WO2022018376A2 - Formulation écobiologique, compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires - Google Patents

Formulation écobiologique, compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires Download PDF

Info

Publication number
WO2022018376A2
WO2022018376A2 PCT/FR2021/051353 FR2021051353W WO2022018376A2 WO 2022018376 A2 WO2022018376 A2 WO 2022018376A2 FR 2021051353 W FR2021051353 W FR 2021051353W WO 2022018376 A2 WO2022018376 A2 WO 2022018376A2
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous phase
osmotic pressure
derivatives
mosm
composition
Prior art date
Application number
PCT/FR2021/051353
Other languages
English (en)
Other versions
WO2022018376A3 (fr
Inventor
Jean-Noël THOREL
Original Assignee
Naos Institute Of Life Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Naos Institute Of Life Science filed Critical Naos Institute Of Life Science
Publication of WO2022018376A2 publication Critical patent/WO2022018376A2/fr
Publication of WO2022018376A3 publication Critical patent/WO2022018376A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/345Alcohols containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/062Oil-in-water emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • A61K8/365Hydroxycarboxylic acids; Ketocarboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/44Aminocarboxylic acids or derivatives thereof, e.g. aminocarboxylic acids containing sulfur; Salts; Esters or N-acylated derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/606Nucleosides; Nucleotides; Nucleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/67Vitamins
    • A61K8/676Ascorbic acid, i.e. vitamin C
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/08Anti-ageing preparations

