond, a sulfide bond, or an amine.
  • these aryl sulfonic acids may be substituted with a plurality of polymers.
  • polyethylene, nylon, polystyrene, polyfluorenylene and the like can be used, but polystyrene and polyfluorenylene have good conductivity and are preferable.
  • the aryl sulfonic acid compound for example, an organic compound represented by the following structural formulas (S-1) to (S-15) is preferable.
  • Polymers with sulfo groups such as poly (4-styrene sulfonic acid) (PSS) can also be used.
  • PSS poly (4-styrene sulfonic acid)
  • an arylsulfonic acid compound electrons from a shallow electron donor of HOMO (amine compound, carbazole compound, thiophene compound, etc.) can be received, and by mixing with the electron donor, hole injection from an electrode or It can have hole transportability.
  • HOMO amine compound, carbazole compound, thiophene compound, etc.
  • the LUMO level can be adjusted deeper (having a more negative energy level).
  • the tertiary amine is more electrochemically and photoscientifically more stable than the secondary amine, and when mixed, the hole transport property is improved, which is preferable.
  • the tertiary amine for example, an organic compound represented by the following structural formula (Am3-1) to structural formula (Am3-7) is preferable.
  • a material having a hole transporting property may be appropriately mixed.
  • a cyano compound such as a tetracyanoquinodimethane compound can also be used as an electron acceptor.
  • a cyano compound such as a tetracyanoquinodimethane compound
  • F4TCNQ 2,3,5,6-tetrafluoro-7,7,8,8-tetracyano-quinodimethane
  • HAT-CN6 3,6,7,10,11-hexacarbonitrile
  • the ink mixed with the above monomers contains either or both of the 3,3,3-trifluoropropyltrimethoxysilane compound and the phenyltrimethoxysilane compound, the film becomes wet when formed in a wet film. Is preferable because it improves.
  • the layer formed by the wet film forming method using an ink containing an electron donor such as a secondary amine (or thiophene) and at least two monomers of aryl sulfonic acid can be formed by ToF-SIMS or LC-.
  • an electron donor such as a secondary amine (or thiophene)
  • LC- LC-
  • the sulfonic acid compound represented by the above structural formula (S-1) or (S-2) has many sulfo groups and can form a three-dimensional bond with the amine, and the film quality. Is preferable because it is easy to stabilize.
  • FIG. 16A to 16D are cross-sectional views illustrating a method for producing a layer 786 containing a light emitting substance.
  • the conductive film 772 is formed on the flattening insulating film 770, and the insulating film 730 is formed so as to cover a part of the conductive film 772 (see FIG. 16A).
  • the droplet 784 is ejected from the droplet ejection device 783 to the exposed portion of the conductive film 772 which is the opening of the insulating film 730 to form the layer 785 containing the composition.
  • the droplet 784 is a composition containing a solvent and adheres to the conductive film 772 (see FIG. 16B).
  • the step of ejecting the droplet 784 may be performed under reduced pressure.
  • the solvent is removed from the layer 785 containing the composition and solidified to form the layer 786 containing the luminescent material (see FIG. 16C).
  • a drying step or a heating step may be performed.
  • the conductive film 788 is formed on the layer 786 containing the light emitting substance to form the light emitting element 782 (see FIG. 2D).
  • the composition can be selectively ejected, so that the loss of the material can be reduced. Further, since the lithography process for processing the shape is not required, the process can be simplified and the cost can be reduced.
  • the droplet ejection method described above is a general term for a nozzle having a discharge port for a composition or a head having one or a plurality of nozzles having a means for ejecting droplets.
  • FIG. 17 is a conceptual diagram illustrating the droplet ejection device 1400.
  • the droplet ejection device 1400 has a droplet ejection means 1403. Further, the droplet ejection means 1403 has a head 1405, a head 1412, and a head 1416.
  • the head 1405, the head 1412 and the head 1416 are connected to the control means 1407, which can be controlled by the computer 1410 to draw in a pre-programmed pattern.
  • the marker 1411 formed on the substrate 1402 may be used as a reference.
  • the reference point may be determined with reference to the outer edge of the substrate 1402.
  • the marker 1411 is detected by the image pickup means 1404, converted into a digital signal by the image processing means 1409, recognized by the computer 1410, and a control signal is generated and sent to the control means 1407.
  • an image sensor using a charge-coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) can be used as the image pickup means 1404.
  • Information on the pattern to be formed on the substrate 1402 is stored in the storage medium 1408, and a control signal is sent to the control means 1407 based on this information, and the individual heads 1405 of the droplet ejection means 1403 are sent.
  • Head 1412 and head 1416 can be individually controlled.
  • the material to be discharged is supplied from the material supply source 1413, the material supply source 1414, and the material supply source 1415 to the head 1405, the head 1412, and the head 1416, respectively, through piping.
  • the inside of the head 1405, the head 1412, and the head 1416 has a structure having a space filled with a liquid material and a nozzle which is a discharge port.
  • the head 1412 also has an internal structure similar to that of the head 1405. If the nozzles of the head 1405 and the head 1412 are provided in different sizes, different materials can be drawn at different widths at the same time. With one head, it is possible to eject and draw multiple types of light emitting materials, etc., and when drawing in a wide area, it is possible to simultaneously eject and draw the same material from multiple nozzles in order to improve throughput. can.
  • the head 1405, the head 1412, and the head 1416 can freely scan the substrate in the directions of the arrows X, Y, and Z shown in FIG. 17, and the drawing area can be freely set. , The same pattern can be drawn multiple times on one board.
  • the step of discharging the composition may be performed under reduced pressure.
  • the substrate may be heated at the time of ejection.
  • steps of drying and firing are performed.
  • the drying and firing steps are both heat treatment steps, but their purposes, temperature and time are different.
  • the drying step and the firing step are carried out under normal pressure or reduced pressure, in the atmosphere or under an inert atmosphere such as nitrogen, by irradiation with a laser beam, instantaneous heat annealing, a heating furnace or the like.
  • the timing of this heat treatment and the number of heat treatments are not particularly limited. In order to perform the drying and firing steps well, the temperature at that time depends on the material of the substrate and the properties of the composition.
  • the layer 786 containing the luminescent substance can be produced by using the droplet ejection device.
  • various organic solvents and various organic solvents are formed as a composition in which various organic materials and organic inorganic halogen perovskites are dissolved or dispersed in a solvent by a wet method.
  • the organic solvent that can be used in the composition include benzene, toluene, xylene, mesitylene, tetrahydrofuran, dioxane, ethanol, methanol, n-propanol, isopropanol, n-butanol, t-butanol, acetonitrile, dimethyl sulfoxide, and dimethylformamide.
  • Chloroform, methylene chloride, carbon tetrachloride, ethyl acetate, hexane, cyclohexane and various other organic solvents can be used.
  • a low-polarity benzene derivative such as benzene, toluene, xylene, or mesitylene
  • a solution having a suitable concentration can be prepared, and the material contained in the ink can be prevented from being deteriorated by oxidation or the like. Therefore, it is preferable.
  • the boiling point is preferably 100 ° C. or higher, and toluene, xylene, and mesitylene are more preferable.
  • the organic compound having electron transporting property contained in the electron transporting region 121 in the light emitting device of one aspect of the present invention has an ordinary light refractive index in light of any wavelength ( ⁇ B) in the wavelength range of 455 nm or more and 465 nm or less.
  • ⁇ B any wavelength
  • the normal light refractive index for light having a wavelength of 1.50 or more and 1.75 or less or a wavelength of 633 nm is 1.45 or more and 1.70 or less.
  • the refractive index in the present specification is determined by measuring the thin film of the material, but in such a thin film, when the material has anisotropy.
  • the index of refraction for normal light and the index of refraction for anisotropy may be different.
  • the normal light refractive index is used as an index.
  • the electron transport region 121 contains such a material, it is possible to provide a layer having a low refractive index. By providing a layer having a small refractive index inside the EL layer, the light extraction efficiency is improved, and a light emitting element having high luminous efficiency can be obtained.
  • the refractive index of the organic compound constituting the light emitting device is about 1.8 to 1.9, and the light emitting device of one aspect of the present invention is provided with an electron transport region 121 having a layer having a small refractive index. This makes it possible to obtain a light emitting device having good light emitting efficiency.
  • the electron transport region 121 is ⁇ ordinary refractive index is less than 1.50 or more 1.75 with respect to light of B, preferably less than 1.50 to 1.70 It is preferable to include a layer. Further, the organic compound having electron transporting property contained in the electron transporting region preferably has an ordinary light refractive index of 1.50 or more and 1.75 or less, and 1.50 or more and 1.70 or less in the light of ⁇ B. Is more preferable.
  • the normal light refractive index of the organic compound having electron transportability used in the electron transport layer 114 of one aspect of the present invention in light having a wavelength of 633 nm. Is preferably 1.45 or more and 1.70 or less.
  • the organic compound having an electron transport property preferably has an alkyl group or a cycloalkyl group.
  • the refractive index can be lowered, and the electron transport layer 114 having a low refractive index can be realized.
  • the alkyl group of the organic compound having electron transportability is preferably an alkyl group having a branch, particularly preferably an alkyl group having 3 or 4 carbon atoms, and particularly preferably a tert-butyl group. ..
  • the electron-transporting organic compound has at least one 6-membered heteroaromatic ring containing 1 or more and 3 or less nitrogen, and forms a ring of an aromatic hydrocarbon ring having 6 to 14 carbon atoms. At least two of the aromatic hydrocarbon rings are benzene rings, and preferably contain an organic compound having a plurality of hydrocarbon groups forming bonds in sp3 hybrid orbitals.
  • the ratio of the number of carbon atoms forming a bond in the sp3 hybrid orbital to the total number of carbon atoms in the molecule of the organic compound is preferably 10% or more and 60% or less, preferably 10%. More preferably, it is 50% or less.
  • the integral value of the signal of less than 4 ppm in the measurement of the organic compound by 1 H-NMR may be 1 ⁇ 2 or more of the integral value of the signal of 4 ppm or more. preferable.
  • the hydrocarbon group forming a bond in all sp3 hybrid orbitals of the organic compound is bonded to an aromatic hydrocarbon ring having 6 to 14 carbon atoms to form the ring, and the aromatic hydrocarbon thereof is bonded to the aromatic hydrocarbon ring. It is preferable that the LUMO of the organic compound is not distributed on the ring.
  • the organic compound having an electron transporting property is preferably contained in the electron transporting layer 114 in the electron transporting region 121.
  • organic compound having an electron transport property is preferably an organic compound represented by the following general formula (G1).
  • A represents a 6-membered heteroaromatic ring containing 1 to 3 nitrogens, and any of a pyridine ring, a pyrimidine ring, a pyrazine ring, a pyridazine ring, and a triazine ring is preferable.
  • R 0 represents hydrogen, an alkyl group having 1 to 6 carbon atoms, alicyclic group having 3 to 10 carbon atoms or a substituent represented by formula (G1-1),, one of the.
  • At least one of R 1 to R 15 is a phenyl group having a substituent, and the other is independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, substituted or absent.
  • the phenyl group having the substituent has one or two substituents, each of which is independently an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, a substituent or no substituent.
  • the organic compound represented by the general formula (G1) has a plurality of hydrocarbon groups selected from an alkyl group having 1 to 6 carbon atoms and an alicyclic group having 3 to 10 carbon atoms, and is the total in the molecule.
  • the ratio of the total number of carbon atoms forming a bond in the sp3 hybrid orbital to the number of carbon atoms is 10% or more and 60% or less.
  • organic compound having an electron transport property an organic compound represented by the following general formula (G3) is preferable.
  • R 1 to R 15 is a phenyl group having a substituent, and the other is independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, and the like.
  • the phenyl group having the substituent has one or two substituents, each of which is independently an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, a substituent or no substituent.
  • the organic compound represented by the general formula (G3) has a plurality of hydrocarbon groups selected from an alkyl group having 1 to 6 carbon atoms and an alicyclic group having 3 to 10 carbon atoms, and is the total in the molecule.
  • the ratio of the number of carbon atoms forming a bond in the sp3 hybrid orbital to the number of carbon atoms is preferably 10% or more and 60% or less.
  • the phenyl group having a substituent is preferably a group represented by the following formula (G1-2).
  • represents a substituted or unsubstituted phenylene group, and is preferably a meta-position substituted phenylene group.
  • the substituent is preferably an alkyl group having 1 to 6 carbon atoms or an alicyclic group having 3 to 10 carbon atoms, more preferably an alkyl group having 1 to 6 carbon atoms, and tert-. It is more preferably a butyl group.
  • R 20 represents an alkyl group having 1 to 6 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, or an aromatic hydrocarbon group having 6 to 14 carbon atoms forming a substituted or unsubstituted ring.
  • m and n represent 1 or 2.
  • the plurality of ⁇ may be the same or different.
  • the plurality of R 20s may be the same or different.
  • R 20 is preferably a phenyl group, and is a phenyl group having an alkyl group having 1 to 6 carbon atoms or an alicyclic group having 3 to 10 carbon atoms in one or both of the two meta positions. ..
  • the substituent having the phenyl group at one or both of the two meta positions is more preferably an alkyl group having 1 to 6 carbon atoms, and further preferably a tert-butyl group.
  • the electron transport layer 114 of the electron transport region 121 contains an alkali metal metal complex together with an organic compound having electron transport properties.
  • an alkali metal metal complex a lithium metal complex is preferable.
  • the ligand of the metal complex is preferably a ligand containing an 8-quinolinolat structure such as typified by 8-quinolinolato-lithium.
  • the ligand containing the 8-quinolinolat structure preferably has an alkyl group, and when the lithium complex having the ligand containing the 8-quinolinolat structure has an alkyl group, the alkyl group contained in the complex. Is preferably one.
  • the alkyl group contained in the metal complex of the alkali metal is preferably any one of 1 to 3 carbon atoms, and particularly preferably a methyl group.
  • 8-Kinolinolato lithium having an alkyl group can be a metal complex having a small refractive index.
  • the normal light refractive index for light having a wavelength in the range of 455 nm or more and 465 nm or less in the thin film state is 1.45 or more and 1.70 or less
  • the normal light refractive index for light having a wavelength of 633 nm is 1.40 or more and 1.65 or less. can do.
  • 6-alkyl-8-quinolinolatolithium having an alkyl group at the 6-position there is an effect of lowering the driving voltage of the light emitting device.
  • 6-alkyl-8-quinolinolato-lithium it is more preferable to use 6-methyl-8-quinolinolato-lithium.
  • 6-alkyl-8-quinolinolato lithium can be expressed as the following general formula (G lq 1).
  • R represents an alkyl group having 1 to 3 carbon atoms.
  • a more preferable embodiment is a metal complex represented by the following structural formula (100).
  • the organic compound having an electron transporting property used for the electron transporting layer 114 in the light emitting device of one aspect of the present invention preferably has an alkyl group having 3 or 4 carbon atoms, but in particular, the electron transporting property. It is preferable that the organic compound having the above has a plurality of the alkyl groups. However, if the number of alkyl groups in the molecule is too large, the carrier transport property is lowered. Therefore, the proportion of carbon forming a bond in the sp3 hybrid orbital of the organic compound having electron transport property is the total carbon of the organic compound. It is preferably 10% or more and 60% or less, and more preferably 10% or more and 50% or less with respect to the number. An organic compound having an electron transporting property having such a structure can realize a low refractive index without significantly impairing the electron transporting property.
  • the presence of an alkyl group or a cycloalkyl group inhibits the interaction (also referred to as docking) between the organic compound having electron transport property and the metal complex of the alkali metal, and causes an increase in the driving voltage.
  • a large increase in the driving voltage makes it possible to obtain a light emitting device having a layer having a small refractive index in the electron transport region 121 and having good light emitting efficiency.
  • the light emitting device of one aspect of the present invention has an EL layer 103 composed of a plurality of layers between the pair of electrodes of the anode 101 and the cathode 102, and the EL layer 103 has a light emitting material. It has a layer 113 and a hole transport region 120 and an electron transport region 121 having the above-described configuration.
  • the anode 101 is preferably formed by using a metal, an alloy, a conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • a metal an alloy, a conductive compound, a mixture thereof, or the like having a large work function (specifically, 4.0 eV or more).
  • ITO Indium Tin Oxide
  • IWZO indium Tin Oxide
  • These conductive metal oxide films are usually formed by a sputtering method, but may be produced by applying a sol-gel method or the like.
  • indium oxide-zinc oxide may be formed by a sputtering method using a target in which 1 to 20 wt% zinc oxide is added to indium oxide.
  • Indium oxide (IWZO) containing tungsten oxide and zinc oxide is formed by a sputtering method using a target containing 0.5 to 5 wt% of tungsten oxide and 0.1 to 1 wt% of zinc oxide with respect to indium oxide. You can also do it.
  • the materials used for the anode 101 include, for example, gold (Au), platinum (Pt), nickel (Ni), tungsten (W), chromium (Cr), molybdenum (Mo), iron (Fe), and cobalt.
  • Electrodes of metallic materials (for example, titanium nitride) and the like can be mentioned.
  • graphene can also be used as the material used for the anode 101.
  • the anode 101 When the anode 101 is made of a material having transparency to visible light, it can be a light emitting device that emits light from the anode side as shown in FIG. 1C. Such a light emitting device can be a so-called top emission type light emitting device when the anode 101 is manufactured on the substrate side.
  • the EL layer 103 preferably has a laminated structure, but the laminated structure is not particularly limited, and is a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a carrier block layer.
  • Various layer structures such as (hole block layer, electron block layer), exciton block layer, and charge generation layer can be applied. It should be noted that any layer may not be provided.
  • the hole injecting layer 111 and the hole transporting layer 112 are provided in the hole transporting region 120, and the electron transporting layer 114 and the electron transporting layer 112 are provided in the electron transporting region 121.
  • the light emitting layer 113 has a light emitting substance and a host material.
  • the light emitting layer 113 may contain other materials at the same time. Further, a plurality of layers having different compositions may be laminated.
  • the luminescent substance may be a fluorescent luminescent substance, a phosphorescent luminescent substance, a substance exhibiting thermal activated delayed fluorescence (TADF), or another luminescent substance.
  • TADF thermal activated delayed fluorescence
  • Examples of the material that can be used as the fluorescent light emitting substance in the light emitting layer 113 include the following. Further, other fluorescent light emitting substances can also be used.
  • condensed aromatic diamine compounds typified by pyrenediamine compounds such as 1,6FLPAPrn, 1,6 mMlemFLPARn, and 1,6BnfAPrn-03 are preferable because they have high hole trapping properties and excellent luminous efficiency and reliability.
  • a phosphorescent luminescent substance is used as the luminescent substance in the light emitting layer 113
  • examples of the materials that can be used include the following.
  • Tris (4-methyl-6-phenylpyrimidineat) iridium (III) (abbreviation: [Ir (mppm) 3 ]
  • Tris (4-tert-butyl 6-phenylpyrimidinat) iridium (III) ( Abbreviation: [Ir (tBuppm) 3 ])
  • (Acetylacetone) Bis (6-methyl-4-phenylpyrimidinat) Iridium (III) (Abbreviation: [Ir (mppm) 2 (acac)]
  • (Acetylacetonato) Bis [6- (2-norbornyl) ) -4-Phenylpyrimidinat] iridium (III) (abbreviation: [Ir (nbppm)
  • the organometallic iridium complex having a pyrimidine skeleton is particularly preferable because it is remarkably excellent in reliability and luminous efficiency.
  • the iridium complex represented by the following structural formula as the light emitting material. Since the following iridium complex has an alkyl group, it is easily dissolved in an organic solvent and the varnish is easily adjusted.
  • Triphenylpyrazinato) Iridium (III) (abbreviation: [Ir (tppr) 2 (acac)]), Bis (2,3,5-triphenylpyrazinato) (Dipivaloylmethanato) Iridium (III) (Abbreviation: [Ir (tppr) 2 (dpm)]), (Acetylacetonato) bis [2,3-bis (4-fluorophenyl) quinoxalinato] Iridium (III) (abbreviation: [Ir (Fdpq) 2 (acac) )]) Organic metal iridium complex with pyrazine skeleton, tris (1-phenylisoquinolinato-N, C 2' ) iridium (III) (abbreviation: [Ir (piq) 3 ]), bis (1) -Phenylisoquinolinato-N, C 2' ) Iridium (III) Acetylacetonate (
  • known phosphorescent compounds may be selected and used.
  • TADF material fullerene and its derivatives, acridine and its derivatives, eosin derivatives and the like can be used.
  • metal-containing porphyrin include a protoporphyrin-tin fluoride complex (SnF 2 (Proto IX)), a mesoporphyrin-tin fluoride complex (SnF 2 (Meso IX)) and hematoporphyrin represented by the following structural formulas.
  • Heterocyclic compounds having one or both can also be used. Since the heterocyclic compound has a ⁇ -electron excess type heteroaromatic ring and a ⁇ -electron deficiency type heteroaromatic ring, both electron transportability and hole transportability are high, which is preferable.
  • the skeletons having a ⁇ -electron deficient heteroaromatic ring the pyridine skeleton, the diazine skeleton (pyrimidine skeleton, pyrazine skeleton, pyridazine skeleton), and triazine skeleton are preferable because they are stable and have good reliability.
  • the benzoflopyrimidine skeleton, the benzothienopyrimidine skeleton, the benzoflopyrazine skeleton, and the benzothienopyrazine skeleton are preferable because they have high acceptability and good reliability.
  • the skeletons having a ⁇ -electron-rich heteroaromatic ring, the acridin skeleton, the phenoxazine skeleton, the phenothiazine skeleton, the furan skeleton, the thiophene skeleton, and the pyrrole skeleton are stable and have good reliability, and therefore at least one of the skeletons. It is preferable to have.
  • the furan skeleton is preferably a dibenzofuran skeleton
  • the thiophene skeleton is preferably a dibenzothiophene skeleton.
  • the pyrrole skeleton an indole skeleton, a carbazole skeleton, an indolecarbazole skeleton, a bicarbazole skeleton, and a 3- (9-phenyl-9H-carbazole-3-yl) -9H-carbazole skeleton are particularly preferable.
  • the substance in which the ⁇ -electron-rich heteroaromatic ring and the ⁇ -electron-deficient heteroaromatic ring are directly bonded has both the electron donating property of the ⁇ -electron-rich heteroaromatic ring and the electron acceptability of the ⁇ -electron-deficient heteroaromatic ring. It becomes stronger and the energy difference between the S1 level and the T1 level becomes smaller, which is particularly preferable because the heat-activated delayed fluorescence can be efficiently obtained.
  • an aromatic ring to which an electron-withdrawing group such as a cyano group is bonded may be used.
  • an aromatic amine skeleton, a phenazine skeleton, or the like can be used.
  • An aromatic ring having a group or a cyano group, a heteroaromatic ring, a carbonyl skeleton such as benzophenone, a phosphine oxide skeleton, a sulfone skeleton and the like can be used.
  • a ⁇ -electron-deficient skeleton and a ⁇ -electron-rich skeleton can be used in place of at least one of the ⁇ -electron-deficient heteroaromatic ring and the ⁇ -electron-rich heteroaromatic ring.
  • the TADF material is a material having a small difference between the S1 level and the T1 level and having a function of converting energy from triplet excitation energy to singlet excitation energy by crossing between inverse terms. Therefore, the triplet excited energy can be up-converted to the singlet excited energy (intersystem crossing) with a small amount of thermal energy, and the singlet excited state can be efficiently generated. In addition, triplet excitation energy can be converted into light emission.
  • an excited complex also referred to as an exciplex, an exciplex or an Exciplex
  • the difference between the S1 level and the T1 level is extremely small, and the triplet excitation energy is the singlet excitation energy. It has a function as a TADF material that can be converted into.
  • a phosphorescence spectrum observed at a low temperature may be used.
  • a tangent line is drawn at the hem on the short wavelength side of the fluorescence spectrum
  • the energy of the wavelength of the extraline is set to the S1 level
  • a tangent line is drawn at the hem on the short wavelength side of the phosphorescence spectrum, and the extrapolation thereof is performed.
  • the difference between S1 and T1 is preferably 0.3 eV or less, and more preferably 0.2 eV or less.
  • the S1 level of the host material is higher than the S1 level of the TADF material. Further, it is preferable that the T1 level of the host material is higher than the T1 level of the TADF material.
  • various carrier transport materials such as a material having an electron transport property, a material having a hole transport property, and the TADF material can be used.
  • the material having a hole transport property it is preferable to have a hole mobility of 1 ⁇ 10 -6 cm 2 / Vs or more.
  • organic compounds having an amine skeleton or a ⁇ -electron-rich heteroaromatic ring skeleton are preferable, and for example, 4,4'-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (abbreviation: NPB), N, N'-bis (3-methylphenyl) -N, N'-diphenyl- [1,1'-biphenyl] -4,4'-diamine (abbreviation: TPD), 4,4'-bis [N- (spiro) -9,9'-bifluoren-2-yl) -N-phenylamino] biphenyl (abbreviation: Benzene), 4-phenyl-4'-(9-phenylfluoren-9-yl) triphenylamine (abbreviation:
  • Dibenzofuran (abbreviation: DBF3P-II), 4- ⁇ 3- [3- (9-phenyl-9H-fluorene-9-yl) phenyl] phenyl ⁇ dibenzofuran (abbreviation: mmDBFFLBi-II) and other compounds having a furan skeleton.
  • DBF3P-II Dibenzofuran
  • mmDBFFLBi-II dibenzofuran
  • the compound having an aromatic amine skeleton and the compound having a carbazole skeleton are preferable because they have good reliability, high hole transportability, and contribute to reduction of driving voltage.
  • N- (4-biphenyl) -6 N-diphenylbenzo [b] naphtho [1,2-d] furan-8-amine (abbreviation: BnfABP), N, N-bis (4-biphenyl) -6.
  • Examples of the material having electron transportability include bis (10-hydroxybenzo [h] quinolinato) berylium (II) (abbreviation: BeBq 2 ) and bis (2-methyl-8-quinolinolato) (4-phenylphenolato).
  • Aluminum (III) (abbreviation: BAlq), bis (8-quinolinolato) zinc (II) (abbreviation: Znq), bis [2- (2-benzoxazolyl) phenolato] zinc (II) (abbreviation: ZnPBO), Metal complexes such as bis [2- (2-benzothiazolyl) phenolato] zinc (II) (abbreviation: ZnBTZ) and organic compounds having a ⁇ -electron-deficient heteroaromatic ring skeleton are preferable.
  • Examples of the organic compound having a ⁇ -electron-deficient heterocyclic ring skeleton include 2- (4-biphenylyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (abbreviation: PBD).
  • Examples include heterocyclic compounds.
  • a heterocyclic compound having a diazine skeleton, a heterocyclic compound having a pyridine skeleton, and a heterocyclic compound having a triazine skeleton are preferable because they have good reliability.
  • a heterocyclic compound having a diazine (pyrimidine or pyrazine) skeleton and a heterocyclic compound having a triazine skeleton have high electron transport properties and contribute to reduction of driving voltage.
  • the TADF material that can be used as the host material
  • those listed above as the TADF material can also be used in the same manner.
  • the triplet excitation energy generated by the TADF material is converted to singlet excitation energy by crossing between inverse terms, and further energy is transferred to the light emitting material, thereby increasing the light emission efficiency of the light emitting device. be able to.
  • the TADF material functions as an energy donor and the luminescent material functions as an energy acceptor.
  • the S1 level of the TADF material is higher than the S1 level of the fluorescent light emitting substance.
  • the T1 level of the TADF material is preferably higher than the S1 level of the fluorescent light emitting substance. Therefore, the T1 level of the TADF material is preferably higher than the T1 level of the fluorescent light emitting substance.
  • a TADF material that emits light so as to overlap the wavelength of the absorption band on the lowest energy side of the fluorescent light emitting substance.
  • the TADF material in order to efficiently generate singlet excitation energy from triplet excitation energy by reverse intersystem crossing, it is preferable that carrier recombination occurs in the TADF material. Further, it is preferable that the triplet excitation energy generated by the TADF material does not transfer to the triplet excitation energy of the fluorescent light emitting substance.
