WO2022016757A1 - 沙姆镜头 - Google Patents

沙姆镜头 Download PDF

Info

Publication number
WO2022016757A1
WO2022016757A1 PCT/CN2020/130539 CN2020130539W WO2022016757A1 WO 2022016757 A1 WO2022016757 A1 WO 2022016757A1 CN 2020130539 W CN2020130539 W CN 2020130539W WO 2022016757 A1 WO2022016757 A1 WO 2022016757A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
sham
focal length
aspherical
aspheric
Prior art date
Application number
PCT/CN2020/130539
Other languages
English (en)
French (fr)
Inventor
赵效楠
彭思龙
汪雪林
顾庆毅
Original Assignee
苏州中科全象智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州中科全象智能科技有限公司 filed Critical 苏州中科全象智能科技有限公司
Publication of WO2022016757A1 publication Critical patent/WO2022016757A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the present application belongs to the technical field of optical systems, and for example, relates to a sham lens.
  • 3D line laser measurement technology uses an industrial camera to capture the corresponding image information, and performs a series of processing on the image to extract the required information, and finally achieve the purpose of measurement.
  • 3D line laser measurement technology is a rapidly developing non-contact measurement, which has the advantages of good flexibility, fast speed, high precision and intelligence.
  • the 3D line laser measurement technology requires a lens to shoot an inclined target, and the lens in the related technology is difficult to image the inclined target clearly in the full field of view due to the limitation of the depth of field.
  • the Sham lens can clearly image the full field of view of the inclined target.
  • the Sham lens refers to the lens that satisfies Sham's law when shooting. Only, at this time, the entire DOF (depth of field) field of view of the oblique target can be clearly imaged.
  • a projection device including a light source, an image display chip, a projection lens and a screen is designed.
  • a projection device including a light source, an image display chip, a projection lens and a screen is designed.
  • the mid-vertical plane and the plane where the screen is located intersect in a straight line, so that the image display chip, projection lens and screen satisfy Sham's law, which can make the image projected on the screen clear, expand the depth of field, and improve the reconstruction accuracy of 3D reconstruction.
  • a rotating device including a base, a sliding seat, a first driving mechanism, a rotating seat, a second driving mechanism, a rotating seat and a third driving mechanism is designed.
  • the rotating device can slide vertically, tilt up and down, turn left and right, etc., to realize the depth of field control of Sham's law, to correct the perspective deformation by shifting the axis, and to realize the effect of miniature landscape by adjusting the focal length.
  • the present application proposes a sham lens, which can solve the technical problem in the related art that the lens in the related art is difficult to image clearly in the full field of view of an oblique target due to the limitation of the depth of field.
  • the present application discloses a sham lens, comprising a first aspherical lens, a diaphragm, a second aspherical lens, and a third aspherical lens arranged in sequence from the object side to the image side, wherein the second aspherical lens Having a negative refractive power, the third aspherical lens has a positive refractive power.
  • FIG 1 Schematic of Sham's Law imaging.
  • Figure 2 Structure diagram of 3-piece aspherical large depth-of-field Sham lens.
  • Figure 3 Schematic diagram of the structure of an aspheric lens.
  • Figure 4 Schematic diagram of curvature calculation of circular arc.
  • Fig. 5 The lens structure diagram of Example 1.
  • FIG. 6 MTF curve diagram of the imaging quality of the lens of Example 1.
  • FIG. 7 Axial spherical aberration graph of the lens of Example 1.
  • FIG. 8 Distortion graph of the lens of Example 1.
  • FIG. 9 The lens structure diagram of Example 2.
  • FIG. 10 MTF curve diagram of the imaging quality of the lens of Example 2.
  • FIG. 11 Axial aberration graph of the lens of Example 2.
  • FIG. 12 Distortion graph of the lens of Example 2.
  • Fig. 13 The lens structure diagram of Example 3.
  • FIG. 14 MTF curve diagram of the imaging quality of the lens of Example 3.
  • FIG. 15 Axial aberration graph of the lens of Example 3.
