WO2022016938A1 - 3d打印系统及方法 - Google Patents

3d打印系统及方法 Download PDF

Info

Publication number
WO2022016938A1
WO2022016938A1 PCT/CN2021/090076 CN2021090076W WO2022016938A1 WO 2022016938 A1 WO2022016938 A1 WO 2022016938A1 CN 2021090076 W CN2021090076 W CN 2021090076W WO 2022016938 A1 WO2022016938 A1 WO 2022016938A1
Authority
WO
WIPO (PCT)
Prior art keywords
feeding
printing
printing system
print head
mechanisms
Prior art date
Application number
PCT/CN2021/090076
Other languages
English (en)
French (fr)
Inventor
黄卫东
黄芃
Original Assignee
苏州美梦机器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州美梦机器有限公司 filed Critical 苏州美梦机器有限公司
Publication of WO2022016938A1 publication Critical patent/WO2022016938A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • B29C64/336Feeding of two or more materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/307Handling of material to be used in additive manufacturing
    • B29C64/321Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C67/00Shaping techniques not covered by groups B29C39/00 - B29C65/00, B29C70/00 or B29C73/00

Definitions

  • the present application relates to the field of 3D printing, in particular to a 3D printing system and method.
  • 3D printing technology based on material extrusion such as fused deposition molding (FDM) technology
  • FDM fused deposition molding
  • a single feeding mechanism is usually used for conveying the same material.
  • the 3D printing system requires that the material conveying flow rate of the feeding mechanism can vary within a large range, which is difficult for a single feeding mechanism to achieve.
  • the present application provides a 3D printing system and method.
  • a 3D printing system comprising: a plurality of feeding mechanisms, wherein different feeding mechanisms in the plurality of feeding mechanisms have different adjustable ranges of material conveying flow rates; a print head for using the plurality of feeding mechanisms The flowable material output by the feeding mechanism is used for 3D printing; the control part is used to select the corresponding feeding material from multiple feeding mechanisms according to the requirements of the part to be printed for the change range of the material conveying flow rate during the process of printing the same item The agency transports materials.
  • a 3D printing method is provided, the 3D printing method is applied in a 3D printing system, the 3D printing system includes a plurality of feeding mechanisms, and the material conveying flow rate of the plurality of feeding mechanisms can be adjusted within an adjustable range
  • the 3D printing method includes: during the process of printing the same item, selecting a corresponding feeding mechanism from a plurality of feeding mechanisms to transport the material according to the requirement of the part to be printed on the variation range of the material conveying flow rate.
  • the use of multiple feeding mechanisms with different adjustable ranges of material conveying flow rates to cooperate to transport materials can reduce the difficulty of implementing each feeding mechanism.
  • Figure 1 is a schematic structural diagram of a traditional 3D printing system.
  • FIG. 2 is a schematic structural diagram of a 3D printing system provided in the first embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another 3D printing system provided by the first embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another 3D printing system provided by the first embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another 3D printing system provided by the first embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another 3D printing system provided by the first embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another 3D printing system provided by the first embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a 3D printing method provided by the second embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a traditional 3D printing system.
  • the 3D printing system 10 includes a feeding mechanism 40 and a print head 30 .
  • the feeding mechanism 40 is used for conveying materials
  • the print head 30 is used for 3D printing using the materials output by the feeding mechanism 40 .
  • the direction indicated by the arrow in FIG. 1 is the conveying direction (or flow direction) of the material in the 3D printing system 10 . It can be seen from the direction indicated by the arrow in FIG. 1 that the feeding mechanism 40 conveys the flowable material to the print head 30, and then the print head 30 extrudes the material from the extrusion port 31, thereby gradually depositing the material on the working platform 20, and finally 3D prints are formed.
  • the material conveying flow rate of the feeding mechanism 40 needs to be able to vary within a relatively large range.
  • the extrusion port 31 of the print head 30 based on the "Fused sheet deposition 3D printing" (FSD for short) printing method has a one-dimensional strip feature, that is to say, the extrusion port 31 is much longer in one dimension.
  • the length of the extrusion port 31 in another dimension, and the length of the extrusion port 31 can be changed in the one-dimensional direction with the change of the cross-sectional contour of the part to be printed, so as to form a variable-length extrusion port, which can then be moved through one unidirectional movement.
  • the 3D printing system 10 when printing items by FSD and other printing methods, the 3D printing system 10 usually needs to adjust the material extrusion flow rate of the print head 30 according to actual requirements such as the actual length of the extrusion port 31 to adjust the printing efficiency of the 3D printing system 10.
  • the material conveying flow rate of the feeding mechanism 40 In order to To match the change in printing efficiency, the material conveying flow rate of the feeding mechanism 40 needs to be adjusted correspondingly.
  • the material conveying flow rate of the feeding mechanism 40 also needs to be adjusted in changes within a larger range.
  • the feeding mechanism 40 is usually only a single feeding mechanism, for example, only a single screw-type feeding mechanism. Considering that the adjustable range of the material conveying flow rate of a single feeding mechanism is limited, when the material conveying flow rate of the feeding mechanism 40 needs to be varied within a large range, it is difficult for a single feeding mechanism to realize.
  • the present application abandons the method of using a single feeding mechanism to transport materials to the print head in the traditional 3D printing system, and chooses to use multiple feeding mechanisms with different adjustable ranges of material transport flow rates to transport materials to the print head.
  • the material conveying flow rate of the feeding mechanism needs to be changed within a large range, compared with using a single feeding mechanism, the use of multiple feeding mechanisms with different adjustable ranges of the material conveying flow rate to cooperate with conveying materials can reduce the cost of each feeding.
  • the realization difficulty of the feeding mechanism is the method of using a single feeding mechanism to transport materials to the print head in the traditional 3D printing system, and chooses to use multiple feeding mechanisms with different adjustable ranges of material transport flow rates to transport materials to the print head.
  • FIG. 2 is a schematic structural diagram of a 3D printing system provided in the first embodiment of the present application.
  • the 3D printing system 10 includes a plurality of feeding mechanisms 41 , a control part 411 and a printing head 30 .
  • a plurality of feeding mechanisms 41 may be provided in parallel.
  • the adjustable ranges of the material conveying flow rates of different feeding mechanisms in the plurality of feeding mechanisms 41 are different.
  • the print head 30 is used for 3D printing using the flowable materials output by the multiple feeding mechanisms 41 .
  • the direction indicated by the arrow is the conveying direction (or the flow direction) of the material in the 3D printing system 10 .
  • the material is first conveyed to the print head 30 from the plurality of feeding mechanisms 41 , then extruded through the extrusion port 31 , and finally deposited on the printing platform 20 .
  • the material of the material printed by the 3D printing system 10 is not specifically limited in the embodiment of the present application.
  • the 3D printing system 10 can be used to print plastic and any paste-like material that can flow and be extruded.
  • the 3D printing system 10 may be used to print metal paste-like materials (the metal paste-like materials may be formed by adding liquid binders to metal powders), ceramic paste-like materials (the ceramic paste-like materials may be formed by adding liquid binders to metal powders) Add liquid binder to form), organic polymer materials, inorganic paste materials (such as cement, gypsum slurry, mud slurry, etc.).
  • the material that the 3D printing system 10 can use to print can also be cream, chocolate and other paste-like foods. More specifically, in certain embodiments, the 3D printing system 10 may be used to print materials formed from the following materials: polylactic acid (PLA), acrylonitrile-butadiene-styrene (ABS), polycarbonate ( PC), nylon-6 (PA6), polyphenylene sulfide (PPS), polymethylmethacrylate (PMMA) and polyetheretherketone (PEEK).
  • PLA polylactic acid
  • ABS acrylonitrile-butadiene-styrene
  • PC polycarbonate
  • PA6 nylon-6
  • PPS polyphenylene sulfide
  • PMMA polymethylmethacrylate
  • PEEK polyetheretherketone
  • the feeding mechanism 41 may be a screw-type feeding device (screw pump, or screw extruder), or may be a pneumatic feeding device or a piston-type feeding device.
  • the different feeding mechanisms 41 can be the same kind of feeding devices, for example, they can all be screw-type feeding devices. Different feeding mechanisms 41 can also be different types of feeding devices, for example, some feeding mechanisms 41 are screw-type feeding devices, and other feeding mechanisms 41 are piston-type feeding devices.
  • the number of print heads 30 can be one, so that multiple feeding mechanisms 41 can deliver materials to the same print head 30 of the 3D printing system. In some embodiments, multiple print heads 30 may also be provided corresponding to multiple feed mechanisms 41 , so that multiple feed mechanisms 41 can respectively deliver materials to different print heads 30 of the 3D printing system.
  • the number of print heads 30 is not specifically limited in this application.
  • the control part 411 is used to select a corresponding feeding mechanism from a plurality of feeding mechanisms to transport the material according to the requirement of the to-be-printed part for the variation range of the material conveying flow rate during the process of printing the same item (eg, the same part).
