JP2022008062A - 発光デバイス、金属錯体、発光装置、電子機器および照明装置 - Google Patents

発光デバイス、金属錯体、発光装置、電子機器および照明装置 Download PDF

Info

Publication number
JP2022008062A
JP2022008062A JP2021074649A JP2021074649A JP2022008062A JP 2022008062 A JP2022008062 A JP 2022008062A JP 2021074649 A JP2021074649 A JP 2021074649A JP 2021074649 A JP2021074649 A JP 2021074649A JP 2022008062 A JP2022008062 A JP 2022008062A
Authority
JP
Japan
Prior art keywords
light emitting
layer
emitting device
light
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021074649A
Other languages
English (en)
Other versions
JP2022008062A5 (ja
Inventor
優太 河野
Yuta Kono
藍莉 植田
Airi Ueda
剛吉 渡部
Gokichi Watabe
信晴 大澤
Nobuharu Osawa
桂都 鳥巣
Keito Tosu
晴恵 尾坂
Harue Ozaka
哲史 瀬尾
Tetsushi Seo
遼 成川
Ryo Narukawa
詩穂 野村
Shiho Nomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022008062A publication Critical patent/JP2022008062A/ja
Publication of JP2022008062A5 publication Critical patent/JP2022008062A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms
    • C07D215/24Oxygen atoms attached in position 8
    • C07D215/26Alcohols; Ethers thereof
    • C07D215/30Metal salts; Chelates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/02Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/121Charge-transfer complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/181Metal complexes of the alkali metals and alkaline earth metals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00

Abstract

【課題】発光効率の高い発光デバイスを提供する。【解決手段】陽極と、陰極と、前記陽極と前記陰極との間に位置するEL層と、を有し、前記EL層は、発光層と、電子輸送層と、を有し、前記発光層は、発光材料を有し、前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、前記電子輸送性を有する有機化合物の、前記発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75以下であり、前記アルカリ金属の金属錯体の、前記発光材料が発する光のピーク波長における常光屈折率が1.45以上1.70以下である発光デバイスを提供する。【選択図】図1