  • FIG. 16 Distortion graph of the lens of Example 3.
  • is the angle between the target plane and the optical axis of the lens
  • is the angle between the detector plane and the optical axis of the lens
  • a' is the object distance at point D on the optical axis
  • b' is the image distance at point D on the optical axis
  • b'/a' is the magnification of the lens
  • FIG. 2 the structure diagram of the sham lenses is shown in FIG. 2 . It can be seen that from the object side (object plane) 5 to the image side (rectangular detector) 6, there are a first aspherical lens 1, a diaphragm 4, a second aspherical lens 2, and a third aspherical lens 3 in order.
  • the first aspherical lens 1 has positive refractive power or negative refractive power
  • the second aspherical lens has negative refractive power
  • the third aspherical lens has positive refractive power
  • the optical power also known as the diopter
  • the optical power is the difference between the convergence degree of the image-side beam and the object-side beam convergence degree, which represents the ability of the optical system to deflect light. Power is negative.
  • f is the focal length of the aspheric large depth of field Sham lens
  • f 1 is the focal length of the first lens
  • f 2 is the focal length of the second lens
  • f 3 is the focal length of the third lens
  • vd 2 is the Abbe number of the second lens.
  • the aspheric large depth of field Sham lens can be miniaturized, that is, it satisfies the following formula:
  • TTL is the distance from the front end of the front surface of the first lens to the image plane
  • IH is half of the diagonal length of the rectangular detector.
  • the first lens, the second lens, and the third lens are all aspherical lenses, which satisfy the aspherical equation:
  • Fig. 3 it is a schematic diagram of the structure of an aspheric lens, z is the height of the surface, and r is the radial radius of the arc.
  • FIG. 4 it is a schematic diagram of the curvature calculation of the circular arc.
  • the arc segment is taken from the point M on the smooth arc. Its length is ⁇ S, and the corresponding tangent angle is ⁇ .
  • the average curvature on the arc segment ⁇ S is defined as Then the curvature at point M
  • the conic coefficient and the aspheric coefficient in the aspheric equation (7) are obtained through a series of optimization algorithms through optical power distribution, reasonable aberration elimination, and a series of optimization algorithms.
  • each English name is: Surface: surface serial number; Radius: surface curvature radius; Thickness: surface thickness; Material: lens material; nd: material refractive index, vd: material Abbe number.
  • the angle ⁇ between the detector plane and the optical axis is 81.765°
  • Figure 10 shows the image quality MTF curve of Example 2, MTF>0.4 under the full field of view
  • Figure 11 shows the axial spherical aberration curve of Example 2
  • the full aperture is less than 0.05mm
  • Figure 12 shows In the distortion curve diagram of Example 2, the distortion is less than 0.5% in the full field of view.
  • the design has the advantages of high resolution and miniaturization.
  • the design satisfies conditional expressions (2)-(5), see Table 7.
  • Example 1 Example 2
  • Example 3 Remark -3.2 ⁇ f 1 /f ⁇ 2 -2.94 1.81 -1.685 Condition (2) -2.5 ⁇ f 2 /f ⁇ -0.1 -0.8178 -0.3 -2.15
  • Condition (3) 0.2 ⁇ f 3 /f ⁇ 0.6 0.4 0.358 0.493
  • Condition (5) TTL/IH ⁇ 7 6.2 4.89 5.6
  • the Sham lens in the above-mentioned embodiments 1-3 can still obtain high-resolution and low-distortion pictures in practical applications when the depth of field is designed to be more than 460mm; and if the size of the imaging detector is further increased, that is, the IH is increased. , the depth of field of the lens will further increase.
  • Each lens in this application adopts an aspherical surface, and the refraction angle of the edge beam is larger than the refraction angle of the central beam, and the divergent beam of the optimized light source is parallel light, which is conducive to image collection.
  • the aspherical large depth-of-field sham lens of the present application has the following advantages:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种沙姆镜头,包括从物侧(5)至像侧(6)依次设置的第一非球面透镜(1)、光阑(4)、第二非球面透镜(2)、第三非球面透镜(3),其中,第二非球面透镜(2)具有负光焦度,第三非球面透镜(3)具有正光焦度。