Definitions

  • the invention relates to a so-called ecobiological formulation, isotonic therefore compatible with cell life, usable in the cosmetic, dermopharmaceutical or veterinary fields, not using mineral salts (also called inorganic salts) at a concentration greater than 0, 1% by weight.
  • mineral salts also called inorganic salts
  • the cosmetic formulations present on the market containing at least one aqueous phase are always produced in such a way that the final product has a viscosity that can be used in cosmetics, excellent stability over time and an absence of toxicity; nevertheless, these formulas do not seek, and are not interested in achieving isotonicity with respect to skin cells.
  • the stimuli At too low or too high osmotic pressures, the stimuli generate massive disturbances of the cutaneous barrier effect, similar to what is reported during exposure to irritating substances or haptens: stimulation of the synthesis of cytokines IL1 alpha, IL1 beta, TNF alpha, etc. (Shapiro L & Dinarello C., Exp. Cell Res. 1997, 231: 354-362; Terunuma A. et al., J. Dermatol. Sci. 2001 , 26: 85-93) which can ultimately lead to cell death.
  • compositions have contents of mineral salts that are incompatible with an emulsified cosmetic oily phase and cannot make it possible to produce a stable simple cosmetic emulsion (of the water-in-oil or oil-in-water type), as the examples of the present invention will show.
  • emulsions called double emulsions are known to those skilled in the art to make it possible to convey, in the internal phase of the double emulsion, salts making it possible to obtain isotonicity of the internal phase and of the external phase. These are therefore 2 distinct aqueous phases.
  • These emulsions are complex to produce, require production in several stages, contain large quantities of emulsifiers themselves very irritating to the skin, crosslinkable chemical polymers in the oily phase and/or large quantities of mineral salts.
  • These emulsions are described for example in documents WO 2009/003960 or FR 2 820 976, WO 03/074010 or WO 2004/065463.
  • Emulsions based on fluoroalkanes are also known as in document WO 2012/093113, in which the aqueous phase is produced so as to be isotonic.
  • the emulsions made with these fluoroalkanes are very special: they are made with molecules that are not intended to be applied on the skin and for use in cosmetics, and which are toxic to the environment.
  • compositions comprising inorganic osmolytes. No concentration of these ingredients is mentioned. It is mentioned that these formulas are inspired by isotonic rehydration solutions (XP055793483) or else contain osmotic active principles (XP55793494) or have a naturally isotonic aqueous phase but in no case do these documents describe an isotonic composition after emulsification. Finally, nothing indicates that the aqueous phase is biocompatible within the meaning of the invention as will be seen below.
  • a technical problem to be solved by the present invention consists in finding a so-called isotonic ecobiological topical formulation, compatible with cellular life, which does not have the above drawbacks.
  • a technical problem to be solved by the present invention consists in finding a so-called isotonic ecobiological topical formulation, compatible with cellular life, which has a viscosity compatible with cosmetic, dermopharmaceutical or veterinary use, stable over time at temperatures compatible with cosmetic, dermopharmaceutical or veterinary use.
  • Yet another technical problem to be solved by the present invention consists in finding a so-called isotonic ecobiological topical formulation, compatible with cellular life, which has a viscosity compatible with cosmetic use, comprising an aqueous phase and an oily phase, allowing the formation of a stable cosmetic product.
  • stable cosmetic product in the description and the claims indifferently means a formulation or a composition cosmetic, dermopharmaceutical or veterinary which is stable at different temperatures and in particular does not generate any phenomenon of irritation or sensitization when used on the area to be treated.
  • Yet another technical problem to be solved by the present invention consists in finding a so-called isotonic ecobiological topical formulation, compatible with cellular life, which has a viscosity compatible with cosmetic use, comprising an aqueous phase and an oily phase, allowing the formation of a stable cosmetic product, which can be prepared according to a simple, inexpensive manufacturing method that can be used on an industrial scale.
  • the invention makes it possible to guarantee the good osmocompatibility of the formulas with the cells of the skin, in particular the keratinocytes.
  • the present invention provides an ecobiological topical composition
  • an ecobiological topical composition comprising: a) an oily phase containing one or more lipophilic or liposoluble ingredients; b) a biocompatible aqueous phase comprising at least one or more hydrophilic or water-soluble ingredients used at advantageously non-cytotoxic concentrations and at least one organic and, where appropriate, inorganic, water-soluble osmolyte.
  • the composition is characterized in that the concentration of organic osmolyte, and optionally inorganic in the aqueous phase is such that after emulsification, the aqueous phase has an osmotic pressure in a predetermined osmotic pressure range, and in that that it contains a maximum of 0.1% by weight of inorganic osmolytes relative to the total weight of the composition, that is to say of inorganic salts or mineral material(s).
  • the emulsion is stable for at least 3 months at 20° C., 40° C. and 50° C.
  • the ecobiological composition is perfectly well tolerated during its use.
  • biocompatible aqueous phase means the fact that the aqueous phase and the aqueous phase of the emulsion do not lyse and are compatible with keratinocytes in particular, which are the first cells encountered by the aqueous phase of the emulsion when it is applied to the skin.
  • the aqueous phase is considered to be biocompatible when the cell viability test as described below is optimal or acceptable.
  • non-cytotoxic concentration means the maximum concentration of an ingredient at which the ingredient does not cause cytotoxicity of keratinocytes. This cellular toxicity is measured by an MTT test described in detail in the examples of the invention. Briefly, normal human keratinocytes are cultured in a culture medium of the KGM type (Lonza), then after adhesion are brought into contact for 24 hours with the substances to be tested. The concentrations of the substances tested for which the viability is greater than 80% of the KGM control alone will be considered as “non-cytotoxic”.
  • biodefined water means water which is characterized by its pH between 5.0 and 8.0, its resistivity between 12.5 and 12,500 Ohms. cm and its redox potential comprised between 10 and 29. According to a variant embodiment, the resistivity is comprised between 80 and 8000 Ohms. cm.
  • deionized or “demineralized” or “source” water or resulting from a “production process for injectable water” is not biodefined water within the meaning of the 'invention.
  • the term "measured osmotic pressure of the aqueous phase” means the measured osmotic pressure of the aqueous phase after homogenization of the ingredients constituting it and before emulsification.
  • the term "theoretical osmotic pressure of the aqueous phase" means the osmotic pressure theoretical of the aqueous phase obtained by calculation from the theoretical osmotic pressure of each of the ingredients constituting it.
  • osmotic pressure of the aqueous phase after emulsification means the osmotic pressure measured on the aqueous phase of an emulsion, obtained after centrifugation at very high speed, by example at a centrifugation value of 20,000 g for 45 minutes, or any other method of physical or biomechanical separation known to those skilled in the art, of an emulsion already produced with said biocompatible aqueous phase and the oily phase, followed by the recovery of this aqueous phase separated from the oily phase in the centrifugation tube.
  • a first approximation of the osmotic pressure of the aqueous phase is carried out during the preparation of the phases of the emulsion, by measuring this osmotic pressure after homogenization of the phase bringing together the hydrophilic compounds of the aqueous phase. before the emulsification step. But this approximation is not sufficient because after emulsification and cooling with stirring, additions of heat-sensitive compounds are sometimes made at the end of the formulation including hydrophilic compounds which also have an impact on the osmotic pressure of the aqueous phase.
  • the invention therefore consists in also measuring the osmotic pressure of the aqueous phase after separation of the emulsion, and depending on the result obtained, in adjusting the composition of the aqueous phase before emulsion to obtain the target osmotic pressure in the aqueous phase of the final composition.
  • biocompatible water-soluble organic osmolyte acting on the value of the osmotic pressure means a water-soluble organic osmolyte chosen from one or more of the following ingredients: a) a sugar, for example chosen from oses such as glucose, erythrose, threose, erythrulose, ribose, arabinose, xylose, xylulose, galactose, mannose, tagatose, fucose, rhamnose, fructose, etc., or from saccharides such as sucrose, lactose, maltose , threalose, galactose, etc ...
  • oses such as glucose, erythrose, threose, erythrulose, ribose, arabinose, xylose, xylulose, galactose, mannose, tagatose, fucose, rhamnose, fructos
  • a polyol for example chosen from maltitol, mannitol, threitol, erythritol, galactitol, xylitol, arabitol, ribitol, sorbitol, dulcitol, maltitol, isomaltitol, lactitolpropanediol, butanediol, glycerol, pentylene glycol, hexanediol, caprylyl glycol, etc, their salts and their derivatives; c) an amino acid such as serine, threonine, methionine, cysteine, lysine, arginine, histidine, taurine, hypotaurine, proline, hydroxypro
  • an amino acid such as serine, threonine, methionine, cysteine, lysine, arginine, histidine, taurine, hypotaurine, proline, hydroxypro
  • nucleotide or a nucleoside of low molecular mass their salts and their derivatives
  • organic acid for example glycolic, lactic, citric, butyric, benzoic acid, gluconic, glucuronic, malic, tartaric, etc., their salts and their derivatives
  • another low molecular weight substance naturally present on the skin for example urea, PCA, pyruvic acid, urocanic acid, citric acid etc, their salts and their derivatives
  • a molecular weight low enough to maintain the water-soluble nature of the osmolyte and to generate an osmotic pressure strong enough for the aqueous phase of the formula can reach osmotic pressures close to 300 mOsm.l-1 at concentrations used below 10% w/w of the formula and even more preferably below 6% w/w of the formula.
  • said composition is characterized in that the oily phase comprises at least one oil, by nature soluble in the oily phase, chosen from the group comprising castor, rapeseed or canola, shea, sunflower, sweet almond, jojoba, soybean, rice, wheat, corn, grapeseed, olive, hazelnut, black currant, meadowfoam, camellia, mango, apricot, tiger nuts, evening primrose, borage, flax, coconut, their waxes and their derivatives, the unsaponifiables of olive oil, avocado, soya and their derivatives, petrolatum, mineral oils, their waxes and their derivatives, alone or as a mixture.
  • this concentration of at least one oil, soluble(s) in the oily phase is between 1% and 40% by weight relative to the total weight of the composition.
  • said composition is characterized in that the oily phase comprises one or more other ingredient(s) used at their non-cytotoxic concentration, soluble(s) in the oily phase.
  • the non-cytotoxic concentration of each ingredient of the oily phase is determined by a cytotoxicity test well known to those skilled in the art, in particular with respect to skin cells such as keratinocytes for example.
  • this concentration of one or more other ingredient(s) soluble in the oily phase is between 0.1% and 10% by weight relative to the total weight of the composition.
  • these ingredients which are soluble in the oily phase are chosen from sunscreens such as: zinc oxide, titanium dioxide, triazines, triazones, imidazoles and their derivatives, butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexyl benzoate, ethylexyl methoxycrylene, ethylhexyl salicylate, homosalate, octocrylene, tris(tetramethylhydroxypiperidinol) citrate.
  • sunscreens such as: zinc oxide, titanium dioxide, triazines, triazones, imidazoles and their derivatives, butyl methoxydibenzoylmethane, diethylamino hydroxybenzoyl hexyl benzoate, ethylexyl methoxycrylene, ethylhexyl salicylate, homosalate, octocrylene, tris(te
  • said composition is characterized in that emulsifiers are used in order to carry out the emulsification step.
  • concentration of one or more emulsifiers is between 0.1% and 10% by weight relative to the total weight of the composition.
  • said composition is characterized in that the biocompatible aqueous phase comprises biodefined water and that the aqueous phase is adjusted to an osmotic pressure compatible with the osmotic pressure of the skin, that is to say between 100 and 500 mosm.l- 1.
  • the osmotic pressure of the aqueous phase is between 200 and 400 mosm.l-1, According to a particular embodiment of the invention, said composition is characterized in that the organic and optionally inorganic osmolyte (the latter being at a maximum concentration of 0.1% by weight) is at a concentration equal to or greater than 0.05% by weight relative to the final weight of the composition. According to another embodiment variant, the osmolyte comprises a sugar, in particular glucose.
  • the concentration of organic and, where appropriate, inorganic osmolytes naturally depends on the nature of the osmolyte(s) used and will generally be included. between 0.05% by weight and 10% by weight relative to the final weight of the composition. According to another variant, the concentration of organic and, where appropriate, inorganic osmolyte (the latter being at a maximum concentration of 0.1% by weight) is between 0.05% and 5% by weight relative to the final weight of the composition.
  • the concentration in the oily phase is between 1% and 40% by weight relative to the final weight of the composition.
  • a non-cytotoxic biocompatible ingredient, soluble in the oily phase is chosen from the group comprising: tocopherols, tocotrienols, their esters and their derivatives; retinol, retynaldehyde, retinoic acid and their derivatives; vitamins D and K and their derivatives; sphingosines, ceramides, their esters and derivatives; lanolin, panthenol, bisabolol, squalane, squalene, beeswax and its derivatives; piroctone olamine, alantoin, sterols and phytosterols, their derivatives and their esters; esters of amino acids or of lactic, malic, tartaric or salicylic acids; these compounds are used alone or as a mixture.
  • the concentration of one or more of these non-cytotoxic biocompatible ingredients, soluble in the oily phase is between 0.1% and 10% by weight relative to the
  • the concentration in the biocompatible aqueous phase is between 60% by weight and 98% by weight relative to the final weight of the composition.
  • the water-soluble ingredient(s) are chosen from the biocompatible water-soluble cosmetic ingredient(s) well known to those skilled in the art, for example: fructo-oligosaccharides, dextran, hyaluronic acid, their salts and derivatives; amino acids and peptides, their esters and derivatives; dihydroxyacetone, PCA, urea, myricetin, hesperitin, esperidine, rutin, glycyrrhyetinic acid, their salts and their derivatives; bachukiol, climbazole, carnosine, propyl gallate; ascorbic and salicylic acids, their salts and water-soluble derivatives; these compounds are used alone or as a mixture.
  • the concentration of one or more water-soluble ingredients used is a non-cytotoxic concentration determined by a cytotoxicity test against skin cells, for example against -to keratinocytes.
  • concentration of one or more water-soluble cosmetic ingredients may be between 0.1% and 40%, by weight relative to the total weight of the composition, in particular between 1% and 20% by weight of the composition.
  • the viscosity of the composition of the invention is between 300 and 400,000 cps, measured using an MCR102 rheometer/viscometer from Anton Paar or DV2T from Brookfield.
  • each of the lipophilic or fat-soluble and hydrophilic or water-soluble ingredients is used at a non-cytotoxic concentration.
  • the present invention also covers a cosmetic care process, characterized in that it comprises the selection of at least one area of the skin in need of cosmetic care, for example the appeasement of atopic skin, the reduction of acne symptoms, hydration, a sun protection effect, an anti-wrinkle effect, and the application to the areas of the skin in such need of care, of an effective amount of a composition according to the invention to obtain said cosmetic care.
  • a cosmetic care process characterized in that it comprises the selection of at least one area of the skin in need of cosmetic care, for example the appeasement of atopic skin, the reduction of acne symptoms, hydration, a sun protection effect, an anti-wrinkle effect, and the application to the areas of the skin in such need of care, of an effective amount of a composition according to the invention to obtain said cosmetic care.
  • this cosmetic care will be a cosmetic care aimed at moisturizing and increasing the barrier effect of the epidermis or of the upper parts of the skin.
  • this cosmetic treatment will be a cosmetic treatment aimed at reducing or eliminating the cutaneous manifestations of the epidermis or of the upper parts of the skin which may appear during sensitivities or cutaneous pathologies.
  • the invention also relates to a process for preparing the composition as described above and according to which: a) the aqueous phase is prepared, b) the said aqueous phase is homogenized, c) a sample of the phase is taken aqueous (sample 1), d) the osmotic pressure of sample 1 is measured (osmotic pressure measured