  • a plurality of feeding mechanisms 41 can work simultaneously or in time division. Multiple feeding mechanisms 41 can print different parts (or different structures) of the same article, such as printing different parts (or different regions) in the same layer. For example, a feeding mechanism with a lower adjustable range of material conveying flow rate can be used for high-precision printing of fine structures of an item; a feeding mechanism with a higher adjustable range of material conveying flow rate can be used for high-precision printing of thick and large structures of an item. Efficient printing.
  • the use of multiple feeding mechanisms with different adjustable ranges of material conveying flow rates to cooperate to transport materials can reduce the difficulty of implementing each feeding mechanism.
  • the adjustable range feeding mechanism feeds the material to the print head.
  • the adjustable range of the material conveying flow rate of the first feeding mechanism is 1-100 mm 3 /s
  • the adjustable range of the material conveying flow rate of the second feeding mechanism is 100-10000 mm 3 /s.
  • the two feeding mechanisms cooperate with each other, and the material conveying flow rate can be adjusted within 1 ⁇ 10000mm 3 /s, but each of the two feeding mechanisms only needs to satisfy the material conveying flow rate within the range of 1 ⁇ 100 times. It can be adjusted, and it does not need to be adjusted within 1 to 10,000 times, thereby simplifying the realization difficulty of the feeding mechanism.
  • the embodiment of the present application does not specifically limit the setting manner of the adjustable ranges of the material conveying flow rates of the plurality of feeding mechanisms 41 .
  • the plurality of feeding mechanisms 41 include a first feeding mechanism and a second feeding mechanism.
  • the adjustable range of the material conveying flow rate of the first feeding mechanism is [Q 1 , Q 2 ]
  • the adjustable range of the material conveying flow rate of the second feeding mechanism is [Q 3 , Q 4 ], where Q 1 , Q 2 , Q 3 and Q 4 are all positive numbers, and Q 1 is less than Q 3 , Q 4 is greater than Q 2 , and Q 2 is greater than Q 3 .
  • the adjustable range of the material conveying flow rate of the first feeding mechanism is smaller than the adjustable range of the material conveying flow rate of the second feeding mechanism, and the two ranges at least partially overlap.
  • the first feeding mechanism and the second feeding mechanism cooperate with each other, so that the continuous adjustment of the material conveying flow rate within a larger range (ie [Q 1 , Q 4 ]) can be realized.
  • control portion 411 may be configured to: when the demand for the material to be printed portion of the delivery flow rate variation range is smaller than Q 3, controls the first feed mechanism feeding; when the portion of the material to be printed When the demand for the variation range of the conveying flow rate is greater than Q 2 , the second feeding mechanism is controlled to feed; when the demand for the variation range of the material conveying flow rate of the part to be printed is between Q 2 and Q 3 , the first feeding mechanism is controlled to feed Or the second feeding mechanism feeding.
  • the material conveyed by the first feeding mechanism is extruded through the first extrusion port of the print head of the 3D printing system, and the material conveyed by the second feeding mechanism passes through the second extrusion port of the print head of the 3D printing system.
  • the widths of the first extrusion port and the second extrusion port are both continuously adjustable, and the thickness of the first extrusion port is smaller than the thickness of the second extrusion port.
  • the adjustable range of the material conveying flow rate of the first feeding mechanism is smaller than the adjustable range of the material conveying flow rate of the second feeding mechanism, then the first feeding mechanism can be configured with an extrusion port with a smaller thickness (extrusion port The smaller the thickness of the outlet, the higher the printing accuracy of the extrusion port), so that the first feeding mechanism is applied to high-precision printing.
  • a thicker extrusion port is configured for the second feeding mechanism (the greater the thickness of the extrusion port, the higher the printing efficiency of the extrusion port), so that the second feeding mechanism is applied to high-efficiency printing.
  • outlets of the multiple feeding mechanisms 41 are in communication.
  • FIG. One-way valve 42 In order to avoid the transfer of materials and pressure between different feeding mechanisms 41, in some embodiments of the present application, referring to FIG. One-way valve 42 .
  • the number of one-way valves 42 may be multiple, so that each feeding mechanism 41 has a corresponding one-way valve 42 . After the material flows out from the feeding mechanism 41 , it first flows through the one-way valve 42 and then flows into the print head 30 .
  • the 3D printing system 10 further includes a material flow channel 43 .
  • the material flow channel 43 has a structure allowing the flowable material to flow therethrough, and is used for conveying the flowable material output by the plurality of feeding mechanisms 41 to the print head 30 .
  • the material flow channel 43 is arranged between the feeding mechanism 41 and the print head 30 , and the one-way valve 42 is arranged between the material flow channel 43 and the print head 30 .
  • control part 411 can also be used to control the multiple feeding mechanisms 41 to work at different times during the process of printing the same article.
  • the control part 411 controls a certain feeding mechanism to work, and can control other feeding mechanisms to stop working. In this way, when a certain feeding mechanism is working, the material conveyed by the feeding mechanism may leak through the material passage between other feeding mechanisms and the print head.
  • a feeding mechanism with a higher adjustable range that can control the material conveying flow rate works, so that the thick part can be printed efficiently; when a local fine part of the part needs to be printed
  • the feeding mechanism with a lower adjustable range that can control the material conveying flow rate works, the local fine part can be printed with high precision.
  • a corresponding print head 30 can be configured for each of the multiple feeding mechanisms 41 , and the multiple feeding mechanisms 41 can be controlled to print at the same time different parts of the same item.
  • a feeding mechanism with a higher adjustable range that can control the material conveying flow rate can efficiently print thick parts of the part, while a feeding mechanism with a lower adjustable range that can control the material conveying flow rate works on local fine parts of the part High-precision printing.
  • the plurality of feeding mechanisms 41 may be a plurality of screw-type feeding devices.
  • Screw feeders can be either single-screw or twin-screw designs.
  • the screw of the screw feeder can have a single thread or multiple threads.
  • the screw of the screw feeding device can be a horizontal screw or a vertical screw, and the screw groove can be of equal depth or deeper.
  • the screw feeder when the screw feeder conveys the material, it needs to heat the material so that the material is in a flowing state.
  • the screw feeding device When a single screw feeding device is used to convey materials to the print head, in order to achieve a large adjustable range for the printing efficiency of the 3D printing system, the screw feeding device needs to have a correspondingly large adjustable material conveying flow rate. Scope.
  • the adjustable range of the material conveying flow rate of a single screw feeding device is too large, which will cause the material to stay in the screw feeding device for too long when the material conveying flow rate is low, which increases the risk of degradation.
  • the residence time of the material in the screw feeding device is too short and the heating is insufficient, so that the temperature of the material cannot be accurately controlled.
  • the screw feeder with an appropriate output flow rate can be selected to operate according to actual needs, thereby effectively avoiding the above problems.
  • the 3D printing system 10 further includes temperature control devices 44 , 32 .
  • the temperature control devices 44 and 32 are used to control the temperature of the screw feeding device 41 and the printing head 30 , so that the temperature of the printing head 30 is higher than the temperature of the material in the screw feeding device 41 .
  • the technical solution can effectively reduce the problems of backflow and leakage.
  • the extrusion flow rate of the screw feeder can be calculated by the following formula:
  • Q represents the extrusion flow (or flow rate) of the material
  • D represents the outer diameter of the screw
  • H represents the depth of the screw groove
  • n represents the screw speed
  • P represents the extrusion pressure of the extrusion port 31
  • Pmax represents the maximum extrusion pressure of the screw
  • L represents the screw length
  • represents the gap between the screw and the barrel
  • e represents the normal direction of the screw flight Width
  • represents the viscosity of the material in the groove
  • ⁇ 1 represents the viscosity of the material in the gap ⁇ .
  • the difference setting of the above-mentioned material viscosity can greatly reduce the reverse flow and leakage problems of the screw feeding device 41, and even reduce the reverse flow and leakage to a negligible level compared with the positive flow. In this way, the screw feeding The device 41 can then perform precise metering output.
  • the inventor also found that reducing the extrusion pressure P of the extrusion port 31 can significantly reduce the power consumption of the screw-type feeding device 41, thereby reducing the cost of the material conveying system.
  • the temperature control devices 44 , 32 may include, for example, a first heater 44 and a second heater 32 .
  • the first heater 44 is configured to heat the screw feeder 41 .
  • the second heater 32 is configured to heat the extrusion port 31 .
  • the heating temperature of the second heater 32 is higher than the heating temperature of the first heater 44 .
  • the 3D printing system 10 needs to first convert solid materials into flowable materials, and then transport the flowable materials to the print head.
  • each feeding mechanism 41 needs to continuously complete the conversion of the material from the solid state to the flowable material, and the metering output of the flowable material to the print head.
  • the inventors found that in this case, if the material conveying flow rate of the feeding mechanism 41 is greatly adjusted, the above two processes (conversion of the material from solid to flowable and the metering output of the flowable material to the print head) ) will have difficult coordination problems.
