WO2022017548A2 - 一种用于药物布洛芬分子手性结构分析的试剂和方法 - Google Patents

一种用于药物布洛芬分子手性结构分析的试剂和方法 Download PDF

Info

Publication number
WO2022017548A2
WO2022017548A2 PCT/CN2021/119464 CN2021119464W WO2022017548A2 WO 2022017548 A2 WO2022017548 A2 WO 2022017548A2 CN 2021119464 W CN2021119464 W CN 2021119464W WO 2022017548 A2 WO2022017548 A2 WO 2022017548A2
Authority
WO
WIPO (PCT)
Prior art keywords
ibuprofen
chiral structure
barium
reagent
molecules
Prior art date
Application number
PCT/CN2021/119464
Other languages
English (en)
French (fr)
Other versions
WO2022017548A3 (zh
Inventor
吴芳玲
古连城
杨淑童
闫迎华
徐福兴
戴新华
方向
余绍宁
丁传凡
Original Assignee
宁波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁波大学 filed Critical 宁波大学
Publication of WO2022017548A2 publication Critical patent/WO2022017548A2/zh
Publication of WO2022017548A3 publication Critical patent/WO2022017548A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the invention relates to the technical field of analysis and testing, in particular to a reagent and a method for analyzing the molecular chiral structure of drug ibuprofen.
  • Molecules are the most basic building blocks of the material world, and chirality is one of the basic properties of molecules.
  • a chiral molecule refers to a molecule that has two stereoisomers that are both physical and mirror images of each other, one of which is called a left-handed body, and the other is called a right-handed body.
  • the left-handed body and the right-handed body are like the left hand and the right hand of a human being, they are symmetrical, but they cannot be superimposed.
  • Ibuprofen is a common antipyretic and analgesic drug, belonging to non-steroidal anti-inflammatory drugs. Clinically, it is widely used for analgesic and anti-inflammatory effects.
  • the ibuprofen molecule is a chiral molecule, and its molecule contains a chiral molecule, as shown in Figure 1 below. Its molecular formula is C 13 H 18 O 2 and the chiral structural formula is shown in FIG. 1 .
  • a common method for molecular analysis of chiral drugs is to first separate molecules containing two or more chiral structures, that is, chiral drug resolution.
  • Commonly used separation methods are: chiral high performance liquid chromatography, chiral capillary electrophoresis, chiral gas chromatography, chiral thin layer chromatography, circular dichroism, nuclear magnetic resonance and supercritical fluid chromatography. Then, perform structural analysis on the separated molecular system containing only a single chiral structure to obtain its chiral properties, that is, it belongs to left-handed or right-handed.
  • Another method for analyzing the structure of chiral molecules is the so-called derivatization, that is, using chiral molecules with different structures and other molecules, such as different reactivity or reaction processes of chiral reagents, to produce different product molecules, and then Different reaction products were analyzed to obtain the structure and content information of the original chiral molecules.
  • the existing methods for analyzing the structure of chiral molecules must first separate or derivatize the chiral molecules before they can be analyzed.
  • Mass spectrometry is the most commonly used molecular or atomic mass analysis technology. It can quickly analyze the mass-to-charge ratio or mass information of different atoms or molecules, but for chiral molecules with exactly the same mass-to-charge ratio and molecular mass Powerless.
  • the ion mobility spectrometry technique can analyze molecules with different structures, such as isomers. Its working principle and process are: firstly generate ions of the sample to be analyzed, and then introduce these ions into the ion mobility spectrum. Mobility spectroscopy was performed under low vacuum conditions. In the ion mobility spectrum, the sample ions do directional motion under the action of the electric field, and continuously collide with the inactive working gases in the mobility spectrum, such as nitrogen, argon, etc.
  • the purpose of the present invention is to overcome the defects of the prior art, and to provide a reagent and method for analyzing the molecular chiral structure of the drug ibuprofen.
  • the technical scheme to achieve the object of the present invention is: a reagent for analyzing the molecular chiral structure of drug ibuprofen, the reagent comprises ibuprofen molecule mixed with solvent, gamma cyclodextrin and barium chloride.
  • the concentration of the ibuprofen molecule described in the above technical solution is 10 -12 to 1 mol/liter
  • the concentration of the gamma cyclodextrin is 10 -12 to 1 mol/liter
  • the concentration of the barium chloride is 10 -
  • the relative ratio between the ibuprofen molecule, the gamma cyclodextrin and the barium chloride is not limited at 12 to 1 mol/liter.
  • the ibuprofen molecule described in the above technical solution has two chiral structures of left-handed R and right-handed S.
  • the barium chloride described in the above technical solution can be replaced by one of BaBr 2 , BaI 2 , Ba(NO 3 ) 2 , and Ba(OH) 2 .
  • the gamma cyclodextrins described in the above technical solutions also include derivatives of gamma cyclodextrins.
  • the solvent described in the above technical solution is two or more of water, methanol, ethanol, propanol, diethyl ether, acetonitrile and propionitrile.
  • a method for analyzing the molecular chiral structure of drug ibuprofen comprising the following steps:
  • the ion source is one of an electrospray ionization ion source, a laser-assisted desorption ionization ion source, and a desorption electrospray ionization ion source;
  • One of the composite experimental devices for spectrum is one of an electrospray ionization ion source, a laser-assisted desorption ionization ion source, and a desorption electrospray ionization ion source;
  • the mixture of ibuprofen-gamma cyclodextrin-barium chloride is liquid or solid prepared from liquid according to experimental analysis.
  • the barium chloride can be replaced by other barium salts containing divalent barium ions, mixtures of other barium salts containing divalent barium ions and salts or acids containing chloride ions.
  • Other barium salts containing divalent barium ions refer to BaBr 2 , BaI 2 , Ba(NO 3 ) 2 , Ba(OH) 2 , etc.; other barium salts containing divalent barium ions and salts or acids containing chloride ions
  • the mixture refers to the mixture of Ba(NO 3 ) 2 , Ba(OH) 2 etc. with NaCl, KCl, MgCl 2 , CaCl 2 , HCl etc.
  • the present invention has following positive effect:
  • the present invention provides a new chirality analysis method for ibuprofen molecules, which simply combines the ibuprofen molecule samples with ⁇ -cyclodextrin, barium chloride, namely BaCl 2 , etc., or other compounds containing Salts of barium ions, such as BaBr 2 , BaI 2 , Ba(NO 3 ) 2 or Ba(OH) 2 mixed with chloride ion-containing salts or acids, are then ionized by electrospray to produce "[C 13 H 18 O 2 – ⁇ -CD-Ba(BaCl)-H] 2+ ” non-covalent complex ion, and then use the ion mobility spectrometry technique to measure its ion mobility spectrum to obtain the chiral structure information of the ibuprofen molecule. Furthermore, if the sample contains both levorotatory and dextrorotatory ibuprofen molecules, the method provided by the present invention can also obtain information on their relative contents. .
  • the method for analyzing the chiral structure of the ibuprofen molecule provided by the present invention is simple, does not require pre-chiral separation or derivatization of the ibuprofen chiral molecule, and the chemical samples used are easy to obtain, cheap and free of charge. Poisonous and harmless. Compared with the commonly used methods, it has many advantages.
  • Fig. 1 is the positional molecular structure schematic diagram of different chiral carbons of ibuprofen
  • Fig. 2 is a schematic diagram of the molecular structure of ⁇ -cyclodextrin
  • Example 3 is a schematic diagram of the mass spectrometry results of the ibuprofen molecular sample, ⁇ -cyclodextrin and barium chloride obtained in Example 1 of the present invention
  • FIG. 4 is a schematic diagram of the result of the chiral molecular ion mobility spectrum of the [C 13 H 18 O 2 - ⁇ -CD-Ba(BaCl)-H] 2+ molecule obtained in Example 1 of the present invention.
  • the used gamma cyclodextrin refers to a common chemical reagent whose molecular formula is: C 48 H 80 O 40 , its molecular weight is 1297.12, and has the molecular structure shown in FIG. 2 .
  • TIMS-TOFMS instrument produced by Bruke was used to test the chiral structure of C 8 H 17 NO 2 respectively.
  • the specific experimental process is as follows: using the electrospray ionization (ESI) ion source of the TIMS-TOFMS instrument to generate sample ions, and mass spectrometry analysis Various ion products produced by ESI (Fig. 3 is a schematic diagram of mass spectrometry results obtained in one experiment).
  • ESI electrospray ionization
  • the obtained mass spectrum signal intensity and ion mobility spectrum signal intensity are related to the concentration of the sample in the solution, according to the ion mobility spectrum intensity corresponding to a certain chiral 3-aminomethyl-5-methylhexanoic acid molecule , the content of such chiral ibuprofen molecules contained in the solution can be calculated, that is, quantitative analysis can be realized.
  • a solution of suitable concentration can be prepared according to needs, that is, the concentration of barium chloride (BaCl 2 ), ⁇ -cyclodextrin ( ⁇ -CD) and ibuprofen molecules in the solution can be determined according to the experimental needs.
  • the concentration of each compound in the mixed solution may be the same or different.
  • the type and relative content of the solvent used to prepare the solution can be prepared as needed, that is, it can be a mixture of acetonitrile and methanol, or a mixture of water, acetonitrile and methanol, or water, methanol, ethanol, Mixing of any two or more reagents in common reagents such as acetonitrile, propionitrile, formic acid, acetone, etc., and the ratio of each reagent in the mixed solution is not limited, which is determined according to experimental needs.
  • the inventors used a commercial ion mobility spectrometry-mass spectrometry instrument, TIMS-TOFMS instrument produced by Bruke Company, to analyze the hand of the ibuprofen molecule.
  • the experimental results are shown in Figure 3. It is clear from the experimental results that ibuprofen molecules with different chiral structures can be easily distinguished.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明涉及一种用于药物布洛芬分子手性分析分析的试剂及方法。包括:首先将布洛芬手性分子样品和伽马环糊精(γ-CD),含有钡离子的氯化钡配制成溶液,然后再利用离子产生装置,如电喷雾电离离子化装置制备和产生"布洛芬-γ-CD-Ba(BaCl)"的复合物二价离子,最后利用可以测量离子碰撞截面的离子迁移谱装置测量含有不同手性布洛芬分子的离子迁移谱,即可获得样品中所含有的布洛芬分子的手性结构特性,即样品中是否只含有一种手性的布洛芬分子,或同时含有二种手性的布洛芬分子,以及若同时含有二种手性的布洛芬分子,其每一种手性的布洛芬分子的含量是多少。本发明给出的分析试剂和方法简单,准确,分析速度快等优点,比现有的布洛芬分子的手性分析方法都简单。