Description

本発明の一態様は、有機化合物、発光素子、発光デバイス、ディスプレイモジュール、照明モジュール、表示装置、発光装置、電子機器、照明装置および電子デバイスに関する。なお、本発明の一態様は、上記の技術分野に限定されない。本明細書等で開示する発明の一態様の技術分野は、物、方法、または、製造方法に関するものである。または、本発明の一態様は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関するものである。そのため、より具体的に本明細書で開示する本発明の一態様の技術分野としては、半導体装置、表示装置、液晶表示装置、発光装置、照明装置、蓄電装置、記憶装置、撮像装置、それらの駆動方法、または、それらの製造方法、を一例として挙げることができる。
有機化合物を用いたエレクトロルミネッセンス(EL:Electroluminescence)を利用する発光デバイス(有機ELデバイス)の実用化が進んでいる。これら発光デバイスの基本的な構成は、一対の電極間に発光材料を含む有機化合物層(EL層)を挟んだものである。このデバイスに電圧を印加して、キャリアを注入し、当該キャリアの再結合エネルギーを利用することにより、発光材料からの発光を得ることができる。
このような発光デバイスは自発光型であるためディスプレイの画素として用いると、液晶に比べ、視認性が高く、バックライトが不要である等の利点があり、フラットパネルディスプレイには特に好適である。また、このような発光デバイスを用いたディスプレイは、薄型軽量に作製できることも大きな利点である。さらに非常に応答速度が速いことも特徴の一つである。
また、これらの発光デバイスは発光層を二次元に連続して形成することが可能であるため、面状に発光を得ることができる。これは、白熱電球やLEDに代表される点光源、あるいは蛍光灯に代表される線光源では得難い特色であるため、照明等に応用できる面光源としての利用価値も高い。
このように発光デバイスを用いたディスプレイや照明装置はさまざまな電子機器に好適であるが、より良好な特性を有する発光デバイスを求めて研究開発が進められている。
有機ELデバイスが語られる際にしばしば問題として挙げられるものの一つに、光取出し効率の低さがある。特に、隣接する層の屈折率の違いから起こる反射による減衰は、発光デバイスの効率を下げる大きな要因となっている。この影響を低減させるために、EL層内部に低屈折率材料からなる層を形成する構成が提案されている(例えば、非特許文献1参照)。
Jaeho Lee、他12名,「Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes」,nature COMMUNICATIONS,平成28年6月2日,DOI:10.1038/ncomms11791
本発明の一態様では、発光効率の高い発光デバイスを提供することを課題とする。または、本発明の一態様では、消費電力の小さい発光デバイス、発光装置、電子機器、表示装置、または電子デバイスのいずれかを提供することを課題とする。
または、本発明の他の一態様では、新規の有機金属錯体(金属錯体)を提供することを課題とする。または、本発明の他の一態様では、駆動電圧の低い発光デバイスに適用可能な金属錯体を提供することを課題とする。または、本発明の他の一態様では、低屈折率の電子輸送層を有し、且つ駆動電圧の低い発光デバイスに適用可能な金属錯体を提供することを課題とする。
本発明は上述の課題のうちいずれか一を解決すればよいものとする。
本発明の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、発光層は、発光材料を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送性を有する有機化合物の、発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75以下であり、アルカリ金属の金属錯体の、発光材料が発する光のピーク波長における常光屈折率は1.45以上1.70以下である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、発光層は、発光材料を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送性を有する有機化合物の発光材料が発する光のピーク波長における常光屈折率と、アルカリ金属の金属錯体の発光材料が発する光のピーク波長における常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、発光層は、発光材料を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送層の発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75未満である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送性を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75以下であり、アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.45以上1.70以下である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送性を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送層の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75未満である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送性を有する有機化合物の633nmの光に対する常光屈折率が1.45以上1.70以下であり、アルカリ金属の金属錯体の633nmの光に対する常光屈折率が1.40以上1.65以下である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送性を有する有機化合物の633nmの光に対する常光屈折率と、アルカリ金属の金属錯体の633nmの光に対する常光屈折率と、を足して2で割った数値が1.45以上1.70未満である発光デバイスである。
本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送層の633nmの光に対する常光屈折率が1.45以上1.70未満である発光デバイスである。
本発明の他の一態様は、上記構成において、電子輸送性を有する有機化合物とアルカリ金属の金属錯体が、どちらもアルキル基またはシクロアルキル基を有する発光デバイスである。
または、本発明の他の一態様は、上記構成において、電子輸送性を有する有機化合物の有するアルキル基が、分岐を有するアルキル基、または、炭素数3または4のアルキル基のいずれか一であり、アルカリ金属の金属錯体の有するアルキル基が炭素数1乃至3のアルキル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、電子輸送性を有する有機化合物の有するアルキル基がt-ブチル基であり、アルカリ金属の金属錯体の有するアルキル基がメチル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、電子輸送性を有する有機化合物のsp混成軌道で結合をつくっている炭素の割合が、当該有機化合物の総炭素数に対する10%以上60%以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、電子輸送性を有する有機化合物をH-NMRで測定を行った結果は、4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値を上回る発光デバイスである。
または、本発明の他の一態様は、上記構成において、電子輸送性を有する有機化合物がトリアジン骨格またはジアジン骨格を有する発光デバイスである。
または、本発明の他の一態様は、電子輸送性を有する有機化合物がベンゼン環を有する発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、発光層は、発光材料を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、π電子不足型複素芳香環骨格を有する有機化合物の発光材料が発する光のピーク波長における常光屈折率と、アルカリ金属の金属錯体の発光材料が発する光のピーク波長における常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、発光層は、発光材料を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送層の発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75未満である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、π電子不足型複素芳香環骨格を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75以下であり、アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.45以上1.70以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、π電子不足型複素芳香環骨格を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送層の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75未満である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、π電子不足型複素芳香環骨格を有する有機化合物の633nmの光に対する常光屈折率が1.45以上1.70以下であり、アルカリ金属の金属錯体の633nmの光に対する常光屈折率が1.40以上1.65以下である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、π電子不足型複素芳香環骨格を有する有機化合物の633nmの光に対する常光屈折率と、アルカリ金属の金属錯体の633nmの光に対する常光屈折率と、を足して2で割った数値が1.45以上1.70未満である発光デバイスである。
または、本発明の他の一態様は、陽極と、陰極と、陽極と陰極との間に位置するEL層と、を有し、EL層は、発光層と、電子輸送層と、を有し、電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、電子輸送層の633nmの光に対する常光屈折率が1.45以上1.70未満である発光デバイスである。
または、本発明の他の一態様は、上記構成において、π電子不足型複素芳香環骨格を有する有機化合物とアルカリ金属の金属錯体が、どちらもアルキル基またはシクロアルキル基を有する発光デバイスである。
または、本発明の他の一態様は、上記構成において、π電子不足型複素芳香環骨格を有する有機化合物の有するアルキル基が、分岐を有するアルキル基、または、炭素数3または4のアルキル基のいずれか一であり、アルカリ金属の金属錯体の有するアルキル基が炭素数1乃至3のアルキル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、π電子不足型複素芳香環骨格を有する有機化合物の有するアルキル基がt-ブチル基であり、アルカリ金属の金属錯体の有するアルキル基がメチル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、π電子不足型複素芳香環骨格を有する有機化合物のsp混成軌道で結合をつくっている炭素の割合が、当該有機化合物の総炭素数に対する10%以上60%以下である発光デバイスである。
または、本発明の他の一態様は、上記構成において、π電子不足型複素芳香環骨格を有する有機化合物をH-NMRで測定を行った結果は、4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値を上回る発光デバイスである。
または、本発明の他の一態様は、上記構成において、π電子不足型複素芳香環骨格を有する有機化合物がトリアジン骨格またはジアジン骨格を有する発光デバイスである。
または、本発明の他の一態様は、上記構成において、アルカリ金属の金属錯体が、8-キノリノラト構造を含む配位子を有する金属錯体である発光デバイスである。
または、本発明の他の一態様は、上記構成において、アルカリ金属の金属錯体が一つのアルキル基を有し、一つのアルキル基は炭素数1乃至3のアルキル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、アルカリ金属の金属錯体が、リチウムの金属錯体である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記金属錯体が下記一般式(G0)で表される金属錯体である発光デバイスである。
Figure 2022008062000002
ただし、上記一般式(G0)において、Mはアルカリ金属、Rは炭素数1乃至3のアルキル基、Rは水素または炭素数1乃至3のアルキル基を表す。
または、本発明の他の一態様は、上記構成において、Rがメチル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記金属錯体が下記一般式(G1)乃至(G3)のいずれかで表される金属錯体である発光デバイスである。
Figure 2022008062000003
ただし、上記一般式(G1)乃至(G3)において、Rは炭素数1乃至3のアルキル基を表し、一般式(G3)において、Rは炭素数1乃至3のアルキル基を表す。
または、本発明の他の一態様は、上記構成において、Rがメチル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、Rがエチル基である発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記Mがリチウムである発光デバイスである。
または、本発明の他の一態様は、上記構成において、前記Mがナトリウムである発光デバイスである。
または、本発明の他の一態様は、下記一般式(G0)で表される金属錯体である。
Figure 2022008062000004
ただし、上記一般式(G0)において、Mはアルカリ金属、Rは炭素数1乃至3のアルキル基、Rは水素または炭素数1乃至3のアルキル基を表す。
または、本発明の他の一態様は、上記構成において、Rがメチル基である金属錯体である。
または、本発明の他の一態様は、下記一般式(G1)乃至(G3)のいずれかで表される金属錯体である。
Figure 2022008062000005
ただし、上記一般式(G1)乃至(G3)において、RおよびRは各々独立に炭素数1乃至3のアルキル基を表す。
または、本発明の他の一態様は、上記構成において、Rがメチル基である金属錯体である。
または、本発明の他の一態様は、上記構成において、Rがエチル基である金属錯体である。
または、本発明の他の一態様は、上記構成において、前記Mがリチウムである金属錯体である。
または、本発明の他の一態様は、上記構成において、前記Mがナトリウムである金属錯体である。
または、本発明の他の一態様は、上記金属錯体を有する発光デバイスである。
または、本発明の他の一態様は、上記一般式(G1)で表される金属錯体の発光材料が発する光のピーク波長における常光屈折率が1.45以上1.70以下である発光デバイスである。
または、本発明の他の一態様は、上記金属錯体を発光層と陰極との間に有する発光デバイスである。
または、本発明の他の一態様は、上記金属錯体を電子輸送層に有する発光デバイスである。
または、本発明の他の一態様は、上記いずれかに記載の発光デバイスと、センサ、操作ボタン、スピーカ、または、マイクのうちの少なくとも1つと、を有する電子機器である。
または、本発明の他の一態様は、上記いずれかに記載の発光デバイスと、トランジスタ、または、基板のうちの少なくとも1つと、を有する発光装置である。
または、本発明の他の一態様は、上記いずれかに記載の発光デバイスと、筐体と、を有する照明装置である。
なお、本明細書中における発光装置とは、発光デバイスを用いた画像表示デバイスを含む。また、発光デバイスにコネクター、例えば異方導電性フィルム又はTCP(Tape Carrier Package)が取り付けられたモジュール、TCPの先にプリント配線板が設けられたモジュール、又は発光デバイスにCOG(Chip On Glass)方式によりIC(集積回路)が直接実装されたモジュールも発光装置に含む場合がある。さらに、照明器具等は、発光装置を有する場合がある。
本発明の一態様では、発光効率の高い発光デバイスを提供することができる。または、本発明の一態様では、消費電力の小さい発光デバイス、発光装置、電子機器、表示装置、または電子デバイスのいずれかを提供することができる。
本発明の他の一態様では、新規の有機金属錯体(金属錯体)を提供することができる。または、本発明の他の一態様では、駆動電圧の低い発光デバイスに適用可能な金属錯体を提供することができる。または、本発明の他の一態様では、低屈折率の電子輸送層を有し、且つ駆動電圧の低い発光デバイスに適用可能な金属錯体を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
図1(A)、図1(B)および図1(C)は発光デバイスの概略図である。 図2(A)および図2(B)はアクティブマトリクス型発光装置を表す図である。 図3(A)および図3(B)はアクティブマトリクス型発光装置を表す図である。 図4はアクティブマトリクス型発光装置を表す図である。 図5(A)および図5(B)はパッシブマトリクス型発光装置を表す図である。 図6(A)および図6(B)は照明装置を表す図である。 図7(A)、図7(B1)、図7(B2)および図7(C)は電子機器を表す図である。 図8(A)、図8(B)および図8(C)は電子機器を表す図である。 図9は照明装置を表す図である。 図10は照明装置を表す図である。 図11は車載表示装置及び照明装置を表す図である。 図12(A)および図12(B)は電子機器を表す図である。 図13(A)、図13(B)および図13(C)は電子機器を表す図である。 図14は、mmtBumBP-dmmtBuPTzn、mPn-mDMePyPTzn、Li-6mqおよびLiqの屈折率を測定したデータである。 図15は発光デバイス1及び比較発光デバイス1の輝度-電流密度特性である。 図16は発光デバイス1及び比較発光デバイス1の電流効率-輝度特性である。 図17は発光デバイス1及び比較発光デバイス1の輝度-電圧特性である。 図18は発光デバイス1及び比較発光デバイス1の電流-電圧特性である。 図19は発光デバイス1及び比較発光デバイス1のブルーインデックス-輝度特性である。 図20は発光デバイス1及び比較発光デバイス1の発光スペクトルである。 図21は、mmtBumBP-dmmtBuPTzn、Li-6mqおよびLiqの屈折率を測定したデータである。 図22は発光デバイス2及び比較発光デバイス2の輝度-電流密度特性である。 図23は発光デバイス2及び比較発光デバイス2の電流効率-輝度特性である。 図24は発光デバイス2及び比較発光デバイス2の輝度-電圧特性である。 図25は発光デバイス2及び比較発光デバイス2の電流-電圧特性である。 図26は発光デバイス2及び比較発光デバイス2のブルーインデックス-輝度特性である。 図27は発光デバイス2及び比較発光デバイス2の発光スペクトルである。 図28は、mPn-mDMePyPTzn、Li-6mqおよびLiqの屈折率を測定したデータである。 図29は発光デバイス3及び比較発光デバイス3の輝度-電流密度特性である。 図30は発光デバイス3及び比較発光デバイス3の電流効率-輝度特性である。 図31は発光デバイス3及び比較発光デバイス3の輝度-電圧特性である。 図32は発光デバイス3及び比較発光デバイス3の電流-電圧特性である。 図33は発光デバイス3及び比較発光デバイス3の発光スペクトルである。 図34は発光デバイス3及び比較発光デバイス3のブルーインデックス-輝度特性である。 図35はLi-6mqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルである。 図36はmmtBumBP-dmmtBuPTznの屈折率を測定したデータである。 図37は、mmtBumBPTzn、mPn-mDMePyPTzn、Li-6mqおよびLiqの屈折率を測定したデータである。 図38は発光デバイス4、比較発光デバイス4、及び比較発光デバイス5の輝度-電流密度特性である。 図39は発光デバイス4、比較発光デバイス4、及び比較発光デバイス5の電流効率-輝度特性である。 図40は発光デバイス4、比較発光デバイス4、及び比較発光デバイス5の輝度-電圧特性である。 図41は発光デバイス4、比較発光デバイス4、及び比較発光デバイス5の電流密度-電圧特性である。 図42は発光デバイス4、比較発光デバイス4、及び比較発光デバイス5の発光スペクトルである。 図43は発光デバイス4、比較発光デバイス4、及び比較発光デバイス5のブルーインデックス-輝度特性である。 図44はmmtBumBPTznの屈折率を測定したデータである。 図45はLi-6eqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルである。 図46はLi-6eqの屈折率を測定したデータである。 図47はNa-6mqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルである。 図48は発光デバイス5および発光デバイス6の輝度-電流密度特性を表す図である。 図49は発光デバイス5および発光デバイス6の輝度-電圧特性を表す図である。 図50は発光デバイス5および発光デバイス6の電流効率-輝度特性を表す図である。 図51は発光デバイス5および発光デバイス6の電流密度-電圧特性を表す図である。 図52は発光デバイス5および発光デバイス6の外部量子効率-輝度特性を表す図である。 図53は発光デバイス5および発光デバイス6のパワー効率-輝度特性を表す図である。 図54は発光デバイス5および発光デバイス6の発光スペクトルを表す図である。 図55は発光デバイス7、発光デバイス8および比較発光デバイス6の輝度-電流密度特性を表す図である。 図56は発光デバイス7、発光デバイス8および比較発光デバイス6の輝度-電圧特性を表す図である。 図57は発光デバイス7、発光デバイス8および比較発光デバイス6の電流効率-輝度特性を表す図である。 図58は発光デバイス7、発光デバイス8および比較発光デバイス6の電流密度-電圧特性を表す図である。 図59は発光デバイス7、発光デバイス8および比較発光デバイス6の外部量子効率-輝度特性を表す図である。 図60は発光デバイス7、発光デバイス8および比較発光デバイス6のパワー効率-輝度特性を表す図である。 図61は発光デバイス7、発光デバイス8および比較発光デバイス6の発光スペクトルを表す図である。 図62は発光デバイス9、発光デバイス10、発光デバイス11および発光デバイス12の輝度-電流密度特性を表す図である。 図63は発光デバイス9、発光デバイス10、発光デバイス11および発光デバイス12の輝度-電圧特性を表す図である。 図64は発光デバイス9、発光デバイス10、発光デバイス11および発光デバイス12の電流効率-輝度特性を表す図である。 図65は発光デバイス9、発光デバイス10、発光デバイス11および発光デバイス12の電流密度-電圧特性を表す図である。 図66は発光デバイス9、発光デバイス10、発光デバイス11および発光デバイス12の外部量子効率-輝度特性を表す図である。 図67は発光デバイス9、発光デバイス10、発光デバイス11および発光デバイス12の発光スペクトルを表す図である。 図68はLi-3,6dmqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルである。 図69は発光デバイス13、発光デバイス14および比較発光デバイス7の輝度-電流密度特性を表す図である。 図70は発光デバイス13、発光デバイス14および比較発光デバイス7の輝度-電圧特性を表す図である。 図71は発光デバイス13、発光デバイス14および比較発光デバイス7の電流効率-輝度特性を表す図である。 図72は発光デバイス13、発光デバイス14および比較発光デバイス7の電流密度-電圧特性を表す図である。 図73は発光デバイス13、発光デバイス14および比較発光デバイス7の外部量子効率-輝度特性を表す図である。 図74は発光デバイス13、発光デバイス14および比較発光デバイス7の発光スペクトルを表す図である。 図75はmmtBumBPTzn、Li-mq、Li-5mq、Li-6mqおよびLi-7mqの屈折率を測定したデータである。
以下、本発明の実施の態様について図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
(実施の形態1)
図1(A)に、本発明の一態様の発光デバイスを表す図を示す。本発明の一態様の発光デバイスは、陽極101と、陰極102、EL層103を有し、当該EL層103は、発光層113および電子輸送層114を有している。
発光層113は少なくとも発光材料を有し、電子輸送層114は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体を有している。
本発明の一態様の発光デバイスにおける電子輸送層114が有する、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体とは、発光層113が有する発光材料が発する光のピーク波長(λp)における各々の常光屈折率を足して2で割った数値が1.50以上1.75未満、好ましくは1.50以上1.70未満となる組み合わせであることが好ましい。
なお、上記電子輸送性を有する有機化合物と、アルカリ金属の金属錯体との屈折率は、当該材料の薄膜を測定することによって決定するが、このような薄膜において、材料に異方性が生じている場合、常光に対する屈折率と異常光に対する屈折率が異なることがある。測定する薄膜がその様な状態である場合、異方性解析を実施することで、常光屈折率と異常光屈折率に分離して各々の屈折率を算出することができる。なお、本明細書においては、測定した材料に常光屈折率と異常光屈折率の双方が存在した場合、常光屈折率を指標として用いている。
このような材料を用いた電子輸送層114は屈折率の小さい層とすることができ、EL層内部に屈折率の小さな層を設けることによって、光の取り出し効率が向上し、発光効率の高い発光デバイスをえることができる。通常、発光デバイスを構成する有機化合物の屈折率は、1.8~1.9程度であり、本発明の一態様の発光デバイスは屈折率の小さい電子輸送層を有することによって発光効率の良好な発光デバイスとすることができる。
特に、電子輸送層114は、発光層113と陰極102との間に設けられることから、トップエミッション型の発光デバイスに好適である。
なお、本発明の一態様の発光デバイスにおける電子輸送層114のλpの光に対する常光屈折率は1.50以上1.75未満であることが好ましく、1.50以上1.70未満であることがより好ましい。
特に、当該電子輸送層114に含まれる電子輸送性を有する有機化合物は、λpの光に対する常光屈折率が1.50以上1.75以下の物質であることが好ましく、且つアルカリ金属の金属錯体は、λpの光に対する常光屈折率が1.45以上1.70以下の物質であることが好ましい。
なお、青色発光デバイスにおいては、上記発光材料は青色発光領域(455nm以上465nm以下)の範囲におけるいずれかの波長(λ)の光を発することから、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体とは、λの光に対する各々の常光屈折率を足して2で割った数値が1.50以上1.75未満であることが好ましく、1.50以上1.70未満となる組み合わせであることがより好ましい。
また、同様に、青色発光デバイスにおける電子輸送層114のλの光に対する常光屈折率は1.50以上1.75未満、好ましくは1.50以上1.70未満であることが好ましい。特に、電子輸送性を有する有機化合物は、λの光に対する常光屈折率が1.50以上1.75以下であることが好ましく、1.50以上1.70以下の物質であることがより好ましく、且つアルカリ金属の金属錯体は、λの光に対する常光屈折率が1.45以上1.70以下の物質であることが好ましい。
また、原理的に屈折率は短波長側が大きく、長波長側が小さくなるため、本発明の一態様の電子輸送層114に用いられる電子輸送性を有する有機化合物とアルカリ金属の金属錯体は、633nmの波長の光に対する各々の常光屈折率を足して二で割った値が1.45以上1.70未満となる組み合わせであることが好ましい。また、同様に本発明の一態様の電子輸送層114の633nmの波長の光に対する常光屈折率は1.45以上1.70未満であることが好ましい。また、特に本発明の一態様の電子輸送層114に用いられる電子輸送性を有する有機化合物の633nmの波長の光に対する常光屈折率は1.45以上1.70以下であり、本発明の一態様の電子輸送層114に用いられるアルカリ金属の金属錯体の633nmの波長の光に対する常光屈折率は1.40以上1.65以下であることが好ましい。
なお、本発明の一態様の電子輸送層114に用いられる電子輸送性を有する有機化合物と、アルカリ金属の金属錯体はどちらもアルキル基またはシクロアルキル基を有していることが好ましい。これらがアルキル基またはシクロアルキル基を有することによって、屈折率を低下させることができ、屈折率の低い電子輸送層114を実現することができる。
ここで、通常、アルキル基やシクロアルキル基の存在は、電子輸送性を有する有機化合物とアルカリ金属の金属錯体の相互作用(ドッキングともいう)を阻害し、駆動電圧の上昇を招くと考えられていたが、本発明の一態様の発光デバイスでは、大きな駆動電圧の上昇もなく、屈折率の小さい電子輸送層を備えた発光効率の良好な発光デバイスとすることが可能である。
なお、当該電子輸送性を有する有機化合物が有するアルキル基は分岐を有するアルキル基であることが好ましく、特に好ましくは炭素数3または4のアルキル基であり、特にtert-ブチル基であることが好ましい。また、アルカリ金属の金属錯体が有するアルキル基は、炭素数1乃至3のいずれか一を有することが好ましく、特にメチル基であることが好ましい。
当該電子輸送層114を構成する電子輸送性を有する有機化合物は、1個以上3個以下の窒素を含む6員環の複素芳香環を少なくとも1つ有し、環を形成する炭素数が6乃至14の芳香族炭化水素環を複数有し、複数の前記芳香族炭化水素環のうち少なくとも2つはベンゼン環であり、sp混成軌道で結合を形成している炭化水素基を複数有する有機化合物を含んでいることが好ましい。
また、このような有機化合物は、当該有機化合物の分子内の総炭素数に対するsp混成軌道で結合を形成している炭素数の割合が、10%以上60%以下であることが好ましく、10%以上50%以下であるとより好ましい。または、このような有機化合物は、H-NMRで当該有機化合物の測定を行った結果における4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値の1/2倍以上であることが好ましい。
なお、当該有機化合物が有するすべてのsp混成軌道で結合を形成している炭化水素基は、上記環を形成する炭素数が6乃至14の芳香族炭化水素環に結合し、その芳香族炭化水素環には当該有機化合物のLUMOが分布していないことが好ましい。
なお、上記有機化合物が、電子輸送層114に含まれる電子輸送性を有する有機化合物に相当する。
当該電子輸送性を有する有機化合物としては、下記一般式(G1)で表される有機化合物であることが好ましい。
Figure 2022008062000006
式中、Aは1~3個の窒素を含む6員環の複素芳香環を表し、ピリジン環、ピリミジン環、ピラジン環、ピリダジン環、トリアジン環のいずれかが好ましい。
また、Rは、水素、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、または式(G1-1)で表される置換基、のいずれかを表す。
乃至R15の少なくとも一は、置換基を有するフェニル基であり、他は各々独立に、水素、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、置換または無置換のピリジル基、のいずれかを表す。なお、R、R、R、R、R、R10、R11、R13およびR15は水素であることが好ましい。前記置換基を有するフェニル基は1つまたは2つの置換基を有し、当該置換基は各々独立に、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、のいずれかである。
なお、上記一般式(G1)で表される有機化合物は、炭素数1乃至6のアルキル基および炭素数3乃至10の脂環式基から選ばれる炭化水素基を複数有し、分子内の総炭素数に対するsp混成軌道で結合を形成している炭素数の割合は、10%以上60%以下である。
また、当該電子輸送性を有する有機化合物としては、下記一般式(G3)で表される有機化合物が好ましい。
Figure 2022008062000007
式中、Q乃至Qのうち2または3はNを表し、前記Q乃至Qのうちの2がNである場合、残りの1はCHを表す。
またR乃至R15の少なくとも一は、置換基を有するフェニル基であり、他は各々独立に、水素、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、置換または無置換のピリジル基、のいずれかを表す。なお、R、R、R、R、R、R10、R11、R13およびR15は水素であることが好ましい。前記置換基を有するフェニル基は1つまたは2つの置換基を有し、当該置換基は各々独立に、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、置換または無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基、のいずれかである。
なお、上記一般式(G3)で表される有機化合物は、炭素数1乃至6のアルキル基および炭素数3乃至10の脂環式基から選ばれる炭化水素基を複数有し、分子内の総炭素数に対するsp混成軌道で結合を形成している炭素数の割合は、10%以上60%以下であることが好ましい。
また、上記一般式(G1)または(G3)で表される有機化合物において、置換基を有するフェニル基が下記式(G1-2)で表される基であることが好ましい。
Figure 2022008062000008
式中、αは置換または無置換のフェニレン基を表し、メタ位置換のフェニレン基であることが好ましい。また、メタ位置換のフェニレン基が置換基を一つ有する場合、当該置換基もメタ位に置換していることが好ましい。なお、当該置換基としては炭素数1乃至6のアルキル基、または炭素数3乃至10の脂環式基であることが好ましく、炭素数1乃至6のアルキル基であることがより好ましく、t-ブチル基であることがさらに好ましい。
20は、炭素数1乃至6のアルキル基、炭素数3乃至10の脂環式基、または、置換もしくは無置換の環を形成する炭素数が6乃至14の芳香族炭化水素基を表す。
また、mおよびnは1または2を表す。なお、mが2の場合、複数のαは各々同じでも異なっていてもよい。また、nが2の場合、複数のR20は各々同じでも異なっていてもよい。なお、R20はフェニル基であることが好ましく、2か所のメタ位の一方または両方に炭素数1乃至6のアルキル基、または炭素数3乃至10の脂環式基を有するフェニル基であることがより好ましい。なお、当該フェニル基が2か所のメタ位の一方または両方に有する置換基は炭素数1乃至6のアルキル基であることがより好ましく、t-ブチル基であることがさらに好ましい。
また、アルカリ金属の金属錯体はリチウムの金属錯体またはナトリウムの金属錯体が好ましい。また、当該金属錯体の配位子は、8-キノリノラト構造を含む配位子であることが好ましい。
8-キノリノラト構造を含むリチウム錯体またはナトリウム錯体がアルキル基を有する場合、当該錯体が有するアルキル基は一つまたは二つであることが好ましい。アルキル基を有する8-キノリノラト-リチウムは、屈折率の小さな金属錯体とすることが可能である。具体的には薄膜状態における455nm以上465nm以下の範囲の波長の光に対する常光屈折率が1.45以上1.70以下、633nmの波長の光に対する常光屈折率が1.40以上1.65以下とすることができる。
また、特に、6位にアルキル基を有する8-キノリノラト配位子を有するアルカリ金属錯体を用いることで、発光デバイスの駆動電圧を低下させる効果がある。中でも6-アルキル-8-キノリノラト配位子を有するアルカリ金属錯体、または、3,6-ジアルキル-8-キノリノラト配位子を有するアルカリ金属錯体を用いた発光デバイスの特性が良好であるため好ましい。なお、上記アルキル基は、メチル基またはエチル基であることがより好ましい。
ここで、上記6位にアルキル基を有する8-キノリノラト配位子を有するアルカリ金属錯体は下記一般式(G0)のように表すことができる。
Figure 2022008062000009
ただし、上記一般式(G0)において、Mはアルカリ金属、Rは炭素数1乃至3のアルキル基、Rは水素または炭素数1乃至3のアルキル基を表す。
なお、上記一般式(G0)で表される金属錯体は、特に下記一般式(G1)乃至(G3)のいずれかで表される金属錯体が好ましい。
Figure 2022008062000010
ただし、上記一般式(G1)乃至(G3)において、RおよびRは各々独立に炭素数1乃至3のアルキル基を表す。このような構成を有する金属錯体を用いることで、発光効率が高く、駆動電圧が低い発光デバイスを得ることができる。また、一般式(G3)で表される金属錯体は、真空蒸着時の蒸着レートが安定しており、好ましい。またRおよびRは各々独立に炭素数1であるほうが、炭素数2以上よりも駆動電圧が低くなり、より好ましい構成である。
なお、上記一般式(G1)乃至(G3)で表される金属錯体において、より好ましい態様は下記構造式(100)、(101)、(102)、(200)で表される金属錯体である。
Figure 2022008062000011
Figure 2022008062000012
Figure 2022008062000013
Figure 2022008062000014
本発明の一態様の発光デバイスにおける電子輸送層114に用いられる電子輸送性を有する有機化合物は、上述のように、炭素数3または4のアルキル基を有することが好ましいが、特に、電子輸送性を有する有機化合物は、当該アルキル基を複数有していることが好ましい。しかし、分子中のアルキル基の数が多すぎるとキャリア輸送性を低下させることから、電子輸送性を有する有機化合物のsp混成軌道で結合をつくっている炭素の割合は、当該有機化合物の総炭素数に対する10%以上60%以下が好ましく、10%以上50%以下であることがより好ましい。このような構成を有する電子輸送性を有する有機化合物は、電子輸送性を大きく損なうことなく、低い屈折率を実現することが可能となる。
なお、このような有機化合物をH-NMR(プロトン核磁気共鳴)で測定を行うと、4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値を上回る結果となる。
本発明の一態様の発光デバイスにおける電子輸送層114に用いられる電子輸送性を有する有機化合物はトリアジン骨格またはジアジン骨格を有することが、キャリア輸送性が良好であるため好ましい。
当該電子輸送層は上述したように、屈折率の小さい電子輸送性を有する有機化合物と、屈折率の小さいアルカリ金属の金属錯体を有することによって、駆動電圧などの大幅な悪化を招くことなく、屈折率が小さい層とすることができる。結果として発光層113からの発光の取り出し効率が向上し、本発明の一態様の発光デバイスは発光効率の良好な発光デバイスとすることができる。
続いて、本発明の一態様の発光デバイスの他の構造や材料の例について説明する。本発明の一態様の発光デバイスは、上述のように陽極101と陰極102の一対の電極間に複数の層からなるEL層103を有しており、当該EL層103は、発光材料を有する発光層113と、上記したような構成を有する電子輸送層114を有している。
陽極101は、仕事関数の大きい(具体的には4.0eV以上)金属、合金、導電性化合物、およびこれらの混合物などを用いて形成することが好ましい。具体的には、例えば、酸化インジウム-酸化スズ(ITO:Indium Tin Oxide)、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性金属酸化物膜は、通常スパッタリング法により成膜されるが、ゾル-ゲル法などを応用して作製しても構わない。作製方法の例としては、酸化インジウム-酸化亜鉛は、酸化インジウムに対し1~20wt%の酸化亜鉛を加えたターゲットを用いてスパッタリング法により形成する方法などがある。また、酸化タングステン及び酸化亜鉛を含有した酸化インジウム(IWZO)は、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0.1~1wt%含有したターゲットを用いてスパッタリング法により形成することもできる。この他に、陽極101に用いられる材料は、例えば、金(Au)、白金(Pt)、ニッケル(Ni)、タングステン(W)、クロム(Cr)、モリブデン(Mo)、鉄(Fe)、コバルト(Co)、銅(Cu)、パラジウム(Pd)、または金属材料の窒化物(例えば、窒化チタン)等が挙げられる。又は、陽極101に用いられる材料として、グラフェンも用いることができる。なお、後述する複合材料をEL層103における陽極101と接する層に用いることで、仕事関数に関わらず、電極材料を選択することができるようになる。
EL層103は積層構造を有していることが好ましいが、当該積層構造については特に限定はなく、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層、キャリアブロック層(正孔ブロック層、電子ブロック層)、励起子ブロック層、電荷発生層など、様々な層構造を適用することができる。なお、いずれかの層が設けられていなくてもよい。本実施の形態では、図1(A)に示すように、電子輸送層114、電子注入層115及び発光層113に加えて、正孔注入層111、正孔輸送層112を有する構成、及び図1(B)に示すように、電子輸送層114、発光層113、正孔注入層111、正孔輸送層112に加えて、電荷発生層116を有する構成の2種類の構成について説明する。各層を構成する材料について以下に具体的に示す。
正孔注入層111は、アクセプタ性を有する物質を含む層である。アクセプタ性を有する物質としては、有機化合物と無機化合物のいずれも用いることが可能である。
アクセプタ性を有する物質としては、電子吸引基(ハロゲン基やシアノ基)を有する化合物を用いることができ、7,7,8,8-テトラシアノ-2,3,5,6-テトラフルオロキノジメタン(略称:F-TCNQ)、クロラニル、2,3,6,7,10,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称:HAT-CN)、1,3,4,5,7,8-ヘキサフルオロテトラシアノ-ナフトキノジメタン(略称:F6-TCNNQ)、2-(7-ジシアノメチレン-1,3,4,5,6,8,9,10-オクタフルオロ-7H-ピレン-2-イリデン)マロノニトリル等を挙げることができる。特に、HAT-CNのように複素原子を複数有する縮合芳香環に電子吸引基が結合している化合物が、熱的に安定であり好ましい。また、電子吸引基(特にフルオロ基のようなハロゲン基やシアノ基)を有する[3]ラジアレン誘導体は、電子受容性が非常に高いため好ましく、具体的にはα,α’,α’’-1,2,3-シクロプロパントリイリデントリス[4-シアノ-2,3,5,6-テトラフルオロベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,6-ジクロロ-3,5-ジフルオロ-4-(トリフルオロメチル)ベンゼンアセトニトリル]、α,α’,α’’-1,2,3-シクロプロパントリイリデントリス[2,3,4,5,6-ペンタフルオロベンゼンアセトニトリル]などが挙げられる。アクセプタ性を有する物質としては以上で述べた有機化合物以外にも、モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。この他、フタロシアニン(略称:HPc)や銅フタロシアニン(CuPc)等のフタロシアニン系の錯体化合物、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)等の芳香族アミン化合物、或いはポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)等の高分子等によっても正孔注入層111を形成することができる。アクセプタ性を有する物質は、隣接する正孔輸送層(あるいは正孔輸送材料)から、電界の印加により電子を引き抜くことができる。