  • the screw feeding device usually includes a feeding section, a melting section (or compression section) and a metering section.
  • the feeding section is used to receive the solid material
  • the melting section is used to convert the solid material into a flowable state
  • the metering section is used to quantitatively output the flowable material to the print head. If the flow rate of the material changes dynamically, then the rotational speed of the screw feeder also changes dynamically. In this way, the pressure, flow and temperature of the flowable material output from the melting section will fluctuate. Affected by the fluctuation of the flowable material output by the melting section, it is difficult for the metering section to deliver the material to the print head accurately and quantitatively.
  • the present application assigns the two tasks of the state transition of the material and the metering output of the material to two different feeding devices, and buffers the material between the two feeding devices to shield the output of the first feeding device The impact of fluctuations on the second feeding device.
  • the 3D printing system 10 includes: a first feeding device 60 , a buffer container 50 , a second feeding device 40 and a printing head 30 .
  • the buffer container 50 is located between the first feeding device 60 and the second feeding device 40 .
  • the plurality of feeding mechanisms 41 belong to the second feeding device 40 , and the second feeding device 40 can be regarded as a feeding device composed of a plurality of feeding mechanisms 41 .
  • the direction indicated by the arrow in FIG. 7 is the conveying direction of the material (or the flow direction of the material). From the direction indicated by the arrow in FIG. 7 , it can be seen that the material flows through the first feeding device 60 , the buffer 50 , the second feeding device 40 and the print head 30 in sequence.
  • the first feeding device 60 is used for converting solid materials into flowable materials (also referred to as molten materials).
  • the buffer container 50 is used for storing the flowable material output by the first feeding device 60 .
  • the second feeding device 40 is used for feeding the flowable material in the buffer container 50 to the print head 30 . That is to say, the first feeding device 60 is used to realize the conversion of the material from a solid state to a flowable state, and the second feeding device 40 is used to realize the metering output to the print head.
  • the first feeding device 60 can be a screw feeding device (or a screw pump, or a screw extruder), or a pneumatic feeding device or a piston feeding device.
  • the buffer container 50 can isolate the possible adverse effects of the fluctuation of the output of the first feeding device 60 on the second feeding device 40 .
  • the fluctuation output by the first feeding device 60 includes at least one of the following fluctuations: pressure fluctuation, flow fluctuation and temperature fluctuation.
  • the isolation of the buffer container 50 from the fluctuations output by the first feeding device 60 is beneficial for the second feeding device 40 to precisely control the flow rate of the material.
  • the first feeding device 60 and the second feeding device 40 are directly connected, in order to achieve high-precision flow rate control at the extrusion port, it is necessary to perform a process between the first feeding device 60 and the second feeding device 40.
  • High-precision synergistic flow rate control when the material extrusion flow rate of the print head 30 needs to be dynamically changed, the state of the material output by the first feeding device 60 is very unstable. In this case, it is very difficult to achieve high-precision coordination between the first feeding device 60 and the second feeding device 40 .
  • the addition of the buffer container 50 between the first feeding device 60 and the second feeding device 40 can reduce the requirement for cooperative control between the first feeding device 60 and the second feeding device 40 .
  • the buffer container 50 can smooth the fluctuation of the output of the first feeding device 60 and ensure that the material is supplied to the subsequent second feeding device 40 in a stable state.
  • the buffer container 50 Due to the existence of the buffer container 50, the difficulty of coordinating the two stages of material state conversion and metering output is reduced, thereby facilitating the realization of stable metering output of materials.
  • the print head 30 may have an extrusion port 31 with a continuously adjustable width.
  • the extrusion port with continuously adjustable width is applied in some advanced 3D printing technologies.
  • Some of these 3D printing systems require the width of the extrusion port to be controlled so that the width of the extrusion port varies with the filling area of the material.
  • the cross-sectional contour line is changed (or, the width of the extrusion port is matched with the length of the sectional line segment of the cross-sectional contour line of the material-filled area), so as to achieve ultra-high-efficiency printing.
  • the first feeding device 60 , the buffer container 50 , the second feeding device 40 and the print head 30 can be regarded as four functional segments of the entire 3D printing system 10 , and each functional segment can be based on its own Precise temperature control is required.
  • the first feeding device 60 may control the temperature to be suitable for the material to transition from a solid state to a flowable state.
  • the buffer container 50 can control the temperature at a target value, and the target value can be determined according to the working temperature of the second feeding device 40 , for example, can be slightly higher than the working temperature of the second feeding device 40 .
  • the temperature of the second feeding device 40 and the print head 30 can be controlled by the above-mentioned temperature difference control method.
  • the first embodiment is an apparatus embodiment
  • the second embodiment is a method embodiment.
  • the description on the device side and the description on the method side correspond to each other, and repeated descriptions are appropriately omitted for brevity.
  • FIG. 8 is a schematic flowchart of a 3D printing method provided by the second embodiment of the present application.
  • the method S800 shown in FIG. 8 may be performed by the aforementioned 3D printing system 10 .
  • Method S800 includes step S810.
  • step S810 during the process of printing the same article, according to the requirement of the part to be printed for the variation range of the material conveying flow rate, a corresponding feeding mechanism is selected from a plurality of feeding mechanisms to convey the material.
  • multiple feed mechanisms are used to print different portions of the same layer of the article.
  • the 3D printing system further includes a first feeding device and a second feeding device, a buffer container located between the first feeding device and the second feeding device, and a print head in communication with the second feeding device.
  • Step S810 may include: using the first feeding device to convert the solid material into flowable material; using a buffer container to store the material output by the first feeding device; using a plurality of feeding mechanisms to transport the material in the buffer container to the print head to Print different parts of the same item separately.
  • the multiple feeding mechanisms are multiple screw feeding devices; the method S800 may further include: performing temperature control on the multiple screw feeding devices and the print head, so that the temperature of the print head is higher than that of the multiple screw feeding devices The temperature of the material in the device.
  • multiple feed mechanisms deliver material to the same print head of the 3D printing system.
  • a one-way valve is disposed between any one of the plurality of feeding mechanisms and the print head.
  • a material flow channel is arranged between the first feeding mechanism and the print head, and a one-way valve is arranged between the material flow channel and the print head.
  • the method S800 may further include: during the process of printing the same article, controlling multiple feeding mechanisms to work at different times.
  • multiple feed mechanisms deliver material to different print heads of the 3D printing system.
  • the method S800 may further include: during the process of printing the same article, controlling multiple feeding mechanisms to work simultaneously.
  • the plurality of feeding mechanisms include a first feeding mechanism and a second feeding mechanism
  • the adjustable range of the material conveying flow rate of the first feeding mechanism is [Q 1 , Q 2 ]
  • the material conveying flow rate of the second feeding mechanism The adjustable range of flow rate is [Q 3 , Q 4 ], where Q 1 , Q 2 , Q 3 , and Q 4 are all positive numbers, and Q 1 is less than Q 3 , Q 4 is greater than Q 2 , and Q 2 is greater than Q 3 .
  • the material conveyed by the first feeding mechanism is extruded through the first extrusion port of the print head of the 3D printing system
  • the material conveyed by the second feeding mechanism is extruded through the second extrusion port of the print head of the 3D printing system
  • the widths of the first extrusion port and the second extrusion port are both continuously adjustable, and the thickness of the first extrusion port is smaller than the thickness of the second extrusion port.
  • the step S810 includes: when the demand to be printed portions of the material delivery flow rate variation range is smaller than Q 3, controls the first feed mechanism feeding; when to be printed portions of the material When the demand for the variation range of the conveying flow rate is greater than Q 2 , the second feeding mechanism is controlled to feed; when the demand for the variation range of the material conveying flow rate of the part to be printed is between Q 2 and Q 3 , the first feeding mechanism is controlled to feed Or the second feeding mechanism feeding.
  • the plurality of feeding mechanisms are a plurality of screw-type feeding devices.
  • the printhead has an extrusion port of continuously adjustable width.
  • the method S800 may further include: controlling the width of the extrusion port of the print head of the 3D printing system, so that the width of the extrusion port varies with the change of the cross-sectional contour of the material filling area.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that includes an integration of one or more available media.
  • the usable media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)), etc. .
  • the disclosed system, apparatus and method may be implemented in other manners.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