Description

一种用于药物布洛芬分子手性结构分析的试剂和方法 技术领域
本发明涉及分析测试技术领域,具体涉及一种用于药物布洛芬分子手性结构分析的试剂和方法。
背景技术
分子是物质世界的最基本组成单元,而手性(Chirality)是分子的基本属性之一。手性分子是指一种分子存在着互为实物和镜像关系两个立体异构体,其中一个被称之为左旋体,另一个被称之为右旋体。左旋体和右旋体好比人的左手和右手,左右对称,但不能叠合。
很多重要的生物大分子,如氨基酸,多肽,蛋白质、多糖、核酸和酶等,几乎全是手性分子。目前所用的药物分子很大一部分也具有手性,被称之为手性药物。手性药物往往通过与体内生物大分子之间严格的手性匹配与分子识别实现其药物作用。因此,不同的手性分子由于与体内的手性分子会发生不同的相互作用而表现出不同的功能,使得它们在人体内的药理活性、代谢过程及毒性存在显著的差异。一个异构体可能是有效的,而另一个异构体可能是无效甚至是有害的。在临床治疗方面,服用对映体纯的手性药物不仅可以排除由于无效(不良)对映体所引起的毒副作用,还能减少药剂量和人体对无效对映体的代谢负担,对药物动力学及剂量有更好的控制,提高药物的专一性。因而具有十分广阔的市场前景和巨大的经济价值。因此,了解药物分子的手性对于了解其在体内的作用非常重要,也是当前手性药物研究中的关键问题之一。
布洛芬(Ibuprofen)是一种常见的解热镇痛类药物,属于非甾体抗炎药。临床上被广泛用于镇痛和抗炎等作用。
布洛芬分子是一种手性分子,它的分子中包含一个手性分子,如下图1所示。它的分子式为C 13H 18O 2和手性结构式展示于图1中。
不同的布洛芬手性分子的药效差别很大,现有研究结果表明,其S-型的布洛芬分子比R-型的布洛芬分子的药效强28倍。因此,在制药过程中,分析和了解生产过程中所获得的布洛芬药物中的手性特性,以及所含有的每种手性分子的相对含量是非常必要的。
目前有关手性药物分子分析的常用方法为,首先对含有二种或多种手性结构的分子进行分离,即手性药物拆分。常用的分离方法有:手性高效液相色谱法,手性毛细管电泳法,手性气相色谱法,手性薄层色谱法,圆二色谱法、核磁共振法和超临界流体色谱法等。然后再对被拆分的只含有单一手性结构的分子体系进行结构分析,获得其手性性质,即属于左旋或右旋。另外一种进行手性分子结构分析的方法即所谓的衍生化,即利用具有不同结构的手性分子与其它分子,如手性试剂的不同反应活性或反应过程,产生不同的产物分子,然后再对不同的反应产物进行分析,获得原来手性分子的结构和含量信息。总之,现有的手性分子结构分析方法都必须先对手性分子进行分离或衍生化,然后才能进行分析。
质谱分析技术是目前最常用的一种分子或原子质量分析技术,它可以快速地分析出不同原子或分子的质荷比或质量信息,但对于质荷比和分子质量完全相同的手性分子完全无能为力。离子迁移谱技术可以对具有不同结构的分子,如同分异构体进行分析,它的工作原理和过程为,首先产生待分析样品的离子,然后将这些离子引入到离子迁移谱中,一般的离子迁移谱工作在低真空条件下。在离子迁移谱中,样品离子在电场作用下做定向运动,并与迁移谱中的非活泼工作气体,如氮气,氩气等发生不断的碰撞。不同的离子由于其不同的碰撞截面而不同的迁移率而被分离。所以根据获得的被分离的离子迁移谱可以得到离子或分子结构的信息。但由于目前的离子迁移谱的分辨能力都较低,对于分子结构差别较小,或分子本身就很小,如有机小分子,小分子药物等,离子迁移谱技术仍然无法分析它们的结构差别,特别是不同的手性结构差异,如布洛芬分子的手性结构分析。