また、正孔注入層111として、正孔輸送性を有する材料に上記アクセプタ性物質を含有させた複合材料を用いることもできる。なお、正孔輸送性を有する材料にアクセプタ性物質を含有させた複合材料を用いることにより、仕事関数に依らず電極を形成する材料を選ぶことができる。つまり、陽極101として仕事関数の大きい材料だけでなく、仕事関数の小さい材料も用いることができるようになる。
複合材料に用いる正孔輸送性を有する材料としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の有機化合物を用いることができる。なお、複合材料に用いる正孔輸送性を有する材料としては、1×10-6cm/Vs以上の正孔移動度を有する物質であることが好ましい。以下では、複合材料における正孔輸送性を有する材料として用いることのできる有機化合物を具体的に列挙する。
複合材料に用いることのできる芳香族アミン化合物としては、N,N’-ジ(p-トリル)-N,N’-ジフェニル-p-フェニレンジアミン(略称:DTDPPA)、4,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニル(略称:DPAB)、N,N’-ビス{4-[ビス(3-メチルフェニル)アミノ]フェニル}-N,N’-ジフェニル-(1,1’-ビフェニル)-4,4’-ジアミン(略称:DNTPD)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ベンゼン(略称:DPA3B)等を挙げることができる。カルバゾール誘導体としては、具体的には、3-[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:PCzPCN1)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9-[4-(10-フェニルアントラセン-9-イル)フェニル]-9H-カルバゾール(略称:CzPA)、1,4-ビス[4-(N-カルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等を用いることができる。芳香族炭化水素としては、例えば、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-BuDNA)、2-tert-ブチル-9,10-ジ(1-ナフチル)アントラセン、9,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、2-tert-ブチル-9,10-ビス(4-フェニルフェニル)アントラセン(略称:t-BuDBA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-ジフェニルアントラセン(略称:DPAnth)、2-tert-ブチルアントラセン(略称:t-BuAnth)、9,10-ビス(4-メチル-1-ナフチル)アントラセン(略称:DMNA)、2-tert-ブチル-9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、9,10-ビス[2-(1-ナフチル)フェニル]アントラセン、2,3,6,7-テトラメチル-9,10-ジ(1-ナフチル)アントラセン、2,3,6,7-テトラメチル-9,10-ジ(2-ナフチル)アントラセン、9,9’-ビアントリル、10,10’-ジフェニル-9,9’-ビアントリル、10,10’-ビス(2-フェニルフェニル)-9,9’-ビアントリル、10,10’-ビス[(2,3,4,5,6-ペンタフェニル)フェニル]-9,9’-ビアントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11-テトラ(tert-ブチル)ペリレン等が挙げられる。また、この他、ペンタセン、コロネン等も用いることができる。また、ビニル骨格を有していてもよい。ビニル基を有している芳香族炭化水素としては、例えば、4,4’-ビス(2,2-ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10-ビス[4-(2,2-ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。なお、本発明の一態様の有機化合物も用いることができる。
また、ポリ(N-ビニルカルバゾール)(略称:PVK)やポリ(4-ビニルトリフェニルアミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フェニル)ベンジジン](略称:Poly-TPD)等の高分子化合物を用いることもできる。
複合材料に用いられる正孔輸送性を有する材料としては、カルバゾール骨格、ジベンゾフラン骨格、ジベンゾチオフェン骨格およびアントラセン骨格のいずれかを有していることがより好ましい。特に、ジベンゾフラン環またはジベンゾチオフェン環を含む置換基を有する芳香族アミン、ナフタレン環を有する芳香族モノアミン、または9-フルオレニル基がアリーレン基を介してアミンの窒素に結合する芳香族モノアミンであっても良い。なお、これら第2の有機化合物が、N,N-ビス(4-ビフェニル)アミノ基を有する物質であると、寿命の良好な発光デバイスを作製することができるため好ましい。以上のような第2の有機化合物としては、具体的には、N-(4-ビフェニル)-6,N-ジフェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BnfABP)、N,N-ビス(4-ビフェニル)-6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf)、4,4’-ビス(6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-イル-4’’-フェニルトリフェニルアミン(略称:BnfBB1BP)、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[1,2-d]フラン-6-アミン(略称:BBABnf(6))、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf(8))、N,N-ビス(4-ビフェニル)ベンゾ[b]ナフト[2,3-d]フラン-4-アミン(略称:BBABnf(II)(4))、N,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)、N-[4-(ジベンゾチオフェン-4-イル)フェニル]-N-フェニル-4-ビフェニルアミン(略称:ThBA1BP)、4-(2-ナフチル)-4’,4’’-ジフェニルトリフェニルアミン(略称:BBAβNB)、4-[4-(2-ナフチル)フェニル]-4’,4’’-ジフェニルトリフェニルアミン(略称:BBAβNBi)、4,4’-ジフェニル-4’’-(6;1’-ビナフチル-2-イル)トリフェニルアミン(略称:BBAαNβNB)、4,4’-ジフェニル-4’’-(7;1’-ビナフチル-2-イル)トリフェニルアミン(略称:BBAαNβNB-03)、4,4’-ジフェニル-4’’-(7-フェニル)ナフチル-2-イルトリフェニルアミン(略称:BBAPβNB-03)、4,4’-ジフェニル-4’’-(6;2’-ビナフチル-2-イル)トリフェニルアミン(略称:BBA(βN2)B)、4,4’-ジフェニル-4’’-(7;2’-ビナフチル-2-イル)トリフェニルアミン(略称:BBA(βN2)B-03)、4,4’-ジフェニル-4’’-(4;2’-ビナフチル-1-イル)トリフェニルアミン(略称:BBAβNαNB)、4,4’-ジフェニル-4’’-(5;2’-ビナフチル-1-イル)トリフェニルアミン(略称:BBAβNαNB-02)、4-(4-ビフェニリル)-4’-(2-ナフチル)-4’’-フェニルトリフェニルアミン(略称:TPBiAβNB)、4-(3-ビフェニリル)-4’-[4-(2-ナフチル)フェニル]-4’’-フェニルトリフェニルアミン(略称:mTPBiAβNBi)、4-(4-ビフェニリル)-4’-[4-(2-ナフチル)フェニル]-4’’-フェニルトリフェニルアミン(略称:TPBiAβNBi)、4-フェニル-4’-(1-ナフチル)トリフェニルアミン(略称:αNBA1BP)、4,4’-ビス(1-ナフチル)トリフェニルアミン(略称:αNBB1BP)、4,4’-ジフェニル-4’’-[4’-(カルバゾール-9-イル)ビフェニル-4-イル]トリフェニルアミン(略称:YGTBi1BP)、4’-[4-(3-フェニル-9H-カルバゾール-9-イル)フェニル]トリス(1,1’-ビフェニル-4-イル)アミン(略称:YGTBi1BP-02)、4-ジフェニル-4’-(2-ナフチル)-4’’-{9-(4-ビフェニリル)カルバゾール}トリフェニルアミン(略称:YGTBiβNB)、N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-N-[4-(1-ナフチル)フェニル]-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:PCBNBSF)、N,N-ビス(4-ビフェニリル)-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:BBASF)、N,N-ビス(1,1’-ビフェニル-4-イル)-9,9’-スピロビ[9H-フルオレン]-4-アミン(略称:BBASF(4))、N-(1,1’-ビフェニル-2-イル)-N-(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ(9H-フルオレン)-4-アミン(略称:oFBiSF)、N-(4-ビフェニル)-N-(ジベンゾフラン-4-イル)-9,9-ジメチル-9H-フルオレン-2-アミン(略称:FrBiF)、N-[4-(1-ナフチル)フェニル]-N-[3-(6-フェニルジベンゾフラン-4-イル)フェニル]-1-ナフチルアミン(略称:mPDBfBNBN)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-[4-(9-フェニルフルオレン-9-イル)フェニル]トリフェニルアミン(略称:BPAFLBi)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:PCBASF)、N-(1,1’-ビフェニル-4-イル)-9,9-ジメチル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9H-フルオレン-2-アミン(略称:PCBBiF)、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-4-アミン、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-3-アミン、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-2-アミン、N,N-ビス(9,9-ジメチル-9H-フルオレン-2-イル)-9,9’-スピロビ-9H-フルオレン-1-アミン等を挙げることができる。
なお、複合材料に用いられる正孔輸送性を有する材料はそのHOMO準位が-5.7eV以上-5.4eV以下の比較的深いHOMO準位を有する物質であることがさらに好ましい。複合材料に用いられる正孔輸送性を有する材料が比較的深いHOMO準位を有することによって、正孔輸送層112への正孔の注入が容易となり、また、寿命の良好な発光デバイスを得ることが容易となる。また、複合材料に用いられる正孔輸送性を有する材料が比較的深いHOMO準位を有する物質であることによって、正孔の誘起が適度に抑制されさらに寿命の良好な発光デバイスとすることができる。
なお、上記複合材料にさらにアルカリ金属又はアルカリ土類金属のフッ化物を混合(好ましくは当該層中のフッ素原子の原子比率が20%以上)することによって、当該層の屈折率を低下させることができる。これによっても、EL層103内部に屈折率の低い層を形成することができ、発光デバイスの外部量子効率を向上させることができる。
正孔注入層111を形成することによって、正孔の注入性が良好となり、駆動電圧の小さい発光デバイスを得ることができる。
なお、アクセプタ性を有する物質の中でもアクセプタ性を有する有機化合物は蒸着が容易で成膜がしやすいため、用いやすい材料である。
正孔輸送層112は、正孔輸送性を有する材料を含んで形成される。正孔輸送性を有する材料としては、1×10-6cm/Vs以上の正孔移動度を有していることが好ましい。
上記正孔輸送性を有する材料としては、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。なお、正孔注入層111の複合材料に用いられる正孔輸送性を有する材料として挙げた物質も正孔輸送層112を構成する材料として好適に用いることができる。
発光層113は発光物質とホスト材料を有している。なお、発光層113は、その他の材料を同時に含んでいても構わない。また、組成の異なる2層の積層であってもよい。
発光物質は蛍光発光物質であっても、りん光発光物質であっても、熱活性化遅延蛍光(TADF)を示す物質であっても、その他の発光物質であっても構わない。なお、本発明の一態様は、発光層113が蛍光発光を呈する層、特に、青色の蛍光発光を呈する層である場合により好適に適用することができる。
発光層113において、蛍光発光物質として用いることが可能な材料としては、例えば以下のようなものが挙げられる。また、これ以外の蛍光発光物質も用いることができる。
5,6-ビス[4-(10-フェニル-9-アントリル)フェニル]-2,2’-ビピリジン(略称:PAP2BPy)、5,6-ビス[4’-(10-フェニル-9-アントリル)ビフェニル-4-イル]-2,2’-ビピリジン(略称:PAPP2BPy)、N,N’-ジフェニル-N,N’-ビス[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6FLPAPrn)、N,N’-ビス(3-メチルフェニル)-N,N’-ビス[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]ピレン-1,6-ジアミン(略称:1,6mMemFLPAPrn)、N,N’-ビス[4-(9H-カルバゾール-9-イル)フェニル]-N,N’-ジフェニルスチルベン-4,4’-ジアミン(略称:YGA2S)、4-(9H-カルバゾール-9-イル)-4’-(10-フェニル-9-アントリル)トリフェニルアミン(略称:YGAPA)、4-(9H-カルバゾール-9-イル)-4’-(9,10-ジフェニル-2-アントリル)トリフェニルアミン(略称:2YGAPPA)、N,9-ジフェニル-N-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:PCAPA)、ペリレン、2,5,8,11-テトラ-tert-ブチルペリレン(略称:TBP)、4-(10-フェニル-9-アントリル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBAPA)、N,N’’-(2-tert-ブチルアントラセン-9,10-ジイルジ-4,1-フェニレン)ビス[N,N’,N’-トリフェニル-1,4-フェニレンジアミン](略称:DPABPA)、N,9-ジフェニル-N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-9H-カルバゾール-3-アミン(略称:2PCAPPA)、N-[4-(9,10-ジフェニル-2-アントリル)フェニル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPPA)、N,N,N’,N’,N’’,N’’,N’’’,N’’’-オクタフェニルジベンゾ[g,p]クリセン-2,7,10,15-テトラアミン(略称:DBC1)、クマリン30、N-(9,10-ジフェニル-2-アントリル)-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,9-ジフェニル-9H-カルバゾール-3-アミン(略称:2PCABPhA)、N-(9,10-ジフェニル-2-アントリル)-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPAPA)、N-[9,10-ビス(1,1’-ビフェニル-2-イル)-2-アントリル]-N,N’,N’-トリフェニル-1,4-フェニレンジアミン(略称:2DPABPhA)、9,10-ビス(1,1’-ビフェニル-2-イル)-N-[4-(9H-カルバゾール-9-イル)フェニル]-N-フェニルアントラセン-2-アミン(略称:2YGABPhA)、N,N,9-トリフェニルアントラセン-9-アミン(略称:DPhAPhA)、クマリン545T、N,N’-ジフェニルキナクリドン(略称:DPQd)、ルブレン、5,12-ビス(1,1’-ビフェニル-4-イル)-6,11-ジフェニルテトラセン(略称:BPT)、2-(2-{2-[4-(ジメチルアミノ)フェニル]エテニル}-6-メチル-4H-ピラン-4-イリデン)プロパンジニトリル(略称:DCM1)、2-{2-メチル-6-[2-(2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCM2)、N,N,N’,N’-テトラキス(4-メチルフェニル)テトラセン-5,11-ジアミン(略称:p-mPhTD)、7,14-ジフェニル-N,N,N’,N’-テトラキス(4-メチルフェニル)アセナフト[1,2-a]フルオランテン-3,10-ジアミン(略称:p-mPhAFD)、2-{2-イソプロピル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTI)、2-{2-tert-ブチル-6-[2-(1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:DCJTB)、2-(2,6-ビス{2-[4-(ジメチルアミノ)フェニル]エテニル}-4H-ピラン-4-イリデン)プロパンジニトリル(略称:BisDCM)、2-{2,6-ビス[2-(8-メトキシ-1,1,7,7-テトラメチル-2,3,6,7-テトラヒドロ-1H,5H-ベンゾ[ij]キノリジン-9-イル)エテニル]-4H-ピラン-4-イリデン}プロパンジニトリル(略称:BisDCJTM)、N,N’-ジフェニル-N,N’-(1,6-ピレン-ジイル)ビス[(6-フェニルベンゾ[b]ナフト[1,2-d]フラン)-8-アミン](略称:1,6BnfAPrn-03)、3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)、3,10-ビス[N-(ジベンゾフラン-3-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10FrA2Nbf(IV)-02)などが挙げられる。特に、1,6FLPAPrnや1,6mMemFLPAPrn、1,6BnfAPrn-03のようなピレンジアミン化合物に代表される縮合芳香族ジアミン化合物は、ホールトラップ性が高く、発光効率や信頼性に優れているため好ましい。
発光層113において、発光物質としてりん光発光物質を用いる場合、用いることが可能な材料としては、例えば以下のようなものが挙げられる。
トリス{2-[5-(2-メチルフェニル)-4-(2,6-ジメチルフェニル)-4H-1,2,4-トリアゾール-3-イル-κN2]フェニル-κC}イリジウム(III)(略称:[Ir(mpptz-dmp)])、トリス(5-メチル-3,4-ジフェニル-4H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Mptz)])、トリス[4-(3-ビフェニル)-5-イソプロピル-3-フェニル-4H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(iPrptz-3b)])のような4H-トリアゾール骨格を有する有機金属イリジウム錯体や、トリス[3-メチル-1-(2-メチルフェニル)-5-フェニル-1H-1,2,4-トリアゾラト]イリジウム(III)(略称:[Ir(Mptz1-mp)])、トリス(1-メチル-5-フェニル-3-プロピル-1H-1,2,4-トリアゾラト)イリジウム(III)(略称:[Ir(Prptz1-Me)])のような1H-トリアゾール骨格を有する有機金属イリジウム錯体や、fac-トリス[(1-2,6-ジイソプロピルフェニル)-2-フェニル-1H-イミダゾール]イリジウム(III)(略称:[Ir(iPrpmi)])、トリス[3-(2,6-ジメチルフェニル)-7-メチルイミダゾ[1,2-f]フェナントリジナト]イリジウム(III)(略称:[Ir(dmpimpt-Me)])のようなイミダゾール骨格を有する有機金属イリジウム錯体や、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)テトラキス(1-ピラゾリル)ボラート(略称:FIr6)、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)ピコリナート(略称:FIrpic)、ビス{2-[3’,5’-ビス(トリフルオロメチル)フェニル]ピリジナト-N,C2’}イリジウム(III)ピコリナート(略称:[Ir(CFppy)(pic)])、ビス[2-(4’,6’-ジフルオロフェニル)ピリジナト-N,C2’]イリジウム(III)アセチルアセトナート(略称:FIr(acac))のような電子吸引基を有するフェニルピリジン誘導体を配位子とする有機金属イリジウム錯体が挙げられる。これらは青色のりん光発光を示す化合物であり、440nmから520nmまでの波長域において発光のピークを有する化合物である。
また、トリス(4-メチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)])、トリス(4-t-ブチル-6-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)])、(アセチルアセトナト)ビス(6-メチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(mppm)(acac)])、(アセチルアセトナト)ビス(6-tert-ブチル-4-フェニルピリミジナト)イリジウム(III)(略称:[Ir(tBuppm)(acac)])、(アセチルアセトナト)ビス[6-(2-ノルボルニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(nbppm)(acac)])、(アセチルアセトナト)ビス[5-メチル-6-(2-メチルフェニル)-4-フェニルピリミジナト]イリジウム(III)(略称:[Ir(mpmppm)(acac)])、(アセチルアセトナト)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir(dppm)(acac)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(3,5-ジメチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-Me)(acac)])、(アセチルアセトナト)ビス(5-イソプロピル-3-メチル-2-フェニルピラジナト)イリジウム(III)(略称:[Ir(mppr-iPr)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(2-フェニルピリジナト-N,C2’)イリジウム(III)(略称:[Ir(ppy)])、ビス(2-フェニルピリジナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(ppy)(acac)])、ビス(ベンゾ[h]キノリナト)イリジウム(III)アセチルアセトナート(略称:[Ir(bzq)(acac)])、トリス(ベンゾ[h]キノリナト)イリジウム(III)(略称:[Ir(bzq)])、トリス(2-フェニルキノリナト-N,C2’)イリジウム(III)(略称:[Ir(pq)])、ビス(2-フェニルキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(pq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、トリス(アセチルアセトナト)(モノフェナントロリン)テルビウム(III)(略称:[Tb(acac)(Phen)])のような希土類金属錯体が挙げられる。これらは主に緑色のりん光発光を示す化合物であり、500nmから600nmまでの波長域において発光のピークを有する。なお、ピリミジン骨格を有する有機金属イリジウム錯体は、信頼性や発光効率にも際だって優れるため、特に好ましい。
また、(ジイソブチリルメタナト)ビス[4,6-ビス(3-メチルフェニル)ピリミジナト]イリジウム(III)(略称:[Ir(5mdppm)(dibm)])、ビス[4,6-ビス(3-メチルフェニル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(5mdppm)(dpm)])、ビス[4,6-ジ(ナフタレン-1-イル)ピリミジナト](ジピバロイルメタナト)イリジウム(III)(略称:[Ir(d1npm)(dpm)])のようなピリミジン骨格を有する有機金属イリジウム錯体や、(アセチルアセトナト)ビス(2,3,5-トリフェニルピラジナト)イリジウム(III)(略称:[Ir(tppr)(acac)])、ビス(2,3,5-トリフェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:[Ir(tppr)(dpm)])、(アセチルアセトナト)ビス[2,3-ビス(4-フルオロフェニル)キノキサリナト]イリジウム(III)(略称:[Ir(Fdpq)(acac)])のようなピラジン骨格を有する有機金属イリジウム錯体や、トリス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)(略称:[Ir(piq)])、ビス(1-フェニルイソキノリナト-N,C2’)イリジウム(III)アセチルアセトナート(略称:[Ir(piq)(acac)])のようなピリジン骨格を有する有機金属イリジウム錯体の他、2,3,7,8,12,13,17,18-オクタエチル-21H,23H-ポルフィリン白金(II)(略称:PtOEP)のような白金錯体や、トリス(1,3-ジフェニル-1,3-プロパンジオナト)(モノフェナントロリン)ユーロピウム(III)(略称:[Eu(DBM)(Phen)])、トリス[1-(2-テノイル)-3,3,3-トリフルオロアセトナト](モノフェナントロリン)ユーロピウム(III)(略称:[Eu(TTA)(Phen)])のような希土類金属錯体が挙げられる。これらは、赤色のりん光発光を示す化合物であり、600nmから700nmまでの波長域において発光のピークを有する。また、ピラジン骨格を有する有機金属イリジウム錯体は、色度の良い赤色発光が得られる。
また、以上で述べたりん光性化合物の他、公知のりん光性化合物を選択し、用いてもよい。
TADF材料としてはフラーレン及びその誘導体、アクリジン及びその誘導体、エオシン誘導体等を用いることができる。またマグネシウム(Mg)、亜鉛(Zn)、カドミウム(Cd)、スズ(Sn)、白金(Pt)、インジウム(In)、もしくはパラジウム(Pd)等を含む金属含有ポルフィリンが挙げられる。該金属含有ポルフィリンとしては、例えば、以下の構造式に示されるプロトポルフィリン-フッ化スズ錯体(SnF(Proto IX))、メソポルフィリン-フッ化スズ錯体(SnF(Meso IX))、ヘマトポルフィリン-フッ化スズ錯体(SnF(Hemato IX))、コプロポルフィリンテトラメチルエステル-フッ化スズ錯体(SnF(Copro III-4Me))、オクタエチルポルフィリン-フッ化スズ錯体(SnF(OEP))、エチオポルフィリン-フッ化スズ錯体(SnF(Etio I))、オクタエチルポルフィリン-塩化白金錯体(PtClOEP)等も挙げられる。
Figure 2022008062000015
また、以下の構造式に示される2-(ビフェニル-4-イル)-4,6-ビス(12-フェニルインドロ[2,3-a]カルバゾール-11-イル)-1,3,5-トリアジン(略称:PIC-TRZ)や、9-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:PCCzTzn)、9-[4-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)フェニル]-9’-フェニル-9H,9’H-3,3’-ビカルバゾール(略称:PCCzPTzn)、2-[4-(10H-フェノキサジン-10-イル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:PXZ-TRZ)、3-[4-(5-フェニル-5,10-ジヒドロフェナジン-10-イル)フェニル]-4,5-ジフェニル-1,2,4-トリアゾール(略称:PPZ-3TPT)、3-(9,9-ジメチル-9H-アクリジン-10-イル)-9H-キサンテン-9-オン(略称:ACRXTN)、ビス[4-(9,9-ジメチル-9,10-ジヒドロアクリジン)フェニル]スルホン(略称:DMAC-DPS)、10-フェニル-10H,10’H-スピロ[アクリジン-9,9’-アントラセン]-10’-オン(略称:ACRSA)、等のπ電子過剰型複素芳香環とπ電子不足型複素芳香環の一方または両方を有する複素環化合物も用いることができる。該複素環化合物は、π電子過剰型複素芳香環及びπ電子不足型複素芳香環を有するため、電子輸送性及び正孔輸送性が共に高く、好ましい。中でも、π電子不足型複素芳香環を有する骨格のうち、ピリジン骨格、ジアジン骨格(ピリミジン骨格、ピラジン骨格、ピリダジン骨格)、およびトリアジン骨格は、安定で信頼性が良好なため好ましい。特に、ベンゾフロピリミジン骨格、ベンゾチエノピリミジン骨格、ベンゾフロピラジン骨格、ベンゾチエノピラジン骨格はアクセプタ性が高く、信頼性が良好なため好ましい。また、π電子過剰型複素芳香環を有する骨格の中でも、アクリジン骨格、フェノキサジン骨格、フェノチアジン骨格、フラン骨格、チオフェン骨格、及びピロール骨格は、安定で信頼性が良好なため、当該骨格の少なくとも一を有することが好ましい。なお、フラン骨格としてはジベンゾフラン骨格が、チオフェン骨格としてはジベンゾチオフェン骨格が、それぞれ好ましい。また、ピロール骨格としては、インドール骨格、カルバゾール骨格、インドロカルバゾール骨格、ビカルバゾール骨格、3-(9-フェニル-9H-カルバゾール-3-イル)-9H-カルバゾール骨格が特に好ましい。なお、π電子過剰型複素芳香環とπ電子不足型複素芳香環とが直接結合した物質は、π電子過剰型複素芳香環の電子供与性とπ電子不足型複素芳香環の電子受容性が共に強くなり、S1準位とT1準位のエネルギー差が小さくなるため、熱活性化遅延蛍光を効率よく得られることから特に好ましい。なお、π電子不足型複素芳香環の代わりに、シアノ基のような電子吸引基が結合した芳香環を用いても良い。また、π電子過剰型骨格として、芳香族アミン骨格、フェナジン骨格等を用いることができる。また、π電子不足型骨格として、キサンテン骨格、チオキサンテンジオキサイド骨格、オキサジアゾール骨格、トリアゾール骨格、イミダゾール骨格、アントラキノン骨格、フェニルボランやボラントレン等の含ホウ素骨格、ベンゾニトリルまたはシアノベンゼン等のニトリル基またはシアノ基を有する芳香環や複素芳香環、ベンゾフェノン等のカルボニル骨格、ホスフィンオキシド骨格、スルホン骨格等を用いることができる。このように、π電子不足型複素芳香環およびπ電子過剰型複素芳香環の少なくとも一方の代わりにπ電子不足型骨格およびπ電子過剰型骨格を用いることができる。
Figure 2022008062000016
なお、TADF材料とは、S1準位とT1準位との差が小さく、逆項間交差によって三重項励起エネルギーから一重項励起エネルギーへエネルギーを変換することができる機能を有する材料である。そのため、三重項励起エネルギーをわずかな熱エネルギーによって一重項励起エネルギーにアップコンバート(逆項間交差)が可能で、一重項励起状態を効率よく生成することができる。また、三重項励起エネルギーを発光に変換することができる。
また、2種類の物質で励起状態を形成する励起錯体(エキサイプレックス、エキシプレックスまたはExciplexともいう)は、S1準位とT1準位との差が極めて小さく、三重項励起エネルギーを一重項励起エネルギーに変換することが可能なTADF材料としての機能を有する。
なお、T1準位の指標としては、低温(例えば77Kから10K)で観測されるりん光スペクトルを用いればよい。TADF材料としては、その蛍光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをS1準位とし、りん光スペクトルの短波長側の裾において接線を引き、その外挿線の波長のエネルギーをT1準位とした際に、そのS1とT1の差が0.3eV以下であることが好ましく、0.2eV以下であることがさらに好ましい。
また、TADF材料を発光物質として用いる場合、ホスト材料のS1準位はTADF材料のS1準位より高い方が好ましい。また、ホスト材料のT1準位はTADF材料のT1準位より高いことが好ましい。
発光層のホスト材料としては、電子輸送性を有する材料や正孔輸送性を有する材料、上記TADF材料など様々なキャリア輸送材料を用いることができる。
正孔輸送性を有する材料としては、アミン骨格やπ電子過剰型複素芳香環骨格を有する有機化合物が好ましい。例えば、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略称:NPB)、N,N’-ビス(3-メチルフェニル)-N,N’-ジフェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4,4’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N-フェニルアミノ]ビフェニル(略称:BSPB)、4-フェニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPAFLP)、4-フェニル-3’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:mBPAFLP)、4-フェニル-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)、4,4’-ジフェニル-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBBi1BP)、4-(1-ナフチル)-4’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBANB)、4,4’-ジ(1-ナフチル)-4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBNBB)、9,9-ジメチル-N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]フルオレン-2-アミン(略称:PCBAF)、N-フェニル-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9’-スピロビ[9H-フルオレン]-2-アミン(略称:PCBASF)などの芳香族アミン骨格を有する化合物や、1,3-ビス(N-カルバゾリル)ベンゼン(略称:mCP)、4,4’-ジ(N-カルバゾリル)ビフェニル(略称:CBP)、3,6-ビス(3,5-ジフェニルフェニル)-9-フェニルカルバゾール(略称:CzTP)、3,3’-ビス(9-フェニル-9H-カルバゾール)(略称:PCCP)などのカルバゾール骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾチオフェン)(略称:DBT3P-II)、2,8-ジフェニル-4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]ジベンゾチオフェン(略称:DBTFLP-III)、4-[4-(9-フェニル-9H-フルオレン-9-イル)フェニル]-6-フェニルジベンゾチオフェン(略称:DBTFLP-IV)などのチオフェン骨格を有する化合物や、4,4’,4’’-(ベンゼン-1,3,5-トリイル)トリ(ジベンゾフラン)(略称:DBF3P-II)、4-{3-[3-(9-フェニル-9H-フルオレン-9-イル)フェニル]フェニル}ジベンゾフラン(略称:mmDBFFLBi-II)などのフラン骨格を有する化合物が挙げられる。上述した中でも、芳香族アミン骨格を有する化合物やカルバゾール骨格を有する化合物は、信頼性が良好であり、また、正孔輸送性が高く、駆動電圧低減にも寄与するため好ましい。また、正孔輸送層112における、正孔輸送性を有する材料の例として挙げた有機化合物も用いることができる。
電子輸送性を有する材料としては、例えば、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(II)(略称:BeBq)、ビス(2-メチル-8-キノリノラト)(4-フェニルフェノラト)アルミニウム(III)(略称:BAlq)、ビス(8-キノリノラト)亜鉛(II)(略称:Znq)、ビス[2-(2-ベンゾオキサゾリル)フェノラト]亜鉛(II)(略称:ZnPBO)、ビス[2-(2-ベンゾチアゾリル)フェノラト]亜鉛(II)(略称:ZnBTZ)などの金属錯体や、π電子不足型複素芳香環骨格を有する有機化合物が好ましい。π電子不足型複素芳香環骨格を有する有機化合物としては、例えば、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4-オキサジアゾール(略称:PBD)、3-(4-ビフェニリル)-4-フェニル-5-(4-tert-ブチルフェニル)-1,2,4-トリアゾール(略称:TAZ)、1,3-ビス[5-(p-tert-ブチルフェニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、9-[4-(5-フェニル-1,3,4-オキサジアゾール-2-イル)フェニル]-9H-カルバゾール(略称:CO11)、2,2’,2’’-(1,3,5-ベンゼントリイル)トリス(1-フェニル-1H-ベンゾイミダゾール)(略称:TPBI)、2-[3-(ジベンゾチオフェン-4-イル)フェニル]-1-フェニル-1H-ベンゾイミダゾール(略称:mDBTBIm-II)などのポリアゾール骨格を有する複素環化合物や、2-[3-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPDBq-II)、2-[3’-(ジベンゾチオフェン-4-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mDBTBPDBq-II)、2-[3’-(9H-カルバゾール-9-イル)ビフェニル-3-イル]ジベンゾ[f,h]キノキサリン(略称:2mCzBPDBq)、4,6-ビス[3-(フェナントレン-9-イル)フェニル]ピリミジン(略称:4,6mPnP2Pm)、4,6-ビス[3-(4-ジベンゾチエニル)フェニル]ピリミジン(略称:4,6mDBTP2Pm-II)などのジアジン骨格を有する複素環化合物や、3,5-ビス[3-(9H-カルバゾール-9-イル)フェニル]ピリジン(略称:35DCzPPy)、1,3,5-トリ[3-(3-ピリジル)フェニル]ベンゼン(略称:TmPyPB)などのピリジン骨格を有する複素環化合物、2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)、2-[(1,1’-ビフェニル)-4-イル]-4-フェニル-6-[9,9’-スピロビ(9H-フルオレン)-2-イル]-1,3,5-トリアジン(略称:BP-SFTzn)、2-{3-[3-(ベンゾ[b]ナフト[1,2-d]フラン-8-イル)フェニル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mBnfBPTzn)、2-{3-[3-(ベンゾ[b]ナフト[1,2-d]フラン-6-イル)フェニル]フェニル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mBnfBPTzn-02)などのトリアジン骨格を有する複素環化合物が挙げられる。上述した中でも、ジアジン骨格を有する複素環化合物やピリジン骨格を有する複素環化合物、トリアジン骨格を有する複素環化合物は、信頼性が良好であり好ましい。特に、ジアジン(ピリミジンやピラジン)骨格を有する複素環化合物、トリアジン骨格を有する複素環化合物は、電子輸送性が高く、駆動電圧低減にも寄与する。
ホスト材料として用いることが可能なTADF材料としては、先にTADF材料として挙げたものを同様に用いることができる。TADF材料をホスト材料として用いると、TADF材料で生成した三重項励起エネルギーが、逆項間交差によって一重項励起エネルギーに変換され、さらに発光物質へエネルギー移動することで、発光デバイスの発光効率を高めることができる。このとき、TADF材料がエネルギードナーとして機能し、発光物質がエネルギーアクセプターとして機能する。
これは、上記発光物質が蛍光発光物質である場合に、非常に有効である。また、このとき、高い発光効率を得るためには、TADF材料のS1準位は、蛍光発光物質のS1準位より高いことが好ましい。また、TADF材料のT1準位は、蛍光発光物質のS1準位より高いことが好ましい。したがって、TADF材料のT1準位は、蛍光発光物質のT1準位より高いことが好ましい。
また、蛍光発光物質の最も低エネルギー側の吸収帯の波長と重なるような波長の発光を呈するTADF材料を用いることが好ましい。そうすることで、TADF材料から蛍光発光物質への励起エネルギーの移動がスムーズとなり、効率よく発光が得られるため、好ましい。
また、効率良く三重項励起エネルギーから逆項間交差によって一重項励起エネルギーが生成されるためには、TADF材料でキャリア再結合が生じることが好ましい。また、TADF材料で生成した三重項励起エネルギーが蛍光発光物質の三重項励起エネルギーに移動しないことが好ましい。そのためには、蛍光発光物質は、蛍光発光物質が有する発光団(発光の原因となる骨格)の周囲に保護基を有すると好ましい。該保護基としては、π結合を有さない置換基が好ましく、飽和炭化水素が好ましく、具体的には炭素数3以上10以下のアルキル基、置換もしくは無置換の炭素数3以上10以下のシクロアルキル基、炭素数3以上10以下のトリアルキルシリル基が挙げられ、保護基が複数あるとさらに好ましい。π結合を有さない置換基は、キャリアを輸送する機能に乏しいため、キャリア輸送やキャリア再結合に影響をほとんど与えずに、TADF材料と蛍光発光物質の発光団との距離を遠ざけることができる。ここで、発光団とは、蛍光発光物質において発光の原因となる原子団(骨格)を指す。発光団は、π結合を有する骨格が好ましく、芳香環を含むことが好ましく、縮合芳香環または縮合複素芳香環を有すると好ましい。縮合芳香環または縮合複素芳香環としては、フェナントレン骨格、スチルベン骨格、アクリドン骨格、フェノキサジン骨格、フェノチアジン骨格等が挙げられる。特にナフタレン骨格、アントラセン骨格、フルオレン骨格、クリセン骨格、トリフェニレン骨格、テトラセン骨格、ピレン骨格、ペリレン骨格、クマリン骨格、キナクリドン骨格、ナフトビスベンゾフラン骨格を有する蛍光発光物質は蛍光量子収率が高いため好ましい。