  • the fluorescent light-emitting substance has a protecting group around the chromophore (skeleton that causes light emission) of the fluorescent light-emitting substance.
  • a substituent having no ⁇ bond is preferable, a saturated hydrocarbon is preferable, specifically, an alkyl group having 3 or more and 10 or less carbon atoms, and a substituted or unsubstituted cyclo having 3 or more and 10 or less carbon atoms. Examples thereof include an alkyl group and a trialkylsilyl group having 3 or more and 10 or less carbon atoms, and it is more preferable that there are a plurality of protecting groups.
  • Substituents that do not have ⁇ bonds have a poor ability to transport carriers, so they can increase the distance between the TADF material and the chromophore of the fluorescent luminescent material with little effect on carrier transport or carrier recombination. ..
  • the chromophore refers to an atomic group (skeleton) that causes light emission in a fluorescent luminescent substance.
  • the chromophore preferably has a skeleton having a ⁇ bond, preferably contains an aromatic ring, and preferably has a condensed aromatic ring or a condensed heteroaromatic ring.
  • Examples of the fused aromatic ring or the condensed heteroaromatic ring include a phenanthrene skeleton, a stilbene skeleton, an acridone skeleton, a phenoxazine skeleton, and a phenothiazine skeleton.
  • a fluorescent substance having a naphthalene skeleton, anthracene skeleton, fluorene skeleton, chrysene skeleton, triphenylene skeleton, tetracene skeleton, pyrene skeleton, perylene skeleton, coumarin skeleton, quinacridone skeleton, and naphthobisbenzofuran skeleton is preferable because of its high fluorescence quantum yield.
  • a material having an anthracene skeleton is suitable as the host material.
  • a substance having an anthracene skeleton is used as a host material for a fluorescent light emitting substance, it is possible to realize a light emitting layer having good luminous efficiency and durability.
  • a diphenylanthracene skeleton, particularly a substance having a 9,10-diphenylanthracene skeleton is preferable because it is chemically stable.
  • the host material has a carbazole skeleton
  • the injection / transportability of holes is enhanced, but when the host material contains a benzocarbazole skeleton in which a benzene ring is further condensed with carbazole, the HOMO is about 0.1 eV shallower than that of carbazole.
  • the host material contains a dibenzocarbazole skeleton
  • HOMO is about 0.1 eV shallower than that of carbazole, holes are easily entered, holes are easily transported, and heat resistance is high, which is suitable. ..
  • a substance having a 9,10-diphenylanthracene skeleton and a carbazole skeleton (or a benzocarbazole skeleton or a dibenzocarbazole skeleton) at the same time is further preferable as a host material.
  • a benzofluorene skeleton or a dibenzofluorene skeleton may be used instead of the carbazole skeleton.
  • examples of such substances are 9-phenyl-3- [4- (10-phenyl-9-anthryl) phenyl] -9H-carbazole (abbreviation: PCzPA), 3- [4- (1-naphthyl)-.
  • Phenyl] -9-Phenyl-9H-carbazole (abbreviation: PCPN), 9- [4- (10-phenyl-9-anthrasenyl) phenyl] -9H-carbazole (abbreviation: CzPA), 7- [4- (10-) Phenyl-9-anthryl) phenyl] -7H-dibenzo [c, g] carbazole (abbreviation: cgDBCzPA), 6- [3- (9,10-diphenyl-2-anthryl) phenyl] -benzo [b] naphtho [1 , 2-d] Fran (abbreviation: 2mBnfPPA), 9-Phenyl-10- ⁇ 4- (9-phenyl-9H-fluoren-9-yl) biphenyl-4'-yl ⁇ anthracene (abbreviation: FLPPA), 9- (1-naphthyl) -10- [4- (2-n
  • the host material may be a material in which a plurality of kinds of substances are mixed, and when a mixed host material is used, it is preferable to mix a material having an electron transport property and a material having a hole transport property. ..
  • a material having an electron transport property 1: 19 to 19: 1.
  • a phosphorescent substance can be used as a part of the mixed material.
  • the phosphorescent light-emitting substance can be used as an energy donor that supplies excitation energy to the fluorescent light-emitting substance when the fluorescent light-emitting substance is used as the light-emitting substance.
  • an excited complex may be formed between these mixed materials.
  • At least one of the materials forming the excitation complex may be a phosphorescent substance.
  • the HOMO level of the material having hole transportability is equal to or higher than the HOMO level of the material having electron transportability.
  • the LUMO level of the material having hole transportability is equal to or higher than the LUMO level of the material having electron transportability.
  • the LUMO level and HOMO level of the material can be derived from the electrochemical properties (reduction potential and oxidation potential) of the material measured by cyclic voltammetry (CV) measurement.
  • the emission spectrum of the material having hole transport property, the emission spectrum of the material having electron transport property, and the emission spectrum of the mixed film in which these materials are mixed are compared, and the emission spectrum of the mixed film is compared.
  • the transient photoluminescence (PL) of the material having hole transportability, the transient PL of the material having electron transportability, and the transient PL of the mixed membrane in which these materials are mixed are compared, and the transient PL lifetime of the mixed membrane is determined.
  • transient PL may be read as transient electroluminescence (EL). That is, the formation of an excited complex can also be formed by comparing the transient EL of the material having hole transportability, the transient EL of the material having electron transportability, and the transient EL of the mixed membrane thereof, and observing the difference in the transient response. You can check.
  • EL transient electroluminescence
  • the electron transport layer 114 can be a layer having a small refractive index by having the configuration of the present invention, it is possible to form a layer having a low refractive index inside the EL layer 103 without significantly lowering the driving voltage. , It is possible to improve the external quantum efficiency of the light emitting device.
  • the electron transport layer 114 having this configuration may also serve as the electron injection layer 115.
  • the alkali metal or the metal complex of the alkali metal has a concentration difference (including the case where it is 0) in the electron transport layer 114 in the thickness direction.
  • lithium fluoride LiF
  • cesium fluoride CsF
  • calcium fluoride CaF 2
  • 8-hydroxyquinolinato-lithium abbreviation::
  • a layer containing an alkali metal or alkaline earth metal such as Liq) or a compound or complex thereof may be provided.
  • an alkali metal, an alkaline earth metal, or a compound thereof contained in a layer made of a substance having electron transporting property, or an electride may be used. Examples of the electride include a substance in which a high concentration of electrons is added to a mixed oxide of calcium and aluminum.
  • ToF-SIMS analysis of the electron injection layer of a light emitting device having sodium fluoride in the electron injection layer 115 shows that the number of bonds between sodium and fluorine varies, such as Na 2 F + , NaF 2 ⁇ , and Na 2 F 3 ⁇ . Signals derived from ions or cations are observed.
  • a layer containing an alkaline earth metal such as barium may be provided in contact with the cathode. This is preferable because the electron injection property from the cathode is improved.
  • the layer containing barium may have a compound aromatic compound at the same time.
  • a compound aromatic compound an organic compound having a phenanthroline skeleton is preferable, and 2-phenyl-9- [3- (9-phenyl-1,10-phenanthroline-2-yl) represented by the following structural formula is particularly preferable. Phenyl] -1,10-phenanthroline and the like are preferable.
  • the electron-injected layer 115 contains an electron-transporting substance (preferably an organic compound having a bipyridine skeleton) containing fluoride of the alkali metal or alkaline earth metal at a concentration of 50 wt% or more so as to be in a microcrystalline state. It is also possible to use a layer that has been removed. Since the layer has a low refractive index, it is possible to provide a light emitting device having better external quantum efficiency.
  • an electron-transporting substance preferably an organic compound having a bipyridine skeleton
  • a charge generation layer 116 may be provided instead of the electron injection layer 115 of FIG. 1A (FIG. 1B).
  • the charge generation layer 116 is a layer capable of injecting holes into the layer in contact with the cathode side and electrons into the layer in contact with the anode side by applying an electric potential.
  • the charge generation layer 116 includes at least a P-type layer 117.
  • the P-type layer 117 is preferably formed by using the composite material mentioned as a material that can form the hole injection layer 111 described above. Further, the P-type layer 117 may be formed by laminating a film containing the above-mentioned acceptor material and a film containing a hole transport material as a material constituting the composite material. By applying an electric potential to the P-type layer 117, electrons are injected into the electron transport layer 114 and holes are injected into the cathode 102, which is a cathode, and the light emitting device operates.
  • the charge generation layer 116 is provided with either one or both of the electron relay layer 118 and the electron injection buffer layer 119 in addition to the P-type layer 117.
  • the electron relay layer 118 contains at least a substance having electron transportability, and has a function of preventing interaction between the electron injection buffer layer 119 and the P-type layer 117 and smoothly transferring electrons.
  • the LUMO level of the electron-transporting substance contained in the electron relay layer 118 is the LUMO level of the accepting substance in the P-type layer 117 and the substance contained in the layer in contact with the charge generating layer 116 in the electron transporting layer 114. It is preferably between the LUMO level.
  • the specific energy level of the LUMO level in the electron-transporting material used for the electron relay layer 118 is preferably ⁇ 5.0 eV or higher, preferably ⁇ 5.0 eV or higher and ⁇ 3.0 eV or lower.
  • the substance having electron transportability used for the electron relay layer 118 it is preferable to use a phthalocyanine-based material or a metal complex having a metal-oxygen bond and an aromatic ligand.
  • the electron injection buffer layer 119 includes alkali metals, alkaline earth metals, rare earth metals, and compounds thereof (alkali metal compounds (including oxides such as lithium oxide, halides, and carbonates such as lithium carbonate and cesium carbonate). , Alkaline earth metal compounds (including oxides, halides and carbonates), or rare earth metal compounds (including oxides, halides and carbonates)) and other highly electron-injectable substances can be used. Is.
  • the donor substance includes an alkali metal, an alkaline earth metal, a rare earth metal, and a compound thereof (as a donor substance).
  • Alkali metal compounds including oxides such as lithium oxide, halides, and carbonates such as lithium carbonate and cesium carbonate
  • alkaline earth metal compounds including oxides, halides, and carbonates
  • rare earth metal compounds include oxides, halides, and carbonates
  • organic compounds such as tetrathianaphthalene (abbreviation: TTN), nickerosen, and decamethyl nickerosen can also be used.
  • the substance having electron transportability it can be formed by using the same material as the material constituting the electron transport layer 114 described above. Since the material is an organic compound having a low refractive index, it is possible to obtain a light emitting device having good external quantum efficiency by using it for the electron injection buffer layer 119.
  • a metal having a small work function (specifically, 3.8 eV or less), an alloy, an electrically conductive compound, a mixture thereof, or the like
  • a cathode material include alkali metals such as lithium (Li) and cesium (Cs), and group 1 or group 1 of the periodic table of elements such as magnesium (Mg), calcium (Ca), and strontium (Sr).
  • alkali metals such as lithium (Li) and cesium (Cs)
  • group 1 or group 1 of the periodic table of elements such as magnesium (Mg), calcium (Ca), and strontium (Sr).
  • Mg magnesium
  • Ca calcium
  • examples thereof include elements belonging to Group 2, rare earth metals such as alloys containing them (MgAg, AlLi), europium (Eu), ytterbium (Yb), and alloys containing these.
  • various indium oxide-tin oxide containing Al, Ag, ITO, silicon or silicon oxide can be used regardless of the size of the work function.
  • a conductive material can be used as the cathode 102.
  • the cathode 102 When the cathode 102 is made of a material having transparency to visible light, it can be a light emitting device that emits light from the cathode side as shown in FIG. 1D.
  • a light emitting device having such a cathode can be a so-called top emission type light emitting device when the anode 101 is manufactured on the substrate side.
  • These conductive materials can be formed into a film by using a dry method such as a vacuum vapor deposition method or a sputtering method, an inkjet method, a spin coating method, or the like. Further, it may be formed by a wet method using a sol-gel method, or may be formed by a wet method using a paste of a metal material.
  • a dry method such as a vacuum vapor deposition method or a sputtering method, an inkjet method, a spin coating method, or the like. Further, it may be formed by a wet method using a sol-gel method, or may be formed by a wet method using a paste of a metal material.
  • a method for forming the EL layer 103 various methods can be used regardless of whether it is a dry method or a wet method.
  • a vacuum vapor deposition method, a gravure printing method, an offset printing method, a screen printing method, an inkjet method, a spin coating method, or the like may be used.
  • each electrode or each layer described above may be formed by using a different film forming method.
  • the structure of the layer provided between the anode 101 and the cathode 102 is not limited to the above. However, a light emitting region in which holes and electrons recombine at a portion distant from the anode 101 and the cathode 102 so that quenching caused by the proximity of the light emitting region to the metal used for the electrode or carrier injection layer is suppressed. Is preferable.
  • the hole transport layer and the electron transport layer in contact with the light emitting layer 113 suppresses the energy transfer from the excitons generated in the light emitting layer, so that the band gap thereof.
  • a light emitting device also referred to as a laminated element or a tandem type element
  • This light emitting device is a light emitting device having a plurality of light emitting units between the anode and the cathode.
  • One light emitting unit has substantially the same configuration as the EL layer 103 shown in FIG. 1A. That is, it can be said that the tandem type element is a light emitting device having a plurality of light emitting units, and the light emitting device shown in FIG. 1A or FIG. 1B is a light emitting device having one light emitting unit.
  • a first light emitting unit and a second light emitting unit are laminated between an anode and a cathode, and a charge generation layer is provided between the first light emitting unit and the second light emitting unit.
  • the anode and cathode correspond to the anode 101 and the cathode 102 in FIG. 1A, respectively, and the same ones described in the description of FIG. 1A can be applied.
  • the first light emitting unit and the second light emitting unit may have the same configuration or different configurations from each other.
  • the charge generation layer in the tandem device has a function of injecting electrons into one light emitting unit and injecting holes into the other light emitting unit when a voltage is applied to the anode and the cathode. That is, when a voltage is applied so that the potential of the anode is higher than the potential of the cathode, the charge generation layer injects electrons into the first light emitting unit and holes into the second light emitting unit. Anything is fine.
  • the charge generation layer is preferably formed in the same configuration as the charge generation layer 116 described with reference to FIG. 1B. Since the composite material of the organic compound and the metal oxide is excellent in carrier injection property and carrier transport property, low voltage drive and low current drive can be realized. When the surface of the light emitting unit on the anode side is in contact with the charge generating layer, the charge generating layer can also serve as the hole injection layer of the light emitting unit, so that the light emitting unit does not have a hole injection layer. Also good.
  • the electron injection buffer layer 119 plays the role of the electron injection layer in the light emitting unit on the anode side, so that the light emitting unit on the anode side does not necessarily have electrons. There is no need to form an injection layer.
  • tandem type element having two light emitting units has been described above, the same can be applied to a tandem type element in which three or more light emitting units are laminated.
  • a tandem type element in which three or more light emitting units are laminated.
  • each light emitting unit by making the emission color of each light emitting unit different, it is possible to obtain light emission of a desired color as the entire light emitting device. For example, in a light emitting device having two light emitting units, a light emitting device that emits white light as a whole by obtaining a red and green light emitting color from the first light emitting unit and a blue light emitting color from the second light emitting unit. It is also possible to get it.
  • each layer or electrode such as the EL layer 103, the first light emitting unit, the second light emitting unit, and the charge generation layer may be, for example, a vapor deposition method (including a vacuum vapor deposition method) or a droplet ejection method (both an inkjet method). It can be formed by using a method such as a coating method or a gravure printing method. They may also include small molecule materials, medium molecule materials (including oligomers, dendrimers), or polymer materials.
  • FIGS. 2A and 2B a light emitting device manufactured by using the light emitting device according to the first embodiment will be described with reference to FIGS. 2A and 2B.
  • 2A is a top view showing the light emitting device
  • FIG. 2B is a cross-sectional view cut along the alternate long and short dash line AB and the alternate long and short dash line CD shown in FIG. 2A.
  • This light emitting device includes a drive circuit unit (source line drive circuit) 601, a pixel unit 602, and a drive circuit unit (gate line drive circuit) 603 shown by dotted lines to control the light emission of the light emitting device.
  • 604 is a sealing substrate
  • 605 is a sealing material
  • the inside surrounded by the sealing material 605 is a space 607.
  • the routing wiring 608 is a wiring for transmitting signals input to the source line drive circuit 601 and the gate line drive circuit 603, and is a video signal, a clock signal, and a video signal and a clock signal from the FPC (flexible print circuit) 609 which is an external input terminal. Receives start signal, reset signal, etc. Although only the FPC is shown here, a printed wiring board (PWB) may be attached to the FPC.
  • the light emitting device in the present specification includes not only the light emitting device main body but also a state in which an FPC or PWB is attached to the light emitting device main body.
  • a drive circuit unit and a pixel unit are formed on the element substrate 610, and here, a source line drive circuit 601 which is a drive circuit unit and one pixel in the pixel unit 602 are shown.
  • the element substrate 610 is manufactured by using a substrate made of glass, quartz, organic resin, metal, alloy, semiconductor, etc., as well as a plastic substrate made of FRP (Fiber Reinforced Plastics), PVF (polyvinyl flolide), polyester, acrylic resin, etc. do it.
  • FRP Fiber Reinforced Plastics
  • PVF polyvinyl flolide
  • polyester acrylic resin, etc. do it.
  • the structure of the transistor used for the pixel and the drive circuit is not particularly limited. For example, it may be an inverted stagger type transistor or a stagger type transistor. Further, a top gate type transistor or a bottom gate type transistor may be used.
  • the semiconductor material used for the transistor is not particularly limited, and for example, silicon, germanium, silicon carbide, gallium nitride and the like can be used. Alternatively, an oxide semiconductor containing at least one of indium, gallium, and zinc, such as an In-Ga-Zn-based metal oxide, may be used.
  • the crystallinity of the semiconductor material used for the transistor is not particularly limited, and either an amorphous semiconductor or a semiconductor having crystallinity (a fine crystal semiconductor, a polycrystalline semiconductor, a single crystal semiconductor, or a semiconductor having a partially crystallized region). May be used. It is preferable to use a semiconductor having crystallinity because deterioration of transistor characteristics can be suppressed.
  • an oxide semiconductor in addition to the transistors provided in the pixels and the drive circuit, it is preferable to apply an oxide semiconductor to a semiconductor device such as a transistor used in a touch sensor or the like described later. In particular, it is preferable to apply an oxide semiconductor having a wider bandgap than silicon. By using an oxide semiconductor having a wider bandgap than silicon, the current in the off state of the transistor can be reduced.
  • the oxide semiconductor preferably contains at least indium (In) or zinc (Zn). Further, the oxide semiconductor contains an oxide represented by an In—M—Zn-based oxide (M is a metal such as Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce or Hf). Is more preferable.
  • M is a metal such as Al, Ti, Ga, Ge, Y, Zr, Sn, La, Ce or Hf. Is more preferable.
  • the semiconductor layer has a plurality of crystal portions, and the c-axis of the crystal portion is oriented perpendicular to the surface to be formed of the semiconductor layer or the upper surface of the semiconductor layer, and grain boundaries are formed between adjacent crystal portions. It is preferable to use an oxide semiconductor film that does not have.
  • the transistor having the above-mentioned semiconductor layer can retain the electric charge accumulated in the capacitance through the transistor for a long period of time due to its low off current.
  • the transistor having the above-mentioned semiconductor layer can retain the electric charge accumulated in the capacitance through the transistor for a long period of time due to its low off current.
  • an undercoat for stabilizing the characteristics of the transistor is preferable to provide an undercoat for stabilizing the characteristics of the transistor.
  • an inorganic insulating film such as a silicon oxide film, a silicon nitride film, a silicon oxide nitride film, or a silicon nitride oxide film can be used, and can be produced as a single layer or laminated.
  • the undercoat is formed by using a sputtering method, a CVD (Chemical Vapor Deposition) method (plasma CVD method, thermal CVD method, MOCVD (Metal Organic CVD) method, etc.), an ALD (Atomic Layer Deposition) method, a coating method, a printing method, or the like. can.
  • the undercoat may not be provided if it is not necessary.
  • the FET 623 represents one of the transistors formed in the drive circuit unit 601.
  • the drive circuit may be formed of various CMOS circuits, epitaxial circuits or MIMO circuits.
  • the driver integrated type in which the drive circuit is formed on the substrate is shown, but it is not always necessary, and the drive circuit can be formed on the outside instead of on the substrate.
  • the pixel unit 602 is formed by a plurality of pixels including a switching FET 611, a current control FET 612, and an anode 613 electrically connected to the drain thereof, but the pixel portion 602 is not limited to this, and is not limited to three or more.
  • a pixel unit may be a combination of an FET and a capacitive element.
  • the insulator 614 is formed so as to cover the end portion of the anode 613.
  • it can be formed by using a positive type photosensitive acrylic resin film.
  • a curved surface having a curvature is formed at the upper end portion or the lower end portion of the insulating material 614.
  • a positive photosensitive acrylic resin is used as the material of the insulating material 614, it is preferable that only the upper end portion of the insulating material 614 has a curved surface having a radius of curvature (0.2 ⁇ m to 3 ⁇ m).
  • a negative type photosensitive resin or a positive type photosensitive resin can be used as the insulator 614.
  • An EL layer 616 and a cathode 617 are formed on the anode 613, respectively.
  • the material used for the anode 613 it is desirable to use a material having a large work function.
  • a laminated structure of a titanium nitride film and a film containing aluminum as a main component, a three-layer structure of a titanium nitride film and a film containing aluminum as a main component, and a titanium nitride film can be used. It should be noted that the laminated structure has low resistance as wiring, good ohmic contact can be obtained, and can further function as an anode.
  • the EL layer 616 is formed by various methods such as a vapor deposition method using a vapor deposition mask, an inkjet method, and a spin coating method.
  • the EL layer 616 includes a configuration as described in the first embodiment.
  • a low molecular weight compound or a high molecular weight compound may be used as another material constituting the EL layer 616.
  • the cathode 617 As the material formed on the EL layer 616 and used for the cathode 617, a material having a small work function (Al, Mg, Li, Ca, or an alloy or compound thereof (MgAg, MgIn, AlLi, etc.)) is used. Is preferable.
  • the cathode 617 is a thin metal thin film and a transparent conductive film (ITO, indium oxide containing 2 to 20 wt% zinc oxide. It is preferable to use a laminate with indium tin oxide containing silicon, zinc oxide (ZnO), etc.).
  • the light emitting device is formed by the anode 613, the EL layer 616, and the cathode 617.
  • the light emitting device is the light emitting device according to the first embodiment. Although a plurality of light emitting devices are formed in the pixel portion, in the light emitting device according to the present embodiment, both the light emitting device according to the first embodiment and the light emitting device having other configurations are mixed. You may be doing it.
  • the sealing substrate 604 by bonding the sealing substrate 604 to the element substrate 610 with the sealing material 605, the light emitting device 618 is provided in the space 607 surrounded by the element substrate 610, the sealing substrate 604, and the sealing material 605.
  • the space 607 is filled with a filler, and may be filled with an inert gas (nitrogen, argon, etc.) or a sealing material.
  • an epoxy resin or glass frit for the sealing material 605. Further, it is desirable that these materials are materials that do not allow moisture or oxygen to permeate as much as possible. Further, as the material used for the sealing substrate 604, in addition to the glass substrate and the quartz substrate, a plastic substrate made of FRP (Fiber Reinforced Plastics), PVF (polyvinyl fluoride), polyester, acrylic resin or the like can be used.
  • FRP Fiber Reinforced Plastics
  • PVF polyvinyl fluoride
  • polyester acrylic resin or the like
  • a protective film may be provided on the cathode.
  • the protective film may be formed of an organic resin film or an inorganic insulating film. Further, a protective film may be formed so as to cover the exposed portion of the sealing material 605. Further, the protective film can be provided so as to cover the surface and side surfaces of the pair of substrates, and the exposed side surfaces such as the sealing layer and the insulating layer.
  • the protective film a material that does not easily allow impurities such as water to permeate can be used. Therefore, it is possible to effectively suppress the diffusion of impurities such as water from the outside to the inside.
  • oxides, nitrides, fluorides, sulfides, ternary compounds, metals, polymers and the like can be used, and for example, aluminum oxide, hafnium oxide, hafnium silicate, lanthanum oxide and oxidation can be used.
  • the protective film is preferably formed by using a film forming method having good step coverage (step coverage).
  • a film forming method having good step coverage is the atomic layer deposition (ALD) method.
  • ALD atomic layer deposition
  • ALD method it is possible to form a protective film having a dense, reduced defects such as cracks and pinholes, or a uniform thickness.
  • damage to the processed member when forming the protective film can be reduced.
  • the protective film using the ALD method, it is possible to form a uniform protective film with few defects on the front surface having a complicated uneven shape and the upper surface, the side surface and the back surface of the touch panel.
  • a light emitting device manufactured by using the light emitting device according to the first embodiment can be obtained.
  • the light emitting device in the present embodiment uses the light emitting device according to the first embodiment, it is possible to obtain a light emitting device having good characteristics. Specifically, since the light emitting device according to the first embodiment has good luminous efficiency, it can be a light emitting device having low power consumption.
  • FIG. 3A and 3B show an example of a light emitting device in which a light emitting device exhibiting white light emission is formed and a colored layer (color filter) or the like is provided to make the light emitting device full color.
  • FIG. 3A shows a substrate 1001, an underlying insulating film 1002, a gate insulating film 1003, a gate electrode 1006, 1007, 1008, a first interlayer insulating film 1020, a second interlayer insulating film 1021, a peripheral portion 1042, a pixel portion 1040, and a drive.
  • the circuit unit 1041, the anode of the light emitting device 1024W, 1024R, 1024G, 1024B, the partition wall 1025, the EL layer 1028, the cathode of the light emitting device 1029, the sealing substrate 1031, the sealing material 1032, and the like are shown.
  • the colored layer (red colored layer 1034R, green colored layer 1034G, blue colored layer 1034B) is provided on the transparent base material 1033. Further, a black matrix 1035 may be further provided. The transparent base material 1033 provided with the colored layer and the black matrix is aligned and fixed to the substrate 1001. The colored layer and the black matrix 1035 are covered with an overcoat layer. Further, in FIG. 3A, the colored layer 1034R, green colored layer 1034G, blue colored layer 1034B) is provided on the transparent base material 1033. Further, a black matrix 1035 may be further provided. The transparent base material 1033 provided with the colored layer and the black matrix is aligned and fixed to the substrate 1001. The colored layer and the black matrix 1035 are covered with an overcoat layer. Further, in FIG.