  • the osmolytic composition of the rest of the aqueous phase is adjusted, to reach a theoretical osmotic pressure of the rest of the aqueous phase within a predetermined range, advantageously between 100 and 500 mosm.l-1, preferably d approximately 300 mosm.l-1
  • the oily phase is prepared, g) the oily phase is emulsified with the remainder of the aqueous phase, h) after emulsification, the aqueous and oily phases are separated and a sample of the phase is taken aqueous (sample 2), i) the osmotic pressure of sample 2 is then measured (osmotic pressure measured 2), j) then, in the event that the measured osmotic pressure value 2 is not within the predetermined osmotic pressure range, advantageously between 100 and 500 mosm.l-1, preferably approximately 300 mosm.l -1 , a new formulation test is carried out starting at step a
  • steps a are repeated. have. until obtaining a measured osmotic pressure of the aqueous phase after separation of the emulsion comprised within the predetermined osmotic pressure range, advantageously comprised between 100 and 500 mosm.l-1 , preferably approximately 300 mosm.l-1 .
  • the method of the invention comprises an additional step of measuring the cell viability of normal human keratinocytes with respect to the aqueous phase after separation of the emulsion (sample 2) from step h. above.
  • normal human keratinocytes derived from primary cultures of foreskins are cultured in a complete culture medium of the KGM type (Lonza).
  • the cell culture is seeded in 96-well plates at 20,000 cells per well. After adhesion, the aqueous phase separated after emulsification to be tested is placed in contact with the cells for 24 hours.
  • the measurement of the cell viability of the aqueous phase is advantageously carried out according to the so-called “MTT” method.
  • the MTT test is a colorimetric method for detecting mitochondrial activity which makes it possible to evaluate the cellular compatibility power of a constituent. It is based on the reduction of the yellow tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) into a purple formazan precipitate, dissolved in DMSO and then assayed by measuring the density optical at 540nm.
  • MTT yellow tetrazolium dye 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
  • the results are expressed as a percentage of cell viability compared to an untreated control.
  • Cellular viability is optimal when it is between 80% and 120% of the KGM control alone; acceptable when it is between 50 and 80% of the KGM control and unacceptable when it is less than 50% of the KGM control.
  • Cosmetic composition according to the invention in the form of an emulsion, comprising an oily phase and an aqueous phase, having a soothing effect
  • Control 1T is the starting point formulation; in formulations 1A to 1J, the constituents used in 1T do not vary but other compounds are added while the water is removed in the same proportion: a) Aqueous phase:
  • Oily phase its composition does not vary and it consists of:
  • a sample of the aqueous phase of each formulation is taken and its osmotic pressure is measured using a LéserTM TYP6 Osmometer from Fisher Scientific allowing its determination by measuring the freezing point (duration of the analysis approximately 3 minutes).
  • the value obtained for the 1T sample is 50 mOsm.l-1. It is not compatible with the cellular life of cutaneous keratinocytes.
  • the osmolytes used in this example are inorganic salts (such as NaCl or Na2P04) or organic molecules (such as glucose and/or glycerol).
  • the two phases are heated to 60° C. then one of the phases is introduced into the other with vigorous stirring (Ultraturrax® type stirrer), the formulation thus produced then being placed to cool gradually under slower agitation (three-blade type agitator).
  • the emulsion is separated by centrifuging it at 20,000 g for 45 minutes; the aqueous phase separated from the oily phase is sampled and then its osmotic pressure is analyzed (LéserTM TYP6 Osmometer from Fisher Scientific) by determining the freezing point (duration of the analysis approximately 3 minutes). The value is given in mOsm.kg-1 of water or mOsm.l-1.
  • Cell viability The preparations described in the table above are studied for their action on cell viability of normal human keratinocytes. Briefly, normal human keratinocytes obtained from primary foreskin cultures are cultured in a complete culture medium of the KGM type (Lonza). The cell culture is seeded in 96-well plates at 20,000 cells per well. After adhesion, the aqueous phase separated after emulsification is placed in contact with the cells for 24 hours. The cell viability is evaluated using the MTT test (yellow dye metabolized by mitochondrial enzymes into a blue compound called formazan, which is solubilized in DMSO and then assayed by measuring the optical density at 540 nm).
  • MTT test yellow dye metabolized by mitochondrial enzymes into a blue compound called formazan, which is solubilized in DMSO and then assayed by measuring the optical density at 540 nm.
  • the cell viability is noted “+” when it is between 80% and 120% of the KGM control alone; it is noted “+/-” when it is between 50 and 80% of the KGM control and noted “-” when it is less than 50% and "--" when it is less than 20% of the KGM control .
  • the emulsions produced are left to cool at 20° C. for at least 48 hours. After this period, the viscosity is measured using an MCR102 rheometer/viscometer from Anton Paar or DV2T from Brookfield. The viscosity is considered suitable when the value is between 300 and 400,000 centipoise or cps (noted “+” in the table of results). Below this value, the emulsion is considered not to have a viscosity allowing it to be used in an acceptable way for conventional cosmetic applications (noted "-" in the table of results)
  • the emulsions produced are placed in ovens at 20° C., 40° C. and 50° C. for a period of 1 week to 3 months. They are regularly observed and will be considered as stable (noted “+” in the table of results) when no phase shift is observed for 3 months at these different temperatures. If they dephase before a month or 3 months at these temperatures, they will be considered as unstable (respectively denoted “-” and “-”). If after 3 months at these temperatures, a very slight syneresis is observed, the stability will be considered as an acceptable limit (noted “+/-”).
  • Example 1 A, 1 G, 1 H, and 11 are capable of exerting all the effects expected from the products of the invention.
  • the control formulation T used and the other formulations are not acceptable.
  • ⁇ the osmotic pressures of the aqueous phase after emulsification o less than 100 mOsm.l-1 and greater than 500 mOsm.l-1 do not respect cell life. o between 100 and 200 mOsm.l-1 or between 400 and 500 mOsm.l-1 can be considered acceptable for cell life. o between 300 and 400 mOsm.l-1 will be considered ideal for cell life.
  • the rate of 0.1% of inorganic salts is the maximum rate tolerated to maintain the stability of the formula, beyond this threshold, the formulation loses its viscosity and its stability.
  • Example 2 according to the invention limit in the use of mineral salts
  • Cosmetic composition according to the invention in the form of an emulsion, comprising an oily phase and an aqueous phase, exhibiting a moisturizing effect.
  • Aqueous phase [0079] Aqueous phase:
  • the cosmetic composition is produced by following the manufacturing protocol of Example 1. It is called “Control” of Example 2.
  • a certain number of other formulations are made from the composition of the Control formulation.
  • To its aqueous phase is added one of the following inorganic or organic osmolytes (described in the table below), at the mass concentration (% by weight/weight) indicated.
  • the formulas are monitored for stability for 3 months at 45°C.
  • “Stable” denotes a formula that does not exhibit any visible destabilization after 3 months at 45° C.
  • “Unstable” denotes a formula exhibiting instability (phase shift) visible after 3 months or less than 3 months at 45° C.
  • Example 3 osmotic pressure generated by inorganic and organic osmolytes
  • Cosmetic composition according to the invention in the form of an emulsion, comprising an oily phase and an aqueous phase, having a soothing effect
  • osmolytes described in the tables below are added to the aqueous phase of the emulsion at the mass concentrations (% weight/weight) indicated; the osmotic pressure generated by the osmolyte studied is measured by following the protocol described in example 1, the values obtained are indicated below.
  • the organic osmolytes can be used and make it possible to obtain the target osmotic pressure in the aqueous phase of the formulation of the invention
  • the osmotic pressure must be carefully adjusted with osmolytes used in the appropriate concentration in the aqueous phase, in order to be able to obtain an osmotic pressure compatible with cellular life.
  • normal human keratinocytes obtained from primary foreskin cultures are cultured in a complete culture medium of the KGM type (Lonza).
  • the cell culture is seeded in 96-well plates at 20,000 cells per well. After adhesion, each aqueous phase to be tested is placed in contact with the cells for 24 hours.
  • the cell viability is evaluated using the MTT test (yellow dye metabolized by mitochondrial enzymes into a blue compound called formazan, which is solubilized in DMSO and then assayed by measuring the optical density at 540 nm).
  • the cell viability is rated “+” when it is between 80% and 120% of the KGM control alone; it is noted “+/-” when it is between 50 and 80% of the KGM control and noted “-” when it is less than 50% and "--" when it is less than 20% of the KGM control .
  • the appearance of the keratinocytes is observed by optical microscopy (magnifications x20 and x50). It is noted “+” when the cells have a similar appearance from that obtained with the KGM control (dense and homogeneous appearance), it is noted “+/-” when the cells are still present but their shape is no longer regular or when vacuoles are observable; it is noted “-” when the cells have not resisted and are lysed.
  • Cell viability and cell morphology are highly dependent on osmotic pressure: overall they are good between 200 and 400 mOsmol.l-1, they are acceptable between 100 and 200 then between 400 and 500 mOsmol.l-1. They are poor at osmotic pressures below 100 or above 500 mOsmol.l-1.
  • Example 5 cosmetic composition according to the invention with anti-inflammatory effect
  • Control T is the starting point formulation; formulations 5A to 5I correspond to additions of organic osmolytes making it possible to reach the target osmotic pressure.
  • Oily phase its composition (% weight/weight) does not vary and it consists of:
  • Table 14 After stirring until a homogeneous mixture is obtained, a sample of the aqueous phase of the 5T formulation is taken and its osmotic pressure is measured. The value obtained is 80 mOsm.l-1. It is not compatible with the cellular life of cutaneous keratinocytes. To adjust this osmotic pressure to a value compatible with the osmotic pressure of the skin cells, between 100 and 500 mOsm.l-1, and preferably between 200 and 400 mOsm.l-1, the quantity of osmolyte is increased water-soluble up to a target value of 300 mOsm.l-1 (examples 5B to 5I).
  • the osmolytes used in this example are organic osmolytes.
  • the two phases are heated to 60° C. then one of the phases is introduced into the other with vigorous stirring (Ultraturrax® type stirrers), then placed to cool gradually with slower stirring ( three-bladed type agitators).
  • Osmotic pressure After emulsification, the emulsions are separated by centrifuging them at 20,000 g for 45 minutes; the aqueous phase separated from the oily phase is sampled and then its osmotic pressure is analyzed (LéserTM TYP6 Osmometer from Fisher Scientific) by determination of the freezing point (duration of the analysis approximately 3 minutes). The osmotic pressure of the aqueous phases of emulsions 5A to 5I are measured and their osmolarity is between 200 and 400 mOsm.l-1.
  • the aqueous phases of the emulsions described in the above table, obtained after separation, are studied for their action on the cell viability of normal human keratinocytes.
  • the cell viabilities obtained with the aqueous phases of emulsions 5A to 51 are all between 80% and 120% of the KGM control alone.
  • the viscosity and the stability of the emulsions 5A to 5I are measured and studied: the viscosity is suitable and the stability of the emulsions is perfect.
  • the skin tolerance tests conventionally used in cosmetics give good results and the products evaluated by volunteers do not generate negative side effects.
  • Example 6 Cosmetic Composition According to the Invention with a Moisturizing Effect The ingredients are identified according to the INCI nomenclature and the percentages are given by weight/weight, in the following table.
  • Control 6T is the starting point formulation; formulations 6A and 6B correspond to additions of organic osmolytes making it possible to reach the target osmotic pressure.
  • Formulations 6C to 6H make it possible to compare the products of the invention with the products already described of the prior art.
  • Aqueous phase [0113] Aqueous phase:
  • Oily phase its composition (% weight/weight) does not vary and it consists of:
  • a sample of the aqueous phase of the 6T formulation is taken and its osmotic pressure is measured.
  • the value obtained is 92 mOsm.l-1. It is not compatible with the cellular life of cutaneous keratinocytes.
  • this osmotic pressure to a value compatible with the osmotic pressure of the skin cells, between 100 and 500 mOsm.l-1, and preferably between 200 and 400 mOsm.l-1, the quantity of osmolyte is increased water-soluble up to a target value of 300 mOsm.l-1.
  • the osmolytes used in Examples 6A and 6B are organic osmolytes.
  • the two phases are heated to 60° C. then one of the phases is introduced into the other with vigorous stirring (Ultraturrax® type stirrers), then placed to cool gradually under slower agitation (three-bladed type agitators).
  • the 6C to 6H formulations shift out of phase during the cooling step. These formulas are not stable.
  • the addition of gelling agents in the aqueous phase (6C compared to 6D, 6E compared to 6F, 6G compared to 6H) does not allow improvement: the emulsions are not stable because their compositions are too rich in inorganic salts .
  • the stable emulsions are separated by centrifuging them at 20,000 g for 45 minutes; the aqueous phase separated from the oily phase is sampled and then its osmotic pressure is analyzed (LéserTM TYP6 Osmometer from Fisher Scientific) by determining the freezing point (duration of the analysis approximately 3 minutes).
  • the osmotic pressure of the aqueous phases of emulsions 6A and 6B are measured and their osmolarity is between 200 and 400 mOsm.l-1, in accordance with the expectations of the invention.
  • the aqueous phases of the emulsions described in the above table, obtained after separation, are studied for their action on cell viability of normal human keratinocytes.
  • the cell viabilities obtained with the aqueous phases of emulsions 6A to 6B are between 80% and 120% of the KGM control alone.
  • the aqueous phases of the 6C to 6H unstable emulsions all show effects on cell viability less than 50% of that obtained with the KGM control alone. Their very complex compositions are probably the cause of this low viability: the products are not biocompatible.
  • Control 7T is the starting point formulation; formulations 7A to 7G correspond to additions of different organic osmolytes making it possible to reach the target osmotic pressure.
  • the 7H formulation corresponds to additions of Zinc Chloride, an inorganic osmolyte, also making it possible to reach the target osmotic pressure, used as a negative control of the experiment.
  • Oily phase its composition (% weight/weight) does not vary and it consists of: Table 20
  • a sample of the aqueous phase of the 7T formulation is taken and its osmotic pressure is measured.
  • the value obtained is 27 mOsm.l-1. It is not compatible with the cellular life of cutaneous keratinocytes.
  • this osmotic pressure to a value compatible with the osmotic pressure of the skin cells, between 100 and 500 mOsm.l-1, and preferably between 200 and 400 mOsm.l-1, the quantity of osmolyte is increased water soluble.
  • the osmolytes used in examples 7A to 7G are organic osmolytes, example 7H uses an inorganic osmolyte allowing the comparison.
  • the two phases are heated to 60° C. then one of the phases is introduced into the other with vigorous stirring (Ultraturrax® type stirrers), then placed to cool gradually with slower stirring ( three-bladed type agitators).
  • Ultraturrax® type stirrers vigorous stirring
  • three-bladed type agitators three-bladed type agitators.
  • the 7H formulation dephases during the cooling step, it is not stable because its composition is too rich in inorganic salts (much higher than 0.1% which is the limit maximum identified by the inventors). This 7H formulation is no longer affected by the following operations and measures.
  • an additional phase composed of heat-sensitive ingredients is added to the emulsion during cooling. Its composition (% weight/weight) does not vary and it consists of:
  • the concentration of each of the organic osmolytes mentioned in the table above has been adjusted, in order to take into account this slight increase in osmotic pressure linked to the addition of heat-sensitive compounds during the cooling step at the end of wording.
  • the osmotic pressures measured for the products specifically described in this example (7A to 7G) are between 250 and 350 mOsm.l-1 after this adjustment.
  • the preparations described in the table above are studied for their action on the cell viability of normal human keratinocytes.
  • the cell viabilities obtained with the aqueous phases of emulsions 7A to 7G after separation are between 80% and 120% of the KGM control alone.
  • the cell viability obtained with the aqueous phase of the 7T emulsion is less than 50% of that obtained with the KGM control alone, this product is not biocompatible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Dermatology (AREA)
  • Emergency Medicine (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Gerontology & Geriatric Medicine (AREA)
  • Cosmetics (AREA)