本申请提供了一种3D打印系统及方法。该3D打印系统包括:多个送料机构,所述多个送料机构中的不同送料机构的物料输送流率的可调范围不同;打印头,用于利用所述多个送料机构输出的可流动的物料进行3D打印;控制部分,用于在打印同一物品的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料。采用物料输送流率的可调范围不同的多个送料机构配合输送物料,能够降低每个送料机构的实现难度。

Description

3D打印系统及方法 技术领域
本申请涉及3D打印领域,具体涉及一种3D打印系统及方法。
背景技术
基于材料挤出(material extrusion)的3D打印技术,如熔融沉积成型(fused deposition molding,FDM)技术,通常需要先将物料通过送料机构输送至3D打印系统的打印头(或称挤出头),再将物料从打印头的挤出口(或称出料口)挤出,从而将物料逐渐沉积在工作平台上,最终形成3D打印品。
在传统3D打印系统中,针对同一物料,通常采用单个送料机构进行输送。然而,在某些应用场景下,3D打印系统需要送料机构的物料输送流率能够在较大的范围内变化,这对于单个送料机构来说实现难度较大。
发明内容
本申请提供一种3D打印系统及方法。
第一方面,提供一种3D打印系统,包括:多个送料机构,所述多个送料机构中的不同送料机构的物料输送流率的可调范围不同;打印头,用于利用所述多个送料机构输出的可流动的物料进行3D打印;控制部分,用于在打印同一物品的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料。
第二方面,提供一种3D打印方法,所述3D打印方法应用于3D打印系统中,所述3D打印系统包括多个送料机构,且所述多个送料机构的物料输送流率的可调范围不同;所述3D打印方法包括:在打印同一物品的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料。
与采用单个送料机构相比,采用物料输送流率的可调范围不同的多个送料机构配合输送物料,能够降低每个送料机构的实现难度。
附图说明
图1为传统3D打印系统的结构示意图。
图2为本申请第一实施例提供的一种3D打印系统的结构示意图。
图3为本申请第一实施例提供的另一种3D打印系统的结构示意图。
图4为本申请第一实施例提供的另一种3D打印系统的结构示意图。
图5为本申请第一实施例提供的另一种3D打印系统的结构示意图。
图6为本申请第一实施例提供的另一种3D打印系统的结构示意图。
图7为本申请第一实施例提供的另一种3D打印系统的结构示意图。
图8为本申请第二实施例提供的一种3D打印方法的示意性流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。
图1为传统3D打印系统的结构示意图。如图1所示,3D打印系统10包括送料机构40和打印头30。送料机构40用于输送物料,打印头30用于利用送料机构40输出的物料进行3D打印。
图1中箭头所指的方向为物料在3D打印系统10中的输送方向(或流动方向)。通过图1中箭头所指的方向可知,送料机构40将可流动的物料输送至打印头30,然后打印头30将物料从挤出口31挤出,从而将物料逐渐沉积在工作平台20上,最终形成3D打印品。
在某些应用场景下,送料机构40的物料输送流率需要能够在较大的范围内变化。例如,基于“熔融面沉积3D打印”(Fused sheet deposition 3D printing,简称FSD)打印方式的打印头30的挤出口31具有一维条带特征,也就是说挤出口31在一维方向的长度远大于其在另一维度上的长度,并且挤出口31可以在该一维方向上随着待打印零件的截面轮廓的变化改变长度,从而形成可变长度的挤出口,进而可以通过一次单向运动完成整个截面的物料填充(相关描述可以参见WO2018/205149 A1,WO2020/087359 A1等)。因此,在通过FSD等打印方式打印物品时,3D打印系统10通常需要根据挤出口31的实际长度等实际需求调整打印头30的物料挤出流率,以调整3D打印系统10的打印效率,为了匹配打印效率的变化,需要与之对应地调整送料机构40的物料输送流率,当3D打印系统10的打印效率在较大的范围内变化时,送料机构40的物料输送流率也同样需要在较大的范围内变化。
然而,在传统3D打印技术中,送料机构40通常仅为单个送料机构,例如仅为单个螺杆式送料机构。考虑到单个送料机构的物料输送流率的可调范围是有限的,当需要送料机构40的物料输送流率在较大的范围内变化时,对于单个送料机构来说的实现难度较大。
为了解决这一问题,本申请摒弃了传统3D打印系统中利用单个送料机构向打印头输送物料的方式,选择了利用物料输送流率的可调范围不同的多个送料机构向打印头输送物料。当需要送料机构的物料输送流率能够在较大的范围内变化时,与采用单个送料机构相比,采用物料输送流率的可调范围不同的多个送料机构配合输送物料,能够降低每个送料机构的实现难度。
第一实施例:
图2为本申请第一实施例提供的一种3D打印系统的结构示意图。
如图2所示,3D打印系统10包括多个送料机构41、控制部分411和打印头30。多个送料机构41可以并联设置。同时,多个送料机构41中的不同送料机构的物料输送流率的可调范围不同。打印头30用于利用多个送料机构41输出的可流动的物料进行3D打印。
在图2中,箭头所指的方向为物料在3D打印系统10中的输送方向(或流动方向)。从图2中箭头所指的方向可以看出,物料先从多个送料机构41中被输送至打印头30中,然后通过挤出口31被挤出,并最终沉积在打印平台20上。
对于3D打印系统10所打印的物料的材质,本申请实施例不做具体限定。在一些实施例中,3D打印系统10可用于打印塑料和任何膏状的可以流动和挤出的材料。在一些实施例中,3D打印系统10可用于打印金属膏状材料(金属膏状材料可以通过在金属粉末中添加液态粘结剂形成),陶瓷膏状材料(陶瓷膏状材料可以通过在陶瓷粉末中添加 液态粘结剂形成),有机高分子聚合物材料,无机膏状材料(如水泥,石膏浆料、泥浆料等)。在某些实施例中,3D打印系统10可用于打印的物料也可以是奶油、巧克力之类膏状的食品。更为具体地,在某些实施例中,3D打印系统10可用于打印如下材料形成的物料:聚乳酸(PLA),丙烯腈-丁二烯-苯乙烯共聚物(ABS),聚碳酸酯(PC),尼龙-6(PA6),聚苯硫醚(PPS),聚甲基丙烯酸甲酯(PMMA)以及聚醚醚酮(PEEK)。
送料机构41的实现方式可以有多种,本申请实施例对此并不限定。例如,送料机构41可以是螺杆式送料装置(螺杆泵,或螺杆挤出机),也可以是气压式送料装置或活塞式送料装置。
不同的送料机构41可以为同种送料装置,例如可以均为螺杆式送料装置。不同的送料机构41也可以为不同种类的送料装置,例如一些送料机构41为螺杆式送料装置,另一些送料机构41为活塞式送料装置。
打印头30的数量可以是一个,从而多个送料机构41可以将物料输送至3D打印系统的同一打印头30。在某些实施例中,也可以与多个送料机构41对应地设置多个打印头30,从而多个送料机构41可以将物料分别输送至3D打印系统的不同打印头30。对于打印头30的数量,本申请不作具体限定。
控制部分411用于在打印同一物品(如同一零件)的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料。
多个送料机构41可以同时工作,也可以分时工作。多个送料机构41可以打印同一物品的不同部分(或不同结构),比如打印同一分层中的不同部分(或不同区域)。例如,物料输送流率的可调范围较低的送料机构可用于对物品的精细结构进行高精度打印;物料输送流率的可调范围较高的送料机构可用于对物品的厚大结构进行高效率打印。
与采用单个送料机构相比,采用物料输送流率的可调范围不同的多个送料机构配合输送物料,能够降低每个送料机构的实现难度。
下面,给出一个示例来说明该方案的实际应用效果。
考虑到单个送料机构难以具有1~10000倍的物料输送流率的可调范围,为了使得3D打印系统的打印效率具有1~10000倍的可调范围,可以利用两个具有不同物料输送流率的可调范围的送料机构向打印头输送物料。例如,假设物料输送流率需要在1~10000mm 3/s内可调,则可以设置两个送料机构:第一送料机构和第二送料机构。第一送料机构的物料输送流率的可调范围为1~100mm 3/s,第二送料机构的物料输送流率的可调范围为100~10000mm 3/s。由此可见,两个送料机构相互配合,可以满足物料输送流率需要在1~10000mm 3/s内可调,但两个送料机构各自只需要满足物料输送流率在1~100倍范围内可调即可,而不需要在1~10000倍内可调,从而简化了送料机构的实现难度。