  • the image can be expressed by the pixels of four colors.
  • FIG. 3B shows an example in which a colored layer (red colored layer 1034R, green colored layer 1034G, blue colored layer 1034B) is formed between the gate insulating film 1003 and the first interlayer insulating film 1020.
  • the colored layer may be provided between the substrate 1001 and the sealing substrate 1031.
  • the light emitting device has a structure that extracts light to the substrate 1001 side on which the FET is formed (bottom emission type), but has a structure that extracts light to the sealing substrate 1031 side (top emission type). ) May be used as a light emitting device.
  • a cross-sectional view of the top emission type light emitting device is shown in FIG.
  • the substrate 1001 can be a substrate that does not transmit light. It is formed in the same manner as the bottom emission type light emitting device until the connection electrode for connecting the FET and the anode of the light emitting device is manufactured.
  • the third interlayer insulating film 1037 is formed so as to cover the electrode 1022. This insulating film may play a role of flattening.
  • the third interlayer insulating film 1037 can be formed by using the same material as the second interlayer insulating film and other known materials.
  • the anode 1024W, 1024R, 1024G, 1024B of the light emitting device is used here as an anode, but may be a cathode. Further, in the case of the top emission type light emitting device as shown in FIG. 4, it is preferable to use the anode as a reflecting electrode.
  • the structure of the EL layer 1028 is the same as that described as the EL layer 103 in the first embodiment, and has an element structure such that white light emission can be obtained.
  • the sealing can be performed by the sealing substrate 1031 provided with the colored layer (red colored layer 1034R, green colored layer 1034G, blue colored layer 1034B).
  • the sealing substrate 1031 may be provided with a black matrix 1035 so as to be located between the pixels.
  • the colored layer (red colored layer 1034R, green colored layer 1034G, blue colored layer 1034B) and the black matrix may be covered with the overcoat layer 1036.
  • a substrate having translucency is used as the sealing substrate 1031.
  • full-color display with four colors of red, green, blue, and white is shown here, the present invention is not particularly limited, and full-color with four colors of red, yellow, green, and blue, and three colors of red, green, and blue. It may be displayed.
  • the microcavity structure can be preferably applied.
  • a light emitting device having a microcavity structure can be obtained by using a reflecting electrode as an anode and a semitransmissive / semi-reflecting electrode as a cathode.
  • An EL layer is provided between the reflective electrode and the semi-transmissive / semi-reflective electrode, and at least a light emitting layer serving as a light emitting region is provided.
  • the reflective electrode is a film having a visible light reflectance of 40% to 100%, preferably 70% to 100%, and a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less.
  • the semi-transmissive / semi-reflective electrode is a film having a visible light reflectance of 20% to 80%, preferably 40% to 70%, and a resistivity of 1 ⁇ 10 ⁇ 2 ⁇ cm or less. ..
  • the light emitted from the light emitting layer included in the EL layer is reflected by the reflective electrode and the semi-transmissive / semi-reflective electrode and resonates.
  • the light emitting device can change the optical distance between the reflective electrode and the semi-transmissive / semi-reflective electrode by changing the thickness of the transparent conductive film, the above-mentioned composite material, the carrier transport material, and the like. As a result, it is possible to intensify the light having a wavelength that resonates between the reflecting electrode and the semi-transmissive / semi-reflective electrode, and to attenuate the light having a wavelength that does not resonate.
  • the light reflected and returned by the reflecting electrode causes large interference with the light directly incident on the semi-transmissive / semi-reflecting electrode from the light emitting layer (first incident light), and is therefore reflected.
  • the EL layer may have a structure having a plurality of light emitting layers or a structure having a single light emitting layer, and may be combined with, for example, the above-mentioned configuration of the tandem type light emitting device.
  • a plurality of EL layers may be provided on one light emitting device with a charge generation layer interposed therebetween, and the present invention may be applied to a configuration in which a single or a plurality of light emitting layers are formed in each EL layer.
  • microcavity structure By having the microcavity structure, it is possible to enhance the emission intensity in the front direction of a specific wavelength, so that it is possible to reduce power consumption.
  • a microcavity structure that matches the wavelength of each color to all sub-pixels in addition to the effect of improving brightness by emitting yellow light. It can be a light emitting device with good characteristics.
  • the light emitting device in the present embodiment uses the light emitting device according to the first embodiment, it is possible to obtain a light emitting device having good characteristics. Specifically, since the light emitting device according to the first embodiment has good luminous efficiency, it can be a light emitting device having low power consumption.
  • FIG. 5A and 5B show a passive matrix type light emitting device manufactured by applying the present invention.
  • 5A is a perspective view showing the light emitting device
  • FIG. 5B is a cross-sectional view of FIG. 5A cut along the alternate long and short dash line XY.
  • an EL layer 955 is provided between the electrode 952 and the electrode 956 on the substrate 951.
  • the end of the electrode 952 is covered with an insulating layer 953.
  • a partition wall layer 954 is provided on the insulating layer 953.
  • the side wall of the partition wall layer 954 has an inclination such that the distance between one side wall and the other side wall becomes narrower as it gets closer to the substrate surface. That is, the cross section in the short side direction of the partition wall layer 954 is trapezoidal, and the bottom side (the side facing the same direction as the surface direction of the insulating layer 953 and in contact with the insulating layer 953) is the upper side (the surface of the insulating layer 953). It faces in the same direction as the direction, and is shorter than the side that does not contact the insulating layer 953).
  • the passive matrix type light emitting device also uses the light emitting device according to the first embodiment, and can be a highly reliable light emitting device or a light emitting device having low power consumption.
  • the light emitting device described above can control a large number of minute light emitting devices arranged in a matrix, it is a light emitting device that can be suitably used as a display device for expressing an image.
  • FIG. 6B is a top view of the lighting device
  • FIG. 6A is a cross-sectional view taken along the line segment ef shown in FIG. 6B.
  • the anode 401 is formed on the translucent substrate 400 which is a support.
  • the anode 401 corresponds to the anode 101 in the first embodiment.
  • the anode 401 is formed of a translucent material.
  • a pad 412 for supplying a voltage to the cathode 404 is formed on the substrate 400.
  • An EL layer 403 is formed on the anode 401.
  • the EL layer 403 corresponds to the configuration of the EL layer 103 in the first embodiment. Please refer to the description for these configurations.
  • a cathode 404 is formed by covering the EL layer 403.
  • the cathode 404 corresponds to the cathode 102 in the first embodiment.
  • the cathode 404 is formed of a material having high reflectance.
  • a voltage is supplied to the cathode 404 by connecting it to the pad 412.
  • the lighting device showing the light emitting device having the anode 401, the EL layer 403, and the cathode 404 in the present embodiment has. Since the light emitting device is a light emitting device having high luminous efficiency, the lighting device in the present embodiment can be a lighting device having low power consumption.
  • the lighting device is completed by fixing the substrate 400 on which the light emitting device having the above configuration is formed and the sealing substrate 407 using the sealing materials 405 and 406 and sealing them. Either one of the sealing materials 405 and 406 may be used. Further, a desiccant can be mixed with the inner sealing material 406 (not shown in FIG. 6B), whereby moisture can be adsorbed, which leads to improvement in reliability.
  • an IC chip 420 or the like on which a converter or the like is mounted may be provided on the IC chip 420.
  • the lighting device according to the present embodiment uses the light emitting device according to the first embodiment for the EL element, and can be a lighting device having low power consumption.
  • the light emitting device according to the first embodiment is a light emitting device having good luminous efficiency and low power consumption.
  • the electronic device described in the present embodiment can be an electronic device having a light emitting unit having low power consumption.
  • Examples of electronic devices to which the above light emitting device is applied include television devices (also referred to as televisions or television receivers), monitors for computers, digital cameras, digital video cameras, digital photo frames, mobile phones (mobile phones, etc.). (Also referred to as a mobile phone device), a portable game machine, a mobile information terminal, a sound reproduction device, a large game machine such as a pachinko machine, and the like. Specific examples of these electronic devices are shown below.
  • FIG. 7A shows an example of a television device.
  • the display unit 7103 is incorporated in the housing 7101. Further, here, a configuration in which the housing 7101 is supported by the stand 7105 is shown. An image can be displayed by the display unit 7103, and the display unit 7103 is configured by arranging the light emitting devices according to the first embodiment in a matrix.
  • the operation of the television device can be performed by an operation switch included in the housing 7101 or a separate remote control operation machine 7110.
  • the operation key 7109 included in the remote controller 7110 can be used to operate the channel and volume, and can operate the image displayed on the display unit 7103.
  • the remote controller 7110 may be provided with a display unit 7107 for displaying information output from the remote controller 7110.
  • the light emitting device according to the first embodiment which is arranged in a matrix, can also be applied to the display unit 7107.
  • the television device shall be configured to include a receiver, a modem, and the like.
  • the receiver can receive general television broadcasts, and by connecting to a wired or wireless communication network via a modem, one-way (sender to receiver) or two-way (sender and receiver). It is also possible to perform information communication between (or between receivers, etc.).
  • FIG. 7B1 is a computer, which includes a main body 7201, a housing 7202, a display unit 7203, a keyboard 7204, an external connection port 7205, a pointing device 7206, and the like.
  • This computer is manufactured by arranging the light emitting devices according to the first embodiment in a matrix and using them in the display unit 7203.
  • the computer of FIG. 7B1 may have the form shown in FIG. 7B2.
  • the computer of FIG. 7B2 is provided with a display unit 7210 instead of the keyboard 7204 and the pointing device 7206.
  • the display unit 7210 is a touch panel type, and input can be performed by operating the input display displayed on the display unit 7210 with a finger or a dedicated pen. Further, the display unit 7210 can display not only the input display but also other images. Further, the display unit 7203 may also be a touch panel. By connecting the two screens with a hinge, it is possible to prevent troubles such as damage or damage to the screens during storage or transportation.
  • FIG. 7C shows an example of a mobile terminal.
  • the mobile phone includes an operation button 7403, an external connection port 7404, a speaker 7405, a microphone 7406, and the like, in addition to the display unit 7402 incorporated in the housing 7401.
  • the mobile phone has a display unit 7402 manufactured by arranging the light emitting devices according to the first embodiment in a matrix.
  • the mobile terminal shown in FIG. 7C may be configured so that information can be input by touching the display unit 7402 with a finger or the like. In this case, operations such as making a phone call or composing an e-mail can be performed by touching the display unit 7402 with a finger or the like.
  • the screen of the display unit 7402 mainly has three modes. The first is a display mode mainly for displaying an image, and the second is an input mode mainly for inputting information such as characters. The third is a display + input mode in which two modes, a display mode and an input mode, are mixed.
  • the display unit 7402 may be set to a character input mode mainly for inputting characters, and the characters displayed on the screen may be input. In this case, it is preferable to display the keyboard or the number button on most of the screen of the display unit 7402.
  • the orientation (vertical or horizontal) of the mobile terminal is determined, and the screen display of the display unit 7402 is automatically displayed. Can be switched.
  • the screen mode can be switched by touching the display unit 7402 or by operating the operation button 7403 of the housing 7401. It is also possible to switch depending on the type of the image displayed on the display unit 7402. For example, if the image signal displayed on the display unit is moving image data, the display mode is switched, and if the image signal is text data, the input mode is switched.
  • the input mode the signal detected by the optical sensor of the display unit 7402 is detected, and if there is no input by the touch operation of the display unit 7402 for a certain period of time, the screen mode is switched from the input mode to the display mode. You may control it.
  • the display unit 7402 can also function as an image sensor.
  • the person can be authenticated by touching the display unit 7402 with a palm or a finger and taking an image of a palm print, a fingerprint, or the like.
  • a backlight that emits near-infrared light or a sensing light source that emits near-infrared light is used for the display unit, the finger vein, palm vein, and the like can be imaged.
  • the configurations shown in the present embodiment can be used by appropriately combining the configurations shown in the first to fourth embodiments.
  • the range of application of the light emitting device provided with the light emitting device according to the first embodiment or the second embodiment is extremely wide, and this light emitting device can be applied to electronic devices in all fields.
  • an electronic device having low power consumption can be obtained.
  • FIG. 8A is a schematic diagram showing an example of a cleaning robot.
  • the cleaning robot 5100 has a display 5101 arranged on the upper surface, a plurality of cameras 5102 arranged on the side surface, a brush 5103, and an operation button 5104. Although not shown, the lower surface of the cleaning robot 5100 is provided with tires, suction ports, and the like.
  • the cleaning robot 5100 also includes various sensors such as an infrared sensor, an ultrasonic sensor, an acceleration sensor, a piezo sensor, an optical sensor, and a gyro sensor. Further, the cleaning robot 5100 is provided with a wireless communication means.
  • the cleaning robot 5100 is self-propelled, can detect dust 5120, and can suck dust from a suction port provided on the lower surface.
  • the cleaning robot 5100 can analyze the image taken by the camera 5102 and determine the presence or absence of an obstacle such as a wall, furniture, or a step. Further, when an object that is likely to be entangled with the brush 5103 such as wiring is detected by image analysis, the rotation of the brush 5103 can be stopped.
  • the display 5101 can display the remaining battery level, the amount of sucked dust, and the like.
  • the route traveled by the cleaning robot 5100 may be displayed on the display 5101. Further, the display 5101 may be a touch panel, and the operation buttons 5104 may be provided on the display 5101.
  • the cleaning robot 5100 can communicate with a portable electronic device 5140 such as a smartphone.
  • the image taken by the camera 5102 can be displayed on the portable electronic device 5140. Therefore, the owner of the cleaning robot 5100 can know the state of the room even when he / she is out. Further, the display of the display 5101 can be confirmed by a portable electronic device such as a smartphone.
  • the light emitting device of one aspect of the present invention can be used for the display 5101.
  • the robot 2100 shown in FIG. 8B includes a computing device 2110, an illuminance sensor 2101, a microphone 2102, an upper camera 2103, a speaker 2104, a display 2105, a lower camera 2106, an obstacle sensor 2107, and a moving mechanism 2108.
  • the microphone 2102 has a function of detecting a user's voice, environmental sound, and the like. Further, the speaker 2104 has a function of emitting sound.
  • the robot 2100 can communicate with the user by using the microphone 2102 and the speaker 2104.
  • the display 2105 has a function of displaying various information.
  • the robot 2100 can display the information desired by the user on the display 2105.
  • the display 2105 may be equipped with a touch panel. Further, the display 2105 may be a removable information terminal, and by installing the display 2105 at a fixed position of the robot 2100, charging and data transfer are possible.
  • the upper camera 2103 and the lower camera 2106 have a function of photographing the surroundings of the robot 2100. Further, the obstacle sensor 2107 can detect the presence or absence of an obstacle in the traveling direction when the robot 2100 moves forward by using the moving mechanism 2108. The robot 2100 can recognize the surrounding environment and move safely by using the upper camera 2103, the lower camera 2106, and the obstacle sensor 2107.
  • the light emitting device of one aspect of the present invention can be used for the display 2105.
  • FIG. 8C is a diagram showing an example of a goggle type display.
  • the goggle type display includes, for example, a housing 5000, a display unit 5001, a speaker 5003, an LED lamp 5004, a connection terminal 5006, and a sensor 5007 (force, displacement, position, speed, acceleration, angular speed, rotation speed, distance, light, liquid, etc. Includes functions to measure magnetism, temperature, chemicals, voice, time, hardness, electric field, current, voltage, power, radiation, flow rate, humidity, gradient, vibration, odor, or infrared rays), microphone 5008, display 5002 , Support portion 5012, earphone 5013, etc.
  • the light emitting device of one aspect of the present invention can be used for the display unit 5001 and the display unit 5002.
  • FIG. 9 is an example in which the light emitting device according to the first embodiment is used for a desk lamp which is a lighting device.
  • the desk lamp shown in FIG. 9 has a housing 2001 and a light source 2002, and the lighting device according to the third embodiment may be used as the light source 2002.
  • FIG. 10 is an example in which the light emitting device according to the first embodiment is used as an indoor lighting device 3001. Since the light emitting device according to the first embodiment is a light emitting device having high luminous efficiency, it can be a lighting device having low power consumption. Further, since the light emitting device according to the first embodiment can have a large area, it can be used as a lighting device having a large area. Further, since the light emitting device according to the first embodiment is thin, it can be used as a thin lighting device.
  • the light emitting device according to the first embodiment can also be mounted on a windshield or a dashboard of an automobile.
  • FIG. 11 shows an aspect in which the light emitting device according to the first embodiment is used for a windshield or a dashboard of an automobile.
  • the display area 5200 to the display area 5203 are display areas provided by using the light emitting device according to the first embodiment.
  • the display area 5200 and the display area 5201 are display devices equipped with the light emitting device according to the first embodiment provided on the windshield of an automobile.
  • the light emitting device according to the first embodiment can be a so-called see-through display device in which the opposite side can be seen through by manufacturing the anode and the cathode with electrodes having translucency. If the display is in a see-through state, even if it is installed on the windshield of an automobile, it can be installed without obstructing the view.
  • a transistor for driving it is preferable to use a transistor having translucency, such as an organic transistor made of an organic semiconductor material or a transistor using an oxide semiconductor.
  • the display area 5202 is a display device provided with the light emitting device according to the first embodiment provided in the pillar portion. By projecting an image from an image pickup means provided on the vehicle body on the display area 5202, the field of view blocked by the pillars can be complemented.
  • the display area 5203 provided in the dashboard portion compensates for blind spots and enhances safety by projecting an image from an imaging means provided on the outside of the automobile in a field of view blocked by the vehicle body. Can be done. By projecting the image so as to complement the invisible part, it is possible to confirm the safety more naturally and without discomfort.
  • the display area 5203 can also provide various information such as navigation information, a speedometer, a tachometer, an air conditioner setting, and the like.
  • the display items and layout can be changed as appropriate according to the user's preference. It should be noted that these information can also be provided in the display area 5200 to the display area 5202. Further, the display area 5200 to the display area 5203 can also be used as a lighting device.
  • FIGS. 12A and 12B show a foldable mobile information terminal 5150.
  • the foldable portable information terminal 5150 has a housing 5151, a display area 5152, and a bent portion 5153.
  • FIG. 12A shows a mobile information terminal 5150 in an expanded state.
  • FIG. 12B shows a mobile information terminal in a folded state.
  • the portable information terminal 5150 has a large display area 5152, it is compact and excellent in portability when folded.
  • the display area 5152 can be folded in half by the bent portion 5153.
  • the bent portion 5153 is composed of a stretchable member and a plurality of support members. When folded, the stretchable member is stretched, and the bent portion 5153 is folded with a radius of curvature of 2 mm or more, preferably 3 mm or more. Is done.
  • the display area 5152 may be a touch panel (input / output device) equipped with a touch sensor (input device).
  • the light emitting device of one aspect of the present invention can be used for the display area 5152.
  • FIGS. 13A to 13C show a foldable mobile information terminal 9310.
  • FIG. 13A shows a mobile information terminal 9310 in an expanded state.
  • FIG. 13B shows a mobile information terminal 9310 in a state of being changed from one of the expanded state or the folded state to the other.
  • FIG. 13C shows a mobile information terminal 9310 in a folded state.
  • the mobile information terminal 9310 is excellent in portability in the folded state, and is excellent in the listability of the display due to the wide seamless display area in the unfolded state.
  • the display panel 9311 is supported by three housings 9315 connected by a hinge 9313.
  • the display panel 9311 may be a touch panel (input / output device) equipped with a touch sensor (input device). Further, the display panel 9311 can be reversibly deformed from the unfolded state to the folded state of the portable information terminal 9310 by bending between the two housings 9315 via the hinge 9313.
  • the light emitting device of one aspect of the present invention can be used for the display panel 9311.
  • LC separation For LC separation, use an arbitrary column at a column temperature of 40 ° C., select a solvent as appropriate for the liquid feeding conditions, prepare a sample by dissolving NSO-2 at an arbitrary concentration in an organic solvent, and inject the amount of 5. It was set to 0 ⁇ L.
  • the energy NCE (Normalized Collision Energy) for accelerating the target ion in the collision cell was measured as 50.
  • the MS spectrum obtained from the MS / MS measurement is shown in FIG.
  • ⁇ 2 of product ions may be detected as proton additions and desorbates.
  • sample 1 (mixed thin film of NSO-2 and DPA)
  • NSO-2 and DPA were dissolved in N, N-dimethylformamide (DMF) in a ratio of 1: 8 (mol).
  • the obtained solution was dropped onto a quartz substrate to form a film.
  • the obtained film-forming substrate was dried on a hot plate at about 150 ° C. to obtain Sample 1.
  • FIG. 19 is an ESR spectrum of the measured film.
  • the electron spin resonance spectrum was measured by the ESR method using an electron spin resonance measuring device JES FA300 (manufactured by JEOL Ltd.). The above measurement was performed at resonance frequency (about 9.2 GHz), output (1 mW), modulation magnetic field (50 mT), modulation width (0.5 mT), time constant (0.03 sec), sweep time (4 min), and room temperature. gone. Then, the magnetic field was corrected according to the positions of Mn 2 + 3rd and 4th signals.
  • the mixed film or mixture of the sulfonic acid compound of one aspect of the present invention and the secondary amine compound has a g value of about 2.00 ( ⁇ 0.) as compared with the unmixed one. It was found that the spin density of 05) was significantly increased. Therefore, it is considered that carriers are generated. Therefore, it was suggested that when a mixed membrane containing these is used for the hole injection layer, an element having good hole injection property can be obtained.
  • the absorption spectrum was measured using an ultraviolet-visible spectrophotometer (V550 type manufactured by JASCO Corporation), and the spectrum measured by putting only dehydrated acetone in a quartz cell was subtracted.
  • a fluorometer (FP-8600 manufactured by JASCO Corporation) was used for the measurement of the emission spectrum.
  • the dehydrated acetone solution of Li-6mq had an absorption peak at 390 nm, and the emission wavelength peak was 540 nm (excitation wavelength 385 nm).
  • 5-Di-tert-butylphenyl) -1,3,5-triazine (abbreviation: mmtBumBP-dmmtBuPTzn) will be described.
  • the structure of mmtBumBP-dmmtBuPTzhn is shown below.
  • Step 1 Synthesis of 3-bromo-3', 5'-di-tert-butylbiphenyl> 1.0 g (4.3 mmol) of 3,5-di-tert-butylphenylboronic acid, 1.5 g (5.2 mmol) of 1-bromo-3-iodobenzene in a three-necked flask, 4.5 mL of a 2 mol / L potassium carbonate aqueous solution , 20 mL of toluene and 3 mL of ethanol were added, and the mixture was degassed by stirring under reduced pressure.
  • step 1 tris (2-methylphenyl) phosphine (abbreviation: P (o-tply) 3 ) 52 mg (0.17 mmol), palladium (II) acetate (abbreviation: Pd (OAc) 2 ) 10 mg (0.043 mmol).
  • P (o-tply) 3 tris (2-methylphenyl) phosphine
  • Pd (OAc) 2 palladium (II) acetate
  • the reaction was carried out at 80 ° C. for 14 hours under a nitrogen atmosphere. After completion of the reaction, extraction with toluene was performed, and the obtained organic layer was dried over magnesium sulfate. This mixture was naturally filtered, and the obtained filtrate was purified by silica gel column chromatography (developing solvent: hexane) to obtain 1.0 g of the desired white solid (yield: 68%).
  • the synthesis scheme of step 1 is shown below.
  • Step 2 Synthesis of 2- (3', 5'-di-tert-butylbiphenyl-3-yl) -4,4,5,5,-tetramethyl-1,3,2-dioxaborolane>
  • 30 mL of 1,4-dioxane was added, and the mixture was degassed by stirring under reduced pressure.
  • 2-dicyclohexylphosphino-2', 6'-dimethoxybiphenyl (abbreviation: SPhos) 0.12 g (0.30 mmol)
  • [1,1'-bis (diphenylphosphino) ferrocene] palladium (II) dichloride 0.12 g (0.15 mmol) of a dichloromethane adduct (abbreviation: Pd (dppf) 2 Cl 2 ⁇ CH 2 Cl 2 ) was added, and the mixture was reacted at 110 ° C. for 24 hours under a nitrogen atmosphere. After completion of the reaction, extraction with toluene was performed, and the obtained organic layer was dried over magnesium sulfate.
  • step 2 The synthesis scheme of step 2 is shown below.
  • Step 3 Synthesis of mmtBumBP-dmmtBuPTzh> 4,6-bis (3,5-di-tert-butyl-phenyl) -2-chloro-1,3,5-triazine 0.8 g (1.6 mmol), 2- (3', 5') in a three-necked flask -Di-tert-butylbiphenyl-3-yl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane 0.89 g (2.3 mmol), tripotassium phosphate 0.68 g (3.
  • the obtained solid was recrystallized from hexane to obtain 0.88 g (yield: 76%) of the desired white solid.
  • the synthesis scheme of step 3 is shown below.
  • FIG. 15 shows the results of measuring the refractive index of mmtBumBP-dmmtBuPTzh obtained by the above-mentioned synthesis method using a spectroscopic ellipsometer (M-2000U manufactured by JA Woolam Japan Co., Ltd.).
  • a film in which the material of each layer was formed on a quartz substrate by a vacuum vapor deposition method at about 50 nm was used.
  • n Ordinary which is the refractive index of ordinary light rays
  • n Extra-ordinary which is the refractive index of abnormal light rays
  • mmtBumBP-dmmtBuPTzhn has an ordinary light refractive index in the range of 1.50 or more and 1.75 or less in the entire blue light emitting region (455 nm or more and 465 nm or less), and an ordinary light refractive index of 1.45 or more at 633 nm. It was found that the material was in the range of 70 or less and had a low refractive index.
  • Structural formula (202) 2- (3,3'', 5,5''-tetra-tert-butyl-1,1': 3', 1''-phenyl-5'-yl) -4,6- Diphenyl-1,3,5-triazine (abbreviation: mmtBumTPTzn) 1 1 H NMR (CDCl 3,300 MHz): ⁇ 1.44 (s, 36H), 7.54-7.62 (m, 12H), 7.99 (t, 1H), 8.79 (d, 4H) , 8.92 (d, 2H).
  • All of the above organic compounds have an ordinary light refractive index of 1.50 or more and 1.75 or less in the blue light emitting region (455 nm or more and 465 nm or less), or an ordinary light refractive index of 633 nm light which is usually used for measuring the refractive index. It is an organic compound of 45 or more and 1.70 or less.
  • Electrode 101: Electrode, 102: Electrode, 103: EL layer, 111: Hole injection layer, 112: Hole transport layer, 113: Light emitting layer, 114: Electron transport layer, 115: Electron injection layer, 116: Charge generation layer, 117: P-type layer, 118: electron relay layer, 119: electron injection buffer layer, 400: substrate, 401: anode, 403: EL layer, 404: cathode, 405: sealing material, 406: sealing material, 407: sealing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