蛍光発光物質を発光物質として用いる場合、ホスト材料としては、アントラセン骨格を有する材料が好適である。アントラセン骨格を有する物質を蛍光発光物質のホスト材料として用いると、発光効率、耐久性共に良好な発光層を実現することが可能である。ホスト材料として用いるアントラセン骨格を有する物質としては、ジフェニルアントラセン骨格、特に9,10-ジフェニルアントラセン骨格を有する物質が化学的に安定であるため好ましい。また、ホスト材料がカルバゾール骨格を有する場合、正孔の注入・輸送性が高まるため好ましいが、カルバゾールにベンゼン環がさらに縮合したベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなるためより好ましい。特に、ホスト材料がジベンゾカルバゾール骨格を含む場合、カルバゾールよりもHOMOが0.1eV程度浅くなり、正孔が入りやすくなる上に、正孔輸送性にも優れ、耐熱性も高くなるため好適である。したがって、さらにホスト材料として好ましいのは、9,10-ジフェニルアントラセン骨格およびカルバゾール骨格(あるいはベンゾカルバゾール骨格やジベンゾカルバゾール骨格)を同時に有する物質である。なお、上記の正孔注入・輸送性の観点から、カルバゾール骨格に換えて、ベンゾフルオレン骨格やジベンゾフルオレン骨格を用いてもよい。このような物質の例としては、9-フェニル-3-[4-(10-フェニル-9-アントリル)フェニル]-9H-カルバゾール(略称:PCzPA)、3-[4-(1-ナフチル)-フェニル]-9-フェニル-9H-カルバゾール(略称:PCPN)、9-[4-(10-フェニル-9-アントラセニル)フェニル]-9H-カルバゾール(略称:CzPA)、7-[4-(10-フェニル-9-アントリル)フェニル]-7H-ジベンゾ[c,g]カルバゾール(略称:cgDBCzPA)、6-[3-(9,10-ジフェニル-2-アントリル)フェニル]-ベンゾ[b]ナフト[1,2-d]フラン(略称:2mBnfPPA)、9-フェニル-10-{4-(9-フェニル-9H-フルオレン-9-イル)ビフェニル-4’-イル}アントラセン(略称:FLPPA)、9-(1-ナフチル)-10-[4-(2-ナフチル)フェニル]アントラセン(略称:αN-βNPAnth)等が挙げられる。特に、CzPA、cgDBCzPA、2mBnfPPA、PCzPAは非常に良好な特性を示すため、好ましい選択である。
なお、ホスト材料は複数種の物質を混合した材料であっても良く、混合したホスト材料を用いる場合は、電子輸送性を有する材料と、正孔輸送性を有する材料とを混合することが好ましい。電子輸送性を有する材料と、正孔輸送性を有する材料を混合することによって、発光層113の輸送性を容易に調整することができ、再結合領域の制御も簡便に行うことができる。正孔輸送性を有する材料と電子輸送性を有する材料の含有量の重量比は、正孔輸送性を有する材料:電子輸送性を有する材料=1:19~19:1とすればよい。
なお、上記混合された材料の一部として、りん光発光物質を用いることができる。りん光発光物質は、発光物質として蛍光発光物質を用いる際に蛍光発光物質へ励起エネルギーを供与するエネルギードナーとして用いることができる。
また、これら混合された材料同士で励起錯体を形成しても良い。当該励起錯体は発光物質の最も低エネルギー側の吸収帯の波長と重なるような発光を呈する励起錯体を形成するような組み合わせを選択することで、エネルギー移動がスムーズとなり、効率よく発光が得られるため好ましい。また、当該構成を用いることで駆動電圧も低下するため好ましい。
なお、励起錯体を形成する材料の少なくとも一方は、りん光発光物質であってもよい。そうすることで、三重項励起エネルギーを逆項間交差によって効率よく一重項励起エネルギーへ変換することができる。
効率よく励起錯体を形成する材料の組み合わせとしては、正孔輸送性を有する材料のHOMO準位が電子輸送性を有する材料のHOMO準位以上であると好ましい。また、正孔輸送性を有する材料のLUMO準位が電子輸送性を有する材料のLUMO準位以上であると好ましい。なお、材料のLUMO準位およびHOMO準位は、サイクリックボルタンメトリ(CV)測定によって測定される材料の電気化学特性(還元電位および酸化電位)から導出することができる。
なお、励起錯体の形成は、例えば正孔輸送性を有する材料の発光スペクトル、電子輸送性を有する材料の発光スペクトル、およびこれら材料を混合した混合膜の発光スペクトルを比較し、混合膜の発光スペクトルが、各材料の発光スペクトルよりも長波長シフトする(あるいは長波長側に新たなピークを持つ)現象を観測することにより確認することができる。あるいは、正孔輸送性を有する材料の過渡フォトルミネッセンス(PL)、電子輸送性を有する材料の過渡PL、及びこれら材料を混合した混合膜の過渡PLを比較し、混合膜の過渡PL寿命が、各材料の過渡PL寿命よりも長寿命成分を有する、あるいは遅延成分の割合が大きくなるなどの過渡応答の違いを観測することにより、確認することができる。また、上述の過渡PLは過渡エレクトロルミネッセンス(EL)と読み替えても構わない。すなわち、正孔輸送性を有する材料の過渡EL、電子輸送性を有する材料の過渡EL及びこれらの混合膜の過渡ELを比較し、過渡応答の違いを観測することによっても、励起錯体の形成を確認することができる。
電子輸送層114は、本発明の構成を有することで屈折率の小さい層とすることができるため、駆動電圧を大きく低下させることなくEL層103内部に屈折率の低い層を形成することができ、発光デバイスの外部量子効率の向上させることが可能となる。
なお、本構成を有する電子輸送層114は、電子注入層115を兼ねることがある。
また、電子輸送層114は電界強度[V/cm]の平方根が600における電子移動度が1×10-7cm/Vs以上5×10-5cm/Vs以下であることが好ましい。電子輸送層114における電子の輸送性を落とすことにより発光層への電子の注入量を制御することができ、発光層が電子過多の状態になることを防ぐことができる。この構成は、特に正孔注入層を複合材料として形成し、当該複合材料における正孔輸送性を有する材料のHOMO準位が-5.7eV以上-5.4eV以下の比較的深いHOMO準位を有する物質である場合に、寿命が良好となるため特に好ましい。なお、この際、電子輸送性を有する材料は、そのHOMO準位が-6.0eV以上であることが好ましい。
また、電子輸送層114中においてアルカリ金属またはアルカリ金属の金属錯体は、その厚さ方向において濃度差(0である場合も含む)が存在することが好ましい。
電子輸送層114と陰極102との間に、電子注入層115として、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF)、8-ヒドロキシキノリナト-リチウム(略称:Liq)等のようなアルカリ金属又はアルカリ土類金属又はそれらの化合物もしくは錯体を含む層を設けても良い。電子注入層115は、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させたものや、エレクトライドを用いてもよい。エレクトライドとしては、例えば、カルシウムとアルミニウムの混合酸化物に電子を高濃度添加した物質等が挙げられる。
なお、電子注入層115として、電子輸送性を有する物質(好ましくはビピリジン骨格を有する有機化合物)に上記アルカリ金属又はアルカリ土類金属のフッ化物を微結晶状態となる濃度以上(50wt%以上)含ませた層を用いることも可能である。当該層は、屈折率の低い層であることから、より外部量子効率の良好な発光デバイスを提供することが可能となる。
また、図1(A)の電子注入層115の代わりに電荷発生層116を設けても良い(図1(B))。電荷発生層116は、電位をかけることによって当該層の陰極側に接する層に正孔を、陽極側に接する層に電子を注入することができる層のことである。電荷発生層116には、少なくともP型層117が含まれる。P型層117は、上述の正孔注入層111を構成することができる材料として挙げた複合材料を用いて形成することが好ましい。またP型層117は、複合材料を構成する材料として上述したアクセプタ材料を含む膜と正孔輸送材料を含む膜とを積層して構成しても良い。P型層117に電位をかけることによって、電子輸送層114に電子が、陰極102に正孔が注入され、発光デバイスが動作する
なお、電荷発生層116はP型層117の他に電子リレー層118及び電子注入バッファ層119のいずれか一又は両方がもうけられていることが好ましい。
電子リレー層118は少なくとも電子輸送性を有する物質を含み、電子注入バッファ層119とP型層117との相互作用を防いで電子をスムーズに受け渡す機能を有する。電子リレー層118に含まれる電子輸送性を有する物質のLUMO準位は、P型層117におけるアクセプタ性物質のLUMO準位と、電子輸送層114における電荷発生層116に接する層に含まれる物質のLUMO準位との間であることが好ましい。電子リレー層118に用いられる電子輸送性を有する物質におけるLUMO準位の具体的なエネルギー準位は-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下とするとよい。なお、電子リレー層118に用いられる電子輸送性を有する物質としてはフタロシアニン系の材料又は金属-酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
電子注入バッファ層119には、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファ層119が、電子輸送性を有する物質とドナー性物質を含んで形成される場合には、ドナー性物質として、アルカリ金属、アルカリ土類金属、希土類金属、およびこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロセン等の有機化合物を用いることもできる。
なお、電子輸送性を有する物質としては、先に説明した電子輸送層114を構成する材料と同様の材料を用いて形成することができる。当該材料は屈折率が低い有機化合物であることから、電子注入バッファ層119に用いることによって、外部量子効率の良好な発光デバイスを得ることができる。
陰極102を形成する物質としては、仕事関数の小さい(具体的には3.8eV以下)金属、合金、電気伝導性化合物、およびこれらの混合物などを用いることができる。このような陰極材料の具体例としては、リチウム(Li)やセシウム(Cs)等のアルカリ金属、およびマグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)等の元素周期表の第1族または第2族に属する元素、およびこれらを含む合金(MgAg、AlLi)、ユウロピウム(Eu)、イッテルビウム(Yb)等の希土類金属およびこれらを含む合金等が挙げられる。しかしながら、陰極102と電子輸送層との間に、電子注入層を設けることにより、仕事関数の大小に関わらず、Al、Ag、ITO、ケイ素若しくは酸化ケイ素を含有した酸化インジウム-酸化スズ等様々な導電性材料を陰極102として用いることができる。これら導電性材料は、真空蒸着法やスパッタリング法などの乾式法、インクジェット法、スピンコート法等を用いて成膜することが可能である。また、ゾル-ゲル法を用いて湿式法で形成しても良いし、金属材料のペーストを用いて湿式法で形成してもよい。
また、EL層103の形成方法としては、乾式法、湿式法を問わず、種々の方法を用いることができる。例えば、真空蒸着法、グラビア印刷法、オフセット印刷法、スクリーン印刷法、インクジェット法またはスピンコート法など用いても構わない。
また上述した各電極または各層を異なる成膜方法を用いて形成しても構わない。
なお、陽極101と陰極102との間に設けられる層の構成は、上記のものには限定されない。しかし、発光領域と電極やキャリア注入層に用いられる金属とが近接することによって生じる消光が抑制されるように、陽極101および陰極102から離れた部位に正孔と電子とが再結合する発光領域を設けた構成が好ましい。
また、発光層113に接する正孔輸送層や電子輸送層、特に発光層113における再結合領域に近いキャリア輸送層は、発光層で生成した励起子からのエネルギー移動を抑制するため、そのバンドギャップが発光層を構成する発光材料もしくは、発光層に含まれる発光材料が有するバンドギャップより大きいバンドギャップを有する物質で構成することが好ましい。
続いて、複数の発光ユニットを積層した構成の発光デバイス(積層型素子、タンデム型素子ともいう)の態様について、図1(C)を参照して説明する。この発光デバイスは、陽極と陰極との間に、複数の発光ユニットを有する発光デバイスである。一つの発光ユニットは、図1(A)で示したEL層103とほぼ同様な構成を有する。つまり、図1(C)で示す発光デバイスは複数の発光ユニットを有する発光デバイスであり、図1(A)又は図1(B)で示した発光デバイスは、1つの発光ユニットを有する発光デバイスであるということができる。
図1(C)において、陽極501と陰極502との間には、第1の発光ユニット511と第2の発光ユニット512が積層されており、第1の発光ユニット511と第2の発光ユニット512との間には電荷発生層513が設けられている。陽極501と陰極502はそれぞれ図1(A)における陽極101と陰極102に相当し、図1(A)の説明で述べたものと同じものを適用することができる。また、第1の発光ユニット511と第2の発光ユニット512は同じ構成であっても異なる構成であってもよい。
電荷発生層513は、陽極501と陰極502に電圧を印加したときに、一方の発光ユニットに電子を注入し、他方の発光ユニットに正孔を注入する機能を有する。すなわち、図1(C)において、陽極の電位の方が陰極の電位よりも高くなるように電圧を印加した場合、電荷発生層513は、第1の発光ユニット511に電子を注入し、第2の発光ユニット512に正孔を注入するものであればよい。
電荷発生層513は、図1(B)にて説明した電荷発生層116と同様の構成で形成することが好ましい。有機化合物と金属酸化物の複合材料は、キャリア注入性、キャリア輸送性に優れているため、低電圧駆動、低電流駆動を実現することができる。なお、発光ユニットの陽極側の面が電荷発生層513に接している場合は、電荷発生層513が発光ユニットの正孔注入層の役割も担うことができるため、発光ユニットは正孔注入層を設けなくとも良い。
また、電荷発生層513に電子注入バッファ層119を設ける場合、当該電子注入バッファ層119が陽極側の発光ユニットにおける電子注入層の役割を担うため、陽極側の発光ユニットには必ずしも電子注入層を形成する必要はない。
図1(C)では、2つの発光ユニットを有する発光デバイスについて説明したが、3つ以上の発光ユニットを積層した発光デバイスについても、同様に適用することが可能である。本実施の形態に係る発光デバイスのように、一対の電極間に複数の発光ユニットを電荷発生層513で仕切って配置することで、電流密度を低く保ったまま、高輝度発光を可能とし、さらに長寿命な素子を実現できる。また、低電圧駆動が可能で消費電力が低い発光装置を実現することができる。
また、それぞれの発光ユニットの発光色を異なるものにすることで、発光デバイス全体として、所望の色の発光を得ることができる。例えば、2つの発光ユニットを有する発光デバイスにおいて、第1の発光ユニットで赤と緑の発光色、第2の発光ユニットで青の発光色を得ることで、発光デバイス全体として白色発光する発光デバイスを得ることも可能である。
また、上述のEL層103や第1の発光ユニット511、第2の発光ユニット512及び電荷発生層などの各層や電極は、例えば、蒸着法(真空蒸着法を含む)、液滴吐出法(インクジェット法ともいう)、塗布法、グラビア印刷法等の方法を用いて形成することができる。また、それらは低分子材料、中分子材料(オリゴマー、デンドリマーを含む)、または高分子材料を含んでも良い。
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態2)
本実施の形態では、実施の形態1に記載の発光デバイスを用いた発光装置について説明する。
本実施の形態では、実施の形態1に記載の発光デバイスを用いて作製された発光装置について図2(A)、及び図2(B)を用いて説明する。なお、図2(A)は、発光装置を示す上面図、図2(B)は図2(A)に示す一点鎖線A-Bおよび一点鎖線C-Dで切断した断面図である。この発光装置は、発光デバイスの発光を制御するものとして、点線で示された駆動回路部(ソース線駆動回路)601、画素部602、駆動回路部(ゲート線駆動回路)603を含んでいる。また、604は封止基板、605はシール材であり、シール材605で囲まれた内側は、空間607になっている。
なお、引き回し配線608はソース線駆動回路601及びゲート線駆動回路603に入力される信号を伝送するための配線であり、外部入力端子となるFPC(フレキシブルプリントサーキット)609からビデオ信号、クロック信号、スタート信号、リセット信号等を受け取る。なお、ここではFPCしか図示されていないが、このFPCにはプリント配線基板(PWB)が取り付けられていても良い。本明細書における発光装置には、発光装置本体だけでなく、それにFPCもしくはPWBが取り付けられた状態をも含むものとする。
次に、断面構造について図2(B)を用いて説明する。素子基板610上には駆動回路部及び画素部が形成されているが、ここでは、駆動回路部であるソース線駆動回路601と、画素部602中の一つの画素が示されている。
素子基板610はガラス、石英、有機樹脂、金属、合金、半導体などからなる基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いて作製すればよい。
画素や駆動回路に用いられるトランジスタの構造は特に限定されない。例えば、逆スタガ型のトランジスタとしてもよいし、スタガ型のトランジスタとしてもよい。また、トップゲート型のトランジスタでもボトムゲート型トランジスタでもよい。トランジスタに用いる半導体材料は特に限定されず、例えば、シリコン、ゲルマニウム、炭化シリコン、窒化ガリウム等を用いることができる。または、In-Ga-Zn系金属酸化物などの、インジウム、ガリウム、亜鉛のうち少なくとも一つを含む酸化物半導体を用いてもよい。
トランジスタに用いる半導体材料の結晶性についても特に限定されず、非晶質半導体、結晶性を有する半導体(微結晶半導体、多結晶半導体、単結晶半導体、又は一部に結晶領域を有する半導体)のいずれを用いてもよい。結晶性を有する半導体を用いると、トランジスタ特性の劣化を抑制できるため好ましい。
ここで、上記画素や駆動回路に設けられるトランジスタの他、後述するタッチセンサ等に用いられるトランジスタなどの半導体装置には、酸化物半導体を適用することが好ましい。特にシリコンよりもバンドギャップの広い酸化物半導体を適用することが好ましい。シリコンよりもバンドギャップの広い酸化物半導体を用いることで、トランジスタのオフ状態における電流を低減できる。
上記酸化物半導体は、少なくともインジウム(In)又は亜鉛(Zn)を含むことが好ましい。また、In-M-Zn系酸化物(MはAl、Ti、Ga、Ge、Y、Zr、Sn、La、CeまたはHf等の金属)で表記される酸化物を含む酸化物半導体であることがより好ましい。
特に、半導体層として、複数の結晶部を有し、当該結晶部はc軸が半導体層の被形成面、または半導体層の上面に対し垂直に配向し、且つ隣接する結晶部間には粒界を有さない酸化物半導体膜を用いることが好ましい。
半導体層としてこのような材料を用いることで、電気特性の変動が抑制され、信頼性の高いトランジスタを実現できる。
また、上述の半導体層を有するトランジスタはその低いオフ電流により、トランジスタを介して容量に蓄積した電荷を長期間に亘って保持することが可能である。このようなトランジスタを画素に適用することで、各表示領域に表示した画像の階調を維持しつつ、駆動回路を停止することも可能となる。その結果、極めて消費電力の低減された電子機器を実現できる。
トランジスタの特性安定化等のため、下地膜を設けることが好ましい。下地膜としては、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜などの無機絶縁膜を用い、単層で又は積層して作製することができる。下地膜はスパッタリング法、CVD(Chemical Vapor Deposition)法(プラズマCVD法、熱CVD法、MOCVD(Metal Organic CVD)法など)、ALD(Atomic Layer Deposition)法、塗布法、印刷法等を用いて形成できる。なお、下地膜は、必要で無ければ設けなくてもよい。
なお、FET623は駆動回路部601に形成されるトランジスタの一つを示すものである。また、駆動回路は、種々のCMOS回路、PMOS回路もしくはNMOS回路で形成すれば良い。また、本実施の形態では、基板上に駆動回路を形成したドライバ一体型を示すが、必ずしもその必要はなく、駆動回路を基板上ではなく外部に形成することもできる。
また、画素部602はスイッチング用FET611と、電流制御用FET612とそのドレインに電気的に接続された陽極613とを含む複数の画素により形成されているが、これに限定されず、3つ以上のFETと、容量素子とを組み合わせた画素部としてもよい。
なお、陽極613の端部を覆って絶縁物614が形成されている。ここでは、ポジ型の感光性アクリル樹脂膜を用いることにより形成することができる。
また、後に形成するEL層等の被覆性を良好なものとするため、絶縁物614の上端部または下端部に曲率を有する曲面が形成されるようにする。例えば、絶縁物614の材料としてポジ型の感光性アクリル樹脂を用いた場合、絶縁物614の上端部のみに曲率半径(0.2μm~3μm)を有する曲面を持たせることが好ましい。また、絶縁物614として、ネガ型の感光性樹脂、或いはポジ型の感光性樹脂のいずれも使用することができる。
陽極613上には、EL層616、および陰極617がそれぞれ形成されている。ここで、陽極613に用いる材料としては、仕事関数の大きい材料を用いることが望ましい。例えば、ITO膜、またはケイ素を含有したインジウム錫酸化物膜、2~20wt%の酸化亜鉛を含む酸化インジウム膜、窒化チタン膜、クロム膜、タングステン膜、Zn膜、Pt膜などの単層膜の他、窒化チタン膜とアルミニウムを主成分とする膜との積層、窒化チタン膜とアルミニウムを主成分とする膜と窒化チタン膜との3層構造等を用いることができる。なお、積層構造とすると、配線としての抵抗も低く、良好なオーミックコンタクトがとれ、さらに陽極として機能させることができる。
また、EL層616は、蒸着マスクを用いた蒸着法、インクジェット法、スピンコート法等の種々の方法によって形成される。EL層616は、実施の形態1で説明したような構成を含んでいる。また、EL層616を構成する他の材料としては、低分子化合物、または高分子化合物(オリゴマー、デンドリマーを含む)であっても良い。
さらに、EL層616上に形成され、陰極617に用いる材料としては、仕事関数の小さい材料(Al、Mg、Li、Ca、またはこれらの合金や化合物(MgAg、MgIn、AlLi等)等)を用いることが好ましい。なお、EL層616で生じた光が陰極617を透過する場合には、陰極617として、膜厚を薄くした金属薄膜と、透明導電膜(ITO、2~20wt%の酸化亜鉛を含む酸化インジウム、ケイ素を含有したインジウム錫酸化物、酸化亜鉛(ZnO)等)との積層を用いるのが良い。
なお、陽極613、EL層616、陰極617でもって、発光デバイスが形成されている。当該発光デバイスは実施の形態1に記載の発光デバイスである。なお、画素部は複数の発光デバイスが形成されてなっているが、本実施の形態における発光装置では、実施の形態1に記載の発光デバイスと、それ以外の構成を有する発光デバイスの両方が混在していても良い。
さらにシール材605で封止基板604を素子基板610と貼り合わせることにより、素子基板610、封止基板604、およびシール材605で囲まれた空間607に発光デバイス618が備えられた構造になっている。なお、空間607には、充填材が充填されており、不活性気体(窒素やアルゴン等)が充填される場合の他、シール材で充填される場合もある。封止基板には凹部を形成し、そこに乾燥材を設けることで水分の影響による劣化を抑制することができ、好ましい構成である。
なお、シール材605にはエポキシ系樹脂やガラスフリットを用いるのが好ましい。また、これらの材料はできるだけ水分や酸素を透過しない材料であることが望ましい。また、封止基板604に用いる材料としてガラス基板や石英基板の他、FRP(Fiber Reinforced Plastics)、PVF(ポリビニルフロライド)、ポリエステルまたはアクリル樹脂等からなるプラスチック基板を用いることができる。
図2(A)及び図2(B)には示されていないが、陰極上に保護膜を設けても良い。保護膜は有機樹脂膜や無機絶縁膜で形成すればよい。また、シール材605の露出した部分を覆うように、保護膜が形成されていても良い。また、保護膜は、一対の基板の表面及び側面、封止層、絶縁層等の露出した側面を覆って設けることができる。
保護膜には、水などの不純物を透過しにくい材料を用いることができる。したがって、水などの不純物が外部から内部に拡散することを効果的に抑制することができる。
保護膜を構成する材料としては、酸化物、窒化物、フッ化物、硫化物、三元化合物、金属またはポリマー等を用いることができ、例えば、酸化アルミニウム、酸化ハフニウム、ハフニウムシリケート、酸化ランタン、酸化珪素、チタン酸ストロンチウム、酸化タンタル、酸化チタン、酸化亜鉛、酸化ニオブ、酸化ジルコニウム、酸化スズ、酸化イットリウム、酸化セリウム、酸化スカンジウム、酸化エルビウム、酸化バナジウムまたは酸化インジウム等を含む材料や、窒化アルミニウム、窒化ハフニウム、窒化珪素、窒化タンタル、窒化チタン、窒化ニオブ、窒化モリブデン、窒化ジルコニウムまたは窒化ガリウム等を含む材料、チタンおよびアルミニウムを含む窒化物、チタンおよびアルミニウムを含む酸化物、アルミニウムおよび亜鉛を含む酸化物、マンガンおよび亜鉛を含む硫化物、セリウムおよびストロンチウムを含む硫化物、エルビウムおよびアルミニウムを含む酸化物、イットリウムおよびジルコニウムを含む酸化物等を含む材料を用いることができる。
保護膜は、段差被覆性(ステップカバレッジ)の良好な成膜方法を用いて形成することが好ましい。このような手法の一つに、原子層堆積(ALD:Atomic Layer Deposition)法がある。ALD法を用いて形成することができる材料を、保護膜に用いることが好ましい。ALD法を用いることで緻密な、クラックやピンホールなどの欠陥が低減された、または均一な厚さを備える保護膜を形成することができる。また、保護膜を形成する際に加工部材に与える損傷を、低減することができる。
例えばALD法を用いて保護膜を形成することで、複雑な凹凸形状を有する表面や、タッチパネルの上面、側面及び裏面にまで均一で欠陥の少ない保護膜を形成することができる。
以上のようにして、実施の形態1に記載の発光デバイスを用いて作製された発光装置を得ることができる。
本実施の形態における発光装置は、実施の形態1に記載の発光デバイスを用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態1に記載の発光デバイスは発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
図3(A)、及び図3(B)には白色発光を呈する発光デバイスを形成し、着色層(カラーフィルタ)等を設けることによってフルカラー化した発光装置の例を示す。図3(A)には基板1001、下地絶縁膜1002、ゲート絶縁膜1003、ゲート電極1006、1007、1008、第1の層間絶縁膜1020、第2の層間絶縁膜1021、周辺部1042、画素部1040、駆動回路部1041、発光デバイスの陽極1024W、1024R、1024G、1024B、隔壁1025、EL層1028、発光デバイスの陰極1029、封止基板1031、シール材1032などが図示されている。
また、図3(A)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)は透明な基材1033に設けている。また、ブラックマトリクス1035をさらに設けても良い。着色層及びブラックマトリクスが設けられた透明な基材1033は、位置合わせし、基板1001に固定する。なお、着色層、及びブラックマトリクス1035は、オーバーコート層1036で覆われている。また、図3(A)においては、光が着色層を透過せずに外部へと出る発光層と、各色の着色層を透過して外部に光が出る発光層とがあり、着色層を透過しない光は白、着色層を透過する光は赤、緑、青となることから、4色の画素で映像を表現することができる。
図3(B)では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)をゲート絶縁膜1003と第1の層間絶縁膜1020との間に形成する例を示した。このように、着色層は基板1001と封止基板1031の間に設けられていても良い。
また、以上に説明した発光装置では、FETが形成されている基板1001側に光を取り出す構造(ボトムエミッション型)の発光装置としたが、封止基板1031側に発光を取り出す構造(トップエミッション型)の発光装置としても良い。トップエミッション型の発光装置の断面図を図4に示す。この場合、基板1001は光を通さない基板を用いることができる。FETと発光デバイスの陽極とを接続する接続電極を作製するまでは、ボトムエミッション型の発光装置と同様に形成する。その後、第3の層間絶縁膜1037を電極1022を覆って形成する。この絶縁膜は平坦化の役割を担っていても良い。第3の層間絶縁膜1037は第2の層間絶縁膜1021と同様の材料の他、他の公知の材料を用いて形成することができる。
発光デバイスの陽極1024W、1024R、1024G、1024Bは陰極であっても構わない。また、図4のようなトップエミッション型の発光装置である場合、陽極を反射電極とすることが好ましい。EL層1028の構成は、実施の形態1においてEL層103として説明したような構成とし、且つ、白色の発光が得られるような素子構造とする。
図4のようなトップエミッションの構造では着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)を設けた封止基板1031で封止を行うことができる。封止基板1031には画素と画素との間に位置するようにブラックマトリクス1035を設けても良い。着色層(赤色の着色層1034R、緑色の着色層1034G、青色の着色層1034B)やブラックマトリックス1035はオーバーコート層1036によって覆われていても良い。なお封止基板1031は透光性を有する基板を用いることとする。また、ここでは赤、緑、青、白の4色でフルカラー表示を行う例を示したが特に限定されず、赤、黄、緑、青の4色や赤、緑、青の3色でフルカラー表示を行ってもよい。
トップエミッション型の発光装置では、マイクロキャビティ構造の適用が好適に行える。マイクロキャビティ構造を有する発光デバイスは、陽極を反射電極、陰極を半透過・半反射電極とすることにより得られる。反射電極と半透過・半反射電極との間には少なくともEL層を有し、少なくとも発光領域となる発光層を有している。
なお、反射電極は、可視光の反射率が40%乃至100%、好ましくは70%乃至100%であり、かつその抵抗率が1×10-2Ωcm以下の膜であるとする。また、半透過・半反射電極は、可視光の反射率が20%乃至80%、好ましくは40%乃至70%であり、かつその抵抗率が1×10-2Ωcm以下の膜であるとする。
EL層に含まれる発光層から射出される発光は、反射電極と半透過・半反射電極とによって反射され、共振する。
当該発光デバイスは、透明導電膜や上述の複合材料、キャリア輸送材料などの厚みを変えることで反射電極と半透過・半反射電極の間の光学的距離を変えることができる。これにより、反射電極と半透過・半反射電極との間において、共振する波長の光を強め、共振しない波長の光を減衰させることができる。
なお、反射電極によって反射されて戻ってきた光(第1の反射光)は、発光層から半透過・半反射電極に直接入射する光(第1の入射光)と大きな干渉を起こすため、反射電極と発光層の光学的距離を(2n-1)λ/4(ただし、nは1以上の自然数、λは増幅したい発光の波長)に調節することが好ましい。当該光学的距離を調節することにより、第1の反射光と第1の入射光との位相を合わせ発光層からの発光をより増幅させることができる。
なお、上記構成においてEL層は、複数の発光層を有する構造であっても、単一の発光層を有する構造であっても良く、例えば、上述のタンデム型発光デバイスの構成と組み合わせて、一つの発光デバイスに電荷発生層を挟んで複数のEL層を設け、それぞれのEL層に単数もしくは複数の発光層を形成する構成に適用してもよい。
マイクロキャビティ構造を有することで、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。なお、赤、黄、緑、青の4色の副画素で映像を表示する発光装置の場合、黄色発光による輝度向上効果のうえ、全副画素において各色の波長に合わせたマイクロキャビティ構造を適用できるため良好な特性の発光装置とすることができる。
本実施の形態における発光装置は、実施の形態1に記載の発光デバイスを用いているため、良好な特性を備えた発光装置を得ることができる。具体的には、実施の形態1に記載の発光デバイスは発光効率が良好なため、消費電力の小さい発光装置とすることが可能である。
ここまでは、アクティブマトリクス型の発光装置について説明したが、以下からはパッシブマトリクス型の発光装置について説明する。図5(A)、及び図5(B)には本発明を適用して作製したパッシブマトリクス型の発光装置を示す。なお、図5(A)は、発光装置を示す斜視図、図5(B)は図5(A)を一点鎖線X-Yで切断した断面図である。図5において、基板951上には、電極952と電極956との間にはEL層955が設けられている。電極952の端部は絶縁層953で覆われている。そして、絶縁層953上には隔壁層954が設けられている。隔壁層954の側壁は、基板面に近くなるに伴って、一方の側壁と他方の側壁との間隔が狭くなっていくような傾斜を有する。つまり、隔壁層954の短辺方向の断面は、台形状であり、底辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接する辺)の方が上辺(絶縁層953の面方向と同様の方向を向き、絶縁層953と接しない辺)よりも短い。このように、隔壁層954を設けることで、静電気等に起因した発光デバイスの不良を防ぐことが出来る。また、パッシブマトリクス型の発光装置においても、実施の形態1に記載の発光デバイスを用いており、信頼性の良好な発光装置、又は消費電力の小さい発光装置とすることができる。
以上、説明した発光装置は、マトリクス状に配置された多数の微小な発光デバイスをそれぞれ制御することが可能であるため、画像の表現を行う表示装置として好適に利用できる発光装置である。
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態3)
本実施の形態では、実施の形態1に記載の発光デバイスを照明装置として用いる例を、図6を参照しながら、説明する。図6(B)は照明装置の上面図、図6(A)は図6(B)に示す線分e-fにおける断面図である。
本実施の形態における照明装置は、支持体である透光性を有する基板400上に、陽極401が形成されている。陽極401は実施の形態1における陽極101に相当する。陽極401側から発光を取り出す場合、陽極401は透光性を有する材料により形成する。
陰極404に電圧を供給するためのパッド412が基板400上に形成される。
陽極401上にはEL層403が形成されている。EL層403は実施の形態1におけるEL層103の構成、又は発光ユニット511、512及び電荷発生層513を合わせた構成などに相当する。なお、これらの構成については当該記載を参照されたい。
EL層403を覆って陰極404を形成する。陰極404は実施の形態1における陰極102に相当する。発光を陽極401側から取り出す場合、陰極404は反射率の高い材料によって形成される。陰極404はパッド412と接続することによって、電圧が供給される。
以上、陽極401、EL層403、及び陰極404を有する発光デバイスを本実施の形態で示す照明装置は有している。当該発光デバイスは発光効率の高い発光デバイスであるため、本実施の形態における照明装置は消費電力の小さい照明装置とすることができる。
以上の構成を有する発光デバイスが形成された基板400と、封止基板407とをシール材405、406を用いて固着し、封止することによって照明装置が完成する。シール材405、406はどちらか一方でもかまわない。また、内側のシール材406(図6(B)では図示せず)には乾燥剤を混ぜることもでき、これにより、水分を吸着することができ、信頼性の向上につながる。
また、パッド412と陽極401の一部をシール材405、406の外に伸張して設けることによって、外部入力端子とすることができる。また、その上にコンバーターなどを搭載したICチップ420などを設けても良い。
以上、本実施の形態に記載の照明装置は、EL素子に実施の形態1に記載の発光デバイスを用いており、消費電力の小さい照明装置とすることができる。
また、本実施の形態は他の実施の形態と自由に組み合わせることができる。
(実施の形態4)
本実施の形態では、実施の形態1に記載の発光デバイスをその一部に含む電子機器の例について説明する。実施の形態1に記載の発光デバイスは発光効率が良好であり、消費電力の小さい発光デバイスである。その結果、本実施の形態に記載の電子機器は、消費電力が小さい発光部を有する電子機器とすることが可能である。
上記発光デバイスを適用した電子機器として、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。これらの電子機器の具体例を以下に示す。
図7(A)は、テレビジョン装置の一例を示している。テレビジョン装置は、筐体7101に表示部7103が組み込まれている。また、ここでは、スタンド7105により筐体7101を支持した構成を示している。表示部7103により、映像を表示することが可能であり、表示部7103は、実施の形態1に記載の発光デバイスをマトリクス状に配列して構成されている。
テレビジョン装置の操作は、筐体7101が備える操作スイッチや、別体のリモコン操作機7110により行うことができる。リモコン操作機7110が備える操作キー7109により、チャンネルや音量の操作を行うことができ、表示部7103に表示される映像を操作することができる。また、リモコン操作機7110に、当該リモコン操作機7110から出力する情報を表示する表示部7107を設ける構成としてもよい。なお、表示部7107にも、マトリクス状に配列した、実施の形態1に記載の発光デバイスを適用することができる。
なお、テレビジョン装置は、受信機やモデムなどを備えた構成とする。受信機により一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線による通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図7(B1)はコンピュータであり、本体7201、筐体7202、表示部7203、キーボード7204、外部接続ポート7205、ポインティングデバイス7206等を含む。なお、このコンピュータは、実施の形態1に記載の発光デバイスをマトリクス状に配列して表示部7203に用いることにより作製される。図7(B1)のコンピュータは、図7(B2)のような形態であってもよい。図7(B2)のコンピュータは、キーボード7204、ポインティングデバイス7206の代わりに表示部7210が設けられている。表示部7210はタッチパネル式となっており、表示部7210に表示された入力用の表示を指や専用のペンで操作することによって入力を行うことができる。また、表示部7210は入力用表示だけでなく、その他の画像を表示することも可能である。また表示部7203もタッチパネルであっても良い。二つの画面がヒンジで接続されていることによって、収納や運搬をする際に画面を傷つける、破損するなどのトラブルの発生も防止することができる。
図7(C)は、携帯端末の一例を示している。携帯電話機は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機は、実施の形態1に記載の発光デバイスをマトリクス状に配列して作製された表示部7402を有している。
図7(C)に示す携帯端末は、表示部7402を指などで触れることで、情報を入力することができる構成とすることもできる。この場合、電話を掛ける、或いはメールを作成するなどの操作は、表示部7402を指などで触れることにより行うことができる。
表示部7402の画面は主として3つのモードがある。第1は、画像の表示を主とする表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部7402を文字の入力を主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表示部7402の画面のほとんどにキーボードまたは番号ボタンを表示させることが好ましい。
また、携帯端末内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを有する検出装置を設けることで、携帯端末の向き(縦か横か)を判断して、表示部7402の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部7402を触れること、又は筐体7401の操作ボタン7403の操作により行われる。また、表示部7402に表示される画像の種類によって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデータであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部7402の光センサで検出される信号を検知し、表示部7402のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モードから表示モードに切り替えるように制御してもよい。
表示部7402は、イメージセンサとして機能させることもできる。例えば、表示部7402に掌や指で触れ、掌紋、指紋等を撮像することで、本人認証を行うことができる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
なお、本実施の形態に示す構成は、実施の形態1乃至実施の形態3に示した構成を適宜組み合わせて用いることができる。
以上の様に実施の形態1または実施の形態2に記載の発光デバイスを備えた発光装置の適用範囲は極めて広く、この発光装置をあらゆる分野の電子機器に適用することが可能である。実施の形態1または実施の形態2に記載の発光デバイスを用いることにより消費電力の小さい電子機器を得ることができる。
図8(A)は、掃除ロボットの一例を示す模式図である。
掃除ロボット5100は、上面に配置されたディスプレイ5101、側面に配置された複数のカメラ5102、ブラシ5103、操作ボタン5104を有する。また図示されていないが、掃除ロボット5100の下面には、タイヤ、吸い込み口等が備えられている。掃除ロボット5100は、その他に赤外線センサ、超音波センサ、加速度センサ、ピエゾセンサ、光センサ、ジャイロセンサなどの各種センサを備えている。また、掃除ロボット5100は、無線による通信手段を備えている。
掃除ロボット5100は自走し、ゴミ5120を検知し、下面に設けられた吸い込み口からゴミを吸引することができる。
また、掃除ロボット5100はカメラ5102が撮影した画像を解析し、壁、家具または段差などの障害物の有無を判断することができる。また、画像解析により、配線などブラシ5103に絡まりそうな物体を検知した場合は、ブラシ5103の回転を止めることができる。