Description

沙姆镜头
本公开要求在2020年07月20日提交中国专利局、申请号为202010698047.5的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请属于光学系统技术领域,例如涉及一种沙姆镜头。
背景技术
随着光学、图像处理和计算机技术的发展,3D线激光测量技术得到广泛应用。3D线激光测量技术利用工业相机拍摄得到相应的图像信息,并对图像进行一系列的处理,提取出所需要的信息,最终达到测量的目的。3D线激光测量技术是一种快速发展的非接触式测量,具有灵活性好、速度快、精度高以及智能化等优点。3D线激光测量技术需要镜头拍摄倾斜目标,相关技术中的镜头受景深的限制难于对倾斜目标全视野清晰成像。
沙姆镜头可以对倾斜目标全视野清晰成像,沙姆镜头是指在拍摄时,满足沙姆定律的镜头,当目标平面、镜头主面、探测器平面三者延长线相交于一线,且相交线唯一,此时可以对整个倾斜目标DOF(景深)视野范围清晰成像。
中国发明专利申请CN111031300A(一种投影装置及三维测量系统)中,设计了一种包括光源、图像显示芯片、投影镜头和屏幕的投影装置,通过设置图像显示芯片所在的平面、投影镜头光轴的中垂面以及屏幕所在的平面相交于一条直线,使得图像显示芯片、投影镜头和屏幕满足沙姆定律,能够使屏幕投影的图像清晰、扩大景深,提高了3D重建的重建精度。中国实用新型专利CN204807891U(相机镜头俯仰旋转调节装置)中,设计了一种包括底座、滑动座、第一驱动机构、转动座、第二驱动机构、旋转座及第三驱动机构的旋转装 置,该旋转装置能够纵向滑动、上下倾斜、左右转动等,实现沙姆定律的景深控制,可以通过移轴实现对透视变形校正,通过调节焦距实现微缩景观的效果。
由上述两件专利申请可以看出,在光学投影技术领域中,有效利用沙姆定律可以得到投影清晰、调节景深的效果,但是上述两件专利需要对投影装置或镜头等进行位置设置或调节才能在拍摄过程中满足沙姆定律,并未涉及对镜头本身的改进。
发明内容
本申请提出了一种沙姆镜头,可以解决相关技术中的镜头受景深的限制难于对倾斜目标全视野清晰成像的技术问题。
本申请公开了一种沙姆镜头,包括从物侧至像侧依次设置的第一非球面透镜、光阑、第二非球面透镜、第三非球面透镜,其中,所述第二非球面透镜具有负光焦度,所述第三非球面透镜具有正光焦度。
附图说明
图1:沙姆定律成像原理图。
图2:3片非球面式大景深沙姆镜头结构图。
图3:非球面透镜的结构示意图。
图4:圆弧的曲率计算示意图。
图5:实施例1的镜头结构图。
图6:实施例1的镜头的成像质量MTF曲线图。
图7:实施例1的镜头的轴向球差曲线图。
图8:实施例1的镜头的畸变曲线图。
图9:实施例2的镜头结构图。
图10:实施例2的镜头的成像质量MTF曲线图。
图11:实施例2的镜头的轴向像差曲线图。
图12:实施例2的镜头的畸变曲线图。
图13:实施例3的镜头结构图。
图14:实施例3的镜头的成像质量MTF曲线图。
图15:实施例3的镜头的轴向像差曲线图。
图16:实施例3的镜头的畸变曲线图。
附图标记说明:1、第一非球面透镜;2、第二非球面透镜;3、第三非球面透镜;4、光阑;5、目标平面;6、矩形探测器。
具体实施方式
下面通过具体实施例,对本申请的技术方案进行详细说明。
如图1所示,为沙姆定律成像原理图,当目标平面、镜头主面、探测器平面三者延长线相交于一线,且相交线唯一,满足如下沙姆关系式:
Figure PCTCN2020130539-appb-000001
其中,α是目标平面与镜头光轴的夹角,β是探测器平面与镜头光轴的夹角,a’是光轴上D点的物距,b’是光轴上D点的像距,b’/a’为镜头的放大倍率。
此时可以对整个倾斜目标DOF视野范围清晰成像。
在此基础上,本申请实施例1-3分别设计了三种非球面大景深沙姆镜头,该沙姆镜头的结构图如图2所示。可以看出,从物侧(目标平面)5至像侧(矩形探测器)6,依次为第一非球面透镜1、光阑4、第二非球面透镜2、第三非球面 透镜3。
该沙姆镜头中,第一非球面透镜1具有正光焦度或负光焦度,第二非球面透镜具有负光焦度,第三非球面透镜具有正光焦度。
需要说明的是,光焦度,又称为屈光度,是像方光束会聚度与物方光束会聚度之差,表征光学系统偏折光线的能力,规定凸透镜的光焦度为正,凹透镜的光焦度为负。
所述非球面大景深沙姆镜头满足如下公式:
-3.2≦f 1/f≦2     (2)
-2.5≦f 2/f≦-0.1   (3)
0.2≦f 3/f≦0.6      (4)
20≦vd 2≦45     (5)
其中,f为非球面大景深沙姆镜头的焦距;f 1为第一透镜焦距;f 2为第二透镜焦距;f 3为第三透镜焦距;vd 2为第二透镜阿贝数。
同时,该非球面大景深沙姆镜头可实现小型化,即满足如下公式:
TTL/IH≦7    (6)