発光効率が高く安価な発光デバイスを提供する。 陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、 前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は前記陽極と前記発光層との間に位置し、前記電子輸送領域は前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、スルホン酸化合物、フッ素化合物または金属酸化物のいずれか一を有し、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物は、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイスを提供する。

Description

発光デバイス、発光装置、電子機器および照明装置
本発明の一態様は、有機化合物、発光素子、発光デバイス、ディスプレイモジュール、照明モジュール、表示装置、発光装置、電子機器、照明装置および電子デバイスに関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
有機化合物を用いたエレクトロルミネッセンス(EL:Electroluminescence)を利用する発光デバイス(有機ELデバイス)の実用化が進んでいる。これら発光デバイスの基本的な構成は、一対の電極間に発光材料を含む有機化合物層(EL層)を挟んだものである。このデバイスに電圧を印加して、キャリアを注入し、当該キャリアの再結合エネルギーを利用することにより、発光材料からの発光を得ることができる。
このような発光デバイスは自発光型であるためディスプレイの画素として用いると、液晶に比べ、視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイには特に好適である。また、このような発光デバイスを用いたディスプレイは、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。
また、これらの発光デバイスは発光層を二次元に連続して形成することが可能であるため、面状に発光を得ることができる。これは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、照明等に応用できる面光源としての利用価値も高い。
このように発光デバイスを用いたディスプレイや照明装置はさまざまな電子機器に好適であるが、より良好な特性を有する発光デバイスを求めて研究開発が進められている。
有機ELデバイスが語られる際にしばしば問題として挙げられるものの一つに、光取出し効率の低さがある。特に、隣接する層の屈折率の違いから起こる反射による減衰は、発光デバイスの効率を下げる大きな要因となっている。この影響を低減させるために、EL層内部に低屈折率材料からなる層を形成する構成が提案されている(例えば、非特許文献1参照)。
また、製品化されている有機ELデバイスは、蒸着法により製造されていることが多いが、蒸着法は材料効率や、製造雰囲気の維持などにコストがかかるため、湿式成膜法を適用することによって安価に製造が可能となることが期待されている。
米国特許出願公開第2020/0176692号明細書
本発明の一態様では、発光効率の高い発光デバイスを提供することを目的とする。または、本発明の一態様では、消費電力の小さい発光デバイス、発光装置、電子機器、表示装置、または電子デバイスのいずれかを提供することを目的とする。また、本発明の一態様では、安価な発光デバイスを提供することを目的とする。また、本発明の一態様では、安価且つ発光効率の高い発光デバイスを提供することを目的とする。
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
本発明の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、前記電子輸送領域は、前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、スルホン酸化合物が含まれるインクを塗布および焼成することによって形成された層を有し、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物の、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、前記電子輸送領域は、前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、スルホン酸化合物が含まれるインクを塗布および焼成することによって形成された層を有し、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記正孔輸送領域は、前記スルホン酸化合物及び前記二級アミン化合物が含まれるワニスを塗布および焼成することによって形成された層を有する発光デバイスである。なお、本明細書等に記載のワニスは、インクと言い換えることができる。また、本明細書等に記載のインクは、ワニスと言い換えることができる。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は前記陽極と前記発光層との間に位置し、前記電子輸送領域は前記陰極と前記発光層との間に位置し、前記正孔子輸送領域は、スルホン酸化合物、フッ素化合物または金属酸化物のいずれか一を有し、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物は、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は前記陽極と前記発光層との間に位置し、前記電子輸送領域は前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、スルホン酸化合物、フッ素化合物または金属酸化物のいずれか一を有し、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、前記電子輸送領域は、前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、ToF−SIMSで測定した際、ネガティブモードの測定結果においてm/z=80付近にシグナルが検出され、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物の、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、前記電子輸送領域は、前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、ToF−SIMSで測定した際、ネガティブモードの測定結果においてm/z=80付近にシグナルを有し、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記正孔輸送領域は、ToF−SIMSで測定した際、ネガティブモードの測定結果におけるm/z=80付近およびm/z=901付近にシグナルが検出される発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、前記電子輸送領域は、前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、MS分析を行った際、ネガティブモードの測定結果においてm/z=80付近にシグナルが検出され、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物の、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、前記電子輸送領域は、前記陰極と前記発光層との間に位置し、前記正孔輸送領域は、MS分析を行った際、ネガティブモードの測定結果においてm/z=80付近にシグナルを有し、前記電子輸送領域は、電子輸送性を有する有機化合物を有し、前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記正孔輸送領域は、MS分析を行った際、ネガティブモードにおいてターゲットイオンの質量範囲±2.0から241または161または81少ない質量数にシグナルが検出される発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記発光層にイリジウム錯体が含まれる発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記イリジウム錯体が緑色のりん光を呈する発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記発光層は、ToF−SIMSで分析した際、ポジティブモードの測定結果において、m/z=1676付近にシグナルが検出される発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記イリジウム錯体が下記構造式で表されるイリジウム錯体である発光デバイスである。
Figure JPOXMLDOC01-appb-C000002
または、本発明の他の一態様は、上記構成において、前記電子輸送性を有する有機化合物が、窒素を含む6員環の複素芳香環を少なくとも一つと、ベンゼン環を二つと、一つまたは複数の炭素数6乃至14の芳香族炭化水素環と、複数のsp3混成軌道で結合を形成している炭化水素基を有し、前記sp3混成軌道で結合を形成している炭素の総数が前記電子輸送性を有する有機化合物の分子内の総炭素数の10%以上60%以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記電子輸送領域は、電子輸送層と、電子注入層とを有し、前記電子注入層は、前記陰極に接して設けられ、前記電子輸送性を有する有機化合物は、前記電子輸送層に含まれている発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記電子輸送層が、さらにアルカリ金属またはアルカリ土類金属の金属錯体を含む発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記電子輸送層が、さらに8−キノリノラト構造を含む配位子を有するアルカリ金属またはアルカリ土類金属の金属錯体である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記アルカリ金属またはアルカリ土類金属の金属錯体が、リチウムの金属錯体である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記電子注入層を、ToF−SIMSで分析した際、ポジティブモードまたはネガティブモードの測定結果において、m/z=587付近にシグナルが検出される発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記電子注入層に、複素芳香族化合物が含まれる発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記複素芳香族化合物が、2−フェニル−9−[3−(9−フェニル−1,10−フェナントロリン−2−イル)フェニル]−1,10−フェナントロリンである発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記電子注入層に、さらにフッ素とナトリウムが含まれる発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記電子注入層にバリウムが含まれている発光デバイスである。
または、本発明の他の一態様は、いずれかの発光デバイスを複数有し、前記複数の発光デバイスには、少なくとも赤色に発光する発光デバイスと、緑色に発光する発光デバイスとが存在し、前記赤色に発光する発光デバイスの発光層と、前記緑色に発光する発光デバイスの発光層にはイリジウムが含まれている発光装置である。
または、本発明の他の一態様は、上記構成において、前記赤色に発光する発光デバイスと、前記緑色に発光する発光デバイスから発する光がりん光である発光装置である。
または、本発明の他の一態様は、上記構成において、前記複数の発光デバイスには、さらに青色に発光する発光デバイスが存在し、前記青色に発光する発光デバイスから得られる光が蛍光である発光装置である。
または、本発明の他の一態様は、上記いずれかの発光デバイスを複数有する発光装置である。
または、本発明の他の一態様は、上記いずれかの発光装置を備えた表示装置である。
または、本発明の他の一態様は、上記いずれかの発光デバイスと、センサと、操作ボタンと、スピーカまたはマイクと、を有する電子機器である。
または、本発明の他の一態様は、上記いずれかの発光デバイスと、筐体と、を有する照明装置である。
なお、本明細書中における発光装置とは、発光デバイスを用いた画像表示デバイスを含む。また、発光デバイスにコネクター、例えば異方導電性フィルム又はTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、又は発光デバイスにCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも発光装置に含む場合がある。さらに、照明器具等は、発光装置を有する場合がある。
本発明の一態様では、発光効率の高い発光デバイスを提供することができる。または、本発明の一態様では、消費電力の小さい発光デバイス、発光装置、電子機器、表示装置、または電子デバイスのいずれかを提供することができる。
本発明の他の一態様では、新規の有機金属錯体(金属錯体)を提供することができる。または、本発明の他の一態様では、駆動電圧の低い発光デバイスに適用可能な金属錯体を提供することができる。または、本発明の他の一態様では、低屈折率の電子輸送層を有し、且つ駆動電圧の低い発光デバイスに適用可能な金属錯体を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1A、図1B、図1Cおよび図1Dは発光デバイスの概略図である。
図2Aおよび図2Bはアクティブマトリクス型発光装置を表す図である。
図3Aおよび図3Bはアクティブマトリクス型発光装置を表す図である。
図4はアクティブマトリクス型発光装置を表す図である。
図5Aおよび図5Bはパッシブマトリクス型発光装置を表す図である。
図6Aおよび図6Bは照明装置を表す図である。
図7A、図7B1、図7B2および図7Cは電子機器を表す図である。
図8A、図8Bおよび図8Cは電子機器を表す図である。
図9は照明装置を表す図である。
図10は照明装置を表す図である。
図11は車載表示装置及び照明装置を表す図である。
図12Aおよび図12Bは電子機器を表す図である。
図13A、図13Bおよび図13Cは電子機器を表す図である。
図14はLi−6mqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルである。
図15はmmtBumBPTznの屈折率を測定したデータである。
図16A乃至図16Dは発光デバイスの作製方法の一例を表す図である。
図17は液滴吐出装置を説明する概念図である。
図18はNSO−2のMSスペクトルである。
図19はNSO−2とDPAとの混合薄膜、NSO−2の単膜およびDPAの単膜のESRスペクトルである。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
図1Aに、本発明の一態様の発光デバイスを表す図を示す。本発明の一態様の発光デバイスは、陽極101と、陰極102、EL層103を有し、当該EL層103は、正孔輸送領域120、発光層113および電子輸送領域121と、を有している。
正孔輸送領域120には、正孔注入層111、正孔輸送層112が、電子輸送領域121には、電子輸送層114、電子注入層115がそれぞれ図示されているが、各々どちらかが設けられていなくてもよく、また他の機能層が設けられていてもよい。他の機能層としては、例えばキャリアブロック層や励起子ブロック層、電荷発生層等を挙げることができる。
発光層113は少なくとも発光材料を有し、電子輸送領域121は、少なくとも電子輸送性を有する有機化合物を有している。また、正孔輸送領域120は、少なくとも一部に湿式成膜法により形成された層を含むものとする。
正孔輸送領域120は、材料を含むインクをインクジェット法に代表されるような湿式成膜法により成膜された層を有する。正孔輸送領域120は、正孔注入層111や、正孔輸送層112、電子ブロック層など所望の機能を有する層の中から単層または複数層積層することによって形成する。なお、一層に一つの機能を担わせる構成だけではなく、正孔注入輸送層のように、複数の機能を担う層を設ける構成であってもよい。
正孔輸送領域120は、その名の通り、陽極101と発光層113間で正孔を輸送する機能を有することから、正孔輸送領域120には、正孔輸送性の比較的高い骨格を有する材料が含まれていることが好ましい。正孔輸送性の高い骨格としては、例えばアリールアミン骨格、ピロール骨格、カルバゾール骨格、チオフェン骨格などのπ電子過剰型複素芳香環の骨格を挙げることができる。
図1Aおよび図1Bにおいては、正孔輸送領域120が、正孔注入層111および正孔輸送層112の2層を含む構成となっている。正孔注入層111や、正孔注入輸送層など、陽極101に接する層を湿式成膜法により形成する場合、上記正孔輸送性の高い骨格にアクセプタ性を示す材料が同時に含まれていることが好ましい。当該アクセプタ性を示す材料としては、スルホン酸化合物、フッ素化合物、トリフルオロ酢酸化合物、プロピオン酸化合物、または金属酸化物などを挙げることができる。
塗布するインクとしては、所望の機能を有するポリマー材料や、低分子材料、デンドリマーなどをそのまま、または溶剤に分散もしくは溶解したものを用いればよい。また、得たいポリマー材料のモノマーを一種または複数種混合されたインクを塗布し、加熱やエネルギー光照射等により塗布後に架橋または縮合、重合、配位、塩などの結合を形成させてもよい。なお、当該インクには、界面活性剤や粘度調整用の物質など、その他の機能を有する有機化合物が含まれていてもよい。
モノマーを混合したインクを塗布する場合、当該モノマーとしては、二級アミンとアリールスルホン酸とを用いることが好ましい。
二級アミンとしては、置換又は無置換の炭素数6から14のアリール基、置換又は無置換の炭素数6から12のπ電子過剰型ヘテロアリール基を用いることができる。アリール基として例えば、フェニル基、ビフェニル基、ナフチル基、フルオレニル基、フェナントレニル基、アントリル基などを用いることができ、フェニル基であると溶解性が良好で安価になるため好ましい。ヘテロアリール基としてはカルバゾール骨格やピロール骨格、チオフェン骨格、フラン骨格、イミダゾール骨格などを用いることができる。またアリールアミンやヘテロアリールアミンを介する結合は複数有していると膜質が向上し好ましく、オリゴマーやポリマーとなっていても良い。また複数アミンを有する場合、そのアミンの一部が三級アミンであってもよく、二級アミンの割合が三級アミンの割合よりも多い方が好ましい。アミンの数は1000以下、より好ましくは10以下、分子量は10万以下が好ましい。またフッ素が置換されていると、フッ素が置換された化合物との相溶性が向上し、好ましい。
二級アミンとしては例えば下記一般式(Gam2)で表される有機化合物、三級アミンンとしては例えば下記一般式(Gam3)で表される有機化合物などが好ましい。
Figure JPOXMLDOC01-appb-C000003
ただし、上記一般式(Gam2)において、Ar11乃至Ar13の1以上は水素を表し、それ以外は置換または無置換の炭数6乃至14の芳香族環を表し、Ar14乃至Ar17は置換または無置換の炭素数6乃至14の芳香族環を表す。なお、Ar12とAr16、Ar14とAr16、Ar11とAr14、Ar14とAr15、Ar15とAr17、Ar13とAr17は互いに結合して環を形成していてもよい。また、pは0乃至1000の整数を表し、好ましくは0乃至3である。なお、一般式(Gam2)で表される有機化合物の分子量は10万以下であることが好ましい。炭素数6乃至14の芳香族環としてはベンゼン環、ビスベンゼン環、ナフタレン環、フルオレン環、フェナントレン環、アントラセン環などを用いることができる。
Figure JPOXMLDOC01-appb-C000004
ただし、上記一般式(Gam3)において、Ar21乃至Ar23は置換または無置換の炭素数6乃至14のアリール基を表し、これらは互いに結合し、環を形成していても良い。また、Ar21乃至Ar23が置換基を有する場合、当該置換基はジアリールアミノ基やカルバゾリル基が複数連結した基であってもよい。
二級アミン(NH基を有する)の具体的な例としては、下記構造式(Am2−1)乃至構造式(Am2−32)で表される有機化合物を用いることが好ましい。アミン化合物はスルホン酸化合物と混合すること(pドーピング)により、導電性が向上する。二級アミンとすることで、混合したスルホン酸化合物と脱水反応などにより結合を形成することができるため、好ましい。スルホン酸化合物や他に混合した化合物がフッ化物である場合、下記構造式(Am2−1)や(Am2−22)~(Am2−28)、(Am2−31)の様にフッ化物を用いると、相溶性が向上し、好ましい。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
なお、二級アミンの代わりにチオフェン誘導体を用いても良い。チオフェン誘導体の具体的な例としては、下記構造式(T−1)乃至構造式(T−4)で表されるような有機化合物や、ポリチオフェンやポリ(3,4−エチレンジオキシチオフェン)(PEDOT)が好ましい。チオフェン誘導体はスルホン酸化合物と混合すること(pドーピング)により、導電性が向上する。
Figure JPOXMLDOC01-appb-C000010
アリールスルホン酸としては、スルホ基を有していればよく、スルホン酸またはスルホン酸塩、アルコキシスルホン酸、ハロゲン化スルホン酸、スルホン酸アニオンを用いることができる。具体的にはスルホ基として、上述したような基を用いることができる。これらスルホ基は複数有していてもより。またアリールスルホン酸のアリール基としては、置換又は無置換の炭素数6から16のアリール基を用いることができる。アリール基として例えば、フェニル基、ビフェニル基、ナフチル基、フルオレニル基、フェナントレニル基、アントリル基、ピレニル基などを用いることができ、ナフチル基が有機溶剤への溶解性と輸送性が良く、好ましい。またこれらアリールスルホン酸は、複数アリール基を有していてもよく、フッ素が置換されたアリール基があると、LUMO準位が深く(マイナスに大きく)調節することができ、好ましい。またエーテル結合、スルフィド結合、アミンを介する結合を有していてもよく、複数アリール基を有する場合にこれらの結合を介すると、有機溶剤への溶解性が向上し、好ましい。また置換基としてアルキル基を有する場合も、エーテル結合、スルフィド結合、アミンを介して結合しても良い。またこれらアリールスルホン酸は、ポリマーに複数置換していても良い。ポリマーとしてはポリエチレンやナイロン、ポリスチレン、ポリフルオレニレンなどを用いることができるが、ポリスチレンやポリフルオレニレンが導電性がよく、好ましい。
アリールスルホン酸化合物の具体的な例としては、例えば、下記構造式(S−1)から構造式(S−15)で表される有機化合物が好ましい。ポリ(4−スチレンスルホン酸)(PSS)などのスルホ基をもつポリマーも用いることができる。アリールスルホン酸化合物を用いることで、HOMOの浅い電子供与体(アミン化合物やカルバゾール化合物、チオフェン化合物など)からの電子を受容することができ、電子供与体と混合することで電極からのホール注入やホール輸送性を持たせることができる。フッ素化合物とすることで、よりLUMO準位を深く(よりマイナスのエネルギー準位をもつ)調節することができる。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
上記二級アミンとスルホン酸とを混合したインクには、さらに三級アミンは二級アミンよりも電気化学的、光科学的に安定で、混合すると正孔輸送性が良好となるため好ましい。当該三級アミンとしては、例えば、下記構造式(Am3−1)乃至構造式(Am3−7)で表される有機化合物が好ましい。それ以外に正孔輸送性を有する材料を適宜混合してもよい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
アリールスルホン酸化合物の他に、電子受容体として テトラシアノキノジメタン化合物などシアノ化合物を用いることもできる。具体的には、2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノ−キノジメタン(F4TCNQ)やジピラジノ[2,3−f:2′,3′−h]キノキサリン−2,3,6,7,10,11−ヘキサカルボニトリル(HAT−CN6)などがあげられる。
なお、上記モノマーを混合したインクには、3,3,3−トリフルオロプロピルトリメトキシシラン化合物またはフェニルトリメトキシシラン化合物のいずれかまたは両方が含まれていると湿式で成膜した場合に濡れ性が向上するため好ましい。
以上のように、二級アミン(またはチオフェンなど)など電子供与体とアリールスルホン酸の少なくとも2つのモノマーを含むインクを用いて湿式成膜法により成膜された層は、ToF−SIMSやLC−MSにより測定を行うと、ネガティブモードの結果においてm/z=80付近にシグナルが観測される。また、同時に、アミンモノマーに由来するシグナルは観測されにくい。発光デバイスにおいてこのような分析結果が出た場合、当該発光デバイスが発光デバイスとして機能しているということは、当該層は、十分な正孔輸送能を備えているという証拠になる。十分な正孔輸送性を有しつつ、正孔輸送能を担う骨格が観測されないということは、上記モノマー同士が結合して高分子化合物の膜となっていることが示唆される。すなわち、当該層が、湿式成膜法により形成されたことを意味する。m/z=80はアリールスルホン酸におけるSO陰イオンに由来するシグナルである。また、MS分析のネガティブモードにて、ターゲットイオンの質量範囲±2.0(isolation window=4)から241または161または81少ない質量数のプロダクトイオンも観測され、このシグナルは、ターゲットイオンからスルホン基が1以上脱離したものと示唆される。
なお、アリールスルホン酸化合物としては、上記構造式(S−1)または(S−2)で表されるスルホン酸化合物がスルホ基が多く、アミンと3次元に結合を形成することができ、膜質が安定しやすいため好ましい。当該アリールスルホン酸化合物を用いて作製された層は、上記m/z=80のシグナルに加えて、同じくネガティブモードにおいてm/z=901付近のシグナルが観測される。またプロダクトイオンとしてm/z=328付近のシグナルも観察される。
ここで、液滴吐出法を用いて発光物質を含む層786を形成する方法について、図16を用いて説明する。図16A乃至図16Dは、発光物質を含む層786の作製方法を説明する断面図である。
まず、平坦化絶縁膜770上に導電膜772が形成され、導電膜772の一部を覆うように絶縁膜730が形成される(図16A参照)。
次に、絶縁膜730の開口である導電膜772の露出部に、液滴吐出装置783より液滴784を吐出し、組成物を含む層785を形成する。液滴784は、溶媒を含む組成物であり、導電膜772上に付着する(図16B参照)。
なお、液滴784を吐出する工程を減圧下で行ってもよい。
次に、組成物を含む層785より溶媒を除去し、固化することによって発光物質を含む層786を形成する(図16C参照)。
なお、溶媒の除去方法としては、乾燥工程または加熱工程を行えばよい。
次に、発光物質を含む層786上に導電膜788を形成し、発光素子782を形成する(図2D参照)。
このように発光物質を含む層786を液滴吐出法で形成すると、選択的に組成物を吐出することができるため、材料のロスを削減することができる。また、形状を加工するためのリソグラフィ工程なども必要ないために工程も簡略化することができ、低コスト化が達成できる。
なお、上記説明した液滴吐出法とは、組成物の吐出口を有するノズル、あるいは1つ又は複数のノズルを有するヘッド等の液滴を吐出する手段を有するものの総称とする。
次に、液滴吐出法に用いる液滴吐出装置について、図17を用いて説明する。図17は、液滴吐出装置1400を説明する概念図である。
液滴吐出装置1400は、液滴吐出手段1403を有する。また、液滴吐出手段1403は、ヘッド1405と、ヘッド1412と、ヘッド1416とを有する。
ヘッド1405、ヘッド1412及びヘッド1416は制御手段1407に接続され、それをコンピュータ1410で制御することにより予めプログラミングされたパターンに描画することができる。
また、描画するタイミングとしては、例えば、基板1402上に形成されたマーカー1411を基準に行えば良い。あるいは、基板1402の外縁を基準にして基準点を確定させても良い。ここでは、マーカー1411を撮像手段1404で検出し、画像処理手段1409にてデジタル信号に変換したものをコンピュータ1410で認識して制御信号を発生させて制御手段1407に送る。
撮像手段1404としては、電荷結合素子(CCD)や相補型金属−酸化物−半導体(CMOS)を利用したイメージセンサなどを用いることができる。なお、基板1402上に形成されるべきパターンの情報は記憶媒体1408に格納されたものであり、この情報を基にして制御手段1407に制御信号を送り、液滴吐出手段1403の個々のヘッド1405、ヘッド1412、ヘッド1416を個別に制御することができる。吐出する材料は、材料供給源1413、材料供給源1414、材料供給源1415より配管を通してヘッド1405、ヘッド1412、ヘッド1416にそれぞれ供給される。
ヘッド1405、ヘッド1412、ヘッド1416の内部は、点線1406が示すように液状の材料を充填する空間と、吐出口であるノズルを有する構造となっている。図示しないが、ヘッド1412もヘッド1405と同様な内部構造を有する。ヘッド1405とヘッド1412のノズルを異なるサイズで設けると、異なる材料を異なる幅で同時に描画することができる。一つのヘッドで、複数種の発光材料などをそれぞれ吐出し、描画することができ、広領域に描画する場合は、スループットを向上させるため複数のノズルより同材料を同時に吐出し、描画することができる。大型基板を用いる場合、ヘッド1405、ヘッド1412、ヘッド1416は基板上を、図17中に示すX、Y、Zの矢印の方向に自在に走査し、描画する領域を自由に設定することができ、同じパターンを一枚の基板に複数描画することができる。
また、組成物を吐出する工程は、減圧下で行ってもよい。吐出時に基板を加熱しておいてもよい。組成物を吐出後、乾燥と焼成の一方又は両方の工程を行う。乾燥と焼成の工程は、両工程とも加熱処理の工程であるが、その目的、温度と時間が異なるものである。乾燥の工程、焼成の工程は、常圧下又は減圧下、大気中または窒素などの不活性雰囲気下で、レーザ光の照射や瞬間熱アニール、加熱炉などにより行う。なお、この加熱処理を行うタイミング、加熱処理の回数は特に限定されない。乾燥と焼成の工程を良好に行うためには、そのときの温度は、基板の材質及び組成物の性質に依存する。
以上のように、液滴吐出装置を用いて発光物質を含む層786を作製することができる。
液滴吐出装置を用いて発光物質を含む層786を作製する場合において、各種有機材料や有機無機ハロゲンペロブスカイト類を溶媒に溶解または分散させた組成物として湿式法により形成する場合、種々の有機溶剤を用いて塗布用組成物とすることが出来る。前記組成物に用いることが出来る有機溶剤としては、ベンゼン、トルエン、キシレン、メシチレン、テトラヒドロフラン、ジオキサン、エタノール、メタノール、n−プロパノール、イソプロパノール、n−ブタノール、t−ブタノール、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド、クロロホルム、メチレンクロライド、四塩化炭素、酢酸エチル、ヘキサン、シクロヘキサン等種々の有機溶剤を用いることが出来る。特に、ベンゼン、トルエン、キシレン、メシチレン等の低極性なベンゼン誘導体を用いることで、好適な濃度の溶液を作ることが出来、また、インク中に含まれる材料が酸化などにより劣化することを防止できるため好ましい。また、作製後の膜の均一性や膜厚の均一性などを考慮すると沸点が100℃以上であることが好ましく、トルエン、キシレン、メシチレンが更に好ましい。
なお、上記構成は、他の実施の形態や本実施の形態中の他の構成と適宜組み合わせることが可能である。
また、本発明の一態様の発光デバイスにおける電子輸送領域121に含まれる、電子輸送性を有する有機化合物は、波長455nm以上465nm以下の範囲におけるいずれかの波長(λ)の光における常光屈折率が、1.50以上1.75以下または、波長633nmの光に対する常光屈折率が、1.45以上1.70以下であることが好ましい。
なお、上記電子輸送性を有する有機化合物など、本明細書中における屈折率は、当該材料の薄膜を測定することによって決定するが、このような薄膜において、材料に異方性が生じている場合、常光に対する屈折率と異常光に対する屈折率が異なることがある。測定する薄膜がその様な状態である場合、異方性解析を実施することで、常光屈折率と異常光屈折率に分離して各々の屈折率を算出することができる。なお、本明細書においては、測定した材料に常光屈折率と異常光屈折率の双方が存在した場合、常光屈折率を指標として用いている。
電子輸送領域121には、このような材料が含まれるため、屈折率の低い層を設けることが可能となる。EL層内部に屈折率の小さな層を設けることによって、光の取り出し効率が向上し、発光効率の高い発光素子を得ることができる。通常、発光デバイスを構成する有機化合物の屈折率は、1.8~1.9程度であり、本発明の一態様の発光デバイスは屈折率の小さい層を有する電子輸送領域121が設けられていることによって発光効率の良好な発光デバイスとすることができる。
本発明の一態様の発光デバイスが青色発光デバイスである場合、電子輸送領域121はλの光に対する常光屈折率が1.50以上1.75未満、好ましくは1.50以上1.70未満の層を含むこと好ましい。また、電子輸送領域に含まれる電子輸送性を有する有機化合物は、λの光における常光屈折率が1.50以上1.75以下であることが好ましく、1.50以上1.70以下であることがより好ましい。
また、原理的に屈折率は短波長側が大きく、長波長側が小さくなるため、本発明の一態様の電子輸送層114に用いられる電子輸送性を有する有機化合物の633nmの波長の光における常光屈折率は1.45以上1.70以下であることが好ましい。
なお、上記電子輸送性を有する有機化合物は、アルキル基またはシクロアルキル基を有していることが好ましい。これらがアルキル基またはシクロアルキル基を有することによって、屈折率を低下させることができ、屈折率の低い電子輸送層114を実現することができる。
なお、当該電子輸送性を有する有機化合物が有するアルキル基は分岐を有するアルキル基であることが好ましく、特に好ましくは炭素数3または4のアルキル基であり、特にtert−ブチル基であることが好ましい。
当該電子輸送性を有する有機化合物は、1個以上3個以下の窒素を含む6員環の複素芳香環を少なくとも1つ有し、環を形成する炭素数が6乃至14の芳香族炭化水素環を複数有し、複数の当該芳香族炭化水素環のうち少なくとも2つはベンゼン環であり、sp3混成軌道で結合を形成している炭化水素基を複数有する有機化合物を含んでいることが好ましい。
また、このような有機化合物は、当該有機化合物の分子内の総炭素数に対するsp3混成軌道で結合を形成している炭素数の割合が、10%以上60%以下であることが好ましく、10%以上50%以下であるとより好ましい。または、このような有機化合物は、H−NMRで当該有機化合物の測定を行った結果における4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値の1/2倍以上であることが好ましい。
なお、当該有機化合物が有するすべてのsp3混成軌道で結合を形成している炭化水素基は、上記環を形成する炭素数が6乃至14の芳香族炭化水素環に結合し、その芳香族炭化水素環には当該有機化合物のLUMOが分布していないことが好ましい。
当該電子輸送性を有する有機化合物は、電子輸送領域121の中の電子輸送層114に含まれていることが好ましい。
また、当該電子輸送性を有する有機化合物は、下記一般式(G1)で表される有機化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
式中、Aは1~3個の窒素を含む6員環の複素芳香環を表し、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環のいずれかが好ましい。