Abstract

L'invention concerne une composition écobiologique. comprenant :. une phase huileuse contenant un ou plusieurs ingrédients cosmétiques lipophiles ou liposolubles;. une phase aqueuse comprenant au moins un ou plusieurs ingrédients hydrophiles ou hydrosolubles et au moins un osmolyte organique et, le cas échéant inorganique hydrosoluble, caractérisée en ce que la concentration d'osmolyte organique, et le cas échéant inorganique dans la phase aqueuse est telle qu'après émulsification, la phase aqueuse a une pression osmotique dans un intervalle de pression osmotique prédéterminé, et en ce qu'elle contient au maximum 0,1% d'osmolytes inorganiques. La composition écobiologique est biocompatible pour les cellules de la peau et en particulier les kératinocytes.

Description

FORMULATION ÉCOBIOLOGIQUE, COMPATIBLE AVEC LA VIE CELLULAIRE, UTILISABLE DANS LES DOMAINES COSMÉTIQUES, DERMOPHARMACEUTIQUES OU VÉTÉRINAIRES
Domaine technique
[0001] L’invention concerne une formulation dite écobiologique, isotonique donc compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires, n’utilisant pas de sels minéraux (aussi appelés sels inorganiques) à une concentration supérieure à 0,1 % en poids.
Technique antérieure
[0002] Les formulations cosmétiques présentes sur le marché contenant au moins une phase aqueuse, sont toujours réalisées de façon à ce que le produit final présente une viscosité utilisable en cosmétique, une excellente stabilité dans le temps et une absence de toxicité ; néanmoins, ces formules ne cherchent pas, et ne s’intéressent pas à atteindre une isotonicité vis-à-vis des cellules cutanées.
[0003] Or, l’influence de la pression osmotique par rapport à la vie cellulaire est connue et largement décrite. Brièvement, les cellules peuvent supporter de légères différences de pression osmotique dans leur environnement en augmentant ou en réduisant leur volume intracellulaire et en échangeant des osmolytes, utilisant pour cela les canaux intramembranaires appelés les aquaporines (Lang F, J.Am.Coll.Nutr. 2007, 26 : 613S-623S ; Strange K, Adv. Physiol. Educ. 2004, 28 : 155-159 ; Wehner F et al. Rev. Physiol. Biochem. Pharmacol 2003, 148 : 1-80).
[0004] A des pressions osmotiques trop faibles ou trop fortes, les stimuli génèrent des perturbations massives de l’effet barrière cutané, similaires à ce qui est rapporté lors d’expositions à des substances irritantes ou des haptènes : stimulation de la synthèse de cytokines pro-inflammatoires de type IL1 alpha, IL1 beta, TNF alpha, etc (Shapiro L & Dinarello C., Exp. Cell Res. 1997, 231 : 354-362 ; Terunuma A. et al., J. Dermatol. Sci. 2001 , 26 : 85-93) pouvant à terme conduire à la mort cellulaire. Or ces chocs de pressions osmotiques sont inévitables (eau de la douche) mais sont multipliées lors d’applications répétées de produits cosmétiques non écobiologiques ne contrôlant pas leur pression osmotique, générant des stimuli très défavorables, pro-inflammatoires à bas bruit et générant un affaiblissement du rôle principal de la peau (effet barrière altéré vis-à-vis de l’extérieur). [0005] Comme décrit dans le document FR 2 871 059, il est possible de réaliser des compositions artificielles de type liquide lacrymal, en ajustant la pression osmotique avec des sels inorganiques. Ces compositions ont des teneurs en sels minéraux incompatibles avec une phase huileuse cosmétique émulsionnée et ne peuvent pas permettre de réaliser une émulsion simple (de type eau dans huile ou huile dans eau) cosmétique stable, comme les exemples de la présente invention vont le montrer.
[0006] Comme décrit dans les documents WO 00/02530, FR 3 072 285 et WO 96/21421 A1 , certaines formulations cosmétiques connues prévoient de développer une base aqueuse isotonique à l’aide d’un ou plusieurs sels inorganiques. Ces compositions sont des solutions fluides très liquides ; elles sont isotoniques mais leur teneur en sels inorganiques (ou sels minéraux ou matières minérales) ne permet pas de développer des émulsions stables, compatibles avec une utilisation cosmétique. En effet les sels inorganiques sont connus pour fluidifier les gélifiants habituellement utilisés en formulation cosmétique, y compris les gélifiants les moins sensibles aux sels, et sont donc peu compatibles avec des galéniques de viscosité adaptée à la cosmétique. Le brevet FR 3 072 285 par exemple décrit une formulation contenant plus de 0,5% de sels inorganiques, une teneur incompatible avec la réalisation d’une émulsion cosmétique stable, ce que les exemples de la présente invention démontrent.
[0007] D’autres émulsions dites émulsions doubles sont connues de l’homme de l’art pour permettre de véhiculer, dans la phase interne de l’émulsion double, des sels permettant d’obtenir une isotonicité de la phase interne et de la phase externe. Il s’agit donc de 2 phases aqueuses distinctes. Ces émulsions sont complexes à réaliser, nécessitent une production en plusieurs étapes, contiennent de grandes quantités d’émulsionnants eux-mêmes très irritants pour la peau, des polymères chimiques réticulables dans la phase huileuse et/ou de grandes quantités de sels minéraux. Ces émulsions sont décrites par exemple dans les documents WO 2009/003960 ou FR 2 820 976, WO 03/074010 ou WO 2004/065463.
[0008] Des émulsions à base de fluoroalcanes sont également connues comme dans le document WO 2012/093113, dans lequelles la phase aqueuse est réalisée de façon à être isotonique. Les émulsions réalisées avec ces fluoroalcanes sont très spéciales : elles sont réalisées avec des molécules qui ne sont pas destinées à être appliquées sur la peau et à être utilisées en cosmétique, et qui sont toxiques pour l’environnement.
[0009] D’autres formulations cosmétiques, qui contiennent à la fois une phase aqueuse et une phase huileuse et se présentent donc généralement sous forme d’une émulsion, contiennent de très nombreux éléments organiques et minéraux, mais leur phase aqueuse n’est pas ajustée pour atteindre une pression osmotique correspondant à celle des cellules cutanées qui est voisine de 300 mOsm.l-1 (valeur de pression osmotique du lait maternel ou aussi utilisée par exemple pour les solutions des perfusions médicales).
[0010] Les document XP055793483, XP55793494 et XP55793505 décrivent des compositions comprenant des osmolytes inorganiques. Aucune concentration de ces ingrédients n’est mentionnée. Il est mentionné que ces formules sont inspirées de solutions de réhydratation isotonique (XP055793483) ou encore contiennent des principes actifs osmotiques (XP55793494) ou présentent une phase aqueuse naturellement isotonique mais en aucun cas ces documents décrivent une composition isotonique après émulsification. Enfin, rien n'indique que la phase aqueuse est biocompatible dans le sens de l'invention comme il sera vu ci-dessous.
Problème technique
[0011] Un problème technique à résoudre par la présente invention consiste à trouver une formulation topique dite écobiologique isotonique, compatible avec la vie cellulaire, qui ne présente pas les inconvénients ci-dessus.
[0012] En particulier, un problème technique à résoudre par la présente invention consiste à trouver une formulation topique dite écobiologique isotonique, compatible avec la vie cellulaire qui ait une viscosité compatible avec une utilisation cosmétique, dermopharmaceutique ou vétérinaire, stable dans le temps à des températures compatibles avec une utilisation cosmétique, dermopharmaceutique ou vétérinaire.
[0013] Encore un autre problème technique à résoudre par la présente invention consiste à trouver une formulation topique dite écobiologique isotonique, compatible avec la vie cellulaire qui ait une viscosité compatible avec une utilisation cosmétique, comprenant une phase aqueuse et une phase huileuse, permettant la formation d’un produit cosmétique stable. On entend par « produit cosmétique stable » dans la description et les revendications indifféremment une formulation ou une composition cosmétique, dermopharmaceutique ou vétérinaire stable, à différentes températures et en particulier ne générant aucun phénomène d’irritation ou de sensibilisation lors de son utilisation sur la zone à traiter.
[0014] Encore, un autre problème technique à résoudre par la présente invention consiste à trouver une formulation topique dite écobiologique isotonique, compatible avec la vie cellulaire qui ait une viscosité compatible avec une utilisation cosmétique, comprenant une phase aqueuse et une phase huileuse, permettant la formation d’un produit cosmétique stable, qui peut être préparée selon une méthode de fabrication simple, peu coûteuse, utilisable à l’échelle industrielle.
[0015] L’ensemble de ces problèmes techniques est résolu pour la première fois par la présente invention d’une manière simple, peu coûteuse, utilisable à l’échelle industrielle.
Solution technique
[0016] L’invention permet de garantir la bonne osmocompatibilité des formules avec les cellules de la peau, en particulier les kératinocytes.
[0017] Ainsi, selon un premier aspect, la présente invention fournit une composition topique écobiologique comprenant : a) une phase huileuse contenant un ou plusieurs ingrédients lipophiles ou liposolubles ; b) une phase aqueuse biocompatible comprenant au moins un ou plusieurs ingrédients hydrophiles ou hydrosolubles utilisé(s) à des concentrations avantageusement non cytotoxiques et au moins un osmolyte organique et le cas échéant inorganique, hydrosoluble.
[0018] La composition se caractérise en ce que la concentration en osmolyte organique, et le cas échéant inorganique dans la phase aqueuse est telle qu’après émulsification, la phase aqueuse a une pression osmotique dans un intervalle de pression osmotique prédéterminé, et en ce qu’elle contient au maximum 0,1 % en poids d’osmolytes inorganiques par rapport au poids total de la composition, c’est-à- dire de sels inorganiques ou matière(s) minérale(s).
[0019] Avantageusement, l’émulsion est stable pendant au moins 3 mois à 20°C, 40°C et 50°C. [0020] Selon une autre caractéristique, la composition écobiologique est parfaitement bien tolérée lors de son utilisation.
[0021] Dans le cadre de la présente description et les revendications, on entend par « phase aqueuse biocompatible » le fait que la phase aqueuse et la phase aqueuse de l’émulsion, ne lysent pas et soient compatibles avec les kératinocytes notamment, qui sont les premières cellules que rencontre la phase aqueuse de l’émulsion lors de son application sur la peau. La phase aqueuse est considérée comme biocompatible lorsque le test de viabilité cellulaire tel que décrit par la suite est optimal ou acceptable.
[0022] Dans le cadre de la présente description et des revendications, on entend par « concentration non cytotoxique » la concentration maximale d’un ingrédient à laquelle l’ingrédient n’entraine pas de cytotoxicité des kératinocytes. Cette toxicité cellulaire est mesurée par un test MTT décrit en détail dans les exemples de l’invention. Brièvement, des kératinocytes humains normaux sont cultivés dans un milieu de culture de type KGM (Lonza), puis après adhésion sont mis en contact pendant 24 heures avec les substances à tester. Seront considérées comme « non cytotoxiques » les concentrations des substances testées pour lesquelles la viabilité est supérieure à 80% du témoin KGM seul.
[0023] Dans le cadre de la présente description et des revendications, on entend par « eau biodéfinie », une eau qui est caractérisée par son pH compris entre 5,0 et 8,0, sa résistivité comprise entre 12,5 et 12 500 Ohms. cm et son potentiel redox compris entre 10 et 29. Selon une variante de réalisation, la résistivité est comprise entre 80 et 8 000 Ohms. cm.
[0024] Dans le cadre de l’invention, une eau « désionisée » ou « déminéralisée » ou « de source » ou issue d’un procédé de « production pour une eau injectable » n’est pas une eau biodéfinie au sens de l’invention.
[0025] Dans le cadre de la présente description et des revendications, on entend par « pression osmotique mesurée de la phase aqueuse », la pression osmotique mesurée de la phase aqueuse après homogénéisation des ingrédients la constituant et avant émulsification.
[0026] Dans le cadre de la présente description et des revendications, on entend par « pression osmotique théorique de la phase aqueuse », la pression osmotique théorique de la phase aqueuse obtenue par calcul à partir de la pression osmotique théorique de chacun des ingrédients la constituant.
[0027] Dans le cadre de la présente description et des revendications, on entend par « pression osmotique de la phase aqueuse après émulsification », la pression osmotique mesurée sur la phase aqueuse d’une émulsion, obtenue après centrifugation à très forte vitesse, par exemple à une valeur de centrifugation de 20.000 g pendant 45 minutes, ou toute autre méthode de séparation physique ou biomécanique connue de l’homme de l’art, d’une émulsion déjà réalisée avec ladite phase aqueuse biocompatible et la phase huileuse, suivie de la récupération de cette phase aqueuse séparée de la phase huileuse dans le tube de centrifugation.
[0028] Selon l’invention, on effectue une première approximation de la pression osmotique de la phase aqueuse lors de la préparation des phases de l’émulsion, en mesurant cette pression osmotique après homogénéisation de la phase rassemblant les composés hydrophiles de la phase aqueuse avant l’étape d’émulsification. Mais cette approximation n’est pas suffisante car après émulsification et refroidissement sous agitation, des rajouts de composés thermosensibles sont parfois réalisés en fin de formulation comprenant des composés hydrophiles ayant eux aussi un impact sur la pression osmotique de la phase aqueuse. L’invention consiste donc à mesurer également la pression osmotique de la phase aqueuse après séparation de l’émulsion, et en fonction du résultat obtenu, à ajuster la composition de la phase aqueuse avant émulsion pour obtenir la pression osmotique cible dans la phase aqueuse de la composition finale.
[0029] Dans le cadre de la présente description et des revendications, on entend par un osmolyte organique hydrosoluble biocompatible agissant sur la valeur de la pression osmotique, un osmolyte organique hydrosoluble choisi parmi un ou plusieurs des ingrédients suivants : a) un sucre, par exemple choisi parmi les oses tels que glucose, erythrose, thréose, érythrulose, ribose, arabinose, xylose, xylulose, galactose, mannose, tagatose, fucose, rhamnose, fructose, etc.., ou parmi les osides tels que saccharose, lactose, maltose, thréalose, galactose, etc ... ou parmi les polyoses de faible masse moléculaire tels que des hydrolysats d’amylose, de pectine, de mannanes, de galactanes, de cellulose, de fructosanes, etc... , leurs sels et leurs dérivés ; b) un polyol, par exemple choisi parmi maltitol, mannitol, threitol, erythritol, galactitol, xylitol, arabitol, ribitol, sorbitol, dulcitol, maltitol, isomaltitol, lactitolpropanediol, butanediol, glycerol, pentylene glycol, hexanediol, caprylyl glycol, etc, leurs sels et leurs dérivés ; c) un acide aminé tel que sérine, thréonine, méthionine, cystéine, lysine, arginine, histidine, taurine, hypotaurine, proline, hydroxyproline, alanine, glycine, leucine, trimethylglycine, acide glutamique, acide aspartique, etc... , un peptide de faible masse moléculaire tel que la carnosine,.... un nucléotide ou un nucléoside de faible masse moléculaire, leurs sels et leurs dérivés, d) un acide organique, par exemple l’acide glycolique, lactique, citrique, butyrique, benzoique, gluconique, glucuronique, malique, tartrique, etc, leurs sels et leurs dérivés, e) une autre substance de faible masse moléculaire naturellement présente sur la peau, par exemple l’urée, le PCA, l’acide pyruvique, l’acide urocanique, l’acide citrique etc, leurs sels et leurs dérivés
[0030] Par l’expression «de faible masse moléculaire » on entend dans la description et les revendications une masse moléculaire suffisamment faible pour maintenir le caractère hydrosoluble de l’osmolyte et générer une pression osmotique suffisamment forte pour que la phase aqueuse de la formule puisse atteindre des pressions osmotiques voisines de 300 mOsm.l-1 à des concentrations utilisées inférieures à 10% p/p de la formule et de préférence encore inférieure à 6% p/p de la formule.
[0031] Selon un mode de réalisation particulier de l’invention, ladite composition est caractérisée en ce que la phase huileuse comprend au moins une huile, par nature soluble dans la phase huileuse, choisie parmi le groupe comprenant les huiles de ricin, colza ou canola, karité, tournesol, amande douce, jojoba, soja, riz, blé, maïs, pépins de raisin, olive, noisette, cassis, limnanthes, camélia, mangue, abricot, souchet, onagre, bourrache, lin, coco, leurs cires et leurs dérivés, les insaponifiables d'huile d'olive, d’avocat, de soja et leurs dérivés, la vaseline, les huiles minérales, leurs cires et leurs dérivés, seuls ou en mélange. Selon une variante de réalisation, cette concentration en au moins une huile, soluble(s) dans la phase huileuse est comprise entre 1 % et 40 % en poids par rapport au poids total de la composition.