其中,TTL为第一透镜前表面最前端到像面的距离,IH为矩形探测器对角线长度的一半。
并且,第一透镜、第二透镜、第三透镜均为非球面透镜,满足非球面方程:
Figure PCTCN2020130539-appb-000002
其中z为表面矢高;r为径向半径;c为曲率;k为圆锥系数;A、B、C、D、E、F、G、H为非球面系数。
该非球面方程(7)是偶次非球面标准方程,若非球面系数A、B、C、D、 E、F、G、H的取值均为0:当k=0时,代表球面;当k=-1时,代表抛物面;当k<-1时,代表双曲面;当-1<k<0时,代表椭球面;当k>0时,代表扁球面。若非球面系数A、B、C、D、E、F、G、H中至少有一个系数的取值不为0,则无论k的取值是多少,均代表非球面。
如图3所示,为非球面透镜的结构示意图,z是表面失高,r是圆弧的径向半径。
如图4所示,为圆弧的曲率计算示意图,在光滑弧上自点M开始取弧段,其长为ΔS,对应切线转角为Δα,定义弧段ΔS上的平均曲率为
Figure PCTCN2020130539-appb-000003
则点M处的曲率
Figure PCTCN2020130539-appb-000004
本申请各个实施例中,非球面方程(7)中的圆锥系数和非球面系数是经过光焦度分配,以及合理的消除像差,并经过一系列优化算法得到的。
下述各实施例中,各英文名称的中文意思为:Surface:表面序号;Radius:表面曲率半径;Thickness:表面厚度;Material:透镜材料;nd:材料折射率,vd:材料阿贝数。
实施例1
镜头焦距f=15.08mm,F/#=5.54,IH=4.76,TTL/IH=6.2,DOF=466.76mm,设计结构如图5,设计参数如表1,圆锥系数以及非球面系数如表2。
表1实施例1镜头的设计参数
Figure PCTCN2020130539-appb-000005
Figure PCTCN2020130539-appb-000006
表2实施例1镜头的圆锥系数以及非球面系数
Surface k A B C D E F G H
1 -3.12E-01 0.00E+00 3.28E-04 -1.39E-05 1.13E-05 -1.79E-06 8.23E-08 7.39E-09 -6.09E-10
2 -2.80E-01 0.00E+00 8.27E-04 8.17E-05 1.48E-05 -1.36E-05 7.89E-07 2.79E-06 -6.25E-07
Stop 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 9.85E-01 0.00E+00 -6.06E-03 5.63E-05 1.28E-05 4.19E-06 -7.37E-07 -6.80E-08 9.80E-09
5 -3.43E-01 0.00E+00 -9.89E-03 -2.81E-06 6.35E-05 -5.54E-06 -1.42E-08 -1.12E-08 1.60E-09
6 -1.67E-01 0.00E+00 -9.35E-04 -2.45E-04 3.28E-05 -7.32E-07 -7.40E-08 3.17E-09 -8.80E-11
7 -7.30E-01 0.00E+00 6.94E-04 3.35E-05 8.17E-06 -6.47E-07 6.47E-09 5.48E-09 -2.65E-10
该设计目标平面与光轴夹角α=19.24°,探测器平面与光轴夹角β=81.88°,镜头放大倍率b’/a’=0.049778。又tan(α)/tan(β)=0.049778,即满足关系式(1)。图6给出了实施例1的成像质量MTF曲线图,全视野下MTF>0.4,图7给出了实施例1的轴向球差曲线图,全孔径下小于0.05mm,图8给出了实施例1的畸变曲线图,全视野下畸变小于0.5%。综上,该设计具有高分辨率、小型化的优点。该设计满足条件式(2)-(5),见表7。
实施例2
镜头焦距f=15.03mm,F/#=5.47,IH=4.76,TTL/IH=4.89,DOF=467.11mm,设计结构如图9,设计参数如表3,圆锥系数以及非球面系数如表4。
表3实施例2镜头的设计参数
Figure PCTCN2020130539-appb-000007
Figure PCTCN2020130539-appb-000008
表4实施例2镜头的圆锥系数以及非球面系数
Surface k A B C D E F G H
1 -4.04E-02 0.00E+00 9.50E-04 8.33E-05 2.60E-05 -1.32E-06 -3.36E-08 4.45E-09 8.10E-09
2 2.26E-01 0.00E+00 6.30E-03 2.73E-03 -1.31E-04 -7.30E-06 1.36E-04 6.87E-05 -2.95E-05