本申请实施例对多个送料机构41的物料输送流率的可调范围的设置方式不做具体限定。例如,多个送料机构41包括第一送料机构和第二送料机构。第一送料机构的物料输送流率的可调范围为[Q 1,Q 2],第二送料机构的物料输送流率的可调范围为[Q 3,Q 4],其中Q 1,Q 2,Q 3,Q 4均为正数,且Q 1小于Q 3,Q 4大于Q 2,Q 2大于Q 3。换句话说,第一送料机构的物料输送流率的可调范围小于第二送料机构的物料输送流率的可调范围,且两个范围至少部分重叠。这样一来,第一送料机构和第二送料机构相互配合,就可以实现物料输送流率在更大范围(即[Q 1,Q 4])内的连续可调。
可选地,在某些实施例中,控制控制部分411可用于:当待打印部分对物料输送流 率的变化范围的需求小于Q 3时,控制第一送料机构送料;当待打印部分对物料输送流率的变化范围的需求大于Q 2时,控制第二送料机构送料;当待打印部分对物料输送流率的变化范围的需求在Q 2和Q 3之间时,控制第一送料机构送料或第二送料机构送料。
可选地,在某些实施例中,第一送料机构输送的物料通过3D打印系统的打印头的第一挤出口挤出,第二送料机构输送的物料通过3D打印系统的打印头的第二挤出口挤出,第一挤出口和第二挤出口的宽度均连续可调,且第一挤出口的厚度小于第二挤出口的厚度。
在该实施例中,第一送料机构的物料输送流率的可调范围小于第二送料机构的物料输送流率的可调范围,则可以为第一送料机构配置厚度更小的挤出口(挤出口的厚度越小,该挤出口的打印精度越高),从而将第一送料机构应用于高精度的打印。此外,为第二送料机构配置厚度更大的挤出口(挤出口的厚度越大,该挤出口的打印效率越高),从而将第二送料机构应用于高效率的打印。
在多个送料机构41向同一个打印头30输送物料的实施例中,多个送料机构41的出口之间是连通的。为了避免物料和压力在不同的送料机构41之间传递,在本申请的某些实施例中,参考图3,多个送料机构41中的任意一个送料机构41和打印头30之间可以设置有单向导通阀42。
如图3所示,单向导通阀42的数量可以为多个,以使得每个送料机构41都有与之对应的单向导通阀42。物料从送料机构41流出后,先流过单向导通阀42再流入打印头30。
通过设置单向导通阀42,有效地防止了物料和压力在不同的送料机构41之间传递的问题,提升了3D打印系统10运行的稳定性。
在一些实施例中,如图4所示,3D打印系统10还包括物料流道43。物料流道43具有允许可流动物料从其中流过的结构,用于将多个送料机构41输出的可流动物料输送至打印头30。物料流道43设置在送料机构41和打印头30之间,单向导通阀42设置在物料流道43和打印头30之间。
在多个送料机构41将物料输送至同一打印头的实施例中,控制部分411还可用于在打印同一物品的过程中,控制多个送料机构41在不同时间工作。换句话说,控制部分411控制某个送料机构工作,可以控制其他送料机构停止工作。这样可以避免某个送料机构工作时,该送料机构输送的物料通过其他送料机构与打印头之间的物料通道泄漏。
例如,当需要高效率地打印零件的厚大部分时,可以控制物料输送流率的可调范围较高的送料机构工作,从而对该厚大部分进行高效打印;当需要打印零件的局部精细部分时,可以控制物料输送流率的可调范围较低的送料机构工作,从而对该局部精细部分进行高精度打印。
不同送料机构分时工作时,如果送料机构停歇的时间较长,则该送料机构输送的物料就会长时间处于高温环境下,存在物料降解的风险。为了能够避免这种问题,如图5所示,在某些实施例中,可以为多个送料机构41中的每个送料机构配置一个对应的打印头30,并且控制多个送料机构41同时打印同一物品的不同部分。
例如,可以控制物料输送流率的可调范围较高的送料机构对零件的厚大部分进行高效打印,同时,控制物料输送流率的可调范围较低的送料机构工作对零件的局部精细部分进行高精度打印。
在一些实施例中,多个送料机构41可以为多个螺杆式送料装置。
螺杆式送料装置可以采用单螺杆设计,也可以采用双螺杆设计。螺杆式送料装置的螺杆可以具有单头螺纹,也可以具有多头螺纹。螺杆式送料装置的螺杆可以是卧式螺杆,也可以是立式螺杆,螺杆的螺槽可以是等深的,也可以是变深的。
当采用螺杆式送料装置向打印头输送物料时,相较于单个螺杆式送料装置,多个具有不同物料输送流率的可调范围的螺杆式送料装置不仅可以降低每个螺杆式送料装置的实现难度,而且可以避免物料降解及温度控制不准确的问题。
具体来说,在某些应用场景下,螺杆式送料装置在输送物料时,需要对物料进行加热,以使得物料处于流动状态。当采用单个螺杆式送料装置向打印头输送物料时,若要实现3D打印系统的打印效率具有极大的可调范围,需要该螺杆式送料装置对应地具有极大的物料输送流率的可调范围。然而,单根螺杆式送料装置的物料输送流率可调范围过大,会使得在物料输送流率较低时物料在螺杆式送料装置内停留时间过长而增加降解的风险,物料输送流率较高时物料在螺杆式送料装置内停留时间过短而加热不足,从而无法准确地控制物料的温度。
当采用多个具有不同物料输出流率的螺杆式送料装置向打印头输送物料时,可以根据实际需求选择输出流率适当的螺杆式送料装置运行,从而有效地避免了上述问题。
当螺杆式送料装置将物料挤压至挤出口时,会在挤出口处产生压力。由于该压力的存在,采用螺杆式送料装置会存在逆流或漏流的问题。逆流指的是物料会沿螺杆的螺槽反向流动;漏流指的是物料会在螺杆式送料装置的螺杆与机筒间隙内朝着与挤出方向相反的方向流动。
为了解决这一问题,在某些实施例中,如图6所示,3D打印系统10还包括温控装置44,32。温控装置44,32用于对螺杆式送料装置41和打印头30进行温度控制,使得打印头30的温度高于螺杆式送料装置41中的物料的温度。该技术方案可以有效减少逆流和漏流的问题。
下面以具有等深螺槽的单头螺纹单螺杆的螺杆式送料装置为例,对上述技术方案能够避免漏流和逆流问题的原理进行解释,其他类型的螺杆的原理类似,不再重复描述。
螺杆式送料装置的挤出流量可以通过下式计算:
Figure PCTCN2021090076-appb-000001
Figure PCTCN2021090076-appb-000002
Figure PCTCN2021090076-appb-000003
式中:Q表示物料的挤出流量(或流率),D表示螺杆的外径,H表示螺槽深度,
Figure PCTCN2021090076-appb-000004
表示螺旋角,n表示螺杆转速,P表示挤出口31的挤出压力,P max表示螺杆的最大挤出压力,L表示螺杆长度,δ表示螺杆与机筒的间隙,e表示螺棱的法向宽度,η表示螺槽中的物料的粘度,η 1表示间隙δ中的物料的粘度。
螺杆中的物料粘度越高,η和η 1的取值就越高。由上式可以看出,η和η 1的取值越高,逆流和漏流相对于正流的比例就越低,则逆流和漏流现象就越不明显。此外,逆流和漏流是由于挤出压力P的存在而导致的,且挤出压力P越大,逆流和漏流越明显。控制挤 出口31处的物料具有与螺杆式送料装置41中的物料相比更低的粘度,物料的粘度越低,该物料在挤出口31处产生的挤出压力就越小,这样也可以减少逆流和漏流现象。上述物料粘度的差异设置可以很大程度上降低螺杆式送料装置41的逆流和漏流问题,甚至将逆流和漏流减少到与正流相比可以忽略不计的程度,这样一来,螺杆式送料装置41就可以进行精确的计量输出。此外,发明人还发现,降低挤出口31的挤出压力P能够显著降低螺杆式送料装置41的功耗,从而降低物料输送系统的成本。
考虑到较低的温度可以增大物料的粘度,而较高的温度可以降低物料的粘度。因此,通过温控装置44,32将打印头30的温度设置为高于螺杆式送料装置41中的物料的温度,可以有效地减少逆流和漏流的问题,并且显著降低螺杆式送料装置41的功耗。
温控装置44,32例如可以包括第一加热器44和第二加热器32。第一加热器44被配置成对螺杆式送料装置41进行加热。第二加热器32被配置成对挤出口31进行加热。第二加热器32的加热温度高于第一加热器44的加热温度。
在某些应用场景下,3D打印系统10需要先将固态的物料转化成可流动的物料,再将可流动的物料输送打印头。在这种情况下,每个送料机构41都需要连续地完成物料从固态到可流动态的转换,以及可流动态物料向打印头的计量输出。发明人发现,在这种情况下,如果大幅度调整送料机构41的物料输送流率,上述两个过程(将物料从固态到可流动态的转换和将可流动态物料向打印头的计量输出)会出现难以协调的问题。