[0032] Selon un autre mode de réalisation particulier de l’invention, ladite composition est caractérisée en ce que la phase huileuse comprend un ou plusieurs autres ingrédient(s) utilisé(s) à leur concentration non cytotoxique, soluble(s) dans la phase huileuse. La concentration non cytotoxique de chaque ingrédient de la phase huileuse est déterminée par un test de cytotoxicité bien connu de l’homme de l’art, en particulier vis-à-vis des cellules de la peau comme par exemple les kératinocytes. Selon une variante de réalisation, cette concentration en un ou plusieurs autres ingrédient(s) soluble(s) dans la phase huileuse est comprise entre 0,1 % et 10% en poids par rapport au poids total de la composition.
[0033] Selon une variante de réalisation, ces ingrédients solubles dans la phase huileuse sont choisis parmi les filtres solaires tels que : oxyde de zinc, dioxyde de titane, les triazines, triazones, imidazoles et leurs dérivés, le butyl methoxydibenzoylmethane, le diethylamino hydroxybenzoyl hexyl benzoate, l’ethylexyl methoxycrylene, l’ethylhexyl salicylate, l’homosalate, l’octocrylene, le tris(tetramethylhydroxypiperidinol) citrate. Selon une variante de réalisation, cette concentration en un ou plusieurs filtres solaires soluble(s) dans la phase huileuse est comprise entre 1 % et 20% en poids par rapport au poids total de la composition.
[0034] Selon un autre mode de réalisation particulier de l’invention, ladite composition est caractérisée en ce que des émulsionnants sont utilisés afin de réaliser l’étape d’émulsification. Selon une variante de réalisation, la concentration en un ou plusieurs émulsionnants est comprise entre 0,1 % et 10 % en poids par rapport au poids total de la composition.
[0035] Selon un autre mode de réalisation particulier de l’invention, ladite composition est caractérisée en ce que la phase aqueuse biocompatible comprend une eau biodéfinie et que la phase aqueuse est ajustée à une pression osmotique compatible avec la pression osmotique de la peau, c’est-à-dire comprise entre 100 et 500 mosm.l- 1.
[0036] Selon une autre variante de réalisation, la pression osmotique de la phase aqueuse est comprise entre 200 et 400 mosm.l-1 , [0037] Selon un mode de réalisation particulier de l’invention, ladite composition est caractérisée en ce que l’osmolyte organique et le cas échéant inorganique (ce dernier étant à une concentration maximale de 0,1 % en poids) est à une concentration égale ou supérieure à 0,05% en poids par rapport au poids final de la composition. Selon une autre variante de réalisation, l’osmolyte comprend un sucre, en particulier le glucose.
[0038] Selon une variante de réalisation particulière, la concentration en osmolytes organiques et le cas échéant inorganiques (ces derniers étant à une concentration maximale de 0,1 % en poids) dépend naturellement de la nature du ou des osmolytes utilisés et sera généralement comprise entre 0,05 % en poids et 10 % en poids par rapport au poids final de la composition. Selon une autre variante, la concentration en osmolyte organique et le cas échéant inorganique (ce dernier étant à une concentration maximale de 0,1 % en poids) est comprise entre 0,05% et 5% en poids par rapport au poids final de la composition.
[0039] Selon un mode de réalisation particulier de l’invention, la concentration en phase huileuse est comprise entre 1 % et 40% en poids par rapport au poids final de la composition
[0040] Selon encore un mode de réalisation particulier de l’invention, un ingrédient biocompatible non cytotoxique, soluble dans la phase huileuse est choisi parmi le groupe comprenant : les tocophérols, tocotriénols, leurs esters et leurs dérivés ; le rétinol, le retynaldéhyde, l’acide rétinoïque et leur dérivés ; les vitamines D et K et leurs dérivés ; les sphingosines, les céramides, leurs esters et dérivés ; la lanoline, le panthénol, le bisabolol, le squalane, le squalène, la cire d’abeille et ses dérivés ; la piroctone olamine, l’alantoine, les stérols et phytostérols, leurs dérivés et leurs esters ; les esters d’acides aminés ou d’acides lactiques, maliques, tartriques, salicyliques ; ces composés sont utilisés seuls ou en mélange. Selon une variante de réalisation, la concentration en un ou plusieurs de ces ingrédients biocompatibles non cytotoxique, soluble dans la phase huileuse, est comprise entre 0,1 % et 10 % en poids par rapport au poids total de la composition.
[0041] Selon un autre mode de réalisation particulier de l’invention, la concentration en phase aqueuse biocompatible est comprise entre 60% en poids, et 98% en poids par rapport au poids final de la composition. [0042] Selon un autre mode de réalisation particulier de l’invention, le ou les ingrédients hydrosolubles sont choisis parmi le ou les ingrédients cosmétique(s) hydrosoluble (s) biocompatible(s) bien connus de l’homme de l’art, par exemple : les fructo-oligosaccharides, le dextrane, l’acide hyaluronique leurs sels et dérivés ; les acides aminés et peptides, leurs esters et dérivés ; la dihydroxyacetone, le PCA, l’urée, la myricetine, l’hesperitine, l’esperidine, la rutine, l’acide glycyrrhyetinique, leurs sels et leurs dérivés ; le bachukiol, le climbazole, la carnosine, le propyl gallate ; les acides ascorbiques, salicyliques leurs sels et dérivés hydrosolubles ; ces composés sont utilisés seuls ou en mélange.
[0043] Selon une variante de réalisation de l’invention, la concentration en un ou plusieurs ingrédients hydrosolubles utilisé(s) est une concentration non cytotoxique déterminée par un test de cytotoxicité vis-à-vis des cellules de la peau, par exemple vis-à-vis de kératinocytes. Par exemple, la concentration en un ou plusieurs ingrédients cosmétiques hydrosolubles pourra être comprise entre 0,1 % et 40 %, en poids par rapport au poids total de la composition, en particulier entre 1 % et 20 % en poids de la composition.
[0044] Selon une autre caractéristique, la viscosité de la composition de l’invention est comprise entre 300 et 400 000 cps, mesurée en utilisant un rhéomètre/viscosimètre MCR102 de Anton Paar ou DV2T de Brookfield.
[0045] Dans un mode de réalisation préféré, chacun des ingrédients lipophiles ou liposolubles et hydrophiles ou hydrosolubles est utilisé à une concentration non cytotoxique.
[0046] Selon un deuxième aspect, la présente invention couvre aussi un procédé de soin cosmétique, caractérisé en ce qu’il comprend la sélection d'au moins une zone de la peau ayant besoin d’un soin cosmétique par exemple l’apaisement d’une peau atopique, la réduction de symptômes acnéiques, l’hydratation, un effet de protection solaire, un effet anti-rides, et l’application sur les zones de la peau ayant un tel besoin de soin, d’une quantité efficace d’une composition selon l’invention pour obtenir un ledit soin cosmétique.
[0047] L’homme de l’art sait parfaitement sélectionner les zones de la peau ayant besoin d’être soignées. Il s’agit généralement des zones de la peau du corps les plus exposées au rayonnement solaire et au stress climatique, principalement le visage, les membres supérieurs et inférieurs, les zones sujettes à rougeurs ou démangeaisons, les zones humides dont les zones intimes, etc...
[0048] Selon une variante de réalisation particulière, ce soin cosmétique sera un soin cosmétique visant à hydrater et à accroître l’effet barrière de l’épiderme ou des parties supérieures de la peau.
[0049] Selon une autre variante de réalisation particulière, ce soin cosmétique sera un soin cosmétique visant à réduire ou faire disparaître les manifestations cutanées de l’épiderme ou des parties supérieures de la peau pouvant se manifester lors de sensibilités ou de pathologies cutanées.
[0050] Les modes de réalisation particuliers de l’invention précédemment décrits sont évidemment applicables au procédé de soin cosmétique de manière similaire.
[0051] L’invention concerne également un procédé de préparation de la composition telle que décrite ci-avant et selon lequel : a) on prépare la phase aqueuse, b) on homogénéise ladite phase aqueuse, c) on prélève un échantillon de la phase aqueuse (échantillon 1 ), d) on mesure la pression osmotique de l’échantillon 1 (pression osmotique mesurée
1 ). e) le cas échéant, on ajuste la composition osmolytique du reste de la phase aqueuse, pour atteindre une pression osmotique théorique du reste de la phase aqueuse dans une fourchette prédéterminée, avantageusement comprise entre 100 et 500 mosm.l-1 , de préférence d’environ 300 mosm.l-1 f) on prépare la phase huileuse, g) on émulsifie la phase huileuse avec le reste de phase aqueuse, h) après émulsification, on sépare les phases aqueuse et huileuse et on prélève un échantillon de la phase aqueuse (échantillon 2), i) on mesure ensuite la pression osmotique de l’échantillon 2 (pression osmotique mesurée 2), j) puis, dans l’hypothèse où la valeur de pression osmotique mesurée 2 n’est pas comprise dans la fourchette de pression osmotique prédéterminée, avantageusement comprise entre 100 et 500 mosm.l-1 , de préférence d’environ 300 mosm.l-1 , on réalise un nouvel essai de formulation en débutant à l’étape a. en ajustant la composition en osmolytes de la phase aqueuse, en tenant compte de la pression osmotique mesurée 2 pour atteindre une pression osmotique théorique de la phase aqueuse après émulsification comprise dans la fourchette prédéterminée, avantageusement comprise entre 100 et 500 mosm.l- 1 , de préférence d’environ 300 mosm.l-1 , k) on réitère le cas échéant les étapes a. à i. jusqu’à obtenir une pression osmotique mesurée de la phase aqueuse après séparation de l’émulsion comprise dans la fourchette de pression osmotique prédéterminée, avantageusement comprise entre 100 et 500 mosm.l-1 , de préférence d’environ 300 mosm.l-1 .
[0052] Dans un mode de réalisation préféré, le procédé de l’invention comprend une étape supplémentaire de mesure de la viabilité cellulaire de kératinocytes humains normaux vis-à-vis de la phase aqueuse après séparation de l’émulsion (échantillon 2) de l’étape h. ci-dessus.
[0053] En pratique, des kératinocytes humains normaux issus de primocultures de prépuces sont cultivés dans un milieu de culture complet de type KGM (Lonza). La culture cellulaire est ensemencée en plaques 96 puits à 20000 cellules par puit. Après adhésion, la phase aqueuse séparée après émulsification à tester est placée au contact des cellules pendant 24h.
[0054] La mesure de la viabilité cellulaire de la phase aqueuse est avantageusement effectuée selon la méthode dite "au MTT".
[0055] Le test au MTT est une méthode colorimétrique de détection de l’activité mitochondriale qui permet d’évaluer le pouvoir de compatibilité cellulaire d’un constituant. Il est basé sur la réduction du yellow tétrazolium dye 3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) en un précipité formazan violet, solubilisé dans le DMSO puis dosé par mesure de la densité optique à 540nm.
[0056] Les résultats sont exprimés en pourcentage de viabilité cellulaire comparé à un contrôle non traité. La viabilité cellulaire est optimale lorsqu’elle est comprise entre 80% et 120% du témoin KGM seul ; acceptable lorsqu’elle est comprise entre 50 et 80% du témoin KGM et inacceptable lorsqu’elle est inférieure à 50% du témoin KGM.
[0057] D’autres buts, caractéristiques et avantages de l’invention apparaîtront clairement à la lumière de la description explicative qui va suivre, faite en référence à plusieurs modes de réalisation actuellement préférés de l’invention, donnés simplement à titre d’illustration qui ne sauraient donc en aucune façon limiter la portée de l’invention. Dans les exemples, les pourcentages sont donnés en poids, la température est la température ambiante ou est donnée en degrés Celsius, la pression est la pression atmosphérique, sauf indication contraire.
[0058] Les exemples ci-après font partie intégrante de l’invention et toute caractéristique qui apparaît être nouvelle par rapport à un état de la technique antérieur est revendiquée en tant que telle et en tant que moyen général.
Exemple 1 selon l’invention
[0059] Composition cosmétique selon l’invention sous forme d’émulsion, comprenant une phase huileuse et une phase aqueuse, présentant un effet apaisant
[0060] Les ingrédients sont identifiés selon la nomenclature INCI et les pourcentages sont donnés en poids/poids, dans le tableau 1 suivant. Le témoin 1T est la formulation point de départ ; dans les formulations 1A à 1J, les constituants utilisés dans 1T ne varient pas mais d’autres composés sont ajoutés alors que l’eau est retirée en proportion identique : a) Phase aqueuse :
Tableau 1
Figure imgf000014_0001
b) Phase huileuse : sa composition ne varie pas et elle est constituée de :
Tableau 2
Figure imgf000015_0001
[0061] Après agitation de la phase aqueuse jusqu’à l’obtention d’un mélange homogène, un échantillon de la phase aqueuse de chaque formulation est prélevé et sa pression osmotique est mesurée en utilisant un Osmomètre Léser™ TYP6 de Fisher Scientific permettant sa détermination par la mesure du point de congélation (durée de l’analyse 3 minutes environ). La valeur obtenue pour l’échantillon 1T est de 50 mOsm.l-1. Elle n’est pas compatible avec la vie cellulaire des kératinocytes cutanés.
[0062] L’ajout progressif d’osmolytes inorganiques ou organiques dans la formule témoin 1T permet d’étudier l’évolution de la pression osmotique de la phase aqueuse en fonction de la concentration en osmolytes.
[0063] Les osmolytes utilisés dans cet exemple sont des sels inorganiques (tels que NaCI ou Na2P04) ou des molécules organiques (tels que glucose ou/et glycérol).
[0064] Les deux phases (aqueuse et huileuse) sont chauffées à 60°C puis l’une des phases est introduite dans l’autre sous forte agitation (agitateur de type Ultraturrax®), la formulation ainsi réalisée étant ensuite placée à refroidir progressivement sous agitation plus lente (agitateur de type tripale).
[0065] Pression osmotique :
[0066] Après émulsification, l’émulsion est séparée en la centrifugeant à 20.000 g pendant 45 minutes ; la phase aqueuse séparée de la phase huileuse est prélevée puis sa pression osmotique est analysée (Osmomètre Léser™ TYP6 de Fisher Scientific) par détermination du point de congélation (durée de l’analyse 3 minutes environ). La valeur est donnée en mOsm.kg-1 d’eau ou mOsm.l-1.
[0067] Viabilité cellulaire : [0068] Les préparations décrites dans le tableau ci-dessus sont étudiées pour leur action sur viabilité cellulaire de kératinocytes humains normaux. Brièvement, des kératinocytes humains normaux issus de primocultures de prépuces sont cultivés dans un milieu de culture complet de type KGM (Lonza). La culture cellulaire est ensemencée en plaques 96 puits à 20 000 cellules par puit. Après adhésion, la phase aqueuse séparée après émulsification est placée au contact des cellules pendant 24h. La viabilité cellulaire est évaluée en utilisant le test au MTT (colorant jaune métabolisé par les enzymes mitochondriales en un composé bleu appelé le formazan, qui est solubilisé dans le DMSO puis dosé par mesure de la densité optique à 540nm). La viabilité cellulaire est notée « + » lorsqu’elle est comprise entre 80% et 120% du témoin KGM seul ; elle est notée « +/- » lorsqu’elle est comprise entre 50 et 80% du témoin KGM et notée « - » lorsqu’elle est inférieure à 50% et « -- » lorsqu’elle est inférieure à 20% du témoin KGM.
[0069] Viscosité des émulsions :
[0070] Les émulsions réalisées sont placées à refroidir à 20°C pendant 48h au moins. Après cette période, la viscosité est mesurée en utilisant un rhéomètre/viscosimètre MCR102 de Anton Paar ou DV2T de Brookfield. La viscosité est considérée comme convenable lorsque la valeur est comprise entre 300 et 400 000 centipoises ou cps (noté « + » dans le tableau de résultats). En- dessous de cette valeur, l’émulsion est considérée comme n’ayant pas une viscosité permettant de l’utiliser de façon acceptable pour des applications cosmétiques conventionnelles (noté « - » dans le tableau de résultats)
[0071] Stabilité des émulsions :
[0072] Les émulsions réalisées sont placées dans des étuves à 20°C, 40°C et 50°C pendant une période de 1 semaine à 3 mois. Elles sont régulièrement observées et seront considérées comme stable (noté « + » dans le tableau de résultats) lorsqu’aucun déphasage n’est observé pendant 3 mois à ces différentes températures. Si elles déphasent avant un mois ou 3 mois à ces températures, elles seront considérées comme instables (respectivement notées « - » et « - »). Si après 3 mois à ces températures, une très légère synérèse est observée, on considérera la stabilité comme limite acceptable (notée « +/- »).
[0073] Résultats : [0074] Les résultats sont décrits dans le tableau 3.
Tableau 3
Figure imgf000017_0001
[0075] Seules les formulations de l’exemple 1 A, 1 G, 1 H, et 11 sont capables d’exercer tous les effets attendus aux produits de l’invention. La formulation témoin T utilisée et les autres formulations ne sont pas acceptables.