ディスプレイ5101には、バッテリーの残量や、吸引したゴミの量などを表示することができる。掃除ロボット5100が走行した経路をディスプレイ5101に表示させてもよい。また、ディスプレイ5101をタッチパネルとし、操作ボタン5104をディスプレイ5101に設けてもよい。
掃除ロボット5100は、スマートフォンなどの携帯電子機器5140と通信することができる。カメラ5102が撮影した画像は、携帯電子機器5140に表示させることができる。そのため、掃除ロボット5100の持ち主は、外出先からでも、部屋の様子を知ることができる。また、ディスプレイ5101の表示をスマートフォンなどの携帯電子機器で確認することもできる。
本発明の一態様の発光装置はディスプレイ5101に用いることができる。
図8(B)に示すロボット2100は、演算装置2110、照度センサ2101、マイクロフォン2102、上部カメラ2103、スピーカ2104、ディスプレイ2105、下部カメラ2106および障害物センサ2107、移動機構2108を備える。
マイクロフォン2102は、使用者の話し声及び環境音等を検知する機能を有する。また、スピーカ2104は、音声を発する機能を有する。ロボット2100は、マイクロフォン2102およびスピーカ2104を用いて、使用者とコミュニケーションをとることが可能である。
ディスプレイ2105は、種々の情報の表示を行う機能を有する。ロボット2100は、使用者の望みの情報をディスプレイ2105に表示することが可能である。ディスプレイ2105は、タッチパネルを搭載していてもよい。また、ディスプレイ2105は取り外しのできる情報端末であっても良く、ロボット2100の定位置に設置することで、充電およびデータの受け渡しを可能とする。
上部カメラ2103および下部カメラ2106は、ロボット2100の周囲を撮像する機能を有する。また、障害物センサ2107は、移動機構2108を用いてロボット2100が前進する際の進行方向における障害物の有無を察知することができる。ロボット2100は、上部カメラ2103、下部カメラ2106および障害物センサ2107を用いて、周囲の環境を認識し、安全に移動することが可能である。本発明の一態様の発光装置はディスプレイ2105に用いることができる。
図8(C)はゴーグル型ディスプレイの一例を表す図である。ゴーグル型ディスプレイは、例えば、筐体5000、表示部5001、スピーカ5003、LEDランプ5004、接続端子5006、センサ5007(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい、又は赤外線を測定する機能を含むもの)、マイクロフォン5008、表示部5002、支持部5012、イヤホン5013等を有する。
本発明の一態様の発光装置は表示部5001および表示部5002に用いることができる。
図9は、実施の形態1に記載の発光デバイスを、照明装置である電気スタンドに用いた例である。図9に示す電気スタンドは、筐体2001と、光源2002を有し、光源2002としては、実施の形態3に記載の照明装置を用いてもよい。
図10は、実施の形態1に記載の発光デバイスを、室内の照明装置3001として用いた例である。実施の形態1に記載の発光デバイスは発光効率の高い発光デバイスであるため、消費電力の小さい照明装置とすることができる。また、実施の形態1に記載の発光デバイスは大面積化が可能であるため、大面積の照明装置として用いることができる。また、実施の形態1に記載の発光デバイスは、薄型であるため、薄型化した照明装置として用いることが可能となる。
実施の形態1に記載の発光デバイスは、自動車のフロントガラスやダッシュボードにも搭載することができる。図11に実施の形態1に記載の発光デバイスを自動車のフロントガラスやダッシュボードに用いる一態様を示す。表示領域5200乃至表示領域5203は実施の形態1に記載の発光デバイスを用いて設けられた表示である。
表示領域5200と表示領域5201は自動車のフロントガラスに設けられた実施の形態1に記載の発光デバイスを搭載した表示装置である。実施の形態1に記載の発光デバイスは、陽極と陰極を透光性を有する電極で作製することによって、反対側が透けて見える、いわゆるシースルー状態の表示装置とすることができる。シースルー状態の表示であれば、自動車のフロントガラスに設置したとしても、視界の妨げになることなく設置することができる。なお、駆動のためのトランジスタなどを設ける場合には、有機半導体材料による有機トランジスタや、酸化物半導体を用いたトランジスタなど、透光性を有するトランジスタを用いると良い。
表示領域5202はピラー部分に設けられた実施の形態1に記載の発光デバイスを搭載した表示装置である。表示領域5202には、車体に設けられた撮像手段からの映像を映し出すことによって、ピラーで遮られた視界を補完することができる。また、同様に、ダッシュボード部分に設けられた表示領域5203は車体によって遮られた視界を、自動車の外側に設けられた撮像手段からの映像を映し出すことによって、死角を補い、安全性を高めることができる。見えない部分を補完するように映像を映すことによって、より自然に違和感なく安全確認を行うことができる。
表示領域5203はまたナビゲーション情報、速度計や回転計、エアコンの設定などの他、様々な情報を提供することができる。表示は使用者の好みに合わせて適宜その表示項目やレイアウトを変更することができる。なお、これら情報は表示領域5200乃至表示領域5203にも設けることができる。また、表示領域5200乃至表示領域5203は照明装置として用いることも可能である。
また、図12(A)、及び図12(B)に、折りたたみ可能な携帯情報端末5150を示す。折りたたみ可能な携帯情報端末5150は筐体5151、表示領域5152および屈曲部5153を有している。図12(A)に展開した状態の携帯情報端末5150を示す。図12(B)に折りたたんだ状態の携帯情報端末5150を示す。携帯情報端末5150は、大きな表示領域5152を有するにも関わらず、折りたためばコンパクトで可搬性に優れる。
表示領域5152は屈曲部5153により半分に折りたたむことができる。屈曲部5153は伸縮可能な部材と複数の支持部材とで構成されており、折りたたむ場合は、伸縮可能な部材が伸び、屈曲部5153は2mm以上、好ましくは3mm以上の曲率半径を有して折りたたまれる。
なお、表示領域5152は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。本発明の一態様の発光装置を表示領域5152に用いることができる。
また、図13(A)乃至図13(C)に、折りたたみ可能な携帯情報端末9310を示す。図13(A)に展開した状態の携帯情報端末9310を示す。図13(B)に展開した状態又は折りたたんだ状態の一方から他方に変化する途中の状態の携帯情報端末9310を示す。図13(C)に折りたたんだ状態の携帯情報端末9310を示す。携帯情報端末9310は、折りたたんだ状態では可搬性に優れ、展開した状態では、継ぎ目のない広い表示領域により表示の一覧性に優れる。
表示パネル9311はヒンジ9313によって連結された3つの筐体9315に支持されている。なお、表示パネル9311は、タッチセンサ(入力装置)を搭載したタッチパネル(入出力装置)であってもよい。また、表示パネル9311は、ヒンジ9313を介して2つの筐体9315間を屈曲させることにより、携帯情報端末9310を展開した状態から折りたたんだ状態に可逆的に変形させることができる。本発明の一態様の発光装置を表示パネル9311に用いることができる。
本実施例では、本発明の一態様の発光デバイス1および比較発光デバイス1について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000017
(発光デバイス1の作製方法)
まず、ガラス基板上に、反射電極として、銀(Ag)とパラジウム(Pd)と銅(Cu)の合金膜(Ag-Pd-Cu(APC)膜)をスパッタリング法により、100nmの膜厚で成膜した後、透明電極として酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、85nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.05(=PCBBiF:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、PCBBiFを20nm蒸着した後、上記構造式(ii)で表されるN,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(iii)で表される3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(iv)で表される2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=Bnf(II)PhA:3,10PCA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
こののち、上記構造式(x)で表される2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ビス(3,5-ジ-tert-ブチルフェニル)-1,3,5-トリアジン(略称:mmtBumBP-dmmtBuPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、mmtBumBP-dmmtBuPTznと上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)とを、重量比で1:1(=mmtBumBP-dmmtBuPTzn:Li-6mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、Li-6mqを1nmとなるように成膜して電子注入層115を形成し、最後に、銀(Ag)とマグネシウム(Mg)とを体積比1:0.1、膜厚15nmとなるように共蒸着することで陰極102を形成して発光デバイス1を作製した。なお、陰極102は光を反射する機能と光を透過する機能とを有する半透過・半反射電極であり、本実施例の発光デバイスは陰極102から光を取り出すトップエミッション型のデバイスである。また、陰極102上には上記構造式(xi)で表される1,3,5-トリ(ジベンゾチオフェン-4-イル)-ベンゼン(略称:DBT3P-II)を70nm蒸着して、光取出し効率を向上させている。
(比較発光デバイス1の作製方法)
比較発光デバイス1は、発光デバイス1の正孔輸送層112におけるPCBBiFの膜厚を15nmに、正孔ブロック層に用いたmmtBumBP-dmmtBuPTznを上記構造式(vi)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)に、電子輸送層114に用いたmmtBumBP-dmmtBuPTznを上記構造式(xix)で表される2-[3-(2,6-ジメチル-3-ピリジニル)-5-(9-フェナントレニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mPn-mDMePyPTzn)に、電子輸送層114及び電子注入層115に用いたLi-6mqを上記構造式(ix)で表される8-キノリノラト-リチウム(略称:Liq)にそれぞれ変えた他は発光デバイス1と同様に作製した。なお正孔輸送層の膜厚は、素子間で色度が同様になる膜厚に調整した。
発光デバイス1および比較発光デバイス1の素子構造を以下の表にまとめた。
Figure 2022008062000018
また、mmtBumBP-dmmtBuPTzn、mPn-mDMePyPTzn、Li-6mqおよびLiqの屈折率を図14に、また、456nmにおける屈折率を下表2に示す。測定は分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて行った。測定用試料には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図14には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
図14から、mmtBumBP-dmmtBuPTznは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.60以上1.61以下であり、1.50以上1.75以下の範囲にあった。また、633nmにおける常光屈折率も1.57で、1.45以上1.70以下の範囲にあり、mmtBumBP-dmmtBuPTznは屈折率の低い材料であることがわかった。また、Li-6mqは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.67以下であり、1.45以上1.70以下の範囲にあった。また、633nmにおける常光屈折率も1.61であり、1.40以上1.65以下の範囲にあり、Li-6mqは屈折率の低い材料であることがわかった。
このことから発光デバイス1は、電子輸送層114の常光屈折率が、青色発光領域(455nm以上465nm以下)全域において1.50以上1.75未満の範囲にあり、また、633nmで1.45以上1.70未満の範囲にある発光デバイスとなることがわかる。
Figure 2022008062000019
上記発光デバイス1および比較発光デバイス1を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス1および比較発光デバイス1の輝度-電流密度特性を図15に、電流効率-輝度特性を図16に、輝度-電圧特性を図17に、電流-電圧特性を図18に、ブルーインデックス-輝度特性を図19に、発光スペクトルを図20に示す。また、発光デバイス1および比較発光デバイス1の1000cd/m付近における主な特性を表3に示す。なお、輝度、CIE色度、及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
なお、ブルーインデックス(BI)とは、電流効率(cd/A)をさらに色度yで割った値(cd/A/y)であり、青色発光の発光特性を表す指標の一つである。青色発光は、色度yが小さいほど色純度の高い発光となる傾向にある。色純度の高い青色発光は、輝度成分が小さくても広い範囲の青色を表現することが可能であり、色純度の高い青色発光を用いることで、青色を表現するための必要輝度が低下することから消費電力の低減効果が得られる。そのため、青色純度の指標の一つとなる色度yを考慮したBIが青色発光の効率を表す手段として好適に用いられ、BIが高い発光デバイスほどディスプレイに用いられる青色発光デバイスとしての効率が良好であるということができる。
Figure 2022008062000020
図15乃至図20及び表3より、本発明の一態様の低屈折率材料を用いた発光デバイス1は、比較発光デバイス1とほぼ同じ発光スペクトルを示しながら、比較発光デバイス1よりも電流効率の良好なELデバイスであることがわかった。
また、発光デバイス1および比較発光デバイス1の1000cd/m付近におけるブルーインデックス(BI)は各々153(cd/A/y)、148(cd/A/y)であり、BIの最大値は各々161(cd/A/y)、149(cd/A/y)であった。このように発光デバイス1は特にBIの良好な発光デバイスということができる。そのため、本発明の一態様は、ディスプレイに用いる発光デバイスに好適である。
本実施例では、本発明の一態様の発光デバイス2および比較発光デバイス2について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000021
(発光デバイス2の作製方法)
まず、ガラス基板上に、反射電極として、銀(Ag)とパラジウム(Pd)と銅(Cu)の合金膜(Ag-Pd-Cu(APC)膜)をスパッタリング法により、100nmの膜厚で成膜した後、透明電極として酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、10nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.05(=PCBBiF:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、PCBBiFを105nm蒸着した後、上記構造式(ii)で表されるN,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(iii)で表される3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(iv)で表される2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=Bnf(II)PhA:3,10PCA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
こののち、上記構造式(x)で表される2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ビス(3,5-ジ-tert-ブチルフェニル)-1,3,5-トリアジン(略称:mmtBumBP-dmmtBuPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、mmtBumBP-dmmtBuPTznと上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)とを、重量比で1:1(=mmtBumBP-dmmtBuPTzn:Li-6mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、Li-6mqを1nmとなるように成膜して電子注入層115を形成し、最後に、銀(Ag)とマグネシウム(Mg)とを体積比1:0.1、膜厚15nmとなるように共蒸着することで陰極102を形成して発光デバイス2を作製した。なお、陰極102は光を反射する機能と光を透過する機能とを有する半透過・半反射電極であり、本実施例の発光デバイスは陰極102から光を取り出すトップエミッション型のデバイスである。また、陰極102上には上記構造式(xi)で表される1,3,5-トリ(ジベンゾチオフェン-4-イル)-ベンゼン(略称:DBT3P-II)を70nm蒸着して、光取出し効率を向上させている。
(比較発光デバイス2の作製方法)
比較発光デバイス2は、発光デバイス2における電子輸送層114および電子注入層115に用いたLi-6mqを上記構造式(ix)で表される8-キノリノラト-リチウム(略称:Liq)に変え、正孔輸送層112におけるPCBBiFの膜厚を100nmとした他は発光デバイス2と同様に作製した。なお正孔輸送層の膜厚は、素子間で色度が同様になる膜厚に調整した。
発光デバイス2および比較発光デバイス2の素子構造を以下の表にまとめた。
Figure 2022008062000022
また、mmtBumBP-dmmtBuPTzn、Li-6mqおよびLiqの屈折率を図21に、また、456nmにおける屈折率を下表5に示す。測定は分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて行った。測定用試料には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図21には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
この図21から、mmtBumBP-dmmtBuPTznは、青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.60以上1.61以下と、1.50以上1.75以下の範囲にあり、また、633nmにおける常光屈折率も1.57であり、1.45以上1.70以下の範囲に存在し、屈折率の低い材料であることがわかった。また、Li-6mqは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.67以下と、1.45以上1.70以下の範囲にあり、また、633nmにおける常光屈折率も1.61で、1.40以上1.65以下の範囲にあり、屈折率の低い材料であることがわかった。
このことから発光デバイス2は、電子輸送層114の常光屈折率が、青色発光領域(455nm以上465nm以下)全域において1.50以上1.75未満の範囲にあり、また、633nmで1.45以上1.70未満の範囲にある発光デバイスとなることがわかる。
Figure 2022008062000023
上記発光デバイス2および比較発光デバイス2を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間の熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス2および比較発光デバイス2の輝度-電流密度特性を図22に、電流効率-輝度特性を図23に、輝度-電圧特性を図24に、電流-電圧特性を図25に、ブルーインデックス-輝度特性を図26に、発光スペクトルを図27に示す。また、発光デバイス2および比較発光デバイス2の1000cd/m付近における主な特性を表6に示す。なお、輝度、CIE色度及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
なお、ブルーインデックス(BI)とは、電流効率(cd/A)をさらに色度yで割った値(cd/A/y)であり、青色発光の発光特性を表す指標の一つである。青色発光は、色度yが小さいほど色純度の高い発光となる傾向にある。色純度の高い青色発光は、輝度成分が小さくても広い範囲の青色を表現することが可能であり、色純度の高い青色発光を用いることで、青色を表現するための必要輝度が低下することから消費電力の低減効果が得られる。そのため、青色純度の指標の一つとなる色度yを考慮したBIが青色発光の効率を表す手段として好適に用いられ、BIが高い発光デバイスほどディスプレイに用いられる青色発光デバイスとしての効率が良好であるということができる。
Figure 2022008062000024
図22乃至図27及び表6より、本発明の一態様の低屈折率材料を用いた発光デバイス2は、比較発光デバイス2とほぼ同じ発光スペクトルを示しながら、比較発光デバイス2よりも駆動電圧が低く、電流効率の高いELデバイスであることがわかった。
このように、6位にアルキル基を有するアルカリ金属の有機錯体であるLi-6mqを、アルキル基を多く有する電子輸送材料と共に電子輸送層114に用いることによって、非常に大きな駆動電圧の低減効果が得られていることがわかる。通常アルキル基の存在は分子同士のスタッキングを阻害し、相互作用を抑制し、駆動電圧が高くなると考えられるが、本発明の一態様の発光デバイスにおいては双方にアルキル基が存在している場合に特に駆動電圧の低減効果が顕著に表れている。なお、これは6位にアルキル基を有する8-キノリノラト構造を含む配位子を有するアルカリ金属の有機金属錯体に特有の大きな効果である。むしろ6位が無置換(水素)である8-キノリノラト構造を含む同様の金属錯体よりも駆動電圧が低減されることがわかった。なお、当該有機金属錯体としては、6-アルキル-8-キノリノラト-リチウム、特に、6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)が好ましい。
また、発光デバイス2および比較発光デバイス2の1000cd/m付近におけるブルーインデックス(BI)は各々145(cd/A/y)、119(cd/A/y)であった。このように発光デバイス2は特にBIの良好な発光デバイスということができる。そのため、本発明の一態様は、ディスプレイに用いる発光デバイスに好適である。
また、発光デバイス2および比較発光デバイス2の1000cd/m付近におけるパワー効率は各々4.5(lm/W)、2.5(lm/W)であった。このように発光デバイス2は特に消費電力が小さい発光デバイスということができる。
本実施例では、本発明の一態様の発光デバイス3および比較発光デバイス3について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000025
(発光デバイス3の作製方法)
まず、ガラス基板上に、反射電極として、銀(Ag)とパラジウム(Pd)と銅(Cu)の合金膜(Ag-Pd-Cu(APC)膜)をスパッタリング法により、100nmの膜厚で成膜した後、透明電極として酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、10nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.05(=PCBBiF:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、PCBBiFを100nm蒸着した後、上記構造式(ii)で表されるN,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(iii)で表される3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(iv)で表される2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=Bnf(II)PhA:3,10PCA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
こののち、上記構造式(vi)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、上記構造式(xix)で表される2-[3-(2,6-ジメチル-3-ピリジニル)-5-(9-フェナントレニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mPn-mDMePyPTzn)と上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)とを、重量比で1:1(=mPn-mDMePyPTzn:Li-6mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、Li-6mqを1nmとなるように成膜して電子注入層115を形成し、最後に、銀(Ag)とマグネシウム(Mg)とを体積比1:0.1、膜厚15nmとなるように共蒸着することで陰極102を形成して発光デバイス3を作製した。なお、陰極102は光を反射する機能と光を透過する機能とを有する半透過・半反射電極であり、本実施例の発光デバイスは陰極102から光を取り出すトップエミッション型のデバイスである。また、陰極102上には上記構造式(xi)で表される1,3,5-トリ(ジベンゾチオフェン-4-イル)-ベンゼン(略称:DBT3P-II)を70nm蒸着して、光取出し効率を向上させている。
(比較発光デバイス3の作製方法)
比較発光デバイス3は、発光デバイス3における電子輸送層に用いたLi-6mqを上記構造式(ix)で表される8-キノリノラト-リチウム(略称:Liq)に変えた他は発光デバイス3と同様に作製した。
発光デバイス3および比較発光デバイス3の素子構造を以下の表にまとめた。
Figure 2022008062000026
また、mPn-mDMePyPTzn、Li-6mqおよびLiqの屈折率を図28に、また、456nmにおける屈折率を下表8に示す。測定は分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて行った。測定用試料には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図28には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
Figure 2022008062000027
上記発光デバイス3および比較発光デバイス3を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間の熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス3および比較発光デバイス3の輝度-電流密度特性を図29に、電流効率-輝度特性を図30に、輝度-電圧特性を図31に、電流-電圧特性を図32に、発光スペクトルを図33に、ブルーインデックス(BI)-輝度特性を図34に示す。また、発光デバイス3および比較発光デバイス3の1000cd/m付近における主な特性を表9に示す。なお、輝度、CIE色度及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
なお、ブルーインデックス(BI)とは、電流効率(cd/A)をさらに色度yで割った値(cd/A/y)であり、青色発光の発光特性を表す指標の一つである。青色発光は、色度yが小さいほど色純度の高い発光となる傾向にある。色純度の高い青色発光は、輝度成分が小さくても広い範囲の青色を表現することが可能であり、色純度の高い青色発光を用いることで、青色を表現するための必要輝度が低下することから消費電力の低減効果が得られる。そのため、青色純度の指標の一つとなる色度yを考慮したBIが青色発光の効率を表す手段として好適に用いられ、BIが高い発光デバイスほどディスプレイに用いられる青色発光デバイスとしての効率が良好であるということができる。
Figure 2022008062000028
図29乃至図34及び表9より、本発明の一態様の低屈折率材料を用いた発光デバイス3は、比較発光デバイス3とほぼ同じ発光スペクトルを示しながら、比較発光デバイス3よりも駆動電圧が低く、ブルーインデックスの良好なELデバイスであることがわかった。
このように、6位にアルキル基を有するアルカリ金属の有機錯体であるLi-6mqを、電子輸送材料と共に電子輸送層114に用いることによって、駆動電圧の低減効果が得られていることがわかる。なお、これは6位にアルキル基を有する8-キノリノラト構造を含む配位子を有するアルカリ金属の有機金属錯体に特有の効果である。なお、当該有機金属錯体としては、6-アルキル-8-キノリノラト-リチウム、特に、6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)が好ましい。
また、発光デバイス3および比較発光デバイス3の1000cd/m付近におけるブルーインデックス(BI)は各々152.3(cd/A/y)、149.4(cd/A/y)であり、最大のBIはそれぞれ153.3(cd/A/y)、150.4(cd/A/y)であった。このように発光デバイス3は特にBIの良好な発光デバイスということができる。
なお、本実施例では、有機金属錯体のみ低屈折率の材料を用い、6-アルキル-8-キノリノラト-リチウム(好ましくはLi-6mq)の低駆動電圧化効果を確認したが、実施例1のように電子輸送層における電子輸送性を有する有機化合物と金属錯体の両方を低屈折率の材料とすることによって、大きな光取り出し効率向上効果が得られ、電流効率やBIの向上につながる。
また、実施例2のように、アルキル基を有する電子輸送性を有する有機化合物と6-アルキル-8-キノリノラト-リチウム(好ましくはLi-6mq)とを共に用いることによって、大きな低駆動電圧化効果を得ることができる。また、アルキル基を有する低屈折率の電子輸送性を有する有機化合物と、6-アルキル-8-キノリノラト-リチウム(好ましくはLi-6mq)とを用いることで大きな低駆動電圧化効果と、大きな発光効率向上効果が得られることがわかった。
≪合成例1≫
本実施例では、本発明の一態様の金属錯体である6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)の合成方法について説明する。Li-6mqの構造式を以下に示す。
Figure 2022008062000029
<ステップ1:Li-6mqの合成>
8-ヒドロキシ-6-メチルキノリン 2.0 g(12.6 mmol)、脱水テトラヒドロフラン(略称:THF)130mLを三口フラスコに入れ撹拌した。この溶液に、リチウムtert-ブトキシド(略称:tBuOLi) 1M THF溶液 10.1mL(10.1mmol)を加え、室温で47時間撹拌した。反応溶液を濃縮し、黄色固体を得た。この固体にアセトニトリルを加え超音波照射し、ろ過することで、淡黄色固体を得た。この洗浄操作を2回行った。ろ物としてLi-6mqの淡黄色固体1.6 g(収率95%)を得た。本合成スキームを以下に示す。
Figure 2022008062000030
次に、Li-6mqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルを測定した結果を図35に示す。吸収スペクトルは、紫外可視分光光度計((株)日本分光製 V550型)を用いて測定し、脱水アセトンのみを石英セルに入れて測定したスペクトルを差し引いて示した。また、発光スペクトルの測定には、蛍光光度計((株)日本分光製 FP-8600)を用いた。
図35より、Li-6mqの脱水アセトン溶液は390nmに吸収ピークが見られ、発光波長のピークは540nm(励起波長385nm)であった。
本実施例では、本発明の一態様の発光デバイス4、比較発光デバイス4および比較発光デバイス5について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000031
(発光デバイス4の作製方法)
まず、ガラス基板上に、反射電極として、銀(Ag)をスパッタリング法により、100nmの膜厚で成膜した後、透明電極として酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により、95nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.05(=PCBBiF:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、PCBBiFを10nm蒸着した後、上記構造式(xii)で表されるN,N-ビス(4-ビフェニル)-6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf)を10nmとなるように蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(iii)で表される3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(iv)で表される2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=Bnf(II)PhA:3,10PCA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
こののち、上記構造式(xiii)で表される2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mmtBumBPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、mmtBumBPTznと上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)とを、重量比で1:1(=mmtBumBPTzn:Li-6mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、フッ化リチウムを1nmとなるように成膜して電子注入層115を形成し、最後に、銀(Ag)とマグネシウム(Mg)とを体積比1:0.1、膜厚15nmとなるように共蒸着することで陰極102を形成して発光デバイス4を作製した。なお、陰極102は光を反射する機能と光を透過する機能とを有する半透過・半反射電極であり、本実施例の発光デバイスは陰極102から光を取り出すトップエミッション型のデバイスである。また、陰極102上には上記構造式(xi)で表される1,3,5-トリ(ジベンゾチオフェン-4-イル)-ベンゼン(略称:DBT3P-II)を70nm蒸着して、光取出し効率を向上させている。
(比較発光デバイス4の作製方法)
比較発光デバイス4は、発光デバイス4における電子輸送層114に用いたLi-6mqを上記構造式(ix)で表される8-キノリノラト-リチウム(略称:Liq)に変えた他は発光デバイス4と同様に作製した。
(比較発光デバイス5の作製方法)
比較発光デバイス5は比較発光デバイス4における正孔ブロック層に用いたmmtBumBPTznを上記構造式(vi)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)に、電子輸送層114に用いたmmtBumBPTznを上記構造式(xix)で表される2-[3-(2,6-ジメチル-3-ピリジニル)-5-(9-フェナントレニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mPn-mDMePyPTzn)に変えた他は比較発光デバイス4と同様に作製した。なお正孔輸送層の膜厚は、素子間で色度が同様になる膜厚に調整した。
発光デバイス4、比較発光デバイス4および比較発光デバイス5の素子構造を以下の表にまとめた。
Figure 2022008062000032
また、mmtBumBPTzn、mPn-mDMePyPTzn、Li-6mqおよびLiqの屈折率を図37に、また、456nmにおける屈折率を下表11に示す。測定は分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて行った。測定用試料には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図37には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
この図37から、mmtBumBPTznは、青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.68であり、1.50以上1.75以下の範囲だった。また、633nmにおける常光屈折率も1.64であり、1.45以上1.70以下の範囲に存在し、mmtBumBPTznは屈折率の低い材料であることがわかった。また、Li-6mqは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.67と、1.45以上1.70以下の範囲にあり、また、633nmにおける常光屈折率も1.61で、1.40以上1.65以下の範囲にあり、屈折率の低い材料であることがわかった。
このことから発光デバイス4は、電子輸送層114の常光屈折率が、青色発光領域(455nm以上465nm以下)全域において1.50以上1.75未満の範囲にあり、また、633nmで1.45以上1.70未満の範囲にある発光デバイスとなることがわかる。
Figure 2022008062000033
上記発光デバイス4および比較発光デバイス4および5を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間の熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス4、比較発光デバイス4および比較発光デバイス5の輝度-電流密度特性を図38に、電流効率-輝度特性を図39に、輝度-電圧特性を図40に、電流密度-電圧特性を図41に、発光スペクトルを図42に、ブルーインデックス-輝度特性を図43に示す。また、発光デバイス4、比較発光デバイス4および比較発光デバイス5の1000cd/m付近における主な特性を表12に示す。なお、輝度、CIE色度及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
なお、ブルーインデックス(BI)とは、電流効率(cd/A)をさらに色度yで割った値(cd/A/y)であり、青色発光の発光特性を表す指標の一つである。青色発光は、色度yが小さいほど色純度の高い発光となる傾向にある。色純度の高い青色発光は、輝度成分が小さくても広い範囲の青色を表現することが可能であり、色純度の高い青色発光を用いることで、青色を表現するための必要輝度が低下することから消費電力の低減効果が得られる。そのため、青色純度の指標の一つとなる色度yを考慮したBIが青色発光の効率を表す手段として好適に用いられ、BIが高い発光デバイスほどディスプレイに用いられる青色発光デバイスとしての効率が良好であるということができる。
Figure 2022008062000034
図38乃至図43及び表12より、本発明の一態様の発光デバイスである発光デバイス4は、比較発光デバイス5とほぼ同じ発光スペクトルを示しながら、比較発光デバイス5よりも電流効率の良好な発光デバイスであることがわかった。また、本発明の一態様の発光デバイスである発光デバイス4は、比較発光デバイス4よりも駆動電圧の低い発光デバイスであることがわかった。
また、発光デバイス4、比較発光デバイス4および比較発光デバイス5の1000cd/m付近におけるブルーインデックス(BI)は各々178(cd/A/y)、164(cd/A/y)、160(cd/A/y)であった。このように発光デバイス4は特にBIの良好な発光デバイスということができる。そのため、本発明の一態様は、ディスプレイに用いる発光デバイスに好適である。
また、発光デバイス4、比較発光デバイス4および比較発光デバイス5の1000cd/m付近におけるパワー効率は各々6.8(lm/W)、5.9(lm/W)、5.9(lm/W)であった。このように発光デバイス4は特に消費電力が小さい発光デバイスということができる。
なお、発光デバイス4とほぼ同様の構成を有し、正孔輸送層を、20nmのPCBBiFおよび10nmのN,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)を積層して形成し、電子注入層をフッ化リチウム1nmとして作成したボトムエミッションの発光デバイス15と、発光デバイス15のLi-6mqを2-メチル-8-キノリノラト-リチウム(略称:Li-mq)に変えて作製した発光デバイス16を作製し、初期特性を測定した。4V時点での電流値が発光デバイス15では0.36mA、発光デバイス16では0.27mAと、発光デバイス15の方が発光デバイス16より30%以上も高い結果であった。このように、6位に炭素数1乃至3のアルキル基を有する8-キノリノラト構造を含む配位子を有する金属錯体を用いた発光デバイスは、2位にアルキル基を有する8-キノリノラト構造を含む配位子を有する金属錯体を用いるよりも、駆動電圧の特に低い発光デバイスとすることが可能となる。
≪合成例2≫
本実施例では、本発明の一態様の金属錯体である6-エチル-8-キノリノラト-リチウム(略称:Li-6eq)の合成方法について説明する。Li-6eqの構造式を以下に示す。
Figure 2022008062000035
<ステップ1:6-エチル-8-ヒドロキシキノリンの合成>
三口フラスコに2-アミノ-5-エチルフェノール 5.21g(38.0mmol)、1N 塩酸135mLを加え、100℃で30分攪拌した。この反応溶液に、アクロレインジエチルアセタール 7.42g(57.0mmol)(8.73mL)、エタノール10mLを混合させた溶液を1時間かけて滴下し、100℃で5時間加熱した。反応終了後、反応溶液を100℃で120分加熱した。反応溶液にジクロロメタンを加えた後、10%水酸化ナトリウム水溶液、1N塩酸を用いて水層をpH7に調整した。溶液をろ過した後に有機層を取り出し、さらに水層をジクロロメタンで抽出した。そして、抽出溶液を有機層と合わせて水で洗浄し、有機層を硫酸マグネシウムで脱水後、濃縮して目的物を含んだ黒色固体を得た。
得られた固体をヘキサン:酢酸エチル=10:0からヘキサン:酢酸エチル=10:1に極性を変化させた展開溶媒を用いたシリカゲルカラムクロマトグラフィーにて精製した。この精製を計2回行い、目的物である白黄色固体3.4g(収率:51%)を得た。ステップ1の合成スキームを下式に示す。
Figure 2022008062000036
<ステップ2:Li-6eqの合成>
ステップ1で得られた6-エチル-8-ヒドロキシキノリン3.0g(17.4mmol)と、脱水テトラヒドロフラン(略称:THF)200mLを三口フラスコに入れ攪拌した。この溶液に、リチウム-tert-ブトキシド(略称:tBuOLi)1MTHF溶液13.9mL(13.9mmol)を加え、室温で68時間攪拌した。反応溶液を濃縮し、黄色固体を得た。この固体にアセトニトリルを加え超音波照射し、ろ過することで、黄色固体を得た。この洗浄操作を2回行った。ろ物として黄色固体2.6g(収率104%)を得た。