以送料机构41为螺杆式送料装置为例。螺杆式送料装置通常包括加料段、熔融段(或称压缩段)和计量段。加料段用于接收固态的物料,熔融段用于将固态的物料转换成可流动态,计量段用于定量地向打印头输出可流动的物料。如果物料的流率是动态变化的,那么螺杆式送料装置的转速也会是动态变化的。这样一来,熔融段输出的可流动态的物料的压力、流量和温度都会出现波动。受到熔融段输出的可流动物料的波动的影响,计量段很难精确、定量地将物料输送至打印头。
为了解决上述问题,本申请将物料的状态转换和物料的计量输出两个任务分配给两个不同的送料装置,并在两个送料装置之间对物料进行缓冲,以屏蔽第一送料装置的输出的波动对第二送料装置的影响。
下面结合图7进行详细说明。
如图所示7所示,3D打印系统10包括:第一送料装置60、缓冲容器50、第二送料装置40和打印头30。缓冲容器50位于第一送料装置60和第二送料装置40之间。多个送料机构41属于第二送料装置40,可以将第二送料装置40视为多个送料机构41组成的送料装置。
图7中的箭头所指的方向为物料的输送方向(或物料的流动方向)。从图7中箭头所指的方向可以看出物料依次流过第一送料装置60、缓冲器50、第二送料装置40以及打印头30。
第一送料装置60用于将固态的物料转化成可流动的物料(也可称为熔融态的物料)。缓冲容器50用于存储第一送料装置60输出的可流动的物料。第二送料装置40用于将缓冲容器50中的可流动的物料输送至打印头30。也就是说第一送料装置60用于实现物料从固态到可流动态的转换,第二送料装置40用于实现向打印头的计量输出。
第一送料装置60的实现方式可以有多种,本申请实施例对此并不限定。例如,第一送料装置60可以是螺杆式送料装置(或称螺杆泵,或螺杆挤出机),也可以是气压式送 料装置或活塞式送料装置。
缓冲容器50可以隔离第一送料装置60输出的波动对第二送料装置40可能产生的不利影响。第一送料装置60输出的波动包括以下波动中的至少一种:压力波动、流量波动和温度波动。缓冲容器50对第一送料装置60输出的波动的隔离有利于第二送料装置40可以精密地对物料进行流率控制。
具体而言,假如第一送料装置60与第二送料装置40直接连接,要想实现挤出口处的高精度的流率控制,就需要在第一送料装置60和第二送料装置40之间进行高精度的协同流率控制。但是,当打印头30的物料挤出流率需要动态变化时,第一送料装置60输出的物料的状态是很不稳定的。在这种情况下,要想实现第一送料装置60和第二送料装置40的高精度协调的难度是很大的。在第一送料装置60和第二送料装置40之间加入缓冲容器50可以降低第一送料装置60和第二送料装置40之间的协同控制的要求。缓冲容器50作为缓冲部件,可以平抑第一送料装置60输出的波动,保证物料以稳定的状态供给后续的第二送料装置40。
由于缓冲容器50的存在,降低了物料状态转化和计量输出两个阶段协调的难度,从而有利于实现物料的稳定地计量输出。
本申请实施例对打印头30的结构不做具体限定。在一些实施例中,打印头30可以具有宽度连续可调的挤出口31。
目前,宽度连续可调的挤出口在一些先进的3D打印技术中有了应用,这些3D打印系统中的某些系统要求对挤出口的宽度进行控制,使得挤出口的宽度随着物料填充区域的截面轮廓线的变化而变化(或者,使得挤出口的宽度与物料填充区域的截面轮廓线的截线段的长度相匹配),从而实现超高效率的打印。此类挤出口的设计方案和控制方法可以参见WO2018/205149 A1(需要说明的是,本申请中的挤出口的宽度相当于在该专利申请中的出料口的长度,物料填充区域相当于该专利申请中的目标填充区域,该物料填充区域可以是待打印层的部分或全部区域)。由于挤出口31的宽度会在较大范围内连续变化,送料装置20的输出流率就会在较大范围内动态变化,前文提及的单个送料装置输出流率的可调范围有限的问题,采用螺杆式送料装置时可能会出现的降级或无法准确控制物料温度的问题,以及物料状态转换和计量输出之间协调困难的问题,在此类系统中就会更加凸显,因此,在应用宽度连续可调的挤出口时,申请实施例提供的3D打印系统10相较于传统3D打印系统能够显著提高3D打印的质量。
在上述3D打印系统10中,第一送料装置60、缓冲容器50、第二送料装置40和打印头30可以看成是整个3D打印系统10的四个功能段,每个功能段可以根据自身的需要进行精确的温度控制。例如,第一送料装置60可以将温度控制在适于物料从固态转换成可流动态。缓冲容器50可以将温度控制在目标值,该目标值可以根据第二送料装置40的工作温度而定,例如,可以略高于第二送料装置40的工作温度。第二送料装置40和打印头30可以采用前文所述的温差控制方式进行温度控制。
第二实施例:
第一实施例为装置实施例,第二实施例为方法实施例。装置侧的描述和方法侧的描述相互对应,为了简洁,适当省略重复的描述。
图8为本申请第二实施例提供的一种3D打印方法的示意性流程图。图8所示的方法S800可以由前文提及的3D打印系统10执行。方法S800包括步骤S810。
在步骤S810中,在打印同一物品的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料。
在一些实施例中,多个送料机构用于对物品的同一分层中的不同部分进行打印。
在一些实施例中,3D打印系统还包括第一送料装置和第二送料装置,位于第一送料装置和第二送料装置之间的缓冲容器,以及与第二送料装置连通的打印头。步骤S810可以包括:利用第一送料装置将固态的物料转化成可流动的物料;利用缓冲容器存储第一送料装置输出的物料;利用多个送料机构将缓冲容器中的物料输送至打印头,以分别打印同一物品的不同部分。
在一些实施例中,多个送料机构为多个螺杆式送料装置;方法S800可以还包括:对多个螺杆式送料装置和打印头进行温度控制,使得打印头的温度高于多个螺杆式送料装置中的物料的温度。
在一些实施例中,多个送料机构将物料输送至3D打印系统的同一打印头。
在一些实施例中,多个送料机构中的任意一个送料机构与打印头之间设置有单向导通阀。
在一些实施例中,第一送料机构与打印头之间设置有物料流道,单向导通阀设置在物料流道和打印头之间。
在一些实施例中,方法S800可以还包括:在打印同一物品的过程中,控制多个送料机构在不同时间工作。
在一些实施例中,多个送料机构将物料输送至3D打印系统的不同打印头。
在一些实施例中,方法S800可以还包括:在打印同一物品的过程中,控制多个送料机构同时工作。
在一些实施例中,多个送料机构包括第一送料机构和第二送料机构,第一送料机构的物料输送流率的可调范围为[Q 1,Q 2],第二送料机构的物料输送流率的可调范围为[Q 3,Q 4],其中Q 1,Q 2,Q 3,Q 4均为正数,且Q 1小于Q 3,Q 4大于Q 2,Q 2大于Q 3
在一些实施例中,第一送料机构输送的物料通过3D打印系统的打印头的第一挤出口挤出,第二送料机构输送的物料通过3D打印系统的打印头的第二挤出口挤出,第一挤出口和第二挤出口的宽度均连续可调,且第一挤出口的厚度小于第二挤出口的厚度。
在一些实施例中,在打印同一物品的过程中,步骤S810包括:当待打印部分对物料输送流率的变化范围的需求小于Q 3时,控制第一送料机构送料;当待打印部分对物料输送流率的变化范围的需求大于Q 2时,控制第二送料机构送料;当待打印部分对物料输送流率的变化范围的需求在Q 2和Q 3之间时,控制第一送料机构送料或第二送料机构送料。
在一些实施例中,多个送料机构为多个螺杆式送料装置。
在一些实施例中,打印头具有宽度连续可调的挤出口。
在一些实施例中,方法S800可以还包括:控制所述3D打印系统的打印头的挤出口的宽度,使得所述挤出口的宽度随着物料填充区域的截面轮廓线的变化而变化。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其他任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可 读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如数字视频光盘(digital video disc,DVD))、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种3D打印系统,其特征在于,包括:
    多个送料机构,所述多个送料机构的物料输送流率的可调范围不同;
    打印头,用于利用所述多个送料机构输出的可流动的物料进行3D打印;