[0076] Cet exemple permet de mettre en évidence que :
les pressions osmotiques de la phase aqueuse après émulsification : o inférieures à 100 mOsm.l-1 et supérieures à 500 mOsm.l-1 ne respectent pas la vie cellulaire. o comprises entre 100 et 200 mOsm.l-1 ou entre 400 et 500 mOsm.l-1 peuvent être considérées comme acceptables pour la vie cellulaire. o comprises entre 300 et 400 mOsm.l-1 seront considérées comme idéales pour la vie cellulaire.
le taux de 0,1 % de sels inorganiques est le taux maximum toléré pour conserver la stabilité de la formule, au-delà de ce seuil, la formulation perd sa viscosité et sa stabilité.
à cette concentration maximale, la pression osmotique idéale ne peut être obtenue avec des sels inorganiques seulement sans rendre la formulation instable. les substances organiques de faible masse moléculaire permettent d’atteindre ces valeurs cibles sans déstabiliser les émulsions. l’utilisation de trop fortes concentrations des molécules organiques testées induit des pressions osmotiques trop élevées incompatibles avec la vie cellulaire.
La mesure et l’ajustement avec les bons osmolytes, utilisés à la bonne concentration, sont donc indispensables pour permettre de réaliser les produits de l’invention.
Exemple 2 selon l’invention : limite dans l’utilisation de sels minéraux
[0077] Composition cosmétique selon l’invention sous forme d’émulsion, comprenant une phase huileuse et une phase aqueuse, présentant un effet hydratant.
[0078] Les ingrédients sont identifiés selon la nomenclature INCI et les pourcentages sont donnés en poids/poids, dans les tableaux suivants.
[0079] Phase aqueuse :
Tableau 4
Figure imgf000018_0001
[0080] Phase huileuse Tableau 5
Figure imgf000018_0002
[0081] La composition cosmétique est réalisée en suivant le protocole de fabrication de l’exemple 1. Elle est appelée « Témoin » de l’exemple 2.
[0082] Un certain nombre d’autres formulations sont réalisées à partir de la composition de la formulation Témoin. A sa phase aqueuse, est ajoutée un des osmolytes minéraux ou organiques suivants (décrits dans le tableau ci-dessous), à la concentration massique (% en poids/poids) indiquée. [0083] Après étape d’émulsification, les formules sont suivies en stabilité pendant 3 mois à 45°C.
[0084] On note « Stable » une formule ne présentant pas de déstabilisation visible au bout de 3 mois à 45°C. [0085] On note « Instable » une formule présentant une instabilité (déphasage) visible après 3 mois ou moins de 3 mois à 45°C.
[0086] On note « Stable/Instable » une formule présentant une instabilité légère, difficilement détectable après 3 mois à 45°C, mais qui devient franche au-delà de cette durée. [0087] Les résultats de stabilité des formules obtenus sont décrits dans le tableau ci- dessous.
Tableau 6
Figure imgf000020_0001
[0088] Les résultats présentés dans le tableau ci-dessus montrent d’une part que les émulsions sont stables avec des osmolytes organiques et très instables avec des osmolytes minéraux, utilisés à des concentrations en sels minéraux supérieures à
0,1% p/p.
[0089] De façon inattendue, il est donc possible d’ajuster la pression osmotique de la phase aqueuse de la formulation, à celle des cellules du tissu cutané (autour de 300 mOsm.l-1) en utilisant des osmolytes organiques, sans déstabiliser les formulations.
Exemple 3 selon l’invention : pression osmotique générée par des osmolytes inorganiques et organiques
[0090] Composition cosmétique selon l’invention sous forme d’émulsion, comprenant une phase huileuse et une phase aqueuse, présentant un effet apaisant
[0091] Les osmolytes décrits dans les tableaux ci-dessous sont ajoutés à la phase aqueuse de l’émulsion aux concentrations massiques (% poids/poids) indiquées ; la pression osmotique générée par l’osmolyte étudiée est mesurée en suivant le protocole décrit dans l’exemple 1 , les valeurs obtenues sont indiquées ci-dessous.
[0092] Les tableaux ci-dessous montrent que :
- les osmolytes organiques sont utilisables et permettent d’obtenir la pression osmotique cible dans la phase aqueuse de la formulation de l’invention,
- plus l’osmolyte possède une masse moléculaire importante, moins il va générer une pression osmotique élevée
- la pression osmotique doit être ajustée avec soin avec des osmolytes utilisés en concentration appropriée dans la phase aqueuse, afin de pouvoir obtenir une pression osmotique compatible avec la vie cellulaire.
Tableau 7
Figure imgf000022_0001
Tableau 8
Figure imgf000023_0001
Tableau 9
Figure imgf000024_0001
Tableau 10
Figure imgf000025_0001
Exemple 4 selon l’invention : viabilité et toxicité cellulaire générée par des osmolarités non compatibles avec la vie cellulaire : les conditions d’hypo et d’hyperosmoticité [0093] Les phases aqueuses suivantes sont réalisées (en utilisant la nomenclature
INCI et les pourcentages en poids/poids) :
Tableau 11
Figure imgf000026_0001
[0094] Les préparations décrites dans le tableau ci-dessous sont étudiées pour leur action sur viabilité cellulaire de kératinocytes humains normaux, ainsi que pour leur action sur la morphologie des cellules.
[0095] Brièvement, des kératinocytes humains normaux issus de primocultures de prépuces sont cultivés dans un milieu de culture complet de type KGM (Lonza). La culture cellulaire est ensemencée en plaques 96 puits à 20000 cellules par puit. Après adhésion chaque phase aqueuse à tester est placée au contact des cellules pendant 24h. La viabilité cellulaire est évaluée en utilisant le test au MTT (colorant jaune métabolisé par les enzymes mitochondriales en un composé bleu appelé le formazan, qui est solubilisé dans le DMSO puis dosé par mesure de la densité optique à 540nm).
[0096] La viabilité cellulaire est notée « + » lorsqu’elle est comprise entre 80% et 120% du témoin KGM seul ; elle est notée « +/- » lorsqu’elle est comprise entre 50 et 80% du témoin KGM et notée « - » lorsqu’elle est inférieure à 50% et « -- » lorsqu’elle est inférieure à 20% du témoin KGM.
[0097] L’aspect des kératinocytes est observé en microscopie optique (grossissements x20 et x50). Il est noté « + » lorsque les cellules ont un aspect proche de celui obtenu avec le témoin KGM (aspect dense et homogène), il est noté « +/- » lorsque les cellules sont encore présentes mais que leur forme n’est plus régulière ou que des vacuoles sont observables ; il est noté « - » lorsque les cellules n’ont pas résisté et sont lysées.
[0098] Les résultats sont portés dans le tableau ci-dessous :
Tableau 12
Figure imgf000027_0001
[0099] Le tableau ci-dessus ainsi que d’autres mesures non exemplifiées dans cet exemple, montrent que :
La viabilité cellulaire et la morphologie cellulaire sont très dépendantes de la pression osmotique : globalement elles sont bonnes entre 200 et 400 mOsm.l-1 , elles sont acceptables entre 100 et 200 puis entre 400 et 500 mOsmol.l-1 . Elles sont mauvaises à des pressions osmotiques inférieures à 100 ou supérieures à 500 mOsmol.l-1 .
La combinaison d’osmolytes afin d’atteindre la pression osmotique cible est possible.
[0100] Les eaux déminéralisée, thermales et « du robinet » dont la pression osmotique n’est pas ajustée ne sont pas cytocompatibles.
Exemple 5 : composition cosmétique selon l’invention à effet anti inflammatoire
[0101] Les ingrédients sont identifiés selon la nomenclature INCI et les pourcentages sont donnés en poids/poids, dans le tableau suivant. Le témoin T est la formulation point de départ ; les formulations 5A à 5I correspondent à des ajouts d’osmolytes organiques permettant d’atteindre la pression osmotique cible.
[0102] Phase aqueuse : Tableau 13
Figure imgf000028_0001
[0103] Phase huileuse : sa composition (% poids/poids) ne varie pas et elle est constituée de :
Tableau 14
Figure imgf000028_0002
[0104] Après agitation jusqu’à l’obtention d’un mélange homogène, un échantillon de la phase aqueuse de la formulation 5T est prélevé et sa pression osmotique est mesurée. La valeur obtenue est de 80 mOsm.l-1. Elle n’est pas compatible avec la vie cellulaire des kératinocytes cutanés. Pour ajuster cette pression osmotique à une valeur compatible avec la pression osmotique des cellules de la peau, comprise entre 100 et 500 mOsm.l-1, et de préférence entre 200 et 400 mOsm.l-1, on augmente la quantité d’osmolyte hydrosoluble jusqu’à une valeur cible de 300 mOsm.l-1 (exemples 5B à 5I). Les osmolytes utilisés dans cet exemple sont des osmolytes organiques.
[0105] Les deux phases (aqueuse et huileuse) sont chauffées à 60°C puis l’une des phases est introduite dans l’autre sous forte agitation (agitateurs de type Ultraturrax®), puis placée à refroidir progressivement sous agitation plus lente (agitateurs de type tripale).
[0106] Pression osmotique : [0107] Après émulsification, les émulsions sont séparées en les centrifugeant à 20.000 g pendant 45 minutes ; la phase aqueuse séparée de la phase huileuse est prélevée puis sa pression osmotique est analysée (Osmomètre Léser™ TYP6 de Fisher Scientific) par détermination du point de congélation (durée de l’analyse 3 minutes environ). La pression osmotique des phases aqueuses des émulsions 5A à 5I sont mesurées et leur osmolarité est comprise entre 200 et 400 mOsm.l-1.
[0108] Tests réalisés :
[0109] Les phases aqueuses des émulsions décrites dans le tableau ci-dessus, obtenues après séparation sont étudiées pour leur action sur la viabilité cellulaire de kératinocytes humains normaux. Les viabilités cellulaires obtenues avec les phases aqueuses des émulsions 5A à 51 sont toutes comprises entre 80% et 120% du témoin KGM seul.
[0110] Par ailleurs, après leur refroidissement, la viscosité et la stabilité des émulsions 5A à 5I sont mesurées et étudiées : la viscosité est convenable et la stabilité des émulsions est parfaite. Les tests de tolérance cutanée classiquement utilisés en cosmétique donnent de bons résultats et les produits évalués par des volontaires ne génèrent pas d’effets secondaires négatifs.
Tableau 15
Figure imgf000029_0001
Exemple 6 : composition cosmétique selon l’invention à effet hydratant [0111] Les ingrédients sont identifiés selon la nomenclature INCI et les pourcentages sont donnés en poids/poids, dans le tableau suivant. Le témoin 6T est la formulation point de départ ; les formulations 6A et 6B correspondent à des ajouts d’osmolytes organiques permettant d’atteindre la pression osmotique cible. [0112] Les formulations 6C à 6H permettent de comparer les produits de l’invention aux produits déjà décrits de l’art antérieur.
[0113] Phase aqueuse :
Tableau 16
Figure imgf000030_0001
[0114] Phase huileuse : sa composition (% poids/poids) ne varie pas et elle est constituée de :
Tableau 17
Figure imgf000030_0002
[0115] Après agitation jusqu’à l’obtention d’un mélange homogène, un échantillon de la phase aqueuse de la formulation 6T est prélevé et sa pression osmotique est mesurée. La valeur obtenue est de 92 mOsm.l-1. Elle n’est pas compatible avec la vie cellulaire des kératinocytes cutanés. Pour ajuster cette pression osmotique à une valeur compatible avec la pression osmotique des cellules de la peau, comprise entre 100 et 500 mOsm.l-1, et de préférence entre 200 et 400 mOsm.l-1, on augmente la quantité d’osmolyte hydrosoluble jusqu’à une valeur cible de 300 mOsm.l-1. Les osmolytes utilisés dans les exemples 6A et 6B sont des osmolytes organiques.
[0116] Les deux phases (aqueuse et huileuse) sont chauffées à 60°C puis l’une des phases est introduite dans l’autre sous forte agitation (agitateurs de type Ultraturrax®), puis placée à refroidir progressivement sous agitation plus lente (agitateurs de type tripale).
[0117] Les formulations 6C à 6H déphasent lors de l’étape de refroidissement. Ces formules ne sont pas stables. L’ajout de gélifiants dans la phase aqueuse (6C par rapport à 6D, 6E par rapport à 6F, 6G par rapport à 6H) ne permet pas d’amélioration : les émulsions ne sont pas stables car leurs compositions est trop riche en sels inorganiques.
[0118] Pression osmotique:
[0119] Après émulsification, les émulsions stables sont séparées en les centrifugeant à 20.000 g pendant 45 minutes ; la phase aqueuse séparée de la phase huileuse est prélevée puis sa pression osmotique est analysée (Osmomètre Léser™ TYP6 de Fisher Scientific) par détermination du point de congélation (durée de l’analyse 3 minutes environ). La pression osmotique des phases aqueuses des émulsions 6A et 6B sont mesurées et leur osmolarité est comprise entre 200 et 400 mOsm.l-1 , conforme aux attendus de l’invention.
[0120] Tests réalisés :
[0121] Les phases aqueuses des émulsions décrites dans le tableau ci-dessus, obtenues après séparation sont étudiées pour leur action sur viabilité cellulaire de kératinocytes humains normaux. Les viabilités cellulaires obtenues avec les phases aqueuses des émulsions 6A à 6B sont comprises entre 80% et 120% du témoin KGM seul. Les phases aqueuses des émulsions instables 6C à 6H présentent toutes des effets sur la viabilité des cellules inférieurs à 50% de celle obtenue avec le témoin KGM seul. Leurs compositions très complexes est probablement à l’origine de cette faible viabilité : les produits ne sont pas biocompatibles.
Tableau 18
Figure imgf000031_0001
Exemple 7 : composition cosmétique selon l’invention à effet cicatrisant
[0122] Les ingrédients sont identifiés selon la nomenclature INCI et les pourcentages sont donnés en poids/poids, dans le tableau suivant. Le témoin 7T est la formulation point de départ ; les formulations 7A à 7 G correspondent à des ajouts de différents osmolytes organiques permettant d’atteindre la pression osmotique cible. La formulation 7H correspond à des ajouts de Chlorure de Zinc, un osmolyte inorganique, permettant également d’atteindre la pression osmotique cible, utilisé comme contrôle négatif de l’expérience.
[0123] Phase aqueuse :
Tableau 19
Figure imgf000032_0001
[0124] Phase huileuse : sa composition (% poids/poids) ne varie pas et elle est constituée de : Tableau 20
Figure imgf000033_0001
[0125] Après agitation jusqu’à l’obtention d’un mélange homogène, un échantillon de la phase aqueuse de la formulation 7T est prélevé et sa pression osmotique est mesurée. La valeur obtenue est de 27 mOsm.l-1. Elle n’est pas compatible avec la vie cellulaire des kératinocytes cutanés. Pour ajuster cette pression osmotique à une valeur compatible avec la pression osmotique des cellules de la peau, comprise entre 100 et 500 mOsm.l-1, et de préférence entre 200 et 400 mOsm.l-1, on augmente la quantité d’osmolyte hydrosoluble. Les osmolytes utilisés dans les exemples 7A à 7 G sont des osmolytes organiques, l’exemple 7H utilise un osmolyte inorganique permettant la comparaison.
[0126] Les deux phases (aqueuse et huileuse) sont chauffées à 60°C puis l’une des phases est introduite dans l’autre sous forte agitation (agitateurs de type Ultraturrax®), puis placée à refroidir progressivement sous agitation plus lente (agitateurs de type tripale). [0127] Avant d’atteindre 40°C, la formulation 7H déphase lors de l’étape de refroidissement, elle n’est pas stable car sa composition est trop riche en sels inorganiques (très supérieure à 0,1% qui est la limite maximale identifiée par les inventeurs). Cette formulation 7H n’est plus concernée par les opérations et les mesures suivantes. [0128] Lorsque les formules ont atteint 40°C, une phase supplémentaire composée d’ingrédients thermosensibles est rajoutée à l’émulsion en cours de refroidissement. Sa composition (% poids/poids) ne varie pas et elle est constituée de :
Tableau 21
Figure imgf000033_0002
[0129] Pression osmotique [0130] Après émulsification, les émulsions stables sont séparées en les centrifugeant à 20.000 g pendant 45 minutes ; la phase aqueuse séparée de la phase huileuse est prélevée puis sa pression osmotique est analysée (Osmomètre Léser™ TYP6 de Fisher Scientific) par détermination du point de congélation (durée de l’analyse 3 minutes environ). La pression osmotique des phases aqueuses des émulsions 7T à 7 G sont mesurées et leur osmolarité a augmentée par rapport aux valeurs prises dans la phase aqueuse seulement, de 53 mOsm.l-1 en moyenne.
[0131] La concentration en chacun des osmolytes organiques mentionnée dans le tableau ci-dessus a été ajustée, afin de tenir compte de cette légère augmentation de la pression osmotique liée à l’ajout de composés thermosensibles lors de l’étape de refroidissement en fin de formulation. Les pressions osmotiques mesurées pour les produits spécifiquement décrits dans cet exemple (7A à 7 G) sont comprises entre 250 et 350 mOsm.l-1 après cet ajustement.
[0132] Tests réalisés :
[0133] Les préparations décrites dans le tableau ci-dessus sont étudiées pour leur action sur la viabilité cellulaire de kératinocytes humains normaux. Les viabilités cellulaires obtenues avec les phases aqueuses des émulsions 7A à 7G après séparation sont comprises entre 80% et 120% du témoin KGM seul. La viabilité cellulaire obtenues avec la phase aqueuse de l’émulsion 7T est inférieure à 50% de celle obtenue avec le témoin KGM seul, ce produit n’est pas biocompatible.
Tableau 22
Figure imgf000034_0001