得られた黄色固体2.58gをトレインサブリメーション法により圧力2.8Pa、335℃の条件で15.5時間加熱し、昇華精製した。昇華精製後、黄色固体を収量1.94g、回収率75%で得た。ステップ2の合成スキームを以下に示す。
Figure 2022008062000037
得られた黄色固体の核磁気共鳴分光法(H-NMR)による分析結果を下に示す。この結果から、本実施例において、上述の構造式(101)で表される本発明の一態様である有機化合物Li-6eqが得られたことがわかった。
NMR(DMSO-d6,300MHz):δ=1.21(t,3H),2.54(t,2H),6.29(s,1H),6.37(s,1H),7.22(q,1H),7.96(d,1H),8.30(d,1H)。
次に、Li-6eqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルを測定した結果を図45に示す。吸収スペクトルは、紫外可視分光光度計((株)日本分光製 V550型)を用いて測定し、脱水アセトンのみを石英セルに入れて測定したスペクトルを差し引いて示した。また、発光スペクトルの測定には、蛍光光度計((株)日本分光製 FP-8600)を用いた。
Li-6eqの脱水アセトン溶液は369nmに吸収ピークが見られ、発光波長のピークは532nm(励起波長375nm)であった。
また、図46にLi-6eqの屈折率を分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて測定した結果を示す。測定には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図46には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
この図46から、Li-6eqは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.68であり、1.45以上1.70以下の範囲にあり、また、633nmにおける常光屈折率も1.63であり、1.40以上1.65以下の範囲にあり、屈折率の低い材料であることがわかった。
≪合成例3≫
本実施例では、本発明の一態様の金属錯体である6-メチル-8-キノリノラト-ナトリウム(略称:Na-6mq)の合成方法について説明する。Na-6mqの構造式を以下に示す。
Figure 2022008062000038
<ステップ1:Na-6mqの合成>
8-ヒドロキシ-6-メチルキノリン3.8g(23.7mmol)、水酸化ナトリウム0.76g(18.9mmol)、メタノール240mLを三口フラスコに加えて80℃で8時間攪拌した。反応溶液を加熱し、常圧蒸留を行った。溶媒が減ってきたところでトルエン140mLを加えた。これを計3回行った。反応溶液を氷水で冷却し、ろ過を行った。ろ物として目的物の黄緑色固体3.4g(収率98%)を得た。
得られた黄緑色固体1.3gを圧力3.2×10-2Pa、358℃の条件で、トレインサブリメーション法により、16.5時間昇華精製した。昇華精製後、黄色固体を収量1.0g、回収率77%で得た。
さらに得られた黄色固体1.0gを、圧力2.0×10-2Pa、356℃の条件で、トレインサブリメーション法により、16時間昇華精製した。昇華精製後、黄色固体を収量0.84g、回収率84%で得た。ステップ1の合成スキームを以下に示す。
Figure 2022008062000039
得られた黄色固体の核磁気共鳴分光法(H-NMR)による分析結果を下記に示す。この結果から、本実施例において、上述の構造式(102)で表される本発明の一態様である有機化合物Na-6mqが得られたことがわかった。
NMR(DMSO-d6,300MHz):δ=2.24(s,3H),6.32(d,2H),7.18(q,1H),7.86(d,1H),8.37(d,1H)。
Na-6mqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルを測定した結果を図47に示す。吸収スペクトルは、紫外可視分光光度計((株)日本分光製 V550型)を用いて測定し、脱水アセトンのみを石英セルに入れて測定したスペクトルを差し引いて示した。また、発光スペクトルの測定には、蛍光光度計((株)日本分光製 FP-8600)を用いた。Na-6mqの脱水アセトン溶液は405nmに吸収ピークが見られ、発光波長のピークは551nm(励起波長405nm)であった。
本実施例では、本発明の一態様の発光デバイス5、および発光デバイス6について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000040
(発光デバイス5の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により70nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.05(=PCBBiF:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、PCBBiFを20nm蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(xii)で表されるN-[4-(9H-カルバゾール-9-イル)フェニル]-N-[4-(4-ジベンゾフラニル)フェニル]-[1,1’:4’,1’’-ターフェニル]-4-アミン(略称:YGTPDBfB)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(iv)で表される2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=Bnf(II)PhA:3,10PCA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
こののち、上記構造式(xiii)で表される2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mmtBumBPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、mmtBumBPTznと上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)とを、重量比で1:1(=mmtBumBPTzn:Li-6mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、フッ化リチウムを1nmとなるように成膜して電子注入層115を形成し、最後に、アルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して発光デバイス5を作製した。なお、本実施例の発光デバイスは陽極101側から光を取り出すボトムエミッション型の素子である。
(発光デバイス6の作製方法)
発光デバイス6は、発光デバイス5におけるLi-6mqを上記構造式(xiii)で表される6-tert-ブチル-8-キノリノラト-リチウム(略称:Li-6tBuq)に変えた他は発光デバイス5と同様に作製した。
なおLi-6tBuqは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.63以上1.64以下であり、1.45から1.70の範囲にあり、また、633nmにおける常光屈折率も1.59であり、1.40以上1.65以下の範囲にあり、屈折率の低い材料であることがわかった。
発光デバイス5、および発光デバイス6の素子構造を以下の表にまとめた。
Figure 2022008062000041
上記発光デバイス5および発光デバイス6を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間の熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス5、および発光デバイス6の輝度-電流密度特性を図48に、電流効率-輝度特性を図49に、輝度-電圧特性を図50に、電流密度-電圧特性を図51に、外部量子効率-輝度特性を図52に、パワー効率-輝度特性を図53に、発光スペクトルを図54に、示す。また、発光デバイス5および発光デバイス6の1000cd/m付近における主な特性を表14に示す。なお、輝度、CIE色度及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
Figure 2022008062000042
図48乃至図54及び表14より、本発明の一態様の発光デバイスである発光デバイス5および発光デバイス6は、共に良好な特性を有する発光デバイスであることがわかった。また、特にLi-6mqを用いた発光デバイス5は、発光デバイス6より外部量子効率も良好であるが、特に駆動電圧が低く、電流効率、パワー効率の良好な発光デバイスであることがわかった。このように、6位に炭素数1乃至3のアルキル基を有する8-キノリノラト構造を含む配位子を有する金属錯体を用いた発光デバイスは、6位に炭素数4以上のアルキル基(t-ブチル基など)を有する8-キノリノラト構造を含む配位子を有する金属錯体を用いるよりも、駆動電圧の特に低い発光デバイスとすることが可能となることがわかった。
本実施例では、本発明の一態様の発光デバイス7、発光デバイス8および比較発光デバイス6について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000043
(発光デバイス7の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により70nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.05(=PCBBiF:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、PCBBiFを10nm蒸着した後、上記構造式(xii)で表されるN,N-ビス(4-ビフェニル)-6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf)を10nmとなるように蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(iii)で表される3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(iv)で表される2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=Bnf(II)PhA:3,10PCA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
こののち、上記構造式(vi)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、上記構造式(xiii)で表される2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mmtBumBPTzn)と上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)とを、重量比で1:1(=mmtBumBPTzn:Li-6mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、フッ化リチウムを1nmとなるように成膜して電子注入層115を形成し、最後に、アルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して発光デバイス7を作製した。なお、本実施例の発光デバイスは陽極101から光を取り出すボトムエミッション型の素子である。
(発光デバイス8の作製方法)
発光デバイス8は、発光デバイス7におけるLi-6mqを上記構造式(xiv)で表される6-メチル-8-キノリノラト-ナトリウム(略称:Na-6mq)に変えた他は発光デバイス7と同様に作製した。
(比較発光デバイス6の作製方法)
比較発光デバイス6は発光デバイス7におけるLi-6mqを、上記構造式(ix)で表される8-キノリノラト-リチウム(略称:Liq)に変えた他は発光デバイス7と同様に作製した。
発光デバイス7、発光デバイス8および比較発光デバイス6の素子構造を以下の表にまとめた。
Figure 2022008062000044
上記発光デバイス7、8および比較発光デバイス6を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間の熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス7、発光デバイス8および比較発光デバイス6の輝度-電流密度特性を図55に、電流効率-輝度特性を図56に、輝度-電圧特性を図57に、電流密度-電圧特性を図58に、外部量子効率-輝度特性を図59に、パワー効率-輝度特性を図60に、発光スペクトルを図61に示す。また、発光デバイス7、発光デバイス8および比較発光デバイス6の1000cd/m付近における主な特性を表16に示す。なお、輝度、CIE色度及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
Figure 2022008062000045
図55乃至図61及び表16より、本発明の一態様の発光デバイスである発光デバイス7および発光デバイス8、および比較発光デバイス6は、いずれも良好な特性を示す発光デバイスであることがわかった。特に6位にアルキル基を有する金属のキノリノール錯体を用いた発光デバイス7および発光デバイス8は、駆動電圧が低く、電流効率、パワー効率の良好な発光デバイスであることがわかった。また特にナトリウム金属を用いたキノリノール錯体を用いた発光デバイス8は、駆動電圧が低く、電流効率、パワー効率の良好な発光デバイスであることがわかった。
本実施例では、本発明の一態様の発光デバイス9乃至発光デバイス12について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000046
(発光デバイス9の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により55nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(i)で表されるN-(1,1’-ビフェニル-4-イル)-N-[4-(9-フェニル-9H-カルバゾール-3-イル)フェニル]-9,9-ジメチル-9H-フルオレン-2-アミン(略称:PCBBiF)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.05(=PCBBiF:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、PCBBiFを20nm蒸着した後、上記構造式(ii)で表されるN,N-ビス[4-(ジベンゾフラン-4-イル)フェニル]-4-アミノ-p-ターフェニル(略称:DBfBB1TP)を10nmとなるように蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(iii)で表される3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(iv)で表される2-(10-フェニル-9-アントラセニル)-ベンゾ[b]ナフト[2,3-d]フラン(略称:Bnf(II)PhA)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=Bnf(II)PhA:3,10PCA2Nbf(IV)-02)となるように25nm共蒸着して発光層113を形成した。
こののち、上記構造式(vi)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、上記構造式(xiii)で表される2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mmtBumBPTzn)と上記構造式(xv)で表される2-メチル-8-キノリノラト-リチウム(略称:Li-mq)とを、重量比で0.5:0.5(=mmtBumBPTzn:Li-mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、フッ化リチウムを1nmとなるように成膜して電子注入層115を形成し、最後に、アルミニウムを200nmとなるように蒸着することで陰極102を形成して発光デバイス9を作製した。
(発光デバイス10の作製方法)
発光デバイス10は、発光デバイス9における電子輸送層114に用いたLi-mqを上記構造式(xvi)で表される5-メチル-8-キノリノラト-リチウム(略称:Li-5mq)に変えた他は発光デバイス9と同様に作製した。
(発光デバイス11の作製方法)
発光デバイス11は発光デバイス9における電子輸送層114に用いたLi-mqを上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)に変え、その重量比を0.4:0.6(=mmtBumBPTzn:Li-6mq)とした他は発光デバイス9と同様に作製した。
(発光デバイス12の作製方法)
発光デバイス12は、発光デバイス9における電子輸送層114に用いたLi-mqを上記構造式(xvii)で表される7-メチル-8-キノリノラト-リチウム(略称:Li-7mq)に変えた他は発光デバイス9と同様に作製した。
発光デバイス9乃至発光デバイス12の素子構造を以下の表にまとめた。
Figure 2022008062000047
また、mmtBumBPTzn、Li-mq、Li-5mq、Li-6mqおよびLi-7mqの屈折率を図75に、また、456nmにおける屈折率を下表18に示す。測定は分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて行った。測定用試料には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図75には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
Figure 2022008062000048
この図75および表18から、mmtBumBPTznは、青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.68であり、1.50以上1.75以下の範囲だった。また、633nmにおける常光屈折率も1.64であり、1.45以上1.70以下の範囲に存在し、mmtBumBPTznは屈折率の低い材料であることがわかった。また、Li-mqは、青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.67から1.68と、1.45以上1.70以下の範囲にあり、また、633nmにおける常光屈折率も1.62で、1.40以上1.65以下の範囲にあり、屈折率の低い材料であることがわかった。また、Li-6mqは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.67と、1.45以上1.70以下の範囲にあり、また、633nmにおける常光屈折率も1.61で、1.40以上1.65以下の範囲にあり、屈折率の低い材料であることがわかった。また、Li-7mqは、青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.68から1.69と1.45以上1.70以下の範囲にあり、また、633nmにおける常光屈折率も1.63と、1.40以上1.65以下の範囲にあり、屈折率の低い材料であることがわかった。
ここで、Li-5mqの633nmにおける常光屈折率は1.65と、1.40以上1.65以下の範囲にあるが、青色発光領域(455nm以上465nm以下)全域での常光屈折率は1.71から1.72と1.70以上であり、Li-5mqは本実施例における他のLi錯体と比較すると屈折率の高い材料であることがわかる。しかし、電子輸送性を有する有機化合物であるmmtBumBPTznの青色発光領域における屈折率が1.68と低いことから、各々の屈折率を足して2で割った値が1.75以下となるため、Li-5mqを用いた発光デバイス10は十分に良好な特性を示す発光デバイスとなっている。
以上のことから発光デバイス9乃至発光デバイス12は、電子輸送層114の常光屈折率が、青色発光領域(455nm以上465nm以下)全域において1.50以上1.75未満の範囲にあり、また、633nmで1.45以上1.70未満の範囲にある発光デバイスとなることがわかる。
上記発光デバイス9乃至発光デバイス12を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間の熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス9乃至発光デバイス12の輝度-電流密度特性を図62に、電流効率-輝度特性を図63に、輝度-電圧特性を図64に、電流密度-電圧特性を図65に、外部量子効率-輝度特性を図66に、発光スペクトルを図67に示す。また、発光デバイス9乃至発光デバイス12の1000cd/m付近における主な特性を表19に示す。なお、輝度、CIE色度及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
Figure 2022008062000049
図62乃至図67及び表19より、本発明の一態様の発光デバイスである発光デバイス9乃至発光デバイス12は良好な特性を有する発光デバイスであることがわかった。
また、図65より、特に、Li-5mqを用いた発光デバイス10およびLi-6mqを用いた発光デバイス11は駆動電圧が低く良好な特性を有する発光デバイスであることがわかった。このように、リチウムの8-キノリノラト錯体に結合するメチル基が、リチウム原子またはキノリン骨格における窒素原子と離れた位置に存在することによって、駆動電圧の小さい発光デバイスを得ることができる。なお、Li-5mqは屈折率が比較的高い傾向にあるため、Li-6mqの方が外部量子効率が高く良好な特性を有する発光デバイスを得やすく、有用な材料である。本実施例はボトムエミッション構造を有する発光デバイスであるが、トップエミッション構造の発光デバイスが、屈折率が小さいことによる外部量子効率の向上効果が大きいため、Li-6mqはトップエミッション構造の発光デバイスに特に好適である。このように、6位に炭素数1乃至3のアルキル基を有する8-キノリノラト構造を含む配位子を有する金属錯体を用いた発光デバイスは、6位以外の置換位置にアルキル基を有する8-キノリノラト構造を含む配位子を有する金属錯体を用いるよりも、良好な特性を有する発光デバイスとすることが可能となることがわかった。
≪合成例4≫
本実施例では、本発明の一態様の金属錯体である3,6-ジメチル-8-キノリノラト-リチウム(略称:Li-3,6dmq)の合成方法について説明する。Li-3,6dmqの構造式を以下に示す。
Figure 2022008062000050
<ステップ1:8-ヒドロキシ-3,6-ジメチルキノリンの合成>
三口フラスコに6-アミノ-m-クレゾール 6.28g(51.0mmol)、1N 塩酸175mLを加え、100℃で30分攪拌した。この反応溶液に、メタクロレイン 5.36g(76.5mmol)(6.38mL)、エタノール15mLを混合させた溶液を1時間かけて滴下し、100℃で2時間加熱した。反応終了後、反応溶液を100℃で2時間加熱した。反応溶液にジクロロメタンを加えた後、10%水酸化ナトリウム水溶液、1N塩酸を用いて水層をpH7に調整した。溶液をろ過した後に有機層を取り出し、さらに水層をジクロロメタンで抽出した。そして、抽出溶液を有機層と合わせて水で洗浄し、有機層を硫酸マグネシウムで脱水後、濃縮して目的物を含んだ黒色固体を得た。
得られた固体をヘキサン:酢酸エチル=10:0からヘキサン:酢酸エチル=10:1に極性を変化させた展開溶媒を用いたシリカゲルカラムクロマトグラフィーにて精製した。この精製を計2回行い、目的物である白黄色固体4.3g(収率:49%)を得た。ステップ1の合成スキームを下に示す。
Figure 2022008062000051
<ステップ2:Li-3,6dmqの合成>
ステップ1で得られた8-ヒドロキシ-3,6-ジメチルキノリン2.00g(11.6mmol)、脱水テトラヒドロフラン(略称:THF)130mLを三口フラスコに入れ攪拌した。この溶液に、リチウムtert-ブトキシド(略称:tBuOLi)1MTHF溶液9.24mL(9.24mmol)を加え、室温で96時間攪拌した。この反応溶液を濃縮し、黄色固体を得た。この固体にアセトニトリルを加え超音波照射し、ろ過することで、黄色固体を得た。この洗浄操作を2回行った。ろ物としてLi-3,6dmqの黄色固体1.7g(収率100%)を得た。
得られた黄色固体1.65gを、圧力2.7Pa、330℃の条件で17時間、トレインサブリメーション法により昇華精製した。昇華精製後、目的物の黄色固体を収量1.40g、回収率84%で得た。
なお本合成で用いた原料であるメタクロレインは、アクロレインジエチルアセタールよりも安価な材料であった。そのため、8-ヒドロキシキノリン骨格の3位にメチル基が有るものの方が、無いものよりも安価に合成できると言える。つまりメタクロレインを用いて合成した8-ヒドロキシ-3,6-ジメチルキノリンを用いて合成する、本実施の一態様であるLi-3,6dmqなどのキノリノール錯体は、安価であり良好な材料と言える。
Figure 2022008062000052
得られた黄色固体の核磁気共鳴分光法(H-NMR)による分析結果を下に示す。この結果から、本実施例において、上述の構造式(200)で表される本発明の一態様である有機化合物Li-3,6dmqが得られたことがわかった。
NMR(DMSO-d6,300MHz):δ=2.23(s,3H),2.36(s,3H),6.17(s,1H),6.23(s,1H),7.69(s,1H),8.14(s,1H)。
Li-3,6dmqの脱水アセトン溶液における吸収スペクトルおよび発光スペクトルを測定した結果を図68に示す。吸収スペクトルは、紫外可視分光光度計((株)日本分光製 V550型)を用いて測定し、脱水アセトンのみを石英セルに入れて測定したスペクトルを差し引いて示した。また、発光スペクトルの測定には、蛍光光度計((株)日本分光製 FP-8600)を用いた。Li-3,6dmqの脱水アセトン溶液は376nmに吸収ピークが見られ、発光波長のピークは533nm(励起波長378nm)であった。
本実施例では、実施の形態で説明した本発明の一態様の有機金属錯体を用いた発光デバイスである発光デバイス13、発光デバイス14および既知の有機金属錯体を用いた発光デバイスである比較発光デバイス7について説明する。本実施例で用いた有機化合物の構造式を以下に示す。
Figure 2022008062000053
(発光デバイス13の作製方法)
まず、ガラス基板上に、酸化珪素を含むインジウム錫酸化物(ITSO)をスパッタリング法により70nmの膜厚で成膜して陽極101を形成した。なお、その電極面積は4mm(2mm×2mm)とした。
次に、基板上に発光デバイスを形成するための前処理として、基板表面を水で洗浄し、200℃で1時間焼成した後、UVオゾン処理を370秒行った。
その後、10-4Pa程度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において、170℃で30分間の真空焼成を行った後、基板を30分程度放冷した。
次に、陽極101が形成された面が下方となるように、陽極101が形成された基板を真空蒸着装置内に設けられた基板ホルダーに固定し、陽極101上に、蒸着法により上記構造式(xii)で表されるN,N-ビス(4-ビフェニル)-6-フェニルベンゾ[b]ナフト[1,2-d]フラン-8-アミン(略称:BBABnf)と電子アクセプタ材料(OCHD-001)とを、重量比で1:0.1(=BBABnf:OCHD-001)となるように10nm共蒸着して正孔注入層111を形成した。
正孔注入層111上に、BBABnfを20nm蒸着して正孔輸送層112を形成した。
続いて、正孔輸送層112上に、上記構造式(iii)で表される3,3’-(ナフタレン-1,4-ジイル)ビス(9-フェニル-9H-カルバゾール)(略称:PCzN2)を10nmとなるように蒸着して電子ブロック層を形成した。
その後、上記構造式(xviii)で表される9-(1-ナフチル)-10-[4-(2-ナフチル)フェニル]アントラセン(略称:αN-βNPAnth)と、上記構造式(v)で表される3,10-ビス[N-(9-フェニル-9H-カルバゾール-2-イル)-N-フェニルアミノ]ナフト[2,3-b;6,7-b’]ビスベンゾフラン(略称:3,10PCA2Nbf(IV)-02)とを、重量比で1:0.015(=αN-βNPAnth:3,10PCA2Nbf(IV)-02)となるように20nm共蒸着して発光層113を形成した。
こののち、上記構造式(vi)で表される2-[3’-(9,9-ジメチル-9H-フルオレン-2-イル)-1,1’-ビフェニル-3-イル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mFBPTzn)を10nmとなるように蒸着して正孔ブロック層を形成した後、上記構造式(xix)で表される2-[3-(2,6-ジメチル-3-ピリジニル)-5-(9-フェナントレニル)フェニル]-4,6-ジフェニル-1,3,5-トリアジン(略称:mPn-mDMePyPTzn)と上記構造式(vii)で表される6-メチル-8-キノリノラト-リチウム(略称:Li-6mq)とを、重量比で1:1(=mPn-mDMePyPTzn:Li-6mq)となるように20nm共蒸着して電子輸送層114を形成した。
電子輸送層114の形成後、上記構造式(ix)で表される8-キノリノラト-リチウム(略称:Liq)を1nmとなるように成膜して電子注入層115を形成し、最後に、アルミニウムを膜厚200nmとなるように蒸着することで陰極102を形成して発光デバイス13を作製した。なお、本実施例の発光デバイスは陽極101から光を取り出すボトムエミッション型の素子である。
(発光デバイス14の作製方法)
発光デバイス14は、発光デバイス13におけるLi-6mqを上記構造式(xx)で表される3,6-ジメチル-8-キノリノラト-リチウム(略称:Li-3,6dmq)に変えた他は発光デバイス13と同様に作製した。
(比較発光デバイス7の作製方法)
比較発光デバイス7は発光デバイス13におけるLi-6mqを、上記構造式(ix)で表される8-キノリノラト-リチウム(略称:Liq)に変えた他は発光デバイス13と同様に作製した。
発光デバイス13、発光デバイス14および比較発光デバイス7の素子構造を以下の表にまとめた。
Figure 2022008062000054
上記発光デバイス13、発光デバイス14および比較発光デバイス7を、窒素雰囲気のグローブボックス内において、発光デバイスが大気に曝されないようにガラス基板により封止する作業(UV硬化性のシール材を素子の周囲への塗布、発光デバイスには照射しないようにシール材のみにUVを照射する処理、大気圧下で80℃にて1時間の熱処理)を行った後、これら発光デバイスの初期特性について測定を行った。なお、封止を行ったガラス基板に、光取出し効率向上のための特別な措置は行っていない。
発光デバイス13、発光デバイス14および比較発光デバイス7の輝度-電流密度特性を図69に、電流効率-輝度特性を図70に、輝度-電圧特性を図71に、電流密度-電圧特性を図72に、外部量子効率-輝度特性を図73に、発光スペクトルを図74に示す。また、発光デバイス13、発光デバイス14および比較発光デバイス7の1000cd/m付近における主な特性を表21に示す。なお、輝度、CIE色度及び発光スペクトルの測定には分光放射計(トプコン社製、SR-UL1R)を用い、常温で測定した。
Figure 2022008062000055
図69乃至図74及び表21より、本発明の一態様の発光デバイスである金属錯体を用いた発光デバイス13および発光デバイス14は、いずれも駆動電圧が低く、発光効率が良好な発光デバイスであることがわかった。
また、特にLi-3,6dmqは、素子作製時の真空蒸着で、蒸着レート安定性が良く、良好な材料と言える。
≪参考合成例1≫
実施例1および実施例2において用いた2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ビス(3,5-ジ-tert-ブチルフェニル)-1,3,5-トリアジン(略称:mmtBumBP-dmmtBuPTzn)の合成方法について説明する。mmtBumBP-dmmtBuPTznの構造を以下に示す。
Figure 2022008062000056
<ステップ1:3-ブロモ-3’,5’-ジ-tert-ブチルビフェニルの合成>
三口フラスコに3,5-ジ-t-ブチルフェニルボロン酸1.0g(4.3mmol)、1-ブロモ-3-ヨードベンゼン1.5g(5.2mmol)、2mol/L炭酸カリウム水溶液4.5mL、トルエン20mL、エタノール3mLを加え、減圧下で撹拌することにより脱気した。さらにここへトリス(2-メチルフェニル)ホスフィン52mg(0.17mmol)、酢酸パラジウム(II)10mg(0.043mmol)を加え、窒素雰囲気下、80℃で14時間反応させた。反応終了後、トルエンによる抽出を行い、得られた有機層を硫酸マグネシウムを用いて乾燥させた。この混合物を自然ろ過し、得られたろ液をシリカゲルカラムクロマトグラフィー(展開溶媒:ヘキサン)にて精製することにより目的の白色固体1.0gを得た(収率:68%)。ステップ1の合成スキームを以下に示す。
Figure 2022008062000057
<ステップ2:2-(3’,5’-ジ-tert-ブチルビフェニル-3-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランの合成>
三口フラスコに3-ブロモ-3’,5’-ジ-tert-ブチルビフェニル1.0g(2.9mmol)、ビス(ピナコレート)ジボロン0.96g(3.8mmol)、酢酸カリウム0.94g(9.6mmol)、1,4-ジオキサン30mLを加え、減圧下で撹拌することにより脱気した。さらにここに2-ジシクロヘキシルホスフィノ-2’,6’-ジメトキシビフェニル0.12g(0.30mmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物0.12g(0.15mmol)を加え、窒素雰囲気下、110℃で24時間反応させた。反応終了後、トルエンによる抽出をおこない、得られた有機層を硫酸マグネシウムを用いて乾燥させた。この混合物を自然ろ過した。得られたろ液をシリカゲルカラムクロマトグラフィー(展開溶媒:トルエン)にて精製することにより、目的の黄色オイル0.89gを得た(収率:78%)。ステップ2の合成スキームを以下に示す。
Figure 2022008062000058
<ステップ3:2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ビス(3,5-ジ-tert-ブチルフェニル)-1,3,5-トリアジン(略称:mmtBumBP-dmmtBuPTzn)の合成>
三口フラスコに4,6-ビス(3,5-ジ-tert-ブチルフェニル)-2-クロロ-1,3,5-トリアジン0.8g(1.6mmol)、2-(3’,5’-ジ-tert-ブチルビフェニル-3-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン0.89g(2.3mmol)、リン酸三カリウム0.68g(3.2mmol)、水3mL、トルエン8mL、1,4-ジオキサン3mLを加え、減圧下で撹拌することにより脱気した。さらにここに酢酸パラジウム(II)3.5mg(0.016mmol)、トリス(2-メチルフェニル)ホスフィン10mg(0.032mmol)を加え、窒素雰囲気下12時間加熱還流した。反応終了後、酢酸エチルによる抽出を行い、得られた有機層を硫酸マグネシウムを用いて乾燥させた。この混合物を自然ろ過した。得られたろ液を濃縮し、シリカゲルカラムクロマトグラフィー(展開溶媒 酢酸エチル:ヘキサン=1:20)にて精製し、固体を得た。この固体をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=5:1から1:0に変化させた)にて精製した。得られた固体をヘキサンにて再結晶することにより、目的の白色固体を0.88g、収率76%で得た。ステップ3の合成スキームを以下に示す。
Figure 2022008062000059
得られた白色固体0.87gを、トレインサブリメーション法により昇華精製した。条件は、圧力5.8Pa、アルゴンガスを流しながら、230℃で固体を加熱した。昇華精製後、目的物の白色固体を0.82g、回収率95%で得た。
また、図36に上述した合成方法によって得られたmmtBumBP-dmmtBuPTznの屈折率を分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて測定した結果を示す。測定には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図36には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
この図36から、mmtBumBP-dmmtBuPTznは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.50以上1.75以下の範囲にあり、また、633nmにおける常光屈折率も1.45以上1.70以下の範囲にあり、屈折率の低い材料であることがわかった。
≪参考合成例2≫
実施例5において用いた2-{(3’,5’-ジ-tert-ブチル)-1,1’-ビフェニル-3-イル}-4,6-ジフェニル-1,3,5-トリアジン(略称:mmtBumBPTzn)の合成方法について説明する。mmtBumBPTznの構造を以下に示す。
Figure 2022008062000060
<ステップ1:3-ブロモ-3’,5’-ジ-tert-ブチルビフェニルの合成>
参考合成例1のステップ1と同様に合成した。
<ステップ2:2-(3’,5’-ジ-tert-ブチルビフェニル-3-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロランの合成>
参考合成例1のステップ2と同様に合成した。
<ステップ3:mmtBumBPTznの合成>
三口フラスコに4,6-ジフェニル-2-クロロ-1,3,5-トリアジン1.5g(5.6mmol)、2-(3’,5’-ジ-tert-ブチルビフェニル-3-イル)-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン2.4g(6.2mmol)、リン酸三カリウム2.4g(11mmol)、水10mL、トルエン28mL、1,4-ジオキサン10mLを加え、減圧下で撹拌することにより脱気した。さらにここに酢酸パラジウム(II)13mg(0.056mmol)、トリス(2-メチルフェニル)ホスフィン34mg(0.11mmol)を加え、窒素雰囲気下14時間加熱還流し、反応させた。反応終了後、酢酸エチルによる抽出を行い、得られた有機層の水を硫酸マグネシウムにて除去した。この混合物を自然ろ過して得られたろ液をシリカゲルカラムクロマトグラフィー(展開溶媒 クロロホルム:ヘキサン=1:5から1:3に変化させた)にて精製した後、ヘキサンにて再結晶することにより、目的の白色固体を2.0g得た(収率:51%)。ステップ3の合成スキームを下記式(b-1)に示す。
Figure 2022008062000061
得られた白色固体2.0gをトレインサブリメーション法により、アルゴンガス気流下、圧力3.4Pa、220℃の条件で昇華精製した。固体を加熱した。昇華精製後、目的物の白色固体を1.8g、回収率80%で得た。
なお、上記ステップ3で得られた白色固体の核磁気共鳴分光法(H-NMR)による分析結果を下に示す。この結果から、本合成例においてmmtBumBPTznが得られたことがわかった。
NMR(CDCl3,300MHz):δ=1.44(s,18H),7.51-7.68(m,10H),7.83(d,1H),8.73-8.81(m,5H),9.01(s,1H)。
また、図44にmmtBumBPTznの屈折率を分光エリプソメーター(ジェー・エー・ウーラム・ジャパン社製M-2000U)を用いて測定した結果を示す。測定には、石英基板上に各層の材料を真空蒸着法により約50nm成膜した膜を使用した。なお、図44には、常光線の屈折率であるn, Ordinaryと異常光線の屈折率であるn, Extra-ordinaryとを記載した。
この図44から、mmtBumBPTznは青色発光領域(455nm以上465nm以下)全域で常光屈折率が1.68であり、1.50以上1.75以下の範囲にある。また、633nmにおける常光屈折率も1.64であり、1.45以上1.70以下の範囲にあり、mmtBumBPTznは屈折率の低い材料であることがわかった。
101 陽極
102 陰極
103 EL層
111 正孔注入層
112 正孔輸送層
113 発光層
114 電子輸送層
115 電子注入層
116 電荷発生層
117 P型層
118 電子リレー層
119 電子注入バッファ層
400 基板
401 陽極
403 EL層
404 陰極
405 シール材
406 シール材
407 封止基板
412 パッド
420 ICチップ
501 陽極
502 陰極
511 第1の発光ユニット
512 第2の発光ユニット
513 電荷発生層
601 駆動回路部(ソース線駆動回路)
602 画素部
603 駆動回路部(ゲート線駆動回路)
604 封止基板
605 シール材
607 空間
608 配線
609 FPC(フレキシブルプリントサーキット)
610 素子基板
611 スイッチング用FET
612 電流制御用FET
613 陽極
614 絶縁物
616 EL層
617 陰極
618 発光デバイス
951 基板
952 電極
953 絶縁層
954 隔壁層
955 EL層
956 電極
1001 基板
1002 下地絶縁膜
1003 ゲート絶縁膜
1006 ゲート電極
1007 ゲート電極
1008 ゲート電極
1020 第1の層間絶縁膜
1021 第2の層間絶縁膜
1022 電極
1024W 陽極
1024R 陽極
1024G 陽極
1024B 陽極
1025 隔壁
1028 EL層
1029 陰極
1031 封止基板
1032 シール材
1033 透明な基材
1034R 赤色の着色層
1034G 緑色の着色層
1034B 青色の着色層
1035 ブラックマトリクス
1036 オーバーコート層
1037 第3の層間絶縁膜
1040 画素部
1041 駆動回路部
1042 周辺部
2001 筐体
2002 光源
2100 ロボット
2110 演算装置
2101 照度センサ
2102 マイクロフォン
2103 上部カメラ
2104 スピーカ
2105 ディスプレイ
2106 下部カメラ
2107 障害物センサ
2108 移動機構
3001 照明装置
5000 筐体
5001 表示部
5002 表示部
5003 スピーカ
5004 LEDランプ
5006 接続端子
5007 センサ
5008 マイクロフォン
5012 支持部
5013 イヤホン
5100 掃除ロボット
5101 ディスプレイ
5102 カメラ
5103 ブラシ
5104 操作ボタン
5150 携帯情報端末
5151 筐体
5152 表示領域
5153 屈曲部
5120 ゴミ
5200 表示領域
5201 表示領域
5202 表示領域
5203 表示領域
7101 筐体
7103 表示部
7105 スタンド
7107 表示部
7109 操作キー
7110 リモコン操作機
7201 本体
7202 筐体
7203 表示部
7204 キーボード
7205 外部接続ポート
7206 ポインティングデバイス
7210 表示部
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
9310 携帯情報端末
9311 表示パネル
9313 ヒンジ
9315 筐体