    控制部分,用于在打印同一物品的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料。
  2. 根据权利要求1所述的3D打印系统,其特征在于,所述多个送料机构用于对所述物品的同一分层中的不同部分进行打印。
  3. 根据权利要求1所述的3D打印系统,其特征在于,所述3D打印系统包括第一送料装置和第二送料装置,所述多个送料机构属于所述第二送料装置,所述3D打印系统还包括位于所述第一送料装置和所述第二送料装置之间的缓冲容器;
    所述第一送料装置用于将固态的物料转化成可流动的物料;
    所述缓冲容器用于存储所述第一送料装置输出的物料;
    所述第二送料装置用于将所述缓冲容器中的物料输送至所述打印头。
  4. 根据权利要求1-3中任一项所述的3D打印系统,其特征在于,所述多个送料机构为多个螺杆式送料装置,所述3D打印系统还包括:
    温控装置,用于对所述多个螺杆式送料装置和所述打印头进行温度控制,使得所述打印头的温度高于所述多个螺杆式送料装置中的物料的温度。
  5. 根据权利要求1-4中任一项所述的3D打印系统,其特征在于,所述多个送料机构将物料输送至所述3D打印系统的同一打印头。
  6. 根据权利要求5所述的3D打印系统,其特征在于,所述多个送料机构中的任意一个送料机构与所述打印头之间设置有单向导通阀。
  7. 根据权利要求6所述的3D打印系统,其特征在于,所述第一送料机构与所述打印头之间设置有物料流道,所述单向导通阀设置在所述物料流道和所述打印头之间。
  8. 根据权利要求5-7中任一项所述的3D打印系统,其特征在于,所述控制部分还用于在打印所述同一物品的过程中,控制所述多个送料机构在不同时间工作。
  9. 根据权利要求1-4中任一项所述的3D打印系统,其特征在于,所述多个送料机构将物料输送至所述3D打印系统的不同打印头。
  10. 根据权利要求9所述的3D打印系统,其特征在于,所述控制部分还用于在打印所述同一物品的过程中,控制所述多个送料机构同时工作。
  11. 根据权利要求1所述的3D打印系统,其特征在于,所述多个送料机构包括第一送料机构和第二送料机构,所述第一送料机构的物料输送流率的可调范围为[Q 1,Q 2],所述第二送料机构的物料输送流率的可调范围为[Q 3,Q 4],其中Q 1,Q 2,Q 3,Q 4均为正数,且Q 1小于Q 3,Q 4大于Q 2,Q 2大于Q 3
  12. 根据权利要求11所述的3D打印系统,其特征在于,所述第一送料机构输送的物料通过所述3D打印系统的打印头的第一挤出口挤出,所述第二送料机构输送的物料通过所述3D打印系统的打印头的第二挤出口挤出,所述第一挤出口和所述第二挤出口的宽度均连续可调,且所述第一挤出口的厚度小于所述第二挤出口的厚度。
  13. 根据权利要求11所述的3D打印系统,其特征在于,所述控制部分用于:当待打印部分对物料输送流率的变化范围的需求小于Q 3时,控制所述第一送料机构送料;当 待打印部分对物料输送流率的变化范围的需求大于Q 2时,控制所述第二送料机构送料;当待打印部分对物料输送流率的变化范围的需求在Q 2和Q 3之间时,控制所述第一送料机构送料或所述第二送料机构送料。
  14. 根据权利要求1所述的3D打印系统,其特征在于,所述多个送料机构为多个螺杆式送料装置。
  15. 根据权利要求1所述的3D打印系统,其特征在于,所述打印头具有宽度连续可调的挤出口。
  16. 根据权利要求1所述的3D打印系统,其特征在于,还包括:
    控制装置,用于控制所述3D打印系统的打印头的挤出口的宽度,使得所述挤出口的宽度随着物料填充区域的截面轮廓线的变化而变化。
  17. 一种3D打印方法,其特征在于,所述3D打印方法应用于3D打印系统中,所述3D打印系统包括多个送料机构,且所述多个送料机构的物料输送流率的可调范围不同;
    所述3D打印方法包括:
    在打印同一物品的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料。
  18. 根据权利要求17所述的3D打印方法,其特征在于,所述多个送料机构用于对所述物品的同一分层中的不同部分进行打印。
  19. 根据权利要求17所述的3D打印方法,其特征在于,所述3D打印系统还包括第一送料装置和第二送料装置,位于所述第一送料装置和所述第二送料装置之间的缓冲容器,以及与所述第二送料装置连通的打印头,所述多个送料机构属于所述第二送料装置;
    所述采用所述多个送料机构,分别打印同一物品的不同部分,包括:
    利用所述第一送料装置将固态的物料转化成可流动的物料;
    利用所述缓冲容器存储所述第一送料装置输出的物料;
    利用所述多个送料机构将所述缓冲容器中的物料输送至所述打印头,以分别打印同一物品的不同部分。
  20. 根据权利要求17-19中任一项所述的3D打印方法,其特征在于,所述多个送料机构为多个螺杆式送料装置;
    所述3D打印方法还包括:
    对所述多个螺杆式送料装置和所述打印头进行温度控制,使得所述打印头的温度高于所述多个螺杆式送料装置中的物料的温度。
  21. 根据权利要求17-20中任一项所述的3D打印方法,其特征在于,所述多个送料机构将物料输送至所述3D打印系统的同一打印头。
  22. 根据权利要求21所述的3D打印方法,其特征在于,所述多个送料机构中的任意一个送料机构与所述打印头之间设置有单向导通阀。
  23. 根据权利要求22所述的3D打印方法,其特征在于,所述第一送料机构与所述打印头之间设置有物料流道,所述单向导通阀设置在所述物料流道和所述打印头之间。
  24. 根据权利要求21-23中任一项所述的3D打印方法,其特征在于,所述3D打印方法还包括:
    在打印所述同一物品的过程中,控制所述多个送料机构在不同时间工作。
  25. 根据权利要求17-20中任一项所述的3D打印方法,其特征在于,所述多个送料机构将物料输送至所述3D打印系统的不同打印头。
  26. 根据权利要求25所述的3D打印方法,其特征在于,所述3D打印方法还包括:
    在打印所述同一物品的过程中,控制所述多个送料机构同时工作。
  27. 根据权利要求17所述的3D打印方法,其特征在于,所述多个送料机构包括第一送料机构和第二送料机构,所述第一送料机构的物料输送流率的可调范围为[Q 1,Q 2],所述第二送料机构的物料输送流率的可调范围为[Q 3,Q 4],其中Q 1,Q 2,Q 3,Q 4均为正数,且Q 1小于Q 3,Q 4大于Q 2,Q 2大于Q 3
  28. 根据权利要求27所述的3D打印方法,其特征在于,所述第一送料机构输送的物料通过所述3D打印系统的打印头的第一挤出口挤出,所述第二送料机构输送的物料通过所述3D打印系统的打印头的第二挤出口挤出,所述第一挤出口和所述第二挤出口的宽度均连续可调,且所述第一挤出口的厚度小于所述第二挤出口的厚度。
  29. 根据权利要求27所述的3D打印方法,其特征在于,所述在打印同一物品的过程中,根据待打印部分对物料输送流率的变化范围的需求,从多个送料机构中选取相应的送料机构输送物料,包括:当待打印部分对物料输送流率的变化范围的需求小于Q 3时,控制所述第一送料机构送料;当待打印部分对物料输送流率的变化范围的需求大于Q 2时,控制所述第二送料机构送料;当待打印部分对物料输送流率的变化范围的需求在Q 2和Q 3之间时,控制所述第一送料机构送料或所述第二送料机构送料。
  30. 根据权利要求17所述的3D打印方法,其特征在于,所述多个送料机构为多个螺杆式送料装置。
  31. 根据权利要求17所述的3D打印方法,其特征在于,所述打印头具有宽度连续可调的挤出口。
  32. 根据权利要求17所述的3D打印方法,其特征在于,还包括:
    控制所述3D打印系统的打印头的挤出口的宽度,使得所述挤出口的宽度随着物料填充区域的截面轮廓线的变化而变化。
PCT/CN2021/090076 2020-07-20 2021-04-27 3d打印系统及方法 WO2022016938A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010699424 2020-07-20
CN202010699424.7 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022016938A1 true WO2022016938A1 (zh) 2022-01-27