また、Rは、水素、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、または式(G1−1)で表される置換基、のいずれかを表す。
乃至R15の少なくとも一は、置換基を有するフェニル基であり、他は各々独立に、水素、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、置換または無置換のピリジル基、のいずれかを表す。なお、R、R、R、R、R、R10、R11、R13およびR15は水素であることが好ましい。前記置換基を有するフェニル基は1つまたは2つの置換基を有し、当該置換基は各々独立に、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、のいずれかである。
なお、上記一般式(G1)で表される有機化合物は、炭素数1乃至6のアルキル基および炭素数3乃至10の脂環式基から選ばれる炭化水素基を複数有し、分子内の総炭素数に対するsp3混成軌道で結合を形成している総炭素数の割合は、10%以上60%以下である。
また、当該電子輸送性を有する有機化合物としては、下記一般式(G3)で表される有機化合物が好ましい。
Figure JPOXMLDOC01-appb-C000018
式中、Q乃至Qのうち2または3はNを表し、前記Q乃至Qのうちの2がNである場合、残りの1はCHを表す。
またR乃至R15の少なくともいずれか一は、置換基を有するフェニル基であり、他は各々独立に、水素、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、置換または無置換のピリジル基、のいずれかを表す。なお、R、R、R、R、R、R10、R11、R13およびR15は水素であることが好ましい。前記置換基を有するフェニル基は1つまたは2つの置換基を有し、当該置換基は各々独立に、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、のいずれかである。
なお、上記一般式(G3)で表される有機化合物は、炭素数1乃至6のアルキル基および炭素数3乃至10の脂環式基から選ばれる炭化水素基を複数有し、分子内の総炭素数に対するsp3混成軌道で結合を形成している炭素数の割合は、10%以上60%以下であることが好ましい。
また、上記一般式(G1)または(G3)で表される有機化合物において、置換基を有するフェニル基が下記式(G1−2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
式中、αは置換または無置換のフェニレン基を表し、メタ位置換のフェニレン基であることが好ましい。また、メタ位置換のフェニレン基が置換基を一つ有する場合、当該置換基もメタ位に置換していることが好ましい。なお、当該置換基としては炭素数1乃至6のアルキル基、または炭素数3乃至10の脂環式基であることが好ましく、炭素数1乃至6のアルキル基であることがより好ましく、tert−ブチル基であることがさらに好ましい。
20は、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、または、置換もしくは無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基を表す。
また、mおよびnは1乃至2を表す。なお、mが2の場合、複数のαは各々同じでも異なっていてもよい。また、nが2の場合、複数のR20は各々同じでも異なっていてもよい。なお、R20はフェニル基であることが好ましく、2か所のメタ位の一方または両方に炭素数1乃至6のアルキル基、または炭素数3乃至10の脂環式基を有するフェニル基である。なお、当該フェニル基が2か所のメタ位の一方または両方に有する置換基は炭素数1乃至6のアルキル基であることがより好ましく、tert−ブチル基であることがさらに好ましい。
また、本発明の一態様の発光デバイスにおいては、電子輸送領域121の電子輸送層114において、電子輸送性を有する有機化合物と共に、アルカリ金属の金属錯体が含まれていることが好ましい。アルカリ金属の金属錯体としては、リチウムの金属錯体が好ましい。また、当該金属錯体の配位子は、8−キノリノラト−リチウムに代表されるような、8−キノリノラト構造を含む配位子であることが好ましい。
また、当該8−キノリノラト構造を含む配位子はアルキル基を有していることが好ましく、8−キノリノラト構造を含む配位子を有するリチウム錯体がアルキル基を有する場合、当該錯体が有するアルキル基は一つであることが好ましい。また、アルカリ金属の金属錯体が有するアルキル基は、炭素数1乃至3のいずれか一であることが好ましく、特にメチル基であることが好ましい。アルキル基を有する8−キノリノラトーリチウムは、屈折率の小さな金属錯体とすることが可能である。具体的には薄膜状態における455nm以上465nm以下の範囲の波長の光に対する常光屈折率が1.45以上1.70以下、633nmの波長の光に対する常光屈折率が1.40以上1.65以下とすることができる。
また、特に、6位にアルキル基を有する6−アルキル−8−キノリノラトーリチウムを用いることで、発光デバイスの駆動電圧を低下させる効果がある。なお、6−アルキル−8−キノリノラトーリチウムの中でも、6−メチル−8−キノリノラト−リチウムを用いることがより好ましい。
ここで、上記6−アルキル−8−キノリノラトーリチウムは下記一般式(Glq1)のように表すことができる。
Figure JPOXMLDOC01-appb-C000020
ただし、上記一般式(G1)において、Rは炭素数1乃至3のアルキル基を表す。
なお、上記一般式(G1)で表される金属錯体において、より好ましい態様は下記構造式(100)で表される金属錯体である。
Figure JPOXMLDOC01-appb-C000021
本発明の一態様の発光デバイスにおける電子輸送層114に用いられる電子輸送性を有する有機化合物は、上述のように、炭素数3または4のアルキル基を有することが好ましいが、特に、電子輸送性を有する有機化合物は、当該アルキル基を複数有していることが好ましい。しかし、分子中のアルキル基の数が多すぎるとキャリア輸送性を低下させることから、電子輸送性を有する有機化合物のsp3混成軌道で結合をつくっている炭素の割合は、当該有機化合物の総炭素数に対する10%以上60%以下が好ましく、10%以上50%以下であることがより好ましい。このような構成を有する電子輸送性を有する有機化合物は、電子輸送性を大きく損なうことなく、低い屈折率を実現することが可能となる。
なお、このような有機化合物をH−NMR(プロトン核磁気共鳴)で測定を行うと、4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値を上回る結果となる。
ここで、通常、アルキル基やシクロアルキル基の存在は、電子輸送性を有する有機化合物とアルカリ金属の金属錯体の相互作用(ドッキングともいう)を阻害し、駆動電圧の上昇を招くと考えられていたが、本発明の一態様の発光デバイスでは、大きな駆動電圧の上昇は、電子輸送領域121に屈折率の小さい層を備えた発光効率の良好な発光デバイスとすることが可能である。
続いて、本発明の一態様の発光デバイスの他の構造や材料の例について説明する。本発明の一態様の発光デバイスは、上述のように陽極101と陰極102の一対の電極間に複数の層からなるEL層103を有しており、当該EL層103は、発光材料を有する発光層113と、上記したような構成を有する正孔輸送領域120および電子輸送領域121を有している。
陽極101は、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが好ましい。具体的には、例えば、酸化インジウム−酸化スズ(ITO:Indium Tin Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ、酸化インジウム−酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法により成膜されるが、ゾル−ゲル法などを応用して作製しても構わない。作製方法の例としては、酸化インジウム−酸化亜鉛は、酸化インジウムに対し1~20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いてスパッタリング法により形成することもできる。この他に、陽極101に用いられる材料は、例えば、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。又は、陽極101に用いられる材料として、グラフェンも用いることができる。なお、後述する複合材料をEL層103における陽極101と接する層に用いることで、仕事関数に関わらず、電極材料を選択することができるようになる。
なお、陽極101を可視光に対し透過性を有する材料で形成した場合、図1Cに示したように陽極側から光を発する発光デバイスとすることができる。このような発光デバイスは陽極101を基板側に作製した場合、いわゆるトップエミッション型の発光デバイスとすることができる。
EL層103は積層構造を有していることが好ましいが、当該積層構造については特に限定はなく、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、キャリアブロック層(正孔ブロック層、電子ブロック層)、励起子ブロック層、電荷発生層など、様々な層構造を適用することができる。なお、いずれかの層が設けられていなくてもよい。本実施の形態では、図1Aに示すように、発光層113の他、正孔輸送領域120に正孔注入層111および正孔輸送層112を有し、電子輸送領域121に電子輸送層114および電子注入層115を有する構成、及び図1Bに示すように、図1Aの電子注入層115の代わりに電荷発生層116を有する構成の2種類の構成について説明する。各層を構成する材料について以下に具体的に示す。
発光層113は発光物質とホスト材料を有している。なお、発光層113は、その他の材料を同時に含んでいても構わない。また、組成の異なる複数の層の積層であってもよい。
発光物質は蛍光発光物質であっても、りん光発光物質であっても、熱活性化遅延蛍光(TADF)を示す物質であっても、その他の発光物質であっても構わない。
発光層113において、蛍光発光物質として用いることが可能な材料としては、例えば以下のようなものが挙げられる。また、これ以外の蛍光発光物質も用いることができる。
5,6−ビス[4−(10−フェニル−9−アントリル)フェニル]−2,2’−ビピリジン(略称:PAP2BPy)、5,6−ビス[4’−(10−フェニル−9−アントリル)ビフェニル−4−イル]−2,2’−ビピリジン(略称:PAPP2BPy)、N,N’−ジフェニル−N,N’−ビス[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6FLPAPrn)、N,N’−ビス(3−メチルフェニル)−N,N’−ビス[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]ピレン−1,6−ジアミン(略称:1,6mMemFLPAPrn)、N,N’−ビス[4−(9H−カルバゾール−9−イル)フェニル]−N,N’−ジフェニルスチルベン−4,4’−ジアミン(略称:YGA2S)、4−(9H−カルバゾール−9−イル)−4’−(10−フェニル−9−アントリル)トリフェニルアミン(略称:YGAPA)、4−(9H−カルバゾール−9−イル)−4’−(9,10−ジフェニル−2−アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9−ジフェニル−N−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:PCAPA)、ペリレン、2,5,8,11−テトラ−tert−ブチルペリレン(略称:TBP)、4−(10−フェニル−9−アントリル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBAPA)、N,N’’−(2−tert−ブチルアントラセン−9,10−ジイルジ−4,1−フェニレン)ビス[N,N’,N’−トリフェニル−1,4−フェニレンジアミン](略称:DPABPA)、N,9−ジフェニル−N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−9H−カルバゾール−3−アミン(略称:2PCAPPA)、N−[4−(9,10−ジフェニル−2−アントリル)フェニル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’−オクタフェニルジベンゾ[g,p]クリセン−2,7,10,15−テトラアミン(略称:DBC1)、クマリン30、N−(9,10−ジフェニル−2−アントリル)−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,9−ジフェニル−9H−カルバゾール−3−アミン(略称:2PCABPhA)、N−(9,10−ジフェニル−2−アントリル)−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPAPA)、N−[9,10−ビス(1,1’−ビフェニル−2−イル)−2−アントリル]−N,N’,N’−トリフェニル−1,4−フェニレンジアミン(略称:2DPABPhA)、9,10−ビス(1,1’−ビフェニル−2−イル)−N−[4−(9H−カルバゾール−9−イル)フェニル]−N−フェニルアントラセン−2−アミン(略称:2YGABPhA)、N,N,9−トリフェニルアントラセン−9−アミン(略称:DPhAPhA)、クマリン545T、N,N’−ジフェニルキナクリドン、(略称:DPQd)、ルブレン、5,12−ビス(1,1’−ビフェニル−4−イル)−6,11−ジフェニルテトラセン(略称:BPT)、2−(2−{2−[4−(ジメチルアミノ)フェニル]エテニル}−6−メチル−4H−ピラン−4−イリデン)プロパンジニトリル(略称:DCM1)、2−{2−メチル−6−[2−(2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’−テトラキス(4−メチルフェニル)テトラセン−5,11−ジアミン(略称:p−mPhTD)、7,14−ジフェニル−N,N,N’,N’−テトラキス(4−メチルフェニル)アセナフト[1,2−a]フルオランテン−3,10−ジアミン(略称:p−mPhAFD)、2−{2−イソプロピル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTI)、2−{2−tert−ブチル−6−[2−(1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:DCJTB)、2−(2,6−ビス{2−[4−(ジメチルアミノ)フェニル]エテニル}−4H−ピラン−4−イリデン)プロパンジニトリル(略称:BisDCM)、2−{2,6−ビス[2−(8−メトキシ−1,1,7,7−テトラメチル−2,3,6,7−テトラヒドロ−1H,5H−ベンゾ[ij]キノリジン−9−イル)エテニル]−4H−ピラン−4−イリデン}プロパンジニトリル(略称:BisDCJTM)、N,N’−ジフェニル−N,N’−(1,6−ピレン−ジイル)ビス[(6−フェニルベンゾ[b]ナフト[1,2−d]フラン)−8−アミン](略称:1,6BnfAPrn−03)、3,10−ビス[N−(9−フェニル−9H−カルバゾール−2−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)−02)、3,10−ビス[N−(ジベンゾフラン−3−イル)−N−フェニルアミノ]ナフト[2,3−b;6,7−b’]ビスベンゾフラン(略称:3,10FrA2Nbf(IV)−02)などが挙げられる。特に、1,6FLPAPrnや1,6mMemFLPAPrn、1,6BnfAPrn−03のようなピレンジアミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効率や信頼性に優れているため好ましい。
発光層113において、発光物質としてりん光発光物質を用いる場合、用いることが可能な材料としては、例えば以下のようなものが挙げられる。
トリス{2−[5−(2−メチルフェニル)−4−(2,6−ジメチルフェニル)−4H−1,2,4−トリアゾール−3−イル−κN2]フェニル−κC}イリジウム(III)(略称:[Ir(mpptz−dmp)])、トリス(5−メチル−3,4−ジフェニル−4H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4−(3−ビフェニル)−5−イソプロピル−3−フェニル−4H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz−3b)])のような4H−トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3−メチル−1−(2−メチルフェニル)−5−フェニル−1H−1,2,4−トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1−mp)])、トリス(1−メチル−5−フェニル−3−プロピル−1H−1,2,4−トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1−Me)])のような1H−トリアゾール骨格を有する有機金属イリジウム錯体や、fac−トリス[(1−2,6−ジイソプロピルフェニル)−2−フェニル−1H−イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3−(2,6−ジメチルフェニル)−7−メチルイミダゾ[1,2−f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt−Me)])のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)テトラキス(1−ピラゾリル)ボラート(略称:FIr6)、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(III)アセチルアセトナート(略称:FIracac)のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。これらは青色のりん光発光を示す化合物であり、440nmから520nmまでの波長域において発光のピークを有する化合物である。
また、トリス(4−メチル−6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4−tert−ブチル6−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6−メチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6−tert−ブチル−4−フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6−(2−ノルボルニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5−メチル−6−(2−メチルフェニル)−4−フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス(4,6−ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5−ジメチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−Me)(acac)])、(アセチルアセトナト)ビス(5−イソプロピル−3−メチル−2−フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr−iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2−フェニルピリジナト−N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2−フェニルピリジナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2−フェニルキノリナト−N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2−フェニルキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。これらは主に緑色のりん光発光を示す化合物であり、500nmから600nmまでの波長域において発光のピークを有する。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。なお、本発明の一態様の発光デバイスにおいては、下記構造式で表されるイリジウム錯体を発光材料として用いることが特に好ましい。下記イリジウム錯体は、アルキル基を有するため、有機溶剤に溶けやすく、ワニスを調整しやすい。
Figure JPOXMLDOC01-appb-C000022
なお、上記構造式で表されるイリジウム錯体を含む発光層をToF−SIMSによって測定すると、ポジティブモードの結果において、m/z=1676やプロダクトイオンであるm/z=1181、m/z=685にシグナルが現れることがわかっている。
また、(ジイソブチリルメタナト)ビス[4,6−ビス(3−メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6−ビス(3−メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、ビス[4,6−ジ(ナフタレン−1−イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5−トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5−トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、(アセチルアセトナト)ビス[2,3−ビス(4−フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1−フェニルイソキノリナト−N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18−オクタエチル−21H,23H−ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3−ジフェニル−1,3−プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1−(2−テノイル)−3,3,3−トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。これらは、赤色のりん光発光を示す化合物であり、600nmから700nmまでの波長域において発光のピークを有する。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
また、以上で述べたりん光性化合物の他、公知のりん光性化合物を選択し、用いてもよい。
TADF材料としてはフラーレン及びその誘導体、アクリジン及びその誘導体、エオシン誘導体等を用いることができる。またマグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンとしては、例えば、以下の構造式に示されるプロトポルフィリン−フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン−フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン−フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル−フッ化スズ錯体(SnF(Copro III−4Me))、オクタエチルポルフィリン−フッ化スズ錯体(SnF(OEP))、エチオポルフィリン−フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン−塩化白金錯体(PtClOEP)等も挙げられる。
Figure JPOXMLDOC01-appb-C000023
また、以下の構造式に示される2−(ビフェニル−4−イル)−4,6−ビス(12−フェニルインドロ[2,3−a]カルバゾール−11−イル)−1,3,5−トリアジン(略称:PIC−TRZ)や、9−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(略称:PCCzTzn)、9−[4−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)フェニル]−9’−フェニル−9H,9’H−3,3’−ビカルバゾール(略称:PCCzPTzn)、2−[4−(10H−フェノキサジン−10−イル)フェニル]−4,6−ジフェニル−1,3,5−トリアジン(略称:PXZ−TRZ)、3−[4−(5−フェニル−5,10−ジヒドロフェナジン−10−イル)フェニル]−4,5−ジフェニル−1,2,4−トリアゾール(略称:PPZ−3TPT)、3−(9,9−ジメチル−9H−アクリジン−10−イル)−9H−キサンテン−9−オン(略称:ACRXTN)、ビス[4−(9,9−ジメチル−9,10−ジヒドロアクリジン)フェニル]スルホン(略称:DMAC−DPS)、10−フェニル−10H,10’H−スピロ[アクリジン−9,9’−アントラセン]−10’−オン(略称:ACRSA)、等のπ電子過剰型複素芳香環とπ電子不足型複素芳香環の一方または両方を有する複素環化合物も用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が共に高く、好ましい。中でも、π電子不足型複素芳香環を有する骨格のうち、ピリジン骨格、ジアジン骨格(ピリミジン骨格、ピラジン骨格、ピリダジン骨格)、およびトリアジン骨格は、安定で信頼性が良好なため好ましい。特に、ベンゾフロピリミジン骨格、ベンゾチエノピリミジン骨格、ベンゾフロピラジン骨格、ベンゾチエノピラジン骨格はアクセプタ性が高く、信頼性が良好なため好ましい。また、π電子過剰型複素芳香環を有する骨格の中でも、アクリジン骨格、フェノキサジン骨格、フェノチアジン骨格、フラン骨格、チオフェン骨格、及びピロール骨格は、安定で信頼性が良好なため、当該骨格の少なくとも一を有することが好ましい。なお、フラン骨格としてはジベンゾフラン骨格が、チオフェン骨格としてはジベンゾチオフェン骨格が、それぞれ好ましい。また、ピロール骨格としては、インドール骨格、カルバゾール骨格、インドロカルバゾール骨格、ビカルバゾール骨格、3−(9−フェニル−9H−カルバゾール−3−イル)−9H−カルバゾール骨格が特に好ましい。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環の電子供与性とπ電子不足型複素芳香環の電子受容性が共に強くなり、S1準位とT1準位のエネルギー差が小さくなるため、熱活性化遅延蛍光を効率よく得られることから特に好ましい。なお、π電子不足型複素芳香環の代わりに、シアノ基のような電子吸引基が結合した芳香環を用いても良い。また、π電子過剰型骨格として、芳香族アミン骨格、フェナジン骨格等を用いることができる。また、π電子不足型骨格として、キサンテン骨格、チオキサンテンジオキサイド骨格、オキサジアゾール骨格、トリアゾール骨格、イミダゾール骨格、アントラキノン骨格、フェニルボランやボラントレン等の含ホウ素骨格、ベンゾニトリルまたはシアノベンゼン等のニトリル基またはシアノ基を有する芳香環や複素芳香環、ベンゾフェノン等のカルボニル骨格、ホスフィンオキシド骨格、スルホン骨格等を用いることができる。このように、π電子不足型複素芳香環およびπ電子過剰型複素芳香環の少なくとも一方の代わりにπ電子不足型骨格およびπ電子過剰型骨格を用いることができる。
Figure JPOXMLDOC01-appb-C000024
なお、TADF材料とは、S1準位とT1準位との差が小さく、逆項間交差によって三重項励起エネルギーから一重項励起エネルギーへエネルギーを変換することができる機能を有する材料である。そのため、三重項励起エネルギーをわずかな熱エネルギーによって一重項励起エネルギーにアップコンバート(逆項間交差)が可能で、一重項励起状態を効率よく生成することができる。また、三重項励起エネルギーを発光に変換することができる。
また、2種類の物質で励起状態を形成する励起錯体(エキサイプレックス、エキシプレックスまたはExciplexともいう)は、S1準位とT1準位との差が極めて小さく、三重項励起エネルギーを一重項励起エネルギーに変換することが可能なTADF材料としての機能を有する。
なお、T1準位の指標としては、低温(例えば77Kから10K)で観測されるりん光スペクトルを用いればよい。TADF材料としては、その蛍光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをS1準位とし、りん光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをT1準位とした際に、そのS1とT1の差が0.3eV以下であることが好ましく、0.2eV以下であることがさらに好ましい。
また、TADF材料を発光物質として用いる場合、ホスト材料のS1準位はTADF材料のS1準位より高い方が好ましい。また、ホスト材料のT1準位はTADF材料のT1準位より高いことが好ましい。
発光層のホスト材料としては、電子輸送性を有する材料や正孔輸送性を有する材料、上記TADF材料など様々なキャリア輸送材料を用いることができる。
正孔輸送性を有する材料としては、1×10−6cm/Vs以上の正孔移動度を有していることが好ましい。特にアミン骨格やπ電子過剰型複素芳香環骨格を有する有機化合物が好ましく、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(略称:NPB)、N,N’−ビス(3−メチルフェニル)−N,N’−ジフェニル−[1,1’−ビフェニル]−4,4’−ジアミン(略称:TPD)、4,4’−ビス[N−(スピロ−9,9’−ビフルオレン−2−イル)−N−フェニルアミノ]ビフェニル(略称:BSPB)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBA1BP)、4,4’−ジフェニル−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBBi1BP)、4−(1−ナフチル)−4’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBANB)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、9,9−ジメチル−N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]フルオレン−2−アミン(略称:PCBAF)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3−ビス(N−カルバゾリル)ベンゼン(略称:mCP)、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、3,6−ビス(3,5−ジフェニルフェニル)−9−フェニルカルバゾール(略称:CzTP)、3,3’−ビス(9−フェニル−9H−カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P−II)、2,8−ジフェニル−4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]ジベンゾチオフェン(略称:DBTFLP−III)、4−[4−(9−フェニル−9H−フルオレン−9−イル)フェニル]−6−フェニルジベンゾチオフェン(略称:DBTFLP−IV)などのチオフェン骨格を有する化合物や、4,4’,4’’−(ベンゼン−1,3,5−トリイル)トリ(ジベンゾフラン)(略称:DBF3P−II)、4−{3−[3−(9−フェニル−9H−フルオレン−9−イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi−II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。
また、N−(4−ビフェニル)−6,N−ジフェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BnfABP)、N,N−ビス(4−ビフェニル)−6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf)、4,4’−ビス(6−フェニルベンゾ[b]ナフト[1,2−d]フラン−8−イル−4’’−フェニルトリフェニルアミン(略称:BnfBB1BP)、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[1,2−d]フラン−6−アミン(略称:BBABnf(6))、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[1,2−d]フラン−8−アミン(略称:BBABnf(8))、N,N−ビス(4−ビフェニル)ベンゾ[b]ナフト[2,3−d]フラン−4−アミン(略称:BBABnf(II)(4))、N,N−ビス[4−(ジベンゾフラン−4−イル)フェニル]−4−アミノ−p−ターフェニル(略称:DBfBB1TP)、N−[4−(ジベンゾチオフェン−4−イル)フェニル]−N−フェニル−4−ビフェニルアミン(略称:ThBA1BP)、4−(2−ナフチル)−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNB)、4−[4−(2−ナフチル)フェニル]−4’,4’’−ジフェニルトリフェニルアミン(略称:BBAβNBi)、4,4’−ジフェニル−4’’−(6;1’−ビナフチル−2−イル)トリフェニルアミン(略称:BBAαNβNB)、4,4’−ジフェニル−4’’−(7;1’−ビナフチル−2−イル)トリフェニルアミン(略称:BBAαNβNB−03)、4,4’−ジフェニル−4’’−(7−フェニル)ナフチル−2−イルトリフェニルアミン(略称:BBAPβNB−03)、4,4’−ジフェニル−4’’−(6;2’−ビナフチル−2−イル)トリフェニルアミン(略称:BBA(βN2)B)、4,4’−ジフェニル−4’’−(7;2’−ビナフチル−2−イル)トリフェニルアミン(略称:BBA(βN2)B−03)、4,4’−ジフェニル−4’’−(4;2’−ビナフチル−1−イル)トリフェニルアミン(略称:BBAβNαNB)、4,4’−ジフェニル−4’’−(5;2’−ビナフチル−1−イル)トリフェニルアミン(略称:BBAβNαNB−02)、4−(4−ビフェニリル)−4’−(2−ナフチル)−4’’−フェニルトリフェニルアミン(略称:TPBiAβNB)、4−(3−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:mTPBiAβNBi)、4−(4−ビフェニリル)−4’−[4−(2−ナフチル)フェニル]−4’’−フェニルトリフェニルアミン(略称:TPBiAβNBi)、4−フェニル−4’−(1−ナフチル)トリフェニルアミン(略称:αNBA1BP)、4,4’−ビス(1−ナフチル)トリフェニルアミン(略称:αNBB1BP)、4,4’−ジフェニル−4’’−[4’−(カルバゾール−9−イル)ビフェニル−4−イル]トリフェニルアミン(略称:YGTBi1BP)、4’−[4−(3−フェニル−9H−カルバゾール−9−イル)フェニル]トリス(1,1’−ビフェニル−4−イル)アミン(略称:YGTBi1BP−02)、4−ジフェニル−4’−(2−ナフチル)−4’’−{9−(4−ビフェニリル)カルバゾール)}トリフェニルアミン(略称:YGTBiβNB)、N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−N−[4−(1−ナフチル)フェニル]−9,9’−スピロビ(9H−フルオレン)−2−アミン(略称:PCBNBSF)、N,N−ビス(4−ビフェニリル)−9,9’−スピロビ[9H−フルオレン]−2−アミン(略称:BBASF)、N,N−ビス(1,1’−ビフェニル−4−イル)−9,9’−スピロビ[9H−フルオレン]−4−アミン(略称:BBASF(4))、N−(1,1’−ビフェニル−2−イル)−N−(9,9−ジメチル−9H−フルオレン−2−イル)−9,9’−スピロビ(9H−フルオレン)−4−アミン(略称:oFBiSF)、N−(4−ビフェニル)−N−(ジベンゾフラン−4−イル)−9,9−ジメチル−9H−フルオレン−2−アミン(略称:FrBiF)、N−[4−(1−ナフチル)フェニル]−N−[3−(6−フェニルジベンゾフラン−4−イル)フェニル]−1−ナフチルアミン(略称:mPDBfBNBN)、4−フェニル−4’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:BPAFLP)、4−フェニル−3’−(9−フェニルフルオレン−9−イル)トリフェニルアミン(略称:mBPAFLP)、4−フェニル−4’−[4−(9−フェニルフルオレン−9−イル)フェニル]トリフェニルアミン(略称:BPAFLBi)、4,4’−ジ(1−ナフチル)−4’’−(9−フェニル−9H−カルバゾール−3−イル)トリフェニルアミン(略称:PCBNBB)、N−フェニル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]スピロ−9,9’−ビフルオレン−2−アミン(略称:PCBASF)、N−(1,1’−ビフェニル−4−イル)−9,9−ジメチル−N−[4−(9−フェニル−9H−カルバゾール−3−イル)フェニル]−9H−フルオレン−2−アミン(略称:PCBBiF)、N,N−ビス(9,9−ジメチル−9H−フルオレン−2−イル)−9,9’−スピロビ−9H−フルオレン−4−アミン、N,N−ビス(9,9−ジメチル−9H−フルオレン−2−イル)−9,9’−スピロビ−9H−フルオレン−3−アミン、N,N−ビス(9,9−ジメチル−9H−フルオレン−2−イル)−9,9’−スピロビ−9H−フルオレン−2−アミン、N,N−ビス(9,9−ジメチル−9H−フルオレン−2−イル)−9,9’−スピロビ−9H−フルオレン−1−アミン等も好適に用いることができる。