Claims (52)

  1. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記発光層は、発光材料を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送性を有する有機化合物の、前記発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75以下であり、
    前記アルカリ金属の金属錯体の、前記発光材料が発する光のピーク波長における常光屈折率が1.45以上1.70以下である発光デバイス。
  2. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記発光層は、発光材料を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送性を有する有機化合物の前記発光材料が発する光のピーク波長における常光屈折率と、前記アルカリ金属の金属錯体の前記発光材料が発する光のピーク波長における常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイス。
  3. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記発光層は、発光材料を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送層の前記発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75未満である発光デバイス。
  4. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送性を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75以下であり、
    前記アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.45以上1.70以下である発光デバイス。
  5. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送性を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、前記アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイス。
  6. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送層の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75未満である発光デバイス。
  7. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送性を有する有機化合物の633nmの光に対する常光屈折率が1.45以上1.70以下であり、
    前記アルカリ金属の金属錯体の633nmの光に対する常光屈折率が1.40以上1.65以下である発光デバイス。
  8. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送性を有する有機化合物の633nmの光に対する常光屈折率と、前記アルカリ金属の金属錯体の633nmの光に対する常光屈折率と、を足して2で割った数値が1.45以上1.70未満である発光デバイス。
  9. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、電子輸送性を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送層の633nmの光に対する常光屈折率が1.45以上1.70未満である発光デバイス。
  10. 請求項1乃至請求項9のいずれか一項において、
    前記電子輸送性を有する有機化合物と前記アルカリ金属の金属錯体が、どちらもアルキル基またはシクロアルキル基を有する発光デバイス。
  11. 請求項10において、
    前記電子輸送性を有する有機化合物の有するアルキル基が、分岐を有するアルキル基、または、炭素数3または4のアルキル基のいずれか一であり、
    前記アルカリ金属の金属錯体の有するアルキル基が炭素数1乃至3のアルキル基のいずれか一である発光デバイス。
  12. 請求項10において、
    前記電子輸送性を有する有機化合物の有するアルキル基がt-ブチル基であり、
    前記アルカリ金属の金属錯体の有するアルキル基がメチル基である発光デバイス。
  13. 請求項1乃至請求項12のいずれか一項において、
    前記電子輸送性を有する有機化合物のsp混成軌道で結合をつくっている炭素の割合が、当該有機化合物の総炭素数に対して10%以上60%以下である発光デバイス。
  14. 請求項1乃至請求項12のいずれか一項において、
    前記電子輸送性を有する有機化合物をH-NMRで測定を行った結果は、4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値を上回る発光デバイス。
  15. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記発光層は、発光材料を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記π電子不足型複素芳香環骨格を有する有機化合物の、前記発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75以下であり、
    前記アルカリ金属の金属錯体の、前記発光材料が発する光のピーク波長における常光屈折率は1.45以上1.70以下である発光デバイス。
  16. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記発光層は、発光材料を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記π電子不足型複素芳香環骨格を有する有機化合物の前記発光材料が発する光のピーク波長における常光屈折率と、前記アルカリ金属の金属錯体の前記発光材料が発する光のピーク波長における常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイス。
  17. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記発光層は、発光材料を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送層の前記発光材料が発する光のピーク波長における常光屈折率が1.50以上1.75未満である発光デバイス。
  18. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記π電子不足型複素芳香環骨格を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75以下であり、
    前記アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.45以上1.70以下である発光デバイス。
  19. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記π電子不足型複素芳香環骨格を有する有機化合物の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、前記アルカリ金属の金属錯体の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率と、を足して2で割った数値が1.50以上1.75未満である発光デバイス。
  20. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送層の455nm以上465nm以下の範囲におけるいずれかの波長の光に対する常光屈折率が1.50以上1.75未満である発光デバイス。
  21. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記π電子不足型複素芳香環骨格を有する有機化合物の633nmの光に対する常光屈折率が1.45以上1.70以下であり、
    前記アルカリ金属の金属錯体の633nmの光に対する常光屈折率が1.40以上1.65以下である発光デバイス。
  22. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記π電子不足型複素芳香環骨格を有する有機化合物の633nmの光に対する常光屈折率と、前記アルカリ金属の金属錯体の633nmの光に対する常光屈折率と、を足して2で割った数値が1.45以上1.70未満である発光デバイス。
  23. 陽極と、
    陰極と、
    前記陽極と前記陰極との間に位置するEL層と、を有し、
    前記EL層は、発光層と、電子輸送層と、を有し、
    前記電子輸送層は、π電子不足型複素芳香環骨格を有する有機化合物と、アルカリ金属の金属錯体と、を有し、
    前記電子輸送層の633nmの光に対する常光屈折率が1.45以上1.70未満である発光デバイス。
  24. 請求項15乃至請求項23のいずれか一項において、
    前記π電子不足型複素芳香環骨格を有する有機化合物と前記アルカリ金属の金属錯体が、どちらもアルキル基またはシクロアルキル基を有する発光デバイス。
  25. 請求項24において、
    前記π電子不足型複素芳香環骨格を有する有機化合物の有するアルキル基が、分岐を有するアルキル基、または、炭素数3または4のアルキル基のいずれか一であり、
    前記アルカリ金属の金属錯体の有するアルキル基が炭素数1乃至3のアルキル基のいずれか一である発光デバイス。
  26. 請求項24において、
    前記π電子不足型複素芳香環骨格を有する有機化合物の有するアルキル基がt-ブチル基であり、
    前記アルカリ金属の金属錯体の有するアルキル基がメチル基である発光デバイス。
  27. 請求項15乃至請求項26のいずれか一項において、
    前記π電子不足型複素芳香環骨格を有する有機化合物のsp混成軌道で結合をつくっている炭素の割合が、当該有機化合物の総炭素数に対する10%以上60%以下である発光デバイス。
  28. 請求項15乃至請求項26のいずれか一項において、
    前記π電子不足型複素芳香環骨格を有する有機化合物をH-NMRで測定を行った結果は、4ppm未満のシグナルの積分値が、4ppm以上のシグナルの積分値を上回る発光デバイス。
  29. 請求項27または請求項28において、
    前記π電子不足型複素芳香環骨格を有する有機化合物がトリアジン骨格またはジアジン骨格を有する発光デバイス。
  30. 請求項1乃至請求項29のいずれか一項において、
    前記金属錯体が、8-キノリノラト構造を含む配位子を有する金属錯体である発光デバイス。
  31. 請求項30において、
    前記金属錯体が一つまたは二つのアルキル基を有し、
    前記一つまたは二つのアルキル基は炭素数1乃至3のアルキル基である発光デバイス。
  32. 請求項1乃至請求項31のいずれか一項において、
    前記金属錯体が、リチウムの金属錯体である発光デバイス。
  33. 請求項1乃至請求項31のいずれか一項において、
    前記金属錯体が下記一般式(G0)で表される金属錯体である発光デバイス。
    Figure 2022008062000062

