CN109557650A - 准直镜头及投影模组 - Google Patents

准直镜头及投影模组 Download PDF

Info

Publication number
CN109557650A
CN109557650A CN201811512730.4A CN201811512730A CN109557650A CN 109557650 A CN109557650 A CN 109557650A CN 201811512730 A CN201811512730 A CN 201811512730A CN 109557650 A CN109557650 A CN 109557650A
Authority
CN
China
Prior art keywords
lens
camera lens
collimation camera
object side
collimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811512730.4A
Other languages
English (en)
Other versions
CN109557650B (zh
Inventor
刘绪明
曾昊杰
曾吉勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Lianyi Optics Co Ltd
Original Assignee
Jiangxi Lianyi Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Lianyi Optics Co Ltd filed Critical Jiangxi Lianyi Optics Co Ltd
Priority to CN201811512730.4A priority Critical patent/CN109557650B/zh
Publication of CN109557650A publication Critical patent/CN109557650A/zh
Priority to PCT/CN2019/113104 priority patent/WO2020119279A1/zh
Priority to US16/854,896 priority patent/US11314062B2/en
Application granted granted Critical
Publication of CN109557650B publication Critical patent/CN109557650B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0035Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having three lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0011Arrangements for eliminating or compensation of measuring errors due to temperature or weight
    • G01B5/0014Arrangements for eliminating or compensation of measuring errors due to temperature or weight due to temperature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/30Collimators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/02Illuminating scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0264Details of the structure or mounting of specific components for a camera module assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3161Modulator illumination systems using laser light sources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/52Details of telephonic subscriber devices including functional features of a camera

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Lenses (AREA)

Abstract

本发明提供了一种准直镜头及投影模组,设定激光发射器端为物侧,被测物体端为像侧,沿光轴从物侧到像侧依次包括:具有正光焦度的第一透镜,具有负光焦度的第二透镜,具有正光焦度的第三透镜和光阑。第一透镜的物侧面为凸面;第二透镜的物侧面为凹面;第三透镜的物侧面为凸面或近平面且像侧面为凸面;光阑位于第三透镜与被测物体之间。第一透镜、第二透镜、第三透镜均为塑胶材质;准直镜头满足以下条件式:(dn/dt)1<‑30×10‑6/℃;(dn/dt)2<‑30×10‑6/℃;(dn/dt)3<‑30×10‑6/℃;本发明提供的准直镜头及投影模组明确限定了三个透镜的折射率随温度的变化率,用于合理地搭配镜片的热膨胀特性,从而实现焦距稳定,并适用于不同的温度场合。