发明内容
本发明的目的是克服现有技术的缺陷,提供一种用于药物布洛芬分子手性结构分析的试剂和方法。
实现本发明目的的技术方案是:一种用于药物布洛芬分子手性结构分析的试剂,所述试剂包括混合有溶剂的布洛芬分子、伽马环糊精和氯化钡。
上述技术方案所述布洛芬分子的浓度为10 -12~1摩尔/升,所述伽马环糊精的浓度为10 -12~1摩尔/升,所述氯化钡的浓度为10 -12~1摩尔/升,所述布洛芬分子、所述伽马环糊精和所述氯化钡之间的相对比例不受限制。
上述技术方案所述布洛芬分子具有左旋R和右旋S二种手性结构。
上述技术方案所述氯化钡可替换为BaBr 2、BaI 2、Ba(NO 3) 2、Ba(OH) 2中的一种。
上述技术方案所述伽马环糊精还包括伽马环糊精的衍生物。
上述技术方案所述溶剂为水、甲醇、乙醇、丙醇、乙醚、乙腈、丙腈中的两种或多种。
一种用于药物布洛芬分子手性结构分析的方法,具有以下步骤:
S1,将需要进行手性结构分析的布洛芬分子、伽马环糊精和氯化钡添加溶剂后配制成布洛芬-伽马环糊精-氯化钡的混合物;
S2,将布洛芬-伽马环糊精-氯化钡的混合物使用离子源产生布洛芬-伽马环糊精-Ba(BaCl)的二价正离子,即[C 13H 18O 2-γ-CD-Ba(BaCl)-H] 2+,质荷比为M/z=906.16th;
S3,测量布洛芬-伽马环糊精-Ba(BaCl)的二价正离子的离子碰撞截面,或使用离子迁移谱的实验装置测量布洛芬-伽马环糊精-Ba(BaCl)的二价正离子的离子迁移谱,即可获得布洛芬分子的手性结构信息。
上述技术方案S1中,所述离子源为电喷雾电离离子源、激光辅助脱附电离离子源和解吸电喷雾电离离子源中的一种;S3中所述实验装置为离子迁移谱、包含离子迁移谱的复合型实验装置中的一种。
上述技术方案S1中,所述布洛芬-伽马环糊精-氯化钡的混合物为液态或为根据实验分析需要从液态制备的固态。
上述技术方案S1中,S1中,所述氯化钡可替换为含二价钡离子的其它 钡盐、含二价钡离子的其它钡盐与含氯离子的盐或酸的混合物。含二价钡离子的其它钡盐指的是如BaBr 2,BaI 2,Ba(NO 3) 2,Ba(OH) 2等;含二价钡离子的其它钡盐与含氯离子的盐或酸的混合物指的是如Ba(NO 3) 2,Ba(OH) 2等与NaCl,KCl,MgCl 2,CaCl 2,HCl等的混合物。替换后,S2和S3中,布洛芬-伽马环糊精-氯化钡、布洛芬-伽马环糊精-Ba(BaCl)的二价正离子、[C 13H 18O 2-γ-CD-Ba(BaCl)-H] 2+中BaCl和氯化钡做相应调整。可以理解的是,
采用上述技术方案后,本发明具有以下积极的效果:
本发明给出了一种新的关于布洛芬分子的手性分析方法,它通过简单地将布洛芬分子样品与γ-环糊精,氯化钡,即BaCl 2等,或其它的含钡离子的盐,如BaBr 2,BaI 2,Ba(NO 3) 2或Ba(OH) 2与含氯离子的盐或酸的混合溶液,然后利用电喷雾电离产生“[C 13H 18O 2–γ-CD-Ba(BaCl)-H] 2+”的非共价复合物离子,然后再利用离子迁移谱技术测量它的离子迁移谱,即可获得布洛芬分子的手性结构信息。更进一步,若样品中同时含有左旋和右旋的布洛芬分子,本发明给出的方法还可获得它们相对含量的信息。。