Family

ID=77482568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090076 WO2022016938A1 (zh) 2020-07-20 2021-04-27 3d打印系统及方法

Country Status (2)

Country Link
CN (2) CN216032550U (zh)
WO (1) WO2022016938A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008109A1 (zh) * 2022-07-05 2024-01-11 苏州美梦机器有限公司 3d打印装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049736A (ko) * 2013-10-31 2015-05-08 (주)에이팀벤처스 프린팅 속도가 개선된 3차원 프린터
CN105751512A (zh) * 2016-04-20 2016-07-13 深圳市洛众科技有限公司 一种多喷头高速3d打印设备及打印方法
CN208133608U (zh) * 2017-03-08 2018-11-23 桂林凯歌信息科技有限公司 自适应多喷头高速3d打印机
CN209395265U (zh) * 2018-10-27 2019-09-17 泉州市联控自动化科技有限公司 一种3d打印机的双头打印机构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150049736A (ko) * 2013-10-31 2015-05-08 (주)에이팀벤처스 프린팅 속도가 개선된 3차원 프린터
CN105751512A (zh) * 2016-04-20 2016-07-13 深圳市洛众科技有限公司 一种多喷头高速3d打印设备及打印方法
CN208133608U (zh) * 2017-03-08 2018-11-23 桂林凯歌信息科技有限公司 自适应多喷头高速3d打印机
CN209395265U (zh) * 2018-10-27 2019-09-17 泉州市联控自动化科技有限公司 一种3d打印机的双头打印机构

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008109A1 (zh) * 2022-07-05 2024-01-11 苏州美梦机器有限公司 3d打印装置及方法

Also Published As

Publication number Publication date
CN216032550U (zh) 2022-03-15
CN113334771A (zh) 2021-09-03

Similar Documents

Publication Publication Date Title
WO2022016938A1 (zh) 3d打印系统及方法
WO2021196850A1 (zh) 螺杆式送料装置、用于3d打印的物料挤出系统和方法
CN109247014B (zh) 3d打印头、3d打印设备和3d打印头的控制方法
US3930782A (en) Apparatus for extruding plastic material
CN215849701U (zh) 容积可调的物料输送装置及3d打印系统
EP3342582B1 (en) Three dimensional printing apparatus and controlling method thereof
CN206870391U (zh) 3d打印机喷头及3d打印机
US6513963B2 (en) Multi-staged vented extrusion screw with dual channel depth pumping section
WO2021196852A1 (zh) 物料输送系统和方法
CN110202789B (zh) 用于增材制造的连续无级变量粉末供应装置
US8070018B2 (en) Viscoelastic liquid flow splitter and methods
CN111113888B (zh) 用于3d打印的设备及其控制方法
WO2021196851A1 (zh) 物料输送系统和方法
CN113165245B (zh) 用于影响挤出的可塑性变形材料的体积流量的装置
CN201761059U (zh) 塑料挤出机用分离型螺杆
CN201645778U (zh) 新型双螺杆挤出熔体泵稳定挤出流率的拉丝机
CN208484245U (zh) 一种3d打印机的变径螺杆微挤出系统
CN111409266A (zh) 易剥离的支撑材料及应用该材料的3d打印机
CN115674667A (zh) 3d打印系统及其控制方法
CN218838642U (zh) 3d打印系统
US20150017274A1 (en) Extruder and process for extruding a polymer
CN204505776U (zh) 一种挤出机
CN204505770U (zh) 一种单螺杆的挤出机
CN107801746A (zh) 一种裱花机的挤出装置
US20210362414A1 (en) Determining an amount of material in a material supply module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847311

Country of ref document: EP

Kind code of ref document: A1