Stop 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 5.73E+05 0.00E+00 -1.24E-02 -1.96E-03 3.01E-04 2.89E-04 5.65E-05 -7.34E-06 -2.22E-05
5 -1.97E+00 0.00E+00 -1.25E-02 -1.62E-04 1.44E-04 2.93E-05 4.97E-06 -1.15E-06 -9.32E-07
6 -6.61E-01 0.00E+00 -1.54E-03 -1.93E-04 3.76E-05 -7.72E-07 -1.15E-07 1.11E-09 3.43E-10
7 -5.55E-01 0.00E+00 2.40E-04 3.23E-05 8.06E-06 -6.69E-07 6.51E-09 5.73E-09 -2.24E-10
该设计目标平面与光轴夹角α=19.14°,探测器平面与光轴夹角β=81.765°,镜头放大倍率b’/a’=0.05。又tan(α)/tan(β)=0.05,即满足关系式(1)。图10给出了实施例2的成像质量MTF曲线图,全视野下MTF>0.4,图11给出了实施例2的轴向球差曲线图,全孔径下小于0.05mm,图12给出了实施例2的畸变曲线图,全视野下畸变小于0.5%。综上,该设计具有高分辨率、小型化的优点。该设计满足条件式(2)-(5),见表7。
实施例3
镜头焦距f=12.865mm,F/#=5.555,IH=4.76,TTL/IH=5.6,DOF=465.5mm, 设计结构如图13,设计参数如表5,圆锥系数以及非球面系数如表6。
表5实施例3镜头的设计参数
Figure PCTCN2020130539-appb-000009
表6实施例3镜头的圆锥系数以及非球面系数
Surface k A B C D E F G H
1 -3.64E-01 0.00E+00 4.12E-04 -3.68E-05 1.38E-05 -1.85E-06 6.69E-08 6.84E-09 -4.98E-10
2 -2.05E-01 0.00E+00 -1.12E-05 1.33E-04 -9.90E-05 -2.73E-05 9.00E-06 3.37E-06 -1.26E-06
Stop 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
4 1.41E+00 0.00E+00 -5.84E-03 2.98E-04 2.55E-05 7.22E-07 -1.64E-06 -1.12E-07 2.49E-08
5 -2.78E-01 0.00E+00 -9.44E-03 5.62E-05 7.42E-05 -5.47E-06 -2.41E-07 -6.37E-08 3.85E-09
6 7.99E-02 0.00E+00 -7.43E-04 -2.36E-04 3.41E-05 -7.90E-07 -4.77E-08 5.72E-09 -1.79E-09
7 -9.19E-01 0.00E+00 9.03E-04 3.05E-05 8.01E-06 -6.54E-07 4.57E-09 5.37E-09 -2.60E-10
该设计目标平面与光轴夹角α=19.886°,探测器平面与光轴夹角β=81.5375°,镜头放大倍率b’/a’=0.0538。又tan(α)/tan(β)=0.0538,即满足关系式(1)。图14给出了实施例3的成像质量MTF曲线图,全视野下MTF>0.4,图15给出了实施例3的轴向球差曲线图,全孔径下小于0.05mm,图16给出了实施例3的畸变曲线图,全视野下畸变小于0.5%。综上,该设计具有高分辨率、小型化的优 点。该设计满足条件式(2)-(5),见表7。
表7条件式满足情况
条件式 实施例1 实施例2 实施例3 备注
-3.2≦f 1/f≦2 -2.94 1.81 -1.685 条件式(2)
-2.5≦f 2/f≦-0.1 -0.8178 -0.3 -2.15 条件式(3)
0.2≦f 3/f≦0.6 0.4 0.358 0.493 条件式(4)
20≦vd 2≦45 41 36 28 条件式(5)
TTL/IH≦7 6.2 4.89 5.6  
上述实施例1-3中的沙姆镜头,在实际应用中,当景深设计为460mm以上时,仍能够得到高分辨率低畸变的图片;并且如果进一步增大成像探测器尺寸,即增大IH,则镜头的景深会进一步增大。
本申请中各透镜均采用非球面表面,对于边缘光束的折射角大于中心光束的折射角,优化光源的发散光束为平行光,有利于图像的采集。
与相关技术相比,本申请的非球面大景深沙姆镜头具有如下优点:
(1)大景深。
(2)高分辨率。
(3)小型化。