本发明所给出的布洛芬分子的手性结构分析方法简单,无需对布洛芬手性分子进行预先的手性拆分或衍生化,其所用的化学样品很容易获得,价格便宜,无毒无害。相比与目前常用的方法具有很多优点。
附图说明
为了使本发明的内容更容易被清楚地理解,下面根据具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1为布洛芬不同手性碳的位置分子结构示意图;
图2为γ-环糊精分子结构示意图;
图3为本发明实施例1中所获得布洛芬分子样品与γ-环糊精,氯化钡的质谱结果示意图;
图4为本发明实施例1中所所获得的[C 13H 18O 2–γ-CD-Ba(BaCl)-H] 2+分子手性分子离子迁移谱结果示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
所用的伽马环糊精,即γ-环糊精,是指分子式为:C 48H 80O 40,其分子量为1297.12,且具有图2所示的分子结构的常用化学试剂。
首先,分别称取适量的氯化钡(BaCl 2),γ-环糊精(γ-CD)和布洛芬分子分子(C 13H 18O 2)样品,利用甲醇:水混合溶液(CH 3OH:H 2O=1:1)溶液分别配制成浓度为1毫摩尔/每升(1mmol/L)的氯化钡(BaCl 2),γ-环糊精的母液,利用甲醇:乙腈混合溶液(CH 3OH:CH 3CN=1:1)溶液配制成浓度为1毫摩尔/每升(1mmol/L)的C 8H 17NO 2的母液,然后各取氯化钡(BaCl 2),γ-环糊精和C 13H 18O 2的母液100μm溶液到样品管中,最后,加入甲醇:水(1:1)溶液并稀释到10 -4mol/L。然后利用Bruke生产的TIMS-TOFMS仪器分别进行测试C 8H 17NO 2的手性结构,其具体实验过程为,利用TIMS-TOFMS仪器的电喷雾电离(ESI)离子源产生样品离子,并质谱分析ESI所产生的各种离子产物(图3为一次实验中所获得的质谱结果示意图)。然后进一步利用此仪器分析[C 13H 18O 2-γ-CD-Ba(BaCl)-H] 2+离子(M/z=906.16th)的离子迁移谱(如图4所示),由于[R-C 13H 18O 2–γ-CD-Ba(BaCl)-H] 2+和[S-C 13H 18O 2-γ-CD-Ba(BaCl)-H] 2+离子具有不同的碰撞截面,因此具有不同的离子迁移率(如图4所示),通过对比分析,我们获得被分析3-氨甲基-5-甲基己酸分子的手性结构,即它是R-型还是S-型。同时由于所获得的质谱信号强度和离子迁移谱信号强度都与溶液中样品的浓度有关,因此,根据对应于某种手性3-氨甲基-5-甲基己酸分子的离子迁移谱强度,即可推算出溶液中所含此种手性布洛芬分子的含量,即实现定量分析。
在实验过程中,可以根据需要配制适合浓度的溶液,即溶液中氯化钡(BaCl 2),γ-环糊精(γ-CD)和布洛芬分子的浓度可以根据实验需要而决定。此外,每种化合物在混合溶液中的浓度可以相同,也可以不同。
在实验过程中,可以根据需要配制溶液所用的溶剂种类和相对含量, 即可以是乙腈和甲醇的混合,也可以是水与乙腈,甲醇三种试剂的混合,也可以是水,甲醇,乙醇,乙腈,丙腈,甲酸,丙酮等常用试剂中任何二种或多种试剂的混合,且各种试剂在混合溶液中的比例不受限制,根据实验需要决定。