Claims

Revendications
1. Composition topique écobiologique comprenant : a) une phase huileuse contenant un ou plusieurs ingrédients lipophiles ou liposolubles ; b) une phase aqueuse biocompatible comprenant au moins un ou plusieurs ingrédients hydrophiles ou hydrosolubles et au moins un osmolyte organique et, le cas échéant inorganique hydrosoluble, caractérisée en ce que la concentration en osmolyte organique, et le cas échéant inorganique dans la phase aqueuse est telle qu’après émulsification, la phase aqueuse a une pression osmotique dans un intervalle de pression osmotique prédéterminé, et en ce qu’elle contient au maximum 0,1% en poids d’osmolytes inorganiques par rapport au poids total de la composition.
2. Composition selon la revendication 1, caractérisée en ce que l’émulsion est stable pendant au moins 3 mois à 20°C, 40°C et 50°C.
3. Composition selon l’une des revendications précédentes, caractérisée en ce que chacun des ingrédients lipophiles ou liposolubles et hydrophiles ou hydrosolubles est utilisé à une concentration non cytotoxique.
4. Composition selon l’une des revendications précédentes, caractérisée en ce que l’osmolyte organique est choisi parmi un ou plusieurs osmolytes organiques hydrosolubles suivants : a) un sucre, par exemple choisi parmi les oses tels que glucose, erythrose, thréose, érythrulose, ribose, arabinose, xylose, xylulose, galactose, mannose, tagatose, fucose, rhamnose, fructose ; ou parmi les osides tels que saccharose, lactose, maltose, thréalose, galactose ; ou parmi les polyoses de faible masse moléculaire tels que des hydrolysats d’amylose, de pectine, de mannanes, de galactanes, de cellulose, de fructosanes ; leurs sels et leurs dérivés ; b) un polyol, par exemple choisi parmi maltitol, mannitol, threitol, erythritol, galactitol, xylitol, arabitol, ribitol, sorbitol, dulcitol, maltitol, isomaltitol, lactitolpropanediol, butanediol, glycerol, pentylene glycol, hexanediol, caprylyl glycol ; leurs sels et leurs dérivés ; c) un acide aminé tel que sérine, thréonine, méthionine, cystéine, lysine, arginine, histidine, taurine, hypotaurine, proline, hydroxyproline, alanine, glycine, leucine, trimethylglycine, acide glutamique, acide aspartique ; un peptide de faible masse moléculaire tel que la carnosine ; un nucléotide ou un nucléoside de faible masse moléculaire ; leurs sels et leurs dérivés, d) un acide organique, par exemple l’acide glycolique, lactique, citrique, butyrique, benzoique, gluconique, glucuronique, malique, tartrique, salicylique ; leurs sels et leurs dérivés, e) une autre substance de faible masse moléculaire naturellement présente sur la peau, par exemple l’urée, le PCA, l’acide pyruvique, l’acide urocanique, l’acide citrique, leurs sels et leurs dérivés
5. Composition selon l’une des revendications précédentes, caractérisée en ce que l’ensemble osmolyte organique et le cas échéant inorganique est à une concentration comprise entre 0,05% et 10% en poids total de la composition.
6. Composition selon l’une des revendications précédentes, caractérisée en ce que la phase aqueuse contient de l’eau biodéfinie présentant un pH compris entre 5 et 8, une résistivité comprise entre 80 et 8000 Ohm. cm et un potentiel Redox compris entre 10 et 29.
7. Composition selon l’une des revendications 1 à 6, caractérisée en ce que la pression osmotique prédéterminée est comprise entre 100 et 500 mosm.l-1 , avantageusement entre 200 et 400 mOsm.l-1 , de préférence 300 mOsm.l-1 .
8. Composition selon l’une des revendications 1 à 7, caractérisée en ce que phase huileuse comprend au moins une huile choisie parmi le groupe comprenant les huiles de ricin, colza ou canola, karité, tournesol, amande douce, jojoba, soja, riz, blé, maïs, pépins de raisin, olive, noisette, cassis, limnanthes, camélia, mangue, abricot, souchet, onagre, bourrache, lin, coco, leurs cires et leurs dérivés, les insaponifiables d'huile d'olive, d’avocat, de soja et leurs dérivés, la vaseline, les huiles minérales, leurs cires et leurs dérivés, seuls ou en mélange.
9. Composition selon l’une des revendications 1 à 8, caractérisée en ce que les ingrédients lipophiles ou liposolubles de la phase huileuse sont choisis dans le groupe comprenant les filtres solaires tels que oxyde de zinc, dioxyde de titane, les triazines, triazones, imidazoles et leurs dérivés, le butyl methoxydibenzoylmethane, le diethylamino hydroxybenzoyl hexyl benzoate, 1’ethylexyl methoxycrylene, 1’ethylhexyl salicylate, 1’homosalate, 1’octocrylene, le tris(tetramethylhydroxypiperidinol) citrate, les tocophérols, tocotriénols, leurs esters et leurs dérivés ; le rétinol, le retynaldéhyde, l’acide rétinoïque et leur dérivés ; les vitamines D et K et leurs dérivés ; les sphingosines, les céramides, leurs esters et dérivés ; la lanoline, le panthénol, le bisabolol, le squalane, le squalène, la cire d’abeille et ses dérivés ; la piroctone olamine, l’alantoine, les stérols et phytostérols, leurs dérivés et leurs esters ; les esters d’acides aminés ou d’acides lactiques, maliques, tartriques, salicyliques ; seuls ou en mélange.
10. Composition selon l’une des revendications 1 à 9, caractérisée en ce que les ingrédients hydrophiles ou hydrosolubles de la phase aqueuse sont choisis dans le groupe comprenant les fructo-oligosaccharides, le dextrane, l’acide hyaluronique leurs sels et dérivés ; les acides aminés et peptides, leurs esters et dérivés ; la dihydroxyacetone, le PCA, l’urée, la myricetine, l’hesperitine, l’esperidine, la rutine, l’acide glycyrrhyetinique, leurs sels et leurs dérivés ; le bachukiol, le climbazole, la carnosine, le propyl gallate ; les acides ascorbiques, salicyliques leurs sels et dérivés hydrosolubles seuls ou en mélange.
11.Composition selon l’une des revendications 1 à 10, caractérisée en ce que la viscosité de la composition est comprise entre 300 et 400000 cps.
12. Procédé de préparation de la composition selon l’une des revendications 1 à 11 , caractérisé en ce que : a) on prépare la phase aqueuse, b) on homogénéise ladite phase aqueuse, c) on prélève un échantillon de la phase aqueuse (échantillon 1), d) on mesure la pression osmotique de l’échantillon 1 (pression osmotique mesurée 1), e) le cas échéant, on ajuste la composition osmolytique du reste de la phase aqueuse, pour atteindre une pression osmotique théorique du reste de la phase aqueuse dans une fourchette prédéterminée, avantageusement comprise entre 100 et 500 mosm.l-1, de préférence d’environ 300 mosm.l- 1 , f) on prépare la phase huileuse, g) on émulsifie la phase huileuse avec le reste de phase aqueuse, h) après émulsification, on sépare les phases aqueuse et huileuse et on prélève un échantillon de la phase aqueuse (échantillon 2), i) on mesure ensuite la pression osmotique de l’échantillon 2 (pression osmotique mesurée 2), j) puis, dans l’hypothèse où la valeur de pression osmotique mesurée 2 n’est pas comprise dans la fourchette de pression osmotique prédéterminée, avantageusement comprise entre 100 et 500 mosm.l-1, de préférence d’environ 300 mosm.l-1, on réalise un nouvel essai de formulation en débutant à l’étape a. en ajustant la composition en osmolytes de la phase aqueuse, en tenant compte de la pression osmotique mesurée 2 pour atteindre une pression osmotique théorique de la phase aqueuse après émulsification comprise dans la fourchette prédéterminée, avantageusement comprise entre 100 et 500 mosm.l-1, de préférence d’environ 300 mosm.l-1, k) on réitère le cas échéant les étapes a. à i. jusqu’à obtenir une pression osmotique mesurée de la phase aqueuse après séparation de l’émulsion comprise dans la fourchette de pression osmotique prédéterminée, avantageusement comprise entre 100 et 500 mosm.l-1, de préférence d’environ 300 mosm.l-1.
13. Procédé selon la revendication 12, caractérisé en ce qu’il comprend une étape supplémentaire de mesure de la viabilité cellulaire de kératinocytes humains normaux vis-à-vis de la phase aqueuse sur l’échantillon 2 de l’étape h.
14. Composition selon l’une des revendications 1 à 11, pour utilisation comme agent pour apaiser une peau atopique, réduire des symptômes acnéiques, réduire des inflammations de la peau, de protection solaire.
15. Utilisation de la composition selon l’une des revendications 1 à 11, comme agent hydratant ou anti-rides.
PCT/FR2021/051353 2020-07-20 2021-07-20 Formulation écobiologique, compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires WO2022018376A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2007629A FR3112475B1 (fr) 2020-07-20 2020-07-20 formulation écobiologique, compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires
FR2007629 2020-07-20