電子輸送性を有する材料としては、例えば、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8−キノリノラト)亜鉛(II)(略称:Znq)、ビス[2−(2−ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2−(2−ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、π電子不足型複素芳香環骨格を有する有機化合物が好ましい。π電子不足型複素芳香環骨格を有する有機化合物としては、例えば、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、9−[4−(5−フェニル−1,3,4−オキサジアゾール−2−イル)フェニル]−9H−カルバゾール(略称:CO11)、2,2’,2’’−(1,3,5−ベンゼントリイル)トリス(1−フェニル−1H−ベンゾイミダゾール)(略称:TPBI)、2−[3−(ジベンゾチオフェン−4−イル)フェニル]−1−フェニル−1H−ベンゾイミダゾール(略称:mDBTBIm−II)などのポリアゾール骨格を有する複素環化合物や、2−[3−(ジベンゾチオフェン−4−イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq−II)、2−[3’−(ジベンゾチオフェン−4−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq−II)、2−[3’−(9H−カルバゾール−9−イル)ビフェニル−3−イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、4,6−ビス[3−(フェナントレン−9−イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6−ビス〔3−(4−ジベンゾチエニル)フェニル〕ピリミジン(略称:4,6mDBTP2Pm−II)などのジアジン骨格を有する複素環化合物や、3,5−ビス[3−(9H−カルバゾール−9−イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5−トリ[3−(3−ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物、2−[3’−(9,9−ジメチル−9H−フルオレン−2−イル)−1,1’−ビフェニル−3−イル]−4,6−ジフェニル−1,3,5−トリアジン(略称:mFBPTzn)、2−[(1,1’−ビフェニル)−4−イル]−4−フェニル−6−[9,9’−スピロビ(9H−フルオレン)−2−イル]−1,3,5−トリアジン(略称:BP−SFTzn)、2−{3−[3−(ベンゾ「b」ナフト[1,2−d]フラン−8−イル)フェニル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:mBnfBPTzn)、2−{3−[3−(ベンゾ「b」ナフト[1,2−d]フラン−6−イル)フェニル]フェニル}−4,6−ジフェニル−1,3,5−トリアジン(略称:mBnfBPTzn−02)などのトリアジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物、トリアジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物、トリアジン骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する
ホスト材料として用いることが可能なTADF材料としては、先にTADF材料として挙げたものを同様に用いることができる。TADF材料をホスト材料として用いると、TADF材料で生成した三重項励起エネルギーが、逆項間交差によって一重項励起エネルギーに変換され、さらに発光物質へエネルギー移動することで、発光デバイスの発光効率を高めることができる。このとき、TADF材料がエネルギードナーとして機能し、発光物質がエネルギーアクセプターとして機能する。
これは、上記発光物質が蛍光発光物質である場合に、非常に有効である。また、このとき、高い発光効率を得るためには、TADF材料のS1準位は、蛍光発光物質のS1準位より高いことが好ましい。また、TADF材料のT1準位は、蛍光発光物質のS1準位より高いことが好ましい。したがって、TADF材料のT1準位は、蛍光発光物質のT1準位より高いことが好ましい。
また、蛍光発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈するTADF材料を用いることが好ましい。そうすることで、TADF材料から蛍光発光物質への励起エネルギーの移動がスムーズとなり、効率よく発光が得られるため、好ましい。
また、効率良く三重項励起エネルギーから逆項間交差によって一重項励起エネルギーが生成されるためには、TADF材料でキャリア再結合が生じることが好ましい。また、TADF材料で生成した三重項励起エネルギーが蛍光発光物質の三重項励起エネルギーに移動しないことが好ましい。そのためには、蛍光発光物質は、蛍光発光物質が有する発光団(発光の原因となる骨格)の周囲に保護基を有すると好ましい。該保護基としては、π結合を有さない置換基が好ましく、飽和炭化水素が好ましく、具体的には炭素数3以上10以下のアルキル基、置換もしくは無置換の炭素数3以上10以下のシクロアルキル基、炭素数3以上10以下のトリアルキルシリル基が挙げられ、保護基が複数あるとさらに好ましい。π結合を有さない置換基は、キャリアを輸送する機能に乏しいため、キャリア輸送やキャリア再結合に影響をほとんど与えずに、TADF材料と蛍光発光物質の発光団との距離を遠ざけることができる。ここで、発光団とは、蛍光発光物質において発光の原因となる原子団(骨格)を指す。発光団は、π結合を有する骨格が好ましく、芳香環を含むことが好ましく、縮合芳香環または縮合複素芳香環を有すると好ましい。縮合芳香環または縮合複素芳香環としては、フェナントレン骨格、スチルベン骨格、アクリドン骨格、フェノキサジン骨格、フェノチアジン骨格等が挙げられる。特にナフタレン骨格、アントラセン骨格、フルオレン骨格、クリセン骨格、トリフェニレン骨格、テトラセン骨格、ピレン骨格、ペリレン骨格、クマリン骨格、キナクリドン骨格、ナフトビスベンゾフラン骨格を有する蛍光発光物質は蛍光量子収率が高いため好ましい。
蛍光発光物質を発光物質として用いる場合、ホスト材料としては、アントラセン骨格を有する材料が好適である。アントラセン骨格を有する物質を蛍光発光物質のホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現することが可能である。ホスト材料として用いるアントラセン骨格を有する物質としては、ジフェニルアントラセン骨格、特に9,10−ジフェニルアントラセン骨格を有する物質が化学的に安定であるため好ましい。また、ホスト材料がカルバゾール骨格を有する場合、正孔の注入・輸送性が高まるため好ましいが、カルバゾールにベンゼン環がさらに縮合したベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなるためより好ましい。特に、ホスト材料がジベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなる上に、正孔輸送性にも優れ、耐熱性も高くなるため好適である。したがって、さらにホスト材料として好ましいのは、9,10−ジフェニルアントラセン骨格およびカルバゾール骨格(あるいはベンゾカルバゾール骨格やジベンゾカルバゾール骨格)を同時に有する物質である。なお、上記の正孔注入・輸送性の観点から、カルバゾール骨格に換えて、ベンゾフルオレン骨格やジベンゾフルオレン骨格を用いてもよい。このような物質の例としては、9−フェニル−3−[4−(10−フェニル−9−アントリル)フェニル]−9H−カルバゾール(略称:PCzPA)、3−[4−(1−ナフチル)−フェニル]−9−フェニル−9H−カルバゾール(略称:PCPN)、9−[4−(10−フェニル−9−アントラセニル)フェニル]−9H−カルバゾール(略称:CzPA)、7−[4−(10−フェニル−9−アントリル)フェニル]−7H−ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6−[3−(9,10−ジフェニル−2−アントリル)フェニル]−ベンゾ[b]ナフト[1,2−d]フラン(略称:2mBnfPPA)、9−フェニル−10−{4−(9−フェニル−9H−フルオレン−9−イル)ビフェニル−4’−イル}アントラセン(略称:FLPPA)、9−(1−ナフチル)−10−[4−(2−ナフチル)フェニル]アントラセン(略称:αN−βNPAnth)等が挙げられる。特に、CzPA、cgDBCzPA2mBnfPPA、PCzPAは非常に良好な特性を示すため、好ましい選択である。
なお、ホスト材料は複数種の物質を混合した材料であっても良く、混合したホスト材料を用いる場合は、電子輸送性を有する材料と、正孔輸送性を有する材料とを混合することが好ましい。電子輸送性を有する材料と、正孔輸送性を有する材料を混合することによって、発光層113の輸送性を容易に調整することができ、再結合領域の制御も簡便に行うことができる。正孔輸送性を有する材料と電子輸送性を有する材料の含有量の重量比は、正孔輸送性を有する材料:電子輸送性を有する材料=1:19~19:1とすればよい。
なお、上記混合された材料の一部として、りん光発光物質を用いることができる。りん光発光物質は、発光物質として蛍光発光物質を用いる際に蛍光発光物質へ励起エネルギーを供与するエネルギードナーとして用いることができる。
また、これら混合された材料同士で励起錯体を形成しても良い。当該励起錯体は発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光が得られるため好ましい。また、当該構成を用いることで駆動電圧も低下するため好ましい。
なお、励起錯体を形成する材料の少なくとも一方は、りん光発光物質であってもよい。そうすることで、三重項励起エネルギーを逆項間交差によって効率よく一重項励起エネルギーへ変換することができる。
効率よく励起錯体を形成する材料の組み合わせとしては、正孔輸送性を有する材料のHOMO準位が電子輸送性を有する材料のHOMO準位以上であると好ましい。また、正孔輸送性を有する材料のLUMO準位が電子輸送性を有する材料のLUMO準位以上であると好ましい。なお、材料のLUMO準位およびHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位および酸化電位)から導出することができる。
なお、励起錯体の形成は、例えば正孔輸送性を有する材料の発光スペクトル、電子輸送性を有する材料の発光スペクトル、およびこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(あるいは長波長側に新たなピークを持つ)現象を観測することにより確認することができる。あるいは、正孔輸送性を有する材料の過渡フォトルミネッセンス(PL)、電子輸送性を有する材料の過渡PL、及びこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、あるいは遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性を有する材料の過渡EL、電子輸送性を有する材料の過渡EL及びこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
電子輸送層114は、本発明の構成を有することで屈折率の小さい層とすることができるため、駆動電圧を大きく低下させることなくEL層103内部に屈折率の低い層を形成することができ、発光デバイスの外部量子効率の向上させることが可能となる。
なお、本構成を有する電子輸送層114は、電子注入層115を兼ねることがある。
また、電子輸送層114中においてアルカリ金属またはアルカリ金属の金属錯体は、その厚さ方向において濃度差(0である場合も含む)が存在することが好ましい。
電子輸送層114と陰極102との間に、電子注入層115として、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8−ヒドロキシキノリナト−リチウム(略称:Liq)等のようなアルカリ金属又はアルカリ土類金属又はそれらの化合物もしくは錯体を含む層を設けても良い。電子注入層115は、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させたものや、エレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。
また、フッ化ナトリウムを用いることにより、発光デバイスの電子輸送性や耐水性が向上するため好ましい構成である。フッ化ナトリウムを電子注入層115に有する発光デバイスの電子注入層をToF−SIMS分析すると、Naや、NaF 、Na 等、ナトリウムとフッ素の結合数が様々な陰イオンまたは陽イオンに由来するシグナルが観測される。
また、陰極に接してバリウムなどアルカリ土類金属を含む層が設けられていても良い。これにより陰極からの電子注入性が良好になるため好ましい。
また、上記バリウムを含む層は、同時に複芳香族化合物を有していても良い。当該複素芳香族化合物としては、フェナントロリン骨格を有する有機化合物が好ましく、特に下記構造式で表される、2−フェニル−9−[3−(9−フェニル−1,10−フェナントロリン−2−イル)フェニル]−1,10−フェナントロリンなどが好ましい。
Figure JPOXMLDOC01-appb-C000025
2−フェニル−9−[3−(9−フェニル−1,10−フェナントロリン−2−イル)フェニル]−1,10−フェナントロリンを含む層はToF−SIMS分析を行うと、ポジティブモードおよびネガティブモードの双方においてm/z=587にシグナルが観測される。また同じこの材料を成膜した時に、同じ層または接する層にアルカリ金属またはアルカリ土類金属やそれらの化合物が含まれている場合、アルカリ金属錯体(たとえば、Na錯体ならm/z=609)またはアルカリ土類金属錯体(たとえばBa錯体ならm/z=724)などのイオンが検出されることがある。
なお、電子注入層115として、電子輸送性を有する物質(好ましくはビピリジン骨格を有する有機化合物)に上記アルカリ金属又はアルカリ土類金属のフッ化物を微結晶状態となる濃度以上(50wt%以上)含ませた層を用いることも可能である。当該層は、屈折率の低い層であることから、より外部量子効率の良好な発光デバイスを提供することが可能となる。
また、図1Aの電子注入層115の代わりに電荷発生層116を設けても良い(図1B)。電荷発生層116は、電位をかけることによって当該層の陰極側に接する層に正孔を、陽極側に接する層に電子を注入することができる層のことである。電荷発生層116には、少なくともP型層117が含まれる。P型層117は、上述の正孔注入層111を構成することができる材料として挙げた複合材料を用いて形成することが好ましい。またP型層117は、複合材料を構成する材料として上述したアクセプタ材料を含む膜と正孔輸送材料を含む膜とを積層して構成しても良い。P型層117に電位をかけることによって、電子輸送層114に電子が、陰極である陰極102に正孔が注入され、発光デバイスが動作する
なお、電荷発生層116はP型層117の他に電子リレー層118及び電子注入バッファ層119のいずれか一又は両方がもうけられていることが好ましい。
電子リレー層118は少なくとも電子輸送性を有する物質を含み、電子注入バッファ層119とP型層117との相互作用を防いで電子をスムーズに受け渡す機能を有する。電子リレー層118に含まれる電子輸送性を有する物質のLUMO準位は、P型層117におけるアクセプタ性物質のLUMO準位と、電子輸送層114における電荷発生層116に接する層に含まれる物質のLUMO準位との間であることが好ましい。電子リレー層118に用いられる電子輸送性を有する物質におけるLUMO準位の具体的なエネルギー準位は−5.0eV以上、好ましくは−5.0eV以上−3.0eV以下とするとよい。なお、電子リレー層118に用いられる電子輸送性を有する物質としてはフタロシアニン系の材料又は金属−酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
電子注入バッファ層119には、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファ層119が、電子輸送性を有する物質とドナー性物質を含んで形成される場合には、ドナー性物質として、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもできる。
なお、電子輸送性を有する物質としては、先に説明した電子輸送層114を構成する材料と同様の材料を用いて形成することができる。当該材料は屈折率が低い有機化合物であることから、電子注入バッファ層119に用いることによって、外部量子効率の良好な発光デバイスを得ることができる。
陰極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、陰極102と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム−酸化スズ等様々な導電性材料を陰極102として用いることができる。
なお、陰極102を可視光に対し透過性を有する材料で形成した場合、図1Dに示したように陰極側から光を発する発光デバイスとすることができる。このような陰極を有する発光デバイスは陽極101を基板側に作製した場合、いわゆるトップエミッション型の発光デバイスとすることができる。
これら導電性材料は、真空蒸着法やスパッタリング法などの乾式法、インクジェット法、スピンコート法等を用いて成膜することが可能である。また、ゾル−ゲル法を用いて湿式法で形成しても良いし、金属材料のペーストを用いて湿式法で形成してもよい。
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用いることができる。例えば、真空蒸着法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット法またはスピンコート法など用いても構わない。
また上述した各電極または各層を異なる成膜方法を用いて形成しても構わない。
なお、陽極101と陰極102との間に設けられる層の構成は、上記のものには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属とが近接することによって生じる消光が抑制されるように、陽極101および陰極102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好ましい。
また、発光層113に接する正孔輸送層や電子輸送層、特に発光層113における再結合領域に近いキャリア輸送層は、発光層で生成した励起子からのエネルギー移動を抑制するため、そのバンドギャップが発光層を構成する発光材料もしくは、発光層に含まれる発光材料が有するバンドギャップより大きいバンドギャップを有する物質で構成することが好ましい。
続いて、複数の発光ユニットを積層した構成の発光デバイス(積層型素子、タンデム型素子ともいう)の態様について説明する。この発光デバイスは、陽極と陰極との間に、複数の発光ユニットを有する発光デバイスである。一つの発光ユニットは、図1Aで示したEL層103とほぼ同様な構成を有する。つまり、タンデム型素子は複数の発光ユニットを有する発光デバイスであり、図1A又は図1Bで示した発光デバイスは、1つの発光ユニットを有する発光デバイスであるということができる。
タンデム型素子において、陽極と陰極との間には、第1の発光ユニットと第2の発光ユニットが積層されており、第1の発光ユニットと第2の発光ユニットとの間には電荷発生層が設けられている。陽極と陰極はそれぞれ図1Aにおける陽極101と陰極102に相当し、図1Aの説明で述べたものと同じものを適用することができる。また、第1の発光ユニットと第2の発光ユニットは互いに同じ構成であっても異なる構成であってもよい。
タンデム型素子における電荷発生層は、陽極と陰極に電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入する機能を有する。すなわち、陽極の電位の方が陰極の電位よりも高くなるように電圧を印加した場合、電荷発生層は、第1の発光ユニットに電子を注入し、第2の発光ユニットに正孔を注入するものであればよい。
電荷発生層は、図1Bにて説明した電荷発生層116と同様の構成で形成することが好ましい。有機化合物と金属酸化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。なお、発光ユニットの陽極側の面が電荷発生層に接している場合は、電荷発生層が発光ユニットの正孔注入層の役割も担うことができるため、発光ユニットは正孔注入層を設けなくとも良い。
また、タンデム型素子の電荷発生層に電子注入バッファ層119を設ける場合、当該電子注入バッファ層119が陽極側の発光ユニットにおける電子注入層の役割を担うため、陽極側の発光ユニットには必ずしも電子注入層を形成する必要はない。
以上、2つの発光ユニットを有するタンデム型素子について説明したが、3つ以上の発光ユニットを積層したタンデム型素子についても、同様に適用することが可能である。一対の電極間に複数の発光ユニットを電荷発生層で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光デバイス全体として、所望の色の発光を得ることができる。例えば、2つの発光ユニットを有する発光デバイスにおいて、第1の発光ユニットで赤と緑の発光色、第2の発光ユニットで青の発光色を得ることで、発光デバイス全体として白色発光する発光デバイスを得ることも可能である。
また、上述のEL層103や第1の発光ユニット、第2の発光ユニット及び電荷発生層などの各層や電極は、例えば、蒸着法(真空蒸着法を含む)、液滴吐出法(インクジェット法ともいう)、塗布法、グラビア印刷法等の方法を用いて形成することができる。また、それらは低分子材料、中分子材料(オリゴマー、デンドリマーを含む)、または高分子材料を含んでも良い。
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態2)
本実施の形態では、実施の形態1に記載の発光デバイスを用いた発光装置について説明する。
本実施の形態では、実施の形態1に記載の発光デバイスを用いて作製された発光装置について図2A、及び図2Bを用いて説明する。なお、図2Aは、発光装置を示す上面図、図2Bは図2Aに示す一点鎖線A−Bおよび一点鎖線C−Dで切断した断面図である。この発光装置は、発光デバイスの発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
次に、断面構造について図2Bを用いて説明する。素子基板610上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601と、画素部602中の一つの画素が示されている。
素子基板610はガラス、石英、有機樹脂、金属、合金、半導体などからなる基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いて作製すればよい。
画素や駆動回路に用いられるトランジスタの構造は特に限定されない。例えば、逆スタガ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよい。また、トップゲート型のトランジスタでもボトムゲート型トランジスタでもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、シリコン、ゲルマニウム、炭化シリコン、窒化ガリウム等を用いることができる。または、In−Ga−Zn系金属酸化物などの、インジウム、ガリウム、亜鉛のうち少なくとも一つを含む酸化物半導体を用いてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
ここで、上記画素や駆動回路に設けられるトランジスタの他、後述するタッチセンサ等に用いられるトランジスタなどの半導体装置には、酸化物半導体を適用することが好ましい。特にシリコンよりもバンドギャップの広い酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップの広い酸化物半導体を用いることで、トランジスタのオフ状態における電流を低減できる。
上記酸化物半導体は、少なくともインジウム(In)又は亜鉛(Zn)を含むことが好ましい。また、In−M−Zn系酸化物(MはAl、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)で表記される酸化物を含む酸化物半導体であることがより好ましい。
特に、半導体層として、複数の結晶部を有し、当該結晶部はc軸が半導体層の被形成面、または半導体層の上面に対し垂直に配向し、且つ隣接する結晶部間には粒界を有さない酸化物半導体膜を用いることが好ましい。
半導体層としてこのような材料を用いることで、電気特性の変動が抑制され、信頼性の高いトランジスタを実現できる。
また、上述の半導体層を有するトランジスタはその低いオフ電流により、トランジスタを介して容量に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、各表示領域に表示した画像の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された発光装置を実現できる。
トランジスタの特性安定化等のため、下地膜を設けることが好ましい。下地膜としては、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜などの無機絶縁膜を用い、単層で又は積層して作製することができる。下地膜はスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法、印刷法等を用いて形成できる。なお、下地膜は、必要で無ければ設けなくてもよい。
なお、FET623は駆動回路部601に形成されるトランジスタの一つを示すものである。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成すれば良い。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる。
また、画素部602はスイッチング用FET611と、電流制御用FET612とそのドレインに電気的に接続された陽極613とを含む複数の画素により形成されているが、これに限定されず、3つ以上のFETと、容量素子とを組み合わせた画素部としてもよい。
なお、陽極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ型の感光性アクリル樹脂膜を用いることにより形成することができる。
また、後に形成するEL層等の被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アクリル樹脂を用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm~3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用することができる。
陽極613上には、EL層616、および陰極617がそれぞれ形成されている。ここで、陽極613に用いる材料としては、仕事関数の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したインジウム錫酸化物膜、2~20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタン膜とアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。EL層616は、実施の形態1で説明したような構成を含んでいる。また、EL層616を構成する他の材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
さらに、EL層616上に形成され、陰極617に用いる材料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化合物(MgAg、MgIn、AlLi等)等)を用いることが好ましい。なお、EL層616で生じた光が陰極617を透過する場合には、陰極617として、膜厚を薄くした金属薄膜と、透明導電膜(ITO、2~20wt%の酸化亜鉛を含む酸化インジウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いるのが良い。
なお、陽極613、EL層616、陰極617でもって、発光デバイスが形成されている。当該発光デバイスは実施の形態1に記載の発光デバイスである。なお、画素部は複数の発光デバイスが形成されてなっているが、本実施の形態における発光装置では、実施の形態1に記載の発光デバイスと、それ以外の構成を有する発光デバイスの両方が混在していても良い。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光デバイス618が備えられた構造になっている。なお、空間607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材で充填される場合もある。封止基板には凹部を形成し、そこに乾燥材を設けことで水分の影響による劣化を抑制することができ、好ましい構成である。
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。
図2A及び図2Bには示されていないが、陰極上に保護膜を設けても良い。保護膜は有機樹脂膜や無機絶縁膜で形成すればよい。また、シール材605の露出した部分を覆うように、保護膜が形成されていても良い。また、保護膜は、一対の基板の表面及び側面、封止層、絶縁層等の露出した側面を覆って設けることができる。
保護膜には、水などの不純物を透過しにくい材料を用いることができる。したがって、水などの不純物が外部から内部に拡散することを効果的に抑制することができる。
保護膜を構成する材料としては、酸化物、窒化物、フッ化物、硫化物、三元化合物、金属またはポリマー等を用いることができ、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、酸化ランタン、酸化珪素、チタン酸ストロンチウム、酸化タンタル、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化スカンジウム、酸化エルビウム、酸化バナジウムまたは酸化インジウム等を含む材料や、窒化アルミニウム、窒化ハフニウム、窒化珪素、窒化タンタル、窒化チタン、窒化ニオブ、窒化モリブデン、窒化ジルコニウムまたは窒化ガリウム等を含む材料、チタンおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む酸化物、アルミニウムおよび亜鉛を含む酸化物、マンガンおよび亜鉛を含む硫化物、セリウムおよびストロンチウムを含む硫化物、エルビウムおよびアルミニウムを含む酸化物、イットリウムおよびジルコニウムを含む酸化物等を含む材料を用いることができる。
保護膜は、段差被覆性(ステップカバレッジ)の良好な成膜方法を用いて形成することが好ましい。このような手法の一つに、原子層堆積(ALD:Atomic Layer Deposition)法がある。ALD法を用いて形成することができる材料を、保護膜に用いることが好ましい。ALD法を用いることで緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える保護膜を形成することができる。また、保護膜を形成する際に加工部材に与える損傷を、低減することができる。
例えばALD法を用いて保護膜を形成することで、複雑な凹凸形状を有する表面や、タッチパネルの上面、側面及び裏面にまで均一で欠陥の少ない保護膜を形成することができる。
以上のようにして、実施の形態1に記載の発光デバイスを用いて作製された発光装置を得ることができる。
本実施の形態における発光装置は、実施の形態1に記載の発光デバイスを用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態1に記載の発光デバイスは発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
図3A、及び図3Bには白色発光を呈する発光デバイスを形成し、着色層(カラーフィルタ)等を設けることによってフルカラー化した発光装置の例を示す。図3Aには基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光デバイスの陽極1024W、1024R、1024G、1024B、隔壁1025、EL層1028、発光デバイスの陰極1029、封止基板1031、シール材1032などが図示されている。
また、図3Aでは着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)は透明な基材1033に設けている。また、ブラックマトリクス1035をさらに設けても良い。着色層及びブラックマトリクスが設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、着色層、及びブラックマトリクス1035は、オーバーコート層で覆われている。また、図3Aにおいては、光が着色層を透過せずに外部へと出る発光層と、各色の着色層を透過して外部に光が出る発光層とがあり、着色層を透過しない光は白、着色層を透過する光は赤、緑、青となることから、4色の画素で映像を表現することができる。
図3Bでは着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示した。このように、着色層は基板1001と封止基板1031の間に設けられていても良い。
また、以上に説明した発光装置では、FETが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型の発光装置の断面図を図4に示す。この場合、基板1001は光を通さない基板を用いることができる。FETと発光デバイスの陽極とを接続する接続電極を作製するまでは、ボトムエミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を、電極1022を覆うように形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜1037は第2の層間絶縁膜と同様の材料の他、他の公知の材料を用いて形成することができる。