为了验证本发明所给出的方法的可行性和先进性,发明人利用了一台商用的离子迁移谱-质谱联用仪器,由Bruke公司生产的TIMS-TOFMS仪器分析了布洛芬分子的手性结构,其实验结果如图3所示。从实验结果可以很清楚地看到,具有不同手性结构的布洛芬分子可以被很容易地区分开。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种用于药物布洛芬分子手性结构分析的试剂,其特征在于:所述试剂包括混合有溶剂的布洛芬分子、伽马环糊精和氯化钡。
  2. 根据权利要求1所述的一种用于药物布洛芬分子手性结构分析的试剂,其特征在于:所述布洛芬分子的浓度为10 -12~1摩尔/升,所述伽马环糊精的浓度为10 -12~1摩尔/升,所述氯化钡的浓度为10 -12~1摩尔/升,所述布洛芬分子、所述伽马环糊精和所述氯化钡之间的相对比例不受限制。
  3. 根据权利要求1所述的一种用于药物布洛芬分子手性结构分析的试剂,其特征在于:所述布洛芬分子具有左旋R和右旋S二种手性结构。
  4. 根据权利要求1所述的一种用于药物布洛芬分子手性结构分析的试剂,其特征在于:所述氯化钡可替换为BaBr 2、BaI 2、Ba(NO 3) 2、Ba(OH) 2中的一种。
  5. 根据权利要求1所述的一种用于药物布洛芬分子手性结构分析的试剂,其特征在于:所述伽马环糊精还包括伽马环糊精的衍生物。
  6. 根据权利要求1所述的一种用于药物布洛芬分子手性结构分析的试剂,其特征在于:所述溶剂为水、甲醇、乙醇、丙醇、乙醚、乙腈、丙腈中的一种或多种。
  7. 一种用于药物布洛芬分子手性结构分析的方法,其特征在于,具有以下步骤:
    S1,将需要进行手性结构分析的布洛芬分子、伽马环糊精和氯化钡添加溶剂后配制成布洛芬-伽马环糊精-氯化钡的混合物;
    S2,将布洛芬-伽马环糊精-氯化钡的混合物使用离子源产生布洛芬-伽马环糊精-Ba(BaCl)的二价正离子,即[C 13H 18O 2-γ-CD-Ba(BaCl)-H] 2+,质荷比为M/z=906.16th;
    S3,测量布洛芬-伽马环糊精-Ba(BaCl)的二价正离子的离子碰撞截面,或使用离子迁移谱的实验装置测量布洛芬-伽马环糊精-Ba(BaCl)的二价正离子的离子迁移谱,即可获得布洛芬分子的手性结构信息。
  8. 根据权利要求7所述的一种用于药物布洛芬分子手性结构分析的方法,其特征在于:S1中,所述离子源为电喷雾电离离子源、激光辅助脱附电离离子源和解吸电喷雾电离离子源中的一种;S3中所述实验装置为离子迁移谱、包含离子迁移谱的复合型实验装置中的一种。
  9. 根据权利要求7所述的一种用于药物布洛芬分子手性结构分析的方法,其特征在于:S1中,所述布洛芬-伽马环糊精-氯化钡的混合物为液态或为根据实验分析需要从液态制备的固态。
  10. 根据权利要求7所述的一种用于药物布洛芬分子手性结构分析的方法,其特征在于:S1中,所述氯化钡可替换为含二价钡离子的其它钡盐、含二价钡离子的其它钡盐与含氯离子的盐或酸的混合物。
PCT/CN2021/119464 2020-07-21 2021-09-18 一种用于药物布洛芬分子手性结构分析的试剂和方法 WO2022017548A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010703686.6A CN112834314B (zh) 2020-07-21 2020-07-21 一种用于药物布洛芬分子手性结构分析的试剂及其方法
CN202010703686.6 2020-07-21