Publications (2)

Publication Number Publication Date
WO2022018376A2 true WO2022018376A2 (fr) 2022-01-27
WO2022018376A3 WO2022018376A3 (fr) 2022-03-17

Family

ID=73013617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2021/051353 WO2022018376A2 (fr) 2020-07-20 2021-07-20 Formulation écobiologique, compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires

Country Status (2)

Country Link
FR (1) FR3112475B1 (fr)
WO (1) WO2022018376A2 (fr)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021421A1 (fr) 1995-01-09 1996-07-18 Soc D Expl Francaise Des Rech Milieu nutritif utilisable comme milieu de culture de cellules epidermiques et applications
WO2000002530A1 (fr) 1998-07-08 2000-01-20 Thorel Jean Noel Solution aqueuse saline et mineralisee, et son utilisation en cosmetique et dermo-pharmacie
FR2820976A1 (fr) 2001-02-21 2002-08-23 Rhodia Chimie Sa Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple
WO2003074010A1 (fr) 2002-03-04 2003-09-12 Rhodia Chimie Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple
WO2004065463A1 (fr) 2002-12-23 2004-08-05 Rhodia Chimie Suspension de particules presentant plusieurs phases.
FR2871059A1 (fr) 2004-06-03 2005-12-09 Oreal Composition artificielle de type fluide lacrymal et son utilisation.
WO2009003960A1 (fr) 2007-06-29 2009-01-08 Nestec S.A. Emulsions doubles stables
WO2012093113A1 (fr) 2011-01-04 2012-07-12 Novaliq Gmbh Emulsions h/e comprenant des alcanes semifluorés
FR3072285A1 (fr) 2017-10-12 2019-04-19 Jean-Noel Thorel Solution aqueuse saline mineralisee et pourvue d'activite antioxydante, et son utilisation en dermocosmetique et dermopharmacie

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4925579B2 (ja) * 2004-12-28 2012-04-25 大塚製薬株式会社 水中油型エマルジョンからなる固形組成物
US20080026013A1 (en) * 2006-07-28 2008-01-31 Laura Rabinovich-Guilatt Compositions containing quaternary ammonium compounds
FR2916636B1 (fr) * 2007-05-29 2009-09-04 Octalia Technologies Vehicule sous forme d'une emulsion huile-dans-eau notamment destine a une utilisation ophtalmique ou dermocosmetique
EP2419392A4 (fr) * 2009-04-15 2013-02-27 Oxygen Biotherapeutics Inc Émulsions de perfluorocarbones
WO2016142026A1 (fr) * 2015-03-06 2016-09-15 Merck Patent Gmbh Tensioactifs fluorés situés dans des émulsions

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996021421A1 (fr) 1995-01-09 1996-07-18 Soc D Expl Francaise Des Rech Milieu nutritif utilisable comme milieu de culture de cellules epidermiques et applications
WO2000002530A1 (fr) 1998-07-08 2000-01-20 Thorel Jean Noel Solution aqueuse saline et mineralisee, et son utilisation en cosmetique et dermo-pharmacie
FR2820976A1 (fr) 2001-02-21 2002-08-23 Rhodia Chimie Sa Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple
WO2003074010A1 (fr) 2002-03-04 2003-09-12 Rhodia Chimie Formulation cosmetique comprenant au moins deux matieres actives dans une emulsion multiple eventuellement melangee a une emulsion simple
WO2004065463A1 (fr) 2002-12-23 2004-08-05 Rhodia Chimie Suspension de particules presentant plusieurs phases.
FR2871059A1 (fr) 2004-06-03 2005-12-09 Oreal Composition artificielle de type fluide lacrymal et son utilisation.
WO2009003960A1 (fr) 2007-06-29 2009-01-08 Nestec S.A. Emulsions doubles stables
WO2012093113A1 (fr) 2011-01-04 2012-07-12 Novaliq Gmbh Emulsions h/e comprenant des alcanes semifluorés
FR3072285A1 (fr) 2017-10-12 2019-04-19 Jean-Noel Thorel Solution aqueuse saline mineralisee et pourvue d'activite antioxydante, et son utilisation en dermocosmetique et dermopharmacie

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LANG F, J.AM.COLL.NUTR., vol. 26, 2007, pages 613S - 623S
SHAPIRO LDINARELLO C., EXP. CELL RES., vol. 231, 1997, pages 354 - 362
STRANGE K, ADV. PHYSIOL. EDUC., vol. 28, 2004, pages 155 - 159
TERUNUMA A. ET AL., J. DERMATOL. SCI., vol. 26, 2001, pages 85 - 93
WEHNER F ET AL., REV. PHYSIOL. BIOCHEM. PHARMACOL, vol. 148, 2003, pages 1 - 80

Also Published As

Publication number Publication date
FR3112475B1 (fr) 2023-11-10
FR3112475A1 (fr) 2022-01-21
WO2022018376A3 (fr) 2022-03-17

Similar Documents

Publication Publication Date Title
CA2104635C (fr) Composition pour le traitement de l'acne contenant un derive d'acide salicylique et derives d'acide salicylique
EP0820273B1 (fr) Utilisation des sophorolipides dans des compositions cosmetiques et dermatologiques
EP2125117B1 (fr) Emulsion comprenant au moins un retinoide et du péroxyde de benzoyle
EP2854793B1 (fr) Nanocapsules lipidiques comprenant un rétinoide, nanodispersion et composition les contenant, leur procédé de préparation et leur utilisation en dermatologie
CA2147089C (fr) Composition cosmetique et/ou dermatologique contenant un tri(alpha-hydroxyacylate) de glycerol comme seul precurseur de glycerol
FR2794125A1 (fr) Composition sous forme d'emulsion huile-dans-eau et ses utilisations notamment cosmetiques
EP1010415A1 (fr) Nanoémulsion à base d'esters gras de sorbitan oxyethylenés ou non oxyethylenés,et ses utilisations dans les domaines cosmétiques,dermatologiques,et/ou ophtalmologiques
EP1018363A1 (fr) Nanoémulsion à base de copolymères blocs d'oxyde d'éthylène et d'oxde de propylène, et ses utilisations dans les domaines cosmétique, dermatologique et/ou phtalmologique
EP2097077A1 (fr) Compositions comprenant du peroxyde de benzoyle, au moins un derive de l'acide naphtoïque et au moins un compose de type polymeres de polyurethane ou des derives de celui-ci, et leurs utilisations
TW200906449A (en) Emulsion composition
EP1758588A1 (fr) Composition pharmaceutique comprenant un onguent oleagineux et deux principes actifs solubilises.
WO2008043973A1 (fr) Composition dermatologique comprenant des nanocapsules d' avermectine, son procédé de préparation et son utilisation
FR2849597A1 (fr) Composition cosmetique pour le soin des peaux grasses, contenant un acide gras carboxylique ou l'un de ses derives
WO2012085491A1 (fr) Polymere saccharidique obtenu a partir de manihot esculenta, procede d'obtention et utilisation comme principe actif cosmetique tenseur de la peau
EP0318369B2 (fr) Composition à base de phases lamellaires lipidiques hydratées ou de liposomes contenant de la tyrosine ou un dérivé de tyrosine et composition cosmétique ou pharmaceutique, notamment dermatologique, à activité pigmentante, l'incorporant
EP2162116B1 (fr) Vehicule sous forme d'une emulsion huile-dans-eau notamment destine a une utilisation optalmique ou dermocosmetique
CA2297560C (fr) Nanoemulsion a base d'alkenyl succinates alkoxyles ou d'alkenyl succinates de glucose alkoxyles, et ses utilisations dans les domaines cosmetique, dermatologique, ophtalmologique et/ou pharmaceutique
WO2022018376A2 (fr) Formulation écobiologique, compatible avec la vie cellulaire, utilisable dans les domaines cosmétiques, dermopharmaceutiques ou vétérinaires
EP3200760B1 (fr) Composition cosmétique et/ou pharmaceutique sous forme de dispersion, procédé de préparation et utilisation pour le traitement de la peau
FR2944458A1 (fr) Procede de fabrication d'une emulsion huile-dans-eau par voie directe et indirecte a froid et a faible agitation
EP2173326A2 (fr) Composition dermatologique comprenant des vésicules lipidiques de calcitriol, son procédé de préparation et son utilisation
EP4153323A1 (fr) Compositions cosmetiques anti-age comprenant du nmn
CA2985013C (fr) Association d'acide lipoique et de taurine en tant qu'agent osmoprotecteur
EP2387442B1 (fr) Véhicule sous forme d'une émulsion huile-dans-eau notamment destiné à une utilisation cosmétique ou dermatologique
Nurdianti et al. Formulation, characterization, and determination of the diffusion rate study of antioxidant serum containing astaxanthin nanoemulsion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21752578

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21752578

Country of ref document: EP

Kind code of ref document: A2