    (ただし、上記一般式(G0)において、Mはアルカリ金属、Rは炭素数1乃至3のアルキル基、Rは水素または炭素数1乃至3のアルキル基を表す。)
  34. 請求項33において、
    がメチル基である発光デバイス。
  35. 請求項1乃至請求項31のいずれか一項において、
    前記金属錯体が下記一般式(G1)乃至(G3)のいずれか一で表される金属錯体である発光デバイス。
    Figure 2022008062000063

    (ただし、上記一般式(G1)乃至(G3)において、RおよびRは各々独立に炭素数1乃至3のアルキル基を表す。)
  36. 請求項33乃至請求項35のいずれか一項において、
    がメチル基である発光デバイス。
  37. 請求項33乃至請求項35のいずれか一項において、
    がエチル基である発光デバイス。
  38. 請求項33乃至請求項37のいずれか一項において、
    前記Mがリチウムである発光デバイス。
  39. 請求項33乃至請求項37のいずれか一項において、
    前記Mがナトリウムである発光デバイス。
  40. 下記一般式(G0)で表される金属錯体。
    Figure 2022008062000064

    (ただし、上記一般式(G0)において、Mはアルカリ金属、Rは炭素数1乃至3のアルキル基、Rは水素または炭素数1乃至3のアルキル基を表す。)
  41. 請求項40において、
    がメチル基である金属錯体。
  42. 下記一般式(G1)乃至(G3)のいずれかで表される金属錯体。
    Figure 2022008062000065

    (ただし、上記一般式(G1)乃至(G3)において、RおよびRは各々独立に炭素数1乃至3のアルキル基を表す。)
  43. 請求項40乃至請求項42のいずれか一項において、
    がメチル基である金属錯体。
  44. 請求項40乃至請求項42のいずれか一項において、
    がエチル基である金属錯体。
  45. 請求項40乃至請求項44のいずれか一項において、
    前記Mがリチウムである金属錯体。
  46. 請求項40乃至請求項44のいずれか一項において、
    前記Mがナトリウムである金属錯体。
  47. 請求項40乃至請求項46のいずれかに記載の金属錯体を有する発光デバイス。
  48. 請求項40乃至請求項46のいずれかに記載の金属錯体を発光層と陰極との間に有する発光デバイス。
  49. 請求項40乃至請求項46のいずれかに記載の金属錯体を電子輸送層に有する発光デバイス。
  50. 請求項1乃至請求項39および請求項47乃至請求項49のいずれか一項に記載の発光デバイスと、センサと、操作ボタンと、スピーカまたはマイクと、を有する電子機器。
  51. 請求項1乃至請求項39および請求項47乃至請求項49のいずれか一項に記載の発光デバイスと、トランジスタ、または、基板と、を有する発光装置。
  52. 請求項1乃至請求項39および請求項47乃至請求項49のいずれか一項に記載の発光デバイスと、筐体と、を有する照明装置。
JP2021074649A 2020-04-28 2021-04-27 発光デバイス、金属錯体、発光装置、電子機器および照明装置 Pending JP2022008062A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020078826 2020-04-28
JP2020078826 2020-04-28
JP2020098260 2020-06-05
JP2020098260 2020-06-05
JP2020202413 2020-12-07
JP2020202413 2020-12-07

Publications (2)

Publication Number Publication Date
JP2022008062A true JP2022008062A (ja) 2022-01-13
JP2022008062A5 JP2022008062A5 (ja) 2024-05-08

Family

ID=78161403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021074649A Pending JP2022008062A (ja) 2020-04-28 2021-04-27 発光デバイス、金属錯体、発光装置、電子機器および照明装置

Country Status (5)

Country Link
US (1) US11889712B2 (ja)
JP (1) JP2022008062A (ja)
KR (1) KR20210133878A (ja)
CN (1) CN113571652A (ja)
TW (1) TW202147665A (ja)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017035A1 (ja) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. 透光性基板、その製造方法、有機led素子及びその製造方法
CN101855939B (zh) * 2007-11-09 2012-04-25 旭硝子株式会社 透光性基板、其制造方法、有机led元件及其制造方法
EP2352360B1 (en) * 2008-10-06 2021-09-15 AGC Inc. Substrate for electronic device, electronic device using same and method for producing same
WO2013051875A2 (ko) 2011-10-05 2013-04-11 주식회사 엘지화학 유기 발광 소자 및 이의 제조방법
US8969856B2 (en) * 2012-08-29 2015-03-03 General Electric Company OLED devices with internal outcoupling
GB201306365D0 (en) 2013-04-09 2013-05-22 Kathirgamanathan Poopathy Heterocyclic compounds and their use in electro-optical or opto-electronic devices
KR20160140393A (ko) * 2015-05-29 2016-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
CN107710441B (zh) * 2015-06-17 2020-10-16 株式会社半导体能源研究所 铱配合物、发光元件、显示装置、电子设备以及照明装置
KR20240047495A (ko) * 2015-07-21 2024-04-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
TWI804457B (zh) * 2015-07-23 2023-06-11 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,以及照明裝置
US10207992B2 (en) * 2015-10-30 2019-02-19 Semiconductor Energy Laboratory Co., Ltd. Dibenzocarbazole compound, light-emitting element, light-emitting device, display device, electronic device, and lighting device
US10388900B2 (en) * 2016-07-28 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
TW202400751A (zh) * 2016-09-14 2024-01-01 日商半導體能源研究所股份有限公司 有機化合物、發光元件、發光裝置、電子裝置及照明設備
US10270039B2 (en) * 2016-11-17 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR20220003140A (ko) 2017-05-19 2022-01-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 전자 디바이스, 발광 장치, 전자 기기, 및 조명 장치
US20200216428A1 (en) * 2017-08-10 2020-07-09 Semiconductor Energy Laboratory Co., Ltd. Organic Compound, Light-Emitting Element, Light-Emitting Device, Electronic Apparatus, and Lighting Device
WO2019053559A1 (ja) 2017-09-12 2019-03-21 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
CN111279505B (zh) * 2017-10-27 2024-04-09 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
CN111656549A (zh) * 2017-11-02 2020-09-11 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
DE102020117123A1 (de) 2019-07-05 2021-01-07 Semiconductor Energy Laboratory Co., Ltd. Material für lochtransportschicht, material für lochinjektionsschicht, organische verbindung, licht emittierende vorrichtung, licht emittierende einrichtung, elektronisches gerät und beleuchtungsvorrichtung

Also Published As

Publication number Publication date
US20210336176A1 (en) 2021-10-28
US11889712B2 (en) 2024-01-30
TW202147665A (zh) 2021-12-16
CN113571652A (zh) 2021-10-29
KR20210133878A (ko) 2021-11-08

Similar Documents

Publication Publication Date Title
JP7035249B2 (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2022105587A (ja) 有機化合物
JPWO2019220276A1 (ja) 有機化合物、発光素子、発光装置、電子機器、照明装置および電子デバイス
JP2022008036A (ja) アリールアミン化合物、正孔輸送層用材料、正孔注入層用材料、発光デバイス、発光装置、電子機器および照明装置
JP2021176198A (ja) 発光デバイス用材料、電子輸送層用材料、有機化合物、発光デバイス、発光装置、電子機器および照明装置
JP2024028480A (ja) 有機化合物および発光素子
WO2022034413A1 (ja) 発光デバイス、発光装置、表示装置、電子機器、照明装置
JPWO2019021146A1 (ja) 有機化合物、発光素子、発光装置、電子機器および照明装置
KR102656004B1 (ko) 호스트 재료용 안트라센 화합물, 발광 디바이스, 발광 장치, 전자 기기, 및 조명 장치
JP2022104835A (ja) 有機半導体デバイス、有機elデバイス、フォトダイオードセンサ、表示装置、発光装置、電子機器および照明装置
JP2022044036A (ja) 発光デバイス、発光装置、電子機器および照明装置
JP2021095397A (ja) 有機化合物、光デバイス、発光デバイス、発光装置、電子機器および照明装置
JPWO2020109927A1 (ja) Elデバイス用組成物
WO2022003481A1 (ja) 発光デバイス、発光装置、電子機器および照明装置
WO2022003491A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器および照明装置
WO2022053905A1 (ja) 有機金属錯体、発光デバイス、発光装置、電子機器、および照明装置
WO2022090863A1 (ja) 有機化合物、キャリア輸送用材料、ホスト用材料、発光デバイス、発光装置、電子機器および照明装置
WO2022137033A1 (ja) 有機金属錯体、発光デバイス、発光装置、電子機器、および照明装置
WO2021234491A1 (ja) 有機化合物、発光デバイス、発光装置、電子機器、表示装置、照明装置
JP2022008062A (ja) 発光デバイス、金属錯体、発光装置、電子機器および照明装置
WO2021161127A1 (ja) 有機化合物、発光デバイス、電子デバイス、電子機器、発光装置および照明装置
JP2021028323A (ja) 有機化合物、発光デバイス、発光装置、電子機器および照明装置
JP2022075567A (ja) 発光デバイス、発光装置、電子機器、表示装置、照明装置
JP2021063065A (ja) 有機化合物、発光デバイス、発光装置、電子機器および照明装置
KR20220044658A (ko) 발광 디바이스, 에너지 도너 재료, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240425