Claims (9)

  1. 一种沙姆镜头,包括从物侧至像侧依次设置的第一非球面透镜、光阑、第二非球面透镜、第三非球面透镜,其中,所述第二非球面透镜具有负光焦度,所述第三非球面透镜具有正光焦度。
  2. 如权利要求1所述的沙姆镜头,其中,所述第一非球面透镜具有正光焦度。
  3. 如权利要求1所述的沙姆镜头,其中,所述第一非球面透镜具有负光焦度。
  4. 如权利要求1所述的沙姆镜头,其中,所述沙姆镜头的焦距与所述第一非球面透镜之间的焦距满足如下公式:-3.2≦f 1/f≦2,其中,f为所述沙姆镜头的焦距,f 1为所述第一非球面透镜的焦距。
  5. 如权利要求1所述的沙姆镜头,其中,所述沙姆镜头的焦距与所述第二非球面透镜之间的焦距满足如下公式:-2.5≦f 2/f≦-0.1,其中,f为所述沙姆镜头的焦距,f 2为所述第二非球面透镜的焦距。
  6. 如权利要求1所述的沙姆镜头,其中,所述沙姆镜头的焦距与所述第三非球面透镜之间的焦距满足如下公式:0.2≦f 3/f≦0.6,其中,f为所述沙姆镜头的焦距,f 3为所述第三非球面透镜的焦距。
  7. 如权利要求1所述的沙姆镜头,其中,所述第二非球面透镜的阿贝数满足20≦vd 2≦45,其中,vd 2为所述第二非球面透镜的阿贝数。
  8. 如权利要求1所述的沙姆镜头,其中,所述沙姆镜头满足如下公式:TTL/IH≦7,其中,TTL为所述第一非球面透镜前表面最前端到像面的距离,IH为矩形探测器对角线长度的一半;所述矩形探测器是沙姆镜头的成像探测器,所述矩形探测器所在的平面为所述像面。
  9. 如权利要求1所述的沙姆镜头,其中,所述第一非球面透镜、所述第二非球面透镜、所述第三非球面透镜满足如下公式:
    Figure PCTCN2020130539-appb-100001
    其中,z为表面矢高;r为径向半径;c为曲率;k为圆锥系数;A、B、C、D、E、F、G、H为非球面系数。
PCT/CN2020/130539 2020-07-20 2020-11-20 沙姆镜头 WO2022016757A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010698047.5 2020-07-20
CN202010698047.5A CN111766689B (zh) 2020-07-20 2020-07-20 一种非球面大景深沙姆镜头

Publications (1)

Publication Number Publication Date
WO2022016757A1 true WO2022016757A1 (zh) 2022-01-27

Family

ID=72728669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/130539 WO2022016757A1 (zh) 2020-07-20 2020-11-20 沙姆镜头

Country Status (2)

Country Link
CN (1) CN111766689B (zh)
WO (1) WO2022016757A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117255183A (zh) * 2023-11-13 2023-12-19 宜宾市极米光电有限公司 投影方法和投影设备