発光デバイスの陽極1024W、1024R、1024G、1024Bはここでは陽極とするが、陰極であっても構わない。また、図4のようなトップエミッション型の発光装置である場合、陽極を反射電極とすることが好ましい。EL層1028の構成は、実施の形態1においてEL層103として説明したような構成とし、且つ、白色の発光が得られるような素子構造とする。
図4のようなトップエミッションの構造では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するようにブラックマトリクス1035を設けても良い。着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)やブラックマトリックスはオーバーコート層1036によって覆われていても良い。なお封止基板1031は透光性を有する基板を用いることとする。また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定されず、赤、黄、緑、青の4色や赤、緑、青の3色でフルカラー表示を行ってもよい。
トップエミッション型の発光装置では、マイクロキャビティ構造の適用が好適に行える。マイクロキャビティ構造を有する発光デバイスは、陽極を反射電極、陰極を半透過・半反射電極とすることにより得られる。反射電極と半透過・半反射電極との間には少なくともEL層を有し、少なくとも発光領域となる発光層を有している。
なお、反射電極は、可視光の反射率が40%乃至100%、好ましくは70%乃至100%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。また、半透過・半反射電極は、可視光の反射率が20%乃至80%、好ましくは40%乃至70%であり、かつその抵抗率が1×10−2Ωcm以下の膜であるとする。
EL層に含まれる発光層から射出される発光は、反射電極と半透過・半反射電極とによって反射され、共振する。
当該発光デバイスは、透明導電膜や上述の複合材料、キャリア輸送材料などの厚みを変えることで反射電極と半透過・半反射電極の間の光学的距離を変えることができる。これにより、反射電極と半透過・半反射電極との間において、共振する波長の光を強め、共振しない波長の光を減衰させることができる。
なお、反射電極によって反射されて戻ってきた光(第1の反射光)は、発光層から半透過・半反射電極に直接入射する光(第1の入射光)と大きな干渉を起こすため、反射電極と発光層の光学的距離を(2n−1)λ/4(ただし、nは1以上の自然数、λは増幅したい発光の波長)に調節することが好ましい。当該光学的距離を調節することにより、第1の反射光と第1の入射光との位相を合わせ発光層からの発光をより増幅させることができる。
なお、上記構成においてEL層は、複数の発光層を有する構造であっても、単一の発光層を有する構造であっても良く、例えば、上述のタンデム型発光デバイスの構成と組み合わせて、一つの発光デバイスに電荷発生層を挟んで複数のEL層を設け、それぞれのEL層に単数もしくは複数の発光層を形成する構成に適用してもよい。
マイクロキャビティ構造を有することで、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。なお、赤、黄、緑、青の4色の副画素で映像を表示する発光装置の場合、黄色発光による輝度向上効果のうえ、全副画素において各色の波長に合わせたマイクロキャビティ構造を適用できるため良好な特性の発光装置とすることができる。
本実施の形態における発光装置は、実施の形態1に記載の発光デバイスを用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態1に記載の発光デバイスは発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
ここまでは、アクティブマトリクス型の発光装置について説明したが、以下からはパッシブマトリクス型の発光装置について説明する。図5A、及び図5Bには本発明を適用して作製したパッシブマトリクス型の発光装置を示す。なお、図5Aは、発光装置を示す斜視図、図5Bは図5Aを一点鎖線X−Yで切断した断面図である。図5において、基板951上には、電極952と電極956との間にはEL層955が設けられている。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光デバイスの不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置においても、実施の形態1に記載の発光デバイスを用いており、信頼性の良好な発光装置、又は消費電力の小さい発光装置とすることができる。
以上、説明した発光装置は、マトリクス状に配置された多数の微小な発光デバイスをそれぞれ制御することが可能であるため、画像の表現を行う表示装置として好適に利用できる発光装置である。
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態3)
本実施の形態では、実施の形態1に記載の発光デバイスを照明装置として用いる例を、図6を参照しながら、説明する。図6Bは照明装置の上面図、図6Aは図6Bに示す線分e−fにおける断面図である。
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、陽極401が形成されている。陽極401は実施の形態1における陽極101に相当する。陽極401側から発光を取り出す場合、陽極401は透光性を有する材料により形成する。
陰極404に電圧を供給するためのパッド412が基板400上に形成される。
陽極401上にはEL層403が形成されている。EL層403は実施の形態1におけるEL層103の構成に相当する。なお、これらの構成については当該記載を参照されたい。
EL層403を覆って陰極404を形成する。陰極404は実施の形態1における陰極102に相当する。発光を陽極401側から取り出す場合、陰極404は反射率の高い材料によって形成される。陰極404はパッド412と接続することによって、電圧が供給される。
以上、陽極401、EL層403、及び陰極404を有する発光デバイスを本実施の形態で示す照明装置は有している。当該発光デバイスは発光効率の高い発光デバイスであるため、本実施の形態における照明装置は消費電力の小さい照明装置とすることができる。
以上の構成を有する発光デバイスが形成された基板400と、封止基板407とをシール材405、406を用いて固着し、封止することによって照明装置が完成する。シール材405、406はどちらか一方でもかまわない。また、内側のシール材406(図6Bでは図示せず)には乾燥剤を混ぜることもでき、これにより、水分を吸着することができ、信頼性の向上につながる。
また、パッド412と陽極401の一部をシール材405、406の外に伸張して設けることによって、外部入力端子とすることができる。また、その上にコンバーターなどを搭載したICチップ420などを設けても良い。
以上、本実施の形態に記載の照明装置は、EL素子に実施の形態1に記載の発光デバイスを用いており、消費電力の小さい照明装置とすることができる。
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態4)
本実施の形態では、実施の形態1に記載の発光デバイスをその一部に含む電子機器の例について説明する。実施の形態1に記載の発光デバイスは発光効率が良好であり、消費電力の小さい発光デバイスである。その結果、本実施の形態に記載の電子機器は、消費電力が小さい発光部を有する電子機器とすることが可能である。
上記発光デバイスを適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。これらの電子機器の具体例を以下に示す。
図7Aは、テレビジョン装置の一例を示している。テレビジョン装置は、筐体7101に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体7101を支持した構成を示している。表示部7103により、映像を表示することが可能であり、表示部7103は、実施の形態1に記載の発光デバイスをマトリクス状に配列して構成されている。
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7110により行うことができる。リモコン操作機7110が備える操作キー7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110から出力する情報を表示する表示部7107を設ける構成としてもよい。なお、表示部7107にも、マトリクス状に配列した、実施の形態1に記載の発光デバイスを適用することができる。
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図7B1はコンピュータであり、本体7201、筐体7202、表示部7203、キーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。なお、このコンピュータは、実施の形態1に記載の発光デバイスをマトリクス状に配列して表示部7203に用いることにより作製される。図7B1のコンピュータは、図7B2のような形態であってもよい。図7B2のコンピュータは、キーボード7204、ポインティングデバイス7206の代わりに表示部7210が設けられている。表示部7210はタッチパネル式となっており、表示部7210に表示された入力用の表示を指や専用のペンで操作することによって入力を行うことができる。また、表示部7210は入力用表示だけでなく、その他の画像を表示することも可能である。また表示部7203もタッチパネルであっても良い。二つの画面がヒンジで接続されていることによって、収納や運搬をする際に画面を傷つける、破損するなどのトラブルの発生も防止することができる。
図7Cは、携帯端末の一例を示している。携帯電話機は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、当該携帯電話機は、実施の形態1に記載の発光デバイスをマトリクス状に配列して作製された表示部7402を有している。
図7Cに示す携帯端末は、表示部7402を指などで触れることで、情報を入力することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
また、携帯端末内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯端末の向き(縦か横か)を判断して、表示部7402の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態4に示した構成を適宜組み合わせて用いることができる。
以上の様に実施の形態1または実施の形態2に記載の発光デバイスを備えた発光装置の適用範囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。実施の形態1または実施の形態2に記載の発光デバイスを用いることにより消費電力の小さい電子機器を得ることができる。
図8Aは、掃除ロボットの一例を示す模式図である。
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。また、ディスプレイ5101の表示をスマートフォンなどの携帯電子機器で確認することもできる。
本発明の一態様の発光装置はディスプレイ5101に用いることができる。
図8Bに示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。また、ディスプレイ2105は取り外しのできる情報端末であっても良く、ロボット2100の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。本発明の一態様の発光装置はディスプレイ2105に用いることができる。
図8Cはゴーグル型ディスプレイの一例を表す図である。ゴーグル型ディスプレイは、例えば、筐体5000、表示部5001、スピーカ5003、LEDランプ5004、接続端子5006、センサ5007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン5008、表示部5002、支持部5012、イヤホン5013等を有する。
本発明の一態様の発光装置は表示部5001および表示部5002に用いることができる。
図9は、実施の形態1に記載の発光デバイスを、照明装置である電気スタンドに用いた例である。図9に示す電気スタンドは、筐体2001と、光源2002を有し、光源2002としては、実施の形態3に記載の照明装置を用いてもよい。
図10は、実施の形態1に記載の発光デバイスを、室内の照明装置3001として用いた例である。実施の形態1に記載の発光デバイスは発光効率の高い発光デバイスであるため、消費電力の小さい照明装置とすることができる。また、実施の形態1に記載の発光デバイスは大面積化が可能であるため、大面積の照明装置として用いることができる。また、実施の形態1に記載の発光デバイスは、薄型であるため、薄型化した照明装置として用いることが可能となる。
実施の形態1に記載の発光デバイスは、自動車のフロントガラスやダッシュボードにも搭載することができる。図11に実施の形態1に記載の発光デバイスを自動車のフロントガラスやダッシュボードに用いる一態様を示す。表示領域5200乃至表示領域5203は実施の形態1に記載の発光デバイスを用いて設けられた表示領域である。
表示領域5200と表示領域5201は自動車のフロントガラスに設けられた実施の形態1に記載の発光デバイスを搭載した表示装置である。実施の形態1に記載の発光デバイスは、陽極と陰極を透光性を有する電極で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても、視界の妨げになることなく設置することができる。なお、駆動のためのトランジスタなどを設ける場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いると良い。
表示領域5202はピラー部分に設けられた実施の形態1に記載の発光デバイスを搭載した表示装置である。表示領域5202には、車体に設けられた撮像手段からの映像を映し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に、ダッシュボード部分に設けられた表示領域5203は車体によって遮られた視界を、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。見えない部分を補完するように映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
表示領域5203はまたナビゲーション情報、速度計や回転計、エアコンの設定などの他、様々な情報を提供することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更することができる。なお、これら情報は表示領域5200乃至表示領域5202にも設けることができる。また、表示領域5200乃至表示領域5203は照明装置として用いることも可能である。
また、図12A、及び図12Bに、折りたたみ可能な携帯情報端末5150を示す。折りたたみ可能な携帯情報端末5150は筐体5151、表示領域5152および屈曲部5153を有している。図12Aに展開した状態の携帯情報端末5150を示す。図12Bに折りたたんだ状態の携帯情報端末を示す。携帯情報端末5150は、大きな表示領域5152を有するにも関わらず、折りたためばコンパクトで可搬性に優れる。
表示領域5152は屈曲部5153により半分に折りたたむことができる。屈曲部5153は伸縮可能な部材と複数の支持部材とで構成されており、折りたたむ場合は、伸縮可能な部材が伸び、屈曲部5153は2mm以上、好ましくは3mm以上の曲率半径を有して折りたたまれる。
なお、表示領域5152は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。本発明の一態様の発光装置を表示領域5152に用いることができる。
また、図13A乃至図13Cに、折りたたみ可能な携帯情報端末9310を示す。図13Aに展開した状態の携帯情報端末9310を示す。図13Bに展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。図13Cに折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示パネル9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示パネル9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示パネル9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示パネル9311に用いることができる。
<参考例1>
本参考例では、実施の形態1でアリールスルホン酸化合物の一つに(S−2)として例示した4,4′−[(2,2′,3,3′,5,5′,6,6′−オクタフルオロ[1,1′−ビフェニル]−4,4′−ジイル)ビス(オキシ)]ビス[2,7−ナフタレンスルホン酸](略称:NSO−2)を液体クロマトグラフ質量分析(Liquid Chromatography Mass Spectrometry,略称:LC/MS分析)によって分析した結果を示す。NSO−2の構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000026
LC/MS分析は、サーモフィッシャーサイエンティフィック社製Ultimate3000によりLC(液体クロマトグラフィー)分離を行い、サーモフィッシャーサイエンティフィック社製QExactiveによりMS分析(質量分析)を行った。
LC分離は、任意のカラムを用いてカラム温度は40℃とし、送液条件は溶媒を適宜選択し、サンプルは任意の濃度のNSO−2を有機溶媒に溶かして調製し、注入量は5.0μLとした。
PRM法により、NSO−2のExact Massであるm/z 901.91のMS/MS測定を行なった。PRMの設定は、ターゲットイオンの質量範囲をm/z 901.91±2.0(isolation window=4)とし、検出はネガティブモードで行った。コリジョンセル内でターゲットイオンを加速するエネルギーNCE(Normalized Collision Energy)を50として測定した。MS/MS測定から得られたMSスペクトルを図18に示す。
なお、m/z=205付近のプロダクトイオンは、C10・・−で表されるナフタレンスルホン酸のビラジカルアニオンと推定され、
m/z=222付近のプロダクトイオンは、C10・−で表されるナフタレンスルホン酸アルコールのラジカルアニオンと推定され、
m/z=302付近のプロダクトイオンは、C10 ・−で表されるナフタレンビスルホン酸アルコール基のラジカルアニオンと推定され、
m/z=661付近のプロダクトイオンは、C3213で表されるNSO−2からスルホン基が3つ水素置換したアニオンと推定され、
m/z=741付近のプロダクトイオンは、C3213 で表されるNSO−2からスルホン基が2つ水素置換したアニオンと推定され、
m/z=821付近のプロダクトイオンは、C321311 で表されるNSO−2からスルホン基が1つ水素置換したアニオンと推定され、
m/z=535付近のプロダクトイオンは、C22で表されるNSO−2からスルホン基とナフタレンビスルホン酸基が1つずつ水素置換したアニオンと推定され、
m/z=80付近のプロダクトイオンは、O・−で表されるスルホン基のラジカルアニオンと推定され、これらの結果は、NSO−2がスルホン基やエーテル基を含んでいること、ナフタレンビスルホン酸エーテル基を2つ含んでいることを示唆するものである。
また、m/z=328付近のプロダクトイオンは、C12 ・−で表されるNSO−2からナフタレンビスルホン酸基が2つ脱離したオクタフルオロビフェニルビスアルコールのラジカルアニオンと推定され、NSO−2はナフタレンビスルホン酸を2つ含んでおり、オクタフルオロビフェニル基とそれぞれエーテル結合で結合していることを示唆するものである。
なお、これら検出されたイオンの質量数は、プロトンの付加、脱離体として、プロダクトイオンの±2が検出される可能性もある。
以上の通り、MS分析のネガティブモードにて、ターゲットイオンの質量範囲±2.0(isolation window=4)から241または161または81少ない質量数のプロダクトイオンは、スルホン基が1以上脱離したものと示唆され、この様なプロダクトイオンが検出されるホール注入層が、好ましい。
<参考例2>
本参考例では、実施の形態1でアリールスルホン酸化合物の一つに(S−2)として例示した4,4′−[(2,2′,3,3′,5,5′,6,6′−オクタフルオロ[1,1′−ビフェニル]−4,4′−ジイル)ビス(オキシ)]ビス[2,7−ナフタレンスルホン酸](略称:NSO−2)とジフェニルアミノジフェニルアミン(略称:DPA)との混合膜について、電子スピン共鳴(ESR:Electron Spin Resonance)法を用いて評価した結果を示す。NSO−2とDPAの構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000027
≪試料1(NSO−2とDPAとの混合薄膜)の作製方法≫
NSO−2とDPAを1:8 (mol)の割合でN,N−ジメチルホルムアミド(DMF)に溶かした。得られた溶液を石英基板上に滴下して成膜した。得られた成膜基板を約150℃のホットプレート上にて乾燥させ、試料1を得た。
≪比較試料1(NSO−2薄膜)の作製方法≫
NSO−2をDMFに溶かし、得られた溶液を石英基板上に滴下して成膜した。得られた成膜基板を約150℃のホットプレート上にて乾燥させ、比較試料1を得た。
≪比較試料2(DPA薄膜)の作製方法≫
DPAをDMFに溶かした。得られた溶液を石英基板上に滴下して成膜した。得られた成膜基板を約150℃のホットプレート上にて乾燥させ、比較試料2を得た。
≪ESRの測定および結果≫
上記試料を成膜した石英基板を分断し、石英チューブに入れて、測定した。得られたESRスペクトルから、空の石英チューブ由来のESRスペクトルをそれぞれ差し引いて値を得た。作製した試料のESR測定を行った結果を図19に示す。図19は、測定した膜のESRスペクトルである。
なお、ESR法による電子スピン共鳴スペクトルの測定は、電子スピン共鳴測定装置 JES FA300型(日本電子製)を用いて行った。上記測定は、共振周波数(約9.2GHz)、出力(1mW)、変調磁場(50mT)、変調幅(0.5mT)、時定数(0.03sec)、掃引時間(4min)、室温下にて行った。そして、Mn2+第3及び第4シグナルの位置により磁場補正を行った。
測定の結果、NSO−2とDPAとの混合膜のスペクトルからは、顕著に強いシグナルが得られた。このスペクトルのピークから算出されたg値は、約2.00であった。これは、NSO−2とDPAの相互作用にて形成される半占軌道に由来するg値(g=2.00)である。一方、NSO−2の単膜、DPAの単膜からは、この様な強いシグナルは検出されなかった。
上記のことから、本発明の一態様のスルホン酸化合物と、二級アミン化合物との混合膜や混合物は、混合していないものと比較して、g値が約2.00付近(±0.05)のスピン密度が顕著に増大することがわかった。そのため、キャリアが生成していると考えられる。そのため、これらを含む混合膜をホール注入層に使用すると、ホール注入性が良好な素子が得られることが示唆された。
<参考例3>
≪参考合成例1≫
本実施例では、実施の形態1で説明した6−メチル−8−キノリノラト−リチウム(略称:Li−6mq)の合成方法について説明する。Li−6mqの構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000028
8−ヒドロキシ−6−メチルキノリン 2.0 g(12.6 mmol)、脱水テトラヒドロフラン(略称:THF)130mLを三口フラスコに入れ撹拌した。この溶液に、リチウムtert−ブトキシド(略称:tBuOLi) 1M THF溶液 10.1mL(10.1mmol)を加え、室温で47時間撹拌した。反応溶液を濃縮し、黄色固体を得た。この固体にアセトニトリルを加え超音波照射し、ろ過することで、淡黄色固体を得た。この洗浄操作を2回行った。ろ物としてLi−6mqの淡黄色固体1.6 g(収率95%)を得た。本合成スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000029
次に、Li−6mqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルを測定した結果を図14に示す。吸収スペクトルは、紫外可視分光光度計((株)日本分光製 V550型)を用いて測定し、脱水アセトンのみを石英セルに入れて測定したスペクトルを差し引いて示した。また、発光スペクトルの測定には、蛍光光度計((株)日本分光製 FP−8600)を用いた。
図14より、Li−6mqの脱水アセトン溶液は390nmに吸収ピークが見られ、発光波長のピークは540nm(励起波長385nm)であった。
<参考例4>
≪参考合成例2≫
実施の形態1で説明した低屈折率電子輸送性材料の合成方法の一例を以下に示す。
まず、構造式(200)で表される有機化合物、2−{(3’,5’−ジ−tert−ブチル)−1,1’−ビフェニル−3−イル}−4,6−ビス(3,5−ジ−tert−ブチルフェニル)−1,3,5−トリアジン(略称:mmtBumBP−dmmtBuPTzn)の合成方法について説明する。mmtBumBP−dmmtBuPTznの構造を以下に示す。
Figure JPOXMLDOC01-appb-C000030
<ステップ1:3−ブロモ−3’,5’−ジ−tert−ブチルビフェニルの合成>
三口フラスコに3,5−ジ−tert−ブチルフェニルボロン酸1.0g(4.3mmol)、1−ブロモ−3−ヨードベンゼン1.5g(5.2mmol)、2mol/L炭酸カリウム水溶液4.5mL、トルエン20mL、エタノール3mLを加え、減圧下で撹拌することにより脱気した。さらにここへトリス(2−メチルフェニル)ホスフィン(略称:P(o−tplyl))52mg(0.17mmol)、酢酸パラジウム(II)(略称:Pd(OAc))10mg(0.043mmol)を加え、窒素雰囲気下、80℃で14時間反応させた。反応終了後、トルエンによる抽出を行い、得られた有機層を硫酸マグネシウムで乾燥させた。この混合物を自然ろ過し、得られたろ液をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)にて精製することにより目的の白色固体1.0gを得た(収率:68%)。ステップ1の合成スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000031
<ステップ2:2−(3’,5’−ジ−tert−ブチルビフェニル−3−イル)−4,4,5,5、−テトラメチル−1,3,2−ジオキサボロランの合成>
三口フラスコに3−ブロモ−3’,5’−ジ−tert−ブチルビフェニル1.0g(2.9 mmol)、ビス(ピナコレート)ジボロン0.96g(3.8mmol)、酢酸カリウム0.94g(9.6mmol)、1,4−ジオキサン30mLを加え、減圧下で撹拌することにより脱気した。さらにここに2−ジシクロヘキシルホスフィノ−2’,6’−ジメトキシビフェニル(略称:SPhos)0.12g(0.30mmol)、[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(略称:Pd(dppf)Cl・CHCl)0.12g(0.15mmol)を加え、窒素雰囲気下、110℃で24時間反応させた。反応終了後、トルエンによる抽出をおこない、得られた有機層を硫酸マグネシウムにて乾燥させた。この混合物を自然ろ過した。得られたろ液をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)にて精製することにより、目的の黄色オイル0.89gを得た(収率:78%)。ステップ2の合成スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000032
<ステップ3:mmtBumBP−dmmtBuPTznの合成>
三口フラスコに4,6−ビス(3,5−ジ−tert−ブチル−フェニル)−2−クロロ−1,3,5−トリアジン0.8g(1.6mmol)、2−(3’,5’−ジ−tert−ブチルビフェニル−3−イル)−4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン0.89g(2.3mmol)、リン酸三カリウム0.68g(3.2mmol)、水3mL、トルエン8mL、1,4−ジオキサン3mLを加え、減圧下で撹拌することにより脱気した。さらにここに酢酸パラジウム(II)3.5mg(0.016mmol)、トリス(2−メチルフェニル)ホスフィン10mg(0.032mmol)を加え、窒素雰囲気下12時間加熱還流した。反応終了後、酢酸エチルによる抽出を行い、得られた有機層を硫酸マグネシウムにて乾燥させた。この混合物を自然ろ過した。得られたろ液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:20)にて精製し、固体を得た。この固体をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=5:1から1:0に変化させた)にて精製した。得られた固体をヘキサンにて再結晶することにより、目的の白色固体0.88g(収率:76%)を得た。ステップ3の合成スキームを以下に示す。
Figure JPOXMLDOC01-appb-C000033
得られた白色固体0.87gを、トレインサブリメーション法により、圧力5.8Pa、アルゴンガスを流しながら、230℃の条件で昇華精製した。昇華精製後、目的物の白色固体を0.82g、回収率95%で得た。
なお、上記ステップ3で得られた白色固体の核磁気共鳴分光法(H−NMR)による分析結果を下記に示す。この結果から、上記合成法により、上述の構造式(200)で表されるmmtBumBP−dmmtBuPTznが得られたことがわかった。
H NMR(CDCl3,300MHz):δ=1.42−1.49(m,54H),7.50(s,1H),7.61−7.70(m,5H),7.87(d,1H),8.68−8.69(m,4H),8.78(d,1H),9.06(s,1H)。
また、図15に上述した合成方法によって得られたmmtBumBP−dmmtBuPTznの屈折率を分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M−2000U)を用いて測定した結果を示す。測定には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図には、常光線の屈折率であるn Ordinaryと異常光線の屈折率であるn Extra−ordinaryとを記載した。
この図から、mmtBumBP−dmmtBuPTznは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.50以上1.75以下の範囲にあり、また、633nmにおける常光屈折率も1.45以上1.70以下の範囲にあり、屈折率の低い材料であることがわかった。
同様に、下記構造式(201)乃至構造式(204)で表される有機化合物を合成した。
Figure JPOXMLDOC01-appb-C000034
なお、各有機化合物の核磁気共鳴分光法(H−NMR)による分析結果を以下に示す。
構造式(201) 2−{(3’,5’−ジ−tert−ブチル)−1,1’−ビフェニル−3−イル}−4,6−ジフェニル−1,3,5−トリアジン(略称:mmtBumBPTzn)
H NMR(CDCl3,300MHz):δ=1.44(s,18H),7.51−7.68(m,10H),7.83(d,1H),8.73−8.81(m,5H),9.01(s,1H)。
構造式(202) 2−(3,3’’,5,5’’−テトラ−tert−ブチル−1,1’:3’,1’’−フェニル−5’−イル)−4,6−ジフェニル−1,3,5−トリアジン(略称:mmtBumTPTzn)
H NMR(CDCl3,300MHz):δ=1.44(s,36H),7.54−7.62(m,12H),7.99(t,1H),8.79(d,4H),8.92(d,2H)。
構造式(203) 2−{(3’,5’−ジ−tert−ブチル)−1,1’−ビフェニル−3−イル}−4,6−ビス(3,5−ジ−tert−ブチルフェニル)−1,3−ピリミジン(略称:mmtBumBP−dmmtBuPPm)
H NMR(CDCl3,300MHz):δ=1.39−1.45(m,54H),7.47(t,1H),7.59−7.65(m,5H),7.76(d,1H),7.95(s,1H),8.06(d,4H),8.73(d,1H、8.99(s,1H))。
構造式(204) 2−(3,3’’,5’,5’’−テトラ−tert−ブチル−1,1’:3’,1’’−ターフェニル−5−イル)−4,6−ジフェニル−1,3,5−トリアジン(略称:mmtBumTPTzn−02)
H NMR(CDCl3,300MHz):δ=1.41(s,18H),1.49(s,9H),1.52(s,9H),7.49(s,3H),7.58−7.63(m,7H),7.69−7.70(m,2H),7.88(t,1H),8.77−8.83(m,6H)。
以上の有機化合物は、すべて青色発光領域(455nm以上465nm以下)における常光屈折率が1.50以上1.75以下、または屈折率の測定に通常用いられる633nmの光における常光屈折率が、1.45以上1.70以下である有機化合物である。
101:陽極、102:陰極、103:EL層、111:正孔注入層、112:正孔輸送層、113:発光層、114:電子輸送層、115:電子注入層、116:電荷発生層、117:P型層、118:電子リレー層、119:電子注入バッファ層、400:基板、401:陽極、403:EL層、404:陰極、405:シール材、406:シール材、407:封止基板、412:パッド、420:ICチップ、601:駆動回路部(ソース線駆動回路)、602:画素部、603:駆動回路部(ゲート線駆動回路)、604:封止基板、605:シール材、607:空間、608:配線、609:FPC(フレキシブルプリントサーキット)、610:素子基板、611:スイッチング用FET、612:電流制御用FET、613:陽極、614:絶縁物、616:EL層、617:陰極、618:発光デバイス、951:基板、952:電極、953:絶縁層、954:隔壁層、955:EL層、956:電極、1001:基板、1002:下地絶縁膜、1003:ゲート絶縁膜、1006:ゲート電極、1007:ゲート電極、1008:ゲート電極、1020:第1の層間絶縁膜、1021:第2の層間絶縁膜、1022:電極、1024W:陽極、1024R:陽極、1024G:陽極、1024B:陽極、1025:隔壁、1028:EL層、1029:陰極、1031:封止基板、1032:シール材、1033:透明な基材、1034R:赤色の着色層、1034G:緑色の着色層、1034B:青色の着色層、1035:ブラックマトリクス、1036:オーバーコート層、1037:第3の層間絶縁膜、1040:画素部、1041:駆動回路部、1042:周辺部、2001:筐体、2002:光源、2100:ロボット、2110:演算装置、2101:照度センサ、2102:マイクロフォン、2103:上部カメラ、2104:スピーカ、2105:ディスプレイ、2106:下部カメラ、2107:障害物センサ、2108:移動機構、3001:照明装置、5000:筐体、5001:表示部、5002:第2の表示部、5003:スピーカ、5004:LEDランプ、5005:操作キー、5006:接続端子、5007:センサ、5008:マイクロフォン、5012:支持部、5013:イヤホン、5100:掃除ロボット、5101:ディスプレイ、5102:カメラ、5103:ブラシ、5104:操作ボタン、5150:携帯情報端末、5151:筐体、5152:表示領域、5153:屈曲部、5120:ゴミ、5200:表示領域、5201:表示領域、5202:表示領域、5203:表示領域、7101:筐体、7103:表示部、7105:スタンド、7107:表示部、7109:操作キー、7110:リモコン操作機、7201:本体、7202:筐体、7203:表示部、7204:キーボード、7205:外部接続ポート、7206:ポインティングデバイス、7210:表示部、7401:筐体、7402:表示部、7403:操作ボタン、7404:外部接続ポート、7405:スピーカ、7406:マイク、7400:携帯電話機、9310:携帯情報端末、9311:表示パネル、9313:ヒンジ、9315:筐体