Publications (2)

Publication Number Publication Date
WO2022017548A2 true WO2022017548A2 (zh) 2022-01-27
WO2022017548A3 WO2022017548A3 (zh) 2022-03-03

Family

ID=75923206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119464 WO2022017548A2 (zh) 2020-07-21 2021-09-18 一种用于药物布洛芬分子手性结构分析的试剂和方法

Country Status (2)

Country Link
CN (1) CN112834314B (zh)
WO (1) WO2022017548A2 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112834314B (zh) * 2020-07-21 2023-03-31 常州磐诺仪器有限公司 一种用于药物布洛芬分子手性结构分析的试剂及其方法
CN114034759A (zh) * 2020-07-21 2022-02-11 中国计量科学研究院 一种用于药物布洛芬分子手性结构分析的试剂和方法
CN113406183B (zh) * 2021-06-29 2024-04-23 常州磐诺仪器有限公司 基于离子淌度质谱仪高效识别青霉胺手性对映体的方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005057191A1 (en) * 2003-12-03 2005-06-23 Baylor University Methods for determining enantiomeric purity
US20090170213A1 (en) * 2006-05-23 2009-07-02 University Of Western Ontario High-Throughput Screening of Enantiomeric Excess (EE)
JP2010054216A (ja) * 2008-08-26 2010-03-11 Iwate Prefectural Univ キラル識別又は光学純度測定方法
JP5697659B2 (ja) * 2009-04-15 2015-04-08 マイクロマス ユーケー リミテッド イオン移動度の予測で使用するための分子の断面積を推定する方法およびシステム
CN107764890B (zh) * 2017-10-16 2019-12-17 杭州先导医药科技有限责任公司 一种依折麦布对映异构体的区分检测方法
CN107764891B (zh) * 2017-10-16 2020-03-13 杭州先导医药科技有限责任公司 一种恩替卡韦手性异构体的区分测定方法
CN112834314B (zh) * 2020-07-21 2023-03-31 常州磐诺仪器有限公司 一种用于药物布洛芬分子手性结构分析的试剂及其方法