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766689B (zh) * 2020-07-20 2022-04-22 苏州中科全象智能科技有限公司 一种非球面大景深沙姆镜头
CN113238376B (zh) * 2021-05-10 2022-10-25 苏州中科全象智能科技有限公司 一种沙姆镜头畸变分析方法
CN113267823A (zh) * 2021-05-14 2021-08-17 南开大学 一种用于太赫兹频段的大景深成像透镜
CN114216404A (zh) * 2021-11-16 2022-03-22 苏州中科行智智能科技有限公司 一种沙姆镜头的线激光传感器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020932A (ja) * 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 逆ガリレオファインダ
US8540375B2 (en) * 2007-11-30 2013-09-24 Texas Instruments Incorporated Offset projection distortion correction
CN109557650A (zh) * 2018-12-11 2019-04-02 江西联益光学有限公司 准直镜头及投影模组
US20190149727A1 (en) * 2017-11-16 2019-05-16 Canon Kabushiki Kaisha Processing apparatus, lens apparatus and image pickup apparatus
CN111031300A (zh) * 2019-12-25 2020-04-17 博众精工科技股份有限公司 一种投影装置及三维测量系统
CN111766689A (zh) * 2020-07-20 2020-10-13 苏州中科全象智能科技有限公司 一种非球面大景深沙姆镜头

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048516A (ja) * 1996-08-06 1998-02-20 Hinode:Kk Ccd用レンズ
JP3505980B2 (ja) * 1997-10-20 2004-03-15 ミノルタ株式会社 撮像装置
JP3485503B2 (ja) * 1999-09-09 2004-01-13 株式会社エンプラス 撮像レンズ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004020932A (ja) * 2002-06-17 2004-01-22 Konica Minolta Holdings Inc 逆ガリレオファインダ
US8540375B2 (en) * 2007-11-30 2013-09-24 Texas Instruments Incorporated Offset projection distortion correction
US20190149727A1 (en) * 2017-11-16 2019-05-16 Canon Kabushiki Kaisha Processing apparatus, lens apparatus and image pickup apparatus
CN109557650A (zh) * 2018-12-11 2019-04-02 江西联益光学有限公司 准直镜头及投影模组
CN111031300A (zh) * 2019-12-25 2020-04-17 博众精工科技股份有限公司 一种投影装置及三维测量系统
CN111766689A (zh) * 2020-07-20 2020-10-13 苏州中科全象智能科技有限公司 一种非球面大景深沙姆镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117255183A (zh) * 2023-11-13 2023-12-19 宜宾市极米光电有限公司 投影方法和投影设备
CN117255183B (zh) * 2023-11-13 2024-03-29 宜宾市极米光电有限公司 投影方法和投影设备

Also Published As

Publication number Publication date
CN111766689B (zh) 2022-04-22
CN111766689A (zh) 2020-10-13

Similar Documents

Publication Publication Date Title
WO2022016757A1 (zh) 沙姆镜头
WO2021238106A1 (zh) 沙姆镜头
WO2017177665A1 (zh) 一种超广角大光圈镜头
JP7154769B2 (ja) 結像光学系および画像投射装置
CN106896480A (zh) 一种投影机远心变焦镜头
CN111290100A (zh) 投影镜头及投影成像系统
WO2018049616A1 (zh) 光学系统及使用该光学系统的头戴显示装置
JP2005326816A (ja) 撮像レンズシステム
CN109407288B (zh) 一种折反式超短焦投影镜头系统
JP4161294B2 (ja) 投射レンズ
CN219642072U (zh) 一种投影光学系统、投影仪
CN210666175U (zh) 镜头的镜片组合、镜头及3d打印装置
CN117369103A (zh) 变焦光学系统
CN109491060B (zh) 一种用于桌面投影的超短焦物镜
JP2015206976A (ja) ズームレンズ及びそれを有する撮像装置
CN107817593B (zh) 一种超短焦投影镜头
CN206387951U (zh) 一种高清投影镜头
CN208937804U (zh) 一种投影机用超短焦镜头
TW201905533A (zh) 廣角投影鏡頭
CN206833058U (zh) 一种投影机远心变焦镜头
CN208013527U (zh) 一种可实现内部调焦功能的光学镜头
CN112612131A (zh) 一种大靶面宽工作距高清工业镜头
JP4857998B2 (ja) 撮像レンズ
CN114967065B (zh) 一种镜头及摄像装置
CN214474187U (zh) 一种基于口腔扫描的结构光接收镜头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946049

Country of ref document: EP

Kind code of ref document: A1