Claims (31)

  1. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は、前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、スルホン酸化合物が含まれるワニスを塗布および焼成することによって形成された層を有し、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物の、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイス。
  2. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は、前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、スルホン酸化合物が含まれるワニスを塗布および焼成することによって形成された層を有し、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイス。
  3. 請求項1または請求項2において、
    前記正孔輸送領域は、前記スルホン酸化合物及び二級アミン化合物が含まれるワニスを塗布および焼成することによって形成された層を有する発光デバイス。
  4. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、スルホン酸化合物、フッ素化合物または金属酸化物のいずれか一を有し、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物は、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイス。
  5. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、スルホン酸化合物、フッ素化合物または金属酸化物のいずれか一を有し、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイス。
  6. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は、前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、ToF−SIMSで測定した際、ネガティブモードの測定結果においてm/z=80付近にシグナルが検出され、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物の、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイス。
  7. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は、前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、ToF−SIMSで測定した際、ネガティブモードの測定結果においてm/z=80付近にシグナルを有し、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイス。
  8. 請求項6または請求項7において、
    前記正孔輸送領域は、ToF−SIMSで測定した際、ネガティブモードの測定結果におけるm/z=80付近およびm/z=901付近にシグナルが検出される発光デバイス。
  9. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は、前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、MS分析を行った際、ネガティブモードの測定結果においてm/z=80付近にシグナルが検出され、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物の、波長455nm以上465nm以下の光における常光屈折率が、1.50以上1.75以下である発光デバイス。
  10. 陽極と、
    陰極と、
    前記陽極と前記陰極の間に位置するEL層とを有し、
    前記EL層は、正孔輸送領域と、発光層と、電子輸送領域とを有し、
    前記正孔輸送領域は、前記陽極と前記発光層との間に位置し、
    前記電子輸送領域は、前記陰極と前記発光層との間に位置し、
    前記正孔輸送領域は、MS分析を行った際、ネガティブモードの測定結果においてm/z=80付近にシグナルを有し、
    前記電子輸送領域は、電子輸送性を有する有機化合物を有し、
    前記電子輸送性を有する有機化合物の、波長633nmの光に対する常光屈折率が、1.45以上1.70以下である発光デバイス。
  11. 請求項9または請求項10において、
    前記正孔輸送領域は、MS分析を行った際、ネガティブモードにおいてターゲットイオンの質量範囲±2.0から241または161または81少ない質量数にシグナルが検出される発光デバイス。
  12. 請求項1乃至請求項11のいずれか一項において、
    前記正孔注入層が、ESR法による電子スピン共鳴スペクトルの測定で、g値が約2.00付近にシグナルを有する発光デバイス。
  13. 請求項1乃至請求項12のいずれか一項において、
    前記発光層にイリジウム錯体が含まれる発光デバイス。
  14. 請求項13において、
    前記イリジウム錯体が緑色のりん光を呈する発光デバイス。
  15. 請求項13または請求項14において、
    前記発光層は、ToF−SIMSで分析した際、ポジティブモードの測定結果において、m/z=1676付近にシグナルを有する発光デバイス。
  16. 請求項13において、前記イリジウム錯体が下記構造式で表されるイリジウム錯体である発光デバイス。
    Figure JPOXMLDOC01-appb-C000001
  17. 請求項1乃至請求項16のいずれか一項において、
    前記電子輸送性を有する有機化合物が、窒素を含む6員環の複素芳香環を少なくとも一つと、ベンゼン環を二つと、一つまたは複数の炭素数6乃至14の芳香族炭化水素環と、複数のsp3混成軌道で結合を形成している炭化水素基を有し、前記sp3混成軌道で結合を形成している炭素の総数が前記電子輸送性を有する有機化合物の分子内の総炭素数の10%以上60%以下である発光デバイス。
  18. 請求項1乃至請求項17のいずれか一項において、
    前記電子輸送領域は、電子輸送層と、電子注入層とを有し、
    前記電子注入層は、前記陰極に接して設けられ、前記電子輸送性を有する有機化合物は、前記電子輸送層に含まれている発光デバイス。
  19. 請求項18において、
    前記電子輸送層が、さらにアルカリ金属またはアルカリ土類金属の金属錯体を含む発光デバイス。
  20. 請求項18において、
    前記電子輸送層が、さらに8−キノリノラト構造を含む配位子を有するアルカリ金属またはアルカリ土類金属の金属錯体である発光デバイス。
  21. 請求項19または請求項20において、
    前記アルカリ金属またはアルカリ土類金属の金属錯体が、リチウムの金属錯体である発光デバイス。
  22. 請求項18乃至請求項21のいずれか一項において、
    前記電子注入層を、ToF−SIMSで分析した際、ポジティブモードまたはネガティブモードの測定結果において、m/z=587付近にシグナルを有する発光デバイス。
  23. 請求項18乃至請求項22のいずれか一項において、前記電子注入層に、複素芳香族化合物が含まれる発光デバイス。
  24. 請求項23において、
    前記複素芳香族化合物が、2−フェニル−9−[3−(9−フェニル−1,10−フェナントロリン−2−イル)フェニル]−1,10−フェナントロリンである発光デバイス。
  25. 請求項18乃至請求項24のいずれか一項において、
    前記電子注入層に、さらにフッ素とナトリウムが含まれる発光デバイス。
  26. 請求項18乃至請求項25のいずれか一項において、
    前記正孔注入層にバリウムが含まれている発光デバイス。
  27. 請求項1乃至請求項26に記載の発光デバイス複数有し、
    前記複数の発光デバイスには、少なくとも赤色に発光する発光デバイスと、緑色に発光する発光デバイスとが存在し、
    前記赤色に発光する発光デバイスの発光層と、前記緑色に発光する発光デバイスの発光層にはイリジウムが含まれている発光装置。
  28. 請求項27において、
    前記赤色に発光する発光デバイスと、前記緑色に発光する発光デバイスから発する光がりん光である発光装置。
  29. 請求項27または請求項28において、
    前記複数の発光デバイスには、さらに青色に発光する発光デバイスが存在し、
    前記青色に発光する発光デバイスから得られる光が蛍光である発光装置。
  30. 請求項1乃至請求項25に記載の発光デバイスを複数有する発光装置。
  31. 請求項27乃至請求項30のいずれか一項に記載の発光装置を備えた表示装置。
PCT/IB2021/056265 2020-07-24 2021-07-13 発光デバイス、発光装置、電子機器および照明装置 WO2022018572A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/016,717 US20230292544A1 (en) 2020-07-24 2021-07-13 Light-Emitting Device, Light-Emitting Apparatus, Electronic Device, and Lighting Device
CN202180049551.5A CN115812350A (zh) 2020-07-24 2021-07-13 发光器件、发光装置、电子设备及照明装置
JP2022538487A JPWO2022018572A1 (ja) 2020-07-24 2021-07-13
KR1020237001957A KR20230042271A (ko) 2020-07-24 2021-07-13 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020125997 2020-07-24
JP2020-125997 2020-07-24

Publications (1)

Publication Number Publication Date
WO2022018572A1 true WO2022018572A1 (ja) 2022-01-27

Family

ID=79728648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2021/056265 WO2022018572A1 (ja) 2020-07-24 2021-07-13 発光デバイス、発光装置、電子機器および照明装置

Country Status (5)

Country Link
US (1) US20230292544A1 (ja)
JP (1) JPWO2022018572A1 (ja)
KR (1) KR20230042271A (ja)
CN (1) CN115812350A (ja)
WO (1) WO2022018572A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013190813A1 (ja) * 2012-06-21 2013-12-27 パナソニック株式会社 有機el表示装置およびその製造方法
JP2014502041A (ja) * 2010-11-09 2014-01-23 コーニンクレッカ フィリップス エヌ ヴェ 有機エレクトロルミネッセンス装置
WO2015178407A1 (ja) * 2014-05-23 2015-11-26 日産化学工業株式会社 電荷輸送性ワニス
US20170309861A1 (en) * 2016-12-30 2017-10-26 Shanghai Tianma AM-OLED Co., Ltd. Organic light emitting display device and apparatus
WO2018198976A1 (ja) * 2017-04-27 2018-11-01 住友化学株式会社 発光素子
KR20190005591A (ko) * 2017-07-07 2019-01-16 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2020027259A1 (ja) * 2018-08-03 2020-02-06 日産化学株式会社 電荷輸送性ワニス
WO2020122113A1 (ja) * 2018-12-13 2020-06-18 日産化学株式会社 電荷輸送性ワニス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112018008264B4 (de) 2017-05-19 2023-11-30 Semiconductor Energy Laboratory Co., Ltd. Elektronische Vorrichtung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502041A (ja) * 2010-11-09 2014-01-23 コーニンクレッカ フィリップス エヌ ヴェ 有機エレクトロルミネッセンス装置
WO2013190813A1 (ja) * 2012-06-21 2013-12-27 パナソニック株式会社 有機el表示装置およびその製造方法
WO2015178407A1 (ja) * 2014-05-23 2015-11-26 日産化学工業株式会社 電荷輸送性ワニス
US20170309861A1 (en) * 2016-12-30 2017-10-26 Shanghai Tianma AM-OLED Co., Ltd. Organic light emitting display device and apparatus
WO2018198976A1 (ja) * 2017-04-27 2018-11-01 住友化学株式会社 発光素子
KR20190005591A (ko) * 2017-07-07 2019-01-16 주식회사 엘지화학 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2020027259A1 (ja) * 2018-08-03 2020-02-06 日産化学株式会社 電荷輸送性ワニス
WO2020122113A1 (ja) * 2018-12-13 2020-06-18 日産化学株式会社 電荷輸送性ワニス

Also Published As

Publication number Publication date
CN115812350A (zh) 2023-03-17
US20230292544A1 (en) 2023-09-14
KR20230042271A (ko) 2023-03-28
JPWO2022018572A1 (ja) 2022-01-27

Similar Documents

Publication Publication Date Title
JP6850261B2 (ja) 発光素子、発光装置、電子機器および照明装置
KR102330776B1 (ko) 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
KR20180107159A (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
WO2019220276A1 (ja) 有機化合物、発光素子、発光装置、電子機器、照明装置および電子デバイス
WO2022034421A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2022130352A (ja) 発光デバイス、表示装置、発光装置、電子機器および照明装置
JP7456777B2 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2022018572A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2021122042A (ja) 発光デバイス、発光装置、電子機器、照明装置および化合物
JP2020167411A (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2022003481A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2021186306A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2021161127A1 (ja) 有機化合物、発光デバイス、電子デバイス、電子機器、発光装置および照明装置
WO2022238804A1 (ja) 発光デバイス、発光装置、表示装置、電子機器、照明装置
CN116574137A (zh) 有机化合物、发光器件、显示装置、电子设备、发光装置及照明装置
JP2022151856A (ja) 発光デバイス、表示装置、発光装置、電子機器および照明装置
JP2023004940A (ja) 発光デバイス、表示装置、発光装置、電子機器および照明装置
JP2022008062A (ja) 発光デバイス、金属錯体、発光装置、電子機器および照明装置
JP2021063065A (ja) 有機化合物、発光デバイス、発光装置、電子機器および照明装置
TW202111084A (zh) 有機化合物、發光器件、發光裝置、電子裝置及照明設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21846023

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21846023

Country of ref document: EP

Kind code of ref document: A1