Also Published As

Publication number Publication date
CN112834314B (zh) 2023-03-31
WO2022017548A3 (zh) 2022-03-03
CN112834314A (zh) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2022017548A2 (zh) 一种用于药物布洛芬分子手性结构分析的试剂和方法
CN104678028B (zh) 生物原胺类神经递质的前处理和检测方法、及检测试剂盒
Taylor et al. Chlorine isotopic ratios by negative ion mass spectrometry
Dixit et al. Application of antibiotics as chiral selectors for capillary electrophoretic enantioseparation of pharmaceuticals: a review
Chen et al. Carbon dots and 9AA as a binary matrix for the detection of small molecules by matrix-assisted laser desorption/ionization mass spectrometry
Sun et al. Fluorographene nanosheets: a new carbon-based matrix for the detection of small molecules by MALDI-TOF MS
WO2022017549A2 (zh) 一种用于药物布洛芬分子手性结构分析的试剂和方法
Mirmahdieh et al. Analysis of dextromethorphan and pseudoephedrine in human plasma and urine samples using hollow fiber-based liquid–liquid–liquid microextraction and corona discharge ion mobility spectrometry
WO2022068634A1 (zh) 一种用于氟比洛芬分子手性结构分析的试剂及其方法
Zhang et al. Metal–organic framework assisted matrix solid‐phase dispersion microextraction of saponins using response surface methodology
Zhao et al. Matrix effect-free on-line pass-through cleanup procedure for the fast determination of local anesthetic drug by LC-MS/MS
Lv et al. Enantiomeric separation of seven β-agonists by NACE—Study of chiral selectivity with diacetone-D-mannitol–boric acid complex
Zhang et al. Evaluation of kasugamycin as a chiral selector in capillary electrophoresis
Guan et al. Spatio-temporal analysis of anesthetics in mice by solid-phase microextraction: dielectric barrier discharge ionization mass spectrometry
Lu et al. A new method for the analysis of β2-agonists in human urine by pressure-assisted capillary electrochromatography coupled with electrospray ionization-mass spectrometry using a silica-based monolithic column
WO2022017547A1 (zh) 一种基于β环糊精的氨基苯磺酸位置异构体的分析试剂和方法
CN112834599B (zh) 一种用于位置异构氨基联苯分子的位置异构分析试剂和方法
CN113406183B (zh) 基于离子淌度质谱仪高效识别青霉胺手性对映体的方法
CN108693286A (zh) 一种药物中基因毒性杂质硫酸二异丙酯的检测方法
CN104991027B (zh) 降低lc‑ms测试物中不挥发性缓冲盐含量的方法
Chu et al. Microwave‐assisted ionic liquid‐based micelle extraction combined with trace‐fluorinated carbon nanotubes in dispersive micro‐solid‐phase extraction to determine three sesquiterpenes in roots of Curcuma wenyujin
Li et al. Ti3C2 (OH) x-assisted LDI-TOF-MS for the rapid analysis of natural small molecules
Wang et al. High sensitive label-free electrochemical sensor using polydopamine-coated Zr-MOF composites for rapid detection of amoxicillin
Liu et al. Metabolite discovery of helicidum in rat urine with XCMS based on the data of ultra performance liquid chromatography coupled to time-of-flight mass spectrometry
CN113640429B (zh) 一种用于动物源性食品中喹诺酮类药物残留的检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845607

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845607

Country of ref document: EP

Kind code of ref document: A2