Description

准直镜头及投影模组
技术领域
本发明涉及摄像镜头技术领域,特别是涉及一种准直镜头及投影模组。
背景技术
随着智能手机的快速发展,手机的摄像功能也不断涌现出创新的技术,比如苹果公司主推的3D成像技术,这种基于3D结构光的光学感测技术,可用于人脸、手势辨识,强化照相功能,带来AR新应用,将光学图像从过去的二维向三维空间转换,从而带来更加真实、清晰的感知体验。
3D结构光是指将特定的激光信息投射到物体表面后,由摄像头采集,根据物体造成的光信息的变化来计算物体的位置和深度等信息,进而复原整个三维空间。这种把特定激光器表面的有特定立体角发射的阵列点光源投影到被测物体表面的准直镜头,是3D成像质量的一个关键环节。
然而,在现有的智能手机中,随着使用环境下温度的变化,镜头焦距f发生较大变化,从而导致镜头投射光的角度发生明显变化,这会改变原有的光信息,从而导致整个系统的计算出现误差,影响三维物体的轮廓复原精度,同样还存在随着温度的变化,投影的像点变大的情况,这也会导致系统还原三维物体的清晰度下降,因此在随着使用环境温度变化的情况下,投射到被测物体的光信息的视场角和斑点的大小不发生较大的变化就显得尤为重要。
此外,一般传统的准直镜头靠近激光发射器的第一透镜为模造玻璃镜片,这种模造玻璃镜片太小、生产加工难度大、良率低、不易量产,使生产成本大大提高。
发明内容
本发明的目的在于提供一种准直镜头及投影模组,以解决上述问题。
本发明实施例通过以下技术方案来实现上述目的。
第一方面,本发明提供一种准直镜头,设定激光发射器端为物侧,被测物体端为像侧,沿光轴从物侧到像侧依次包括:第一透镜,第二透镜,第三透镜和光阑。第一透镜具有正光焦度,且第一透镜的物侧面为凸面;第二透镜具有负光焦度,且第二透镜的物侧面为凹面;第三透镜具有正光焦度,第三透镜的物侧面为凸面或近平面且像侧面为凸面;光阑位于第三透镜与被测物体之间。第一透镜、第二透镜、第三透镜均为塑胶材质;准直镜头满足以下条件式:
(dn/dt)1<-50×10-6/℃;
(dn/dt)2<-50×10-6/℃;
(dn/dt)3<-50×10-6/℃;
其中,(dn/dt)1表示第一透镜在0~60℃范围内的折射率温度系数;
(dn/dt)2表示第二透镜在0~60℃范围内的折射率温度系数;
(dn/dt)3表示第三透镜在0~60℃范围内的折射率温度系数。
第二方面,本发明还提供一种投影模组,本发明提供的投影模组包括上述准直镜头,投影模组还包括光源以及衍射光学元件,光源发射的光束经准直镜头汇聚并由衍射光学元件扩束后向外投射出结构化图案光束。
相较于现有技术,本发明提供的准直镜头及投影模组明确限定了三个透镜的折射率随温度的变化率,用于合理地搭配镜片的热膨胀特性,从而实现焦距稳定且成本较低,并适用于不同的温度场合。
本发明的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1是根据本发明第一实施例提供的准直镜头的结构示意图;
图2是本发明第一实施例中的准直镜头的场曲曲线图;
图3是本发明第一实施例中的准直镜头的畸变曲线图;
图4为本发明第一实施例中的准直镜头的像点大小及形状的示意图;
图5是根据本发明第二实施例提供的准直镜头的结构示意图。
图6是本发明第二实施例中的准直镜头的场曲曲线图;
图7是本发明第二实施例中的准直镜头的畸变曲线图;
图8为本发明第二实施例中的准直镜头的像点大小及形状的示意图;
图9是根据本发明第三实施例提供的准直镜头的结构示意图。
图10是本发明第三实施例中的准直镜头的场曲曲线图;
图11是本发明第三实施例中的准直镜头的畸变曲线图;
图12为本发明第三实施例中的准直镜头的像点大小及形状的示意图;
图13是本本发明第四实施例提供的准直镜头的结构示意图。
图14是本发明第四实施例中的准直镜头的场曲曲线图;
图15是本发明第四实施例中的准直镜头的畸变曲线图;
图16为本发明第四实施例中的准直镜头的像点大小及形状的示意图;
图17为本发明第五实施例中提供的投影模组的结构示意图。
主要元素符号说明
第一透镜 L1 第二透镜 L2
第三透镜 L3 光阑 ST
光源 60 衍射光学元件 50
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了便于更好地理解本发明,下面将结合相关实施例附图对本发明进行在一种实施方式中解释。附图中给出了本发明的实施例,但本发明并不仅限于上述的优选实施例。相反,提供这些实施例的目的是为了使本发明的公开面更加得充分。
本发明提供的准直镜头,设定激光发射器端为物侧,被测物体端为像侧,沿光轴从物侧到像侧依次包括:第一透镜,第二透镜,第三透镜和光阑。第一透镜具有正光焦度,且第一透镜的物侧面为凸面;第二透镜具有负光焦度,且第二透镜的物侧面为凹面;第三透镜具有正光焦度,且第三透镜的物侧面为凸面或近平面且像侧面为凸面;光阑位于第三透镜与被测物体之间。第一透镜、第二透镜、第三透镜均为塑胶材质。
第一透镜具有正光焦度,第一透镜的物侧面为凸面,借此汇聚来自激光器的远心光束,且搭配第一透镜提供足够的正光焦度,可有效地控制光学透镜组的整体体积。
第二透镜具有负光焦度,第二透镜的物侧面为凹面,可有效地调和第一透镜所产生的像差,亦能控制工作波段的聚焦能力。
第三透镜具有正光焦度,第三透镜的像侧面为凸面,可以有效修正光学透镜的像差,可有效地控制光线的出射角度。
第一透镜、第二透镜及第三透镜的物侧面及像侧面皆为非球面,也即第一透镜、第二透镜及第三透镜的物侧面及像侧面是制作成球面以外的形状,借此可以获得较多的控制变数,以削减像差。
第一透镜、第二透镜和第三透镜均采用塑胶材质,借以有效降低生产成本。
本实施方式提供的准直镜头满足以下条件式:
(dn/dt)1<-30×10-6/℃;
(dn/dt)2<-30×10-6/℃;
(dn/dt)3<-30×10-6/℃;
其中,(dn/dt)1表示第一透镜在0~60℃范围内的折射率温度系数;
(dn/dt)2表示第二透镜在0~60℃范围内的折射率温度系数;
(dn/dt)3表示第三透镜在0~60℃范围内的折射率温度系数。
此条件限制了第一透镜、第二透镜和第三透镜的折射率随温度的变化率,主要用于合理的搭配镜片的热膨胀,保证在不同温度下镜头焦距的稳定性。
在一种实施方式中,本发明提供的准直镜头满足条件式:
4<f/r1<7;
其中,f表示准直镜头的系统焦距,r1表示第一透镜物侧面的曲率半径。此条件限制了第一透镜物侧面的形状,有利于镜片的加工制造,同时可以降低公差敏感度。
在一种实施方式中,本发明提供的准直镜头满足条件式:
-0.7<r1/r6<0;
其中,r1表示第一透镜物侧面的曲率半径,r6表示第三透镜像侧面的曲率半径。此条件限制了第一透镜物侧面与第三透镜像侧面的朝向相反,主要用于将经过第三透镜的光线会聚于成像面上,同时减少准直镜头的像差。
在一种实施方式中,本发明提供的准直镜头满足条件式:
-1<f2/f1<0;
其中,f2表示第二透镜的焦距,f1表示第一透镜的焦距。此条件限制了第一透镜与第二透镜的配比,可以有效减少准直镜头的像差。
在一种实施方式中,本发明提供的准直镜头满足条件式:
0<CT2/CT1<1;
其中,CT1表示第一透镜的中心厚度,CT2表示第二透镜的中心厚度。此条件限制了第二透镜的中心厚度与第一透镜的中心厚度的配比,借由适当配置透镜的中心厚度,有利于光学透镜组的加工制造及组装。
在一种实施方式中,本发明提供的准直镜头满足条件式:
0<CT/TD<0.6;
其中,CT表示第一透镜、第二透镜、第三透镜的中心厚度之和,TD表示该准直镜头从第一透镜物侧面到第三透镜像侧面在光轴上的距离。
在一种实施方式中,本发明提供的准直镜头满足条件式:
-1<r3/f<0;
其中,r3表示第二透镜物侧面的曲率半径,f表示准直镜头的系统焦距。满足此条件,可缩短系统的后焦距,以降低准直镜头的光学总长度。
在一种实施方式中,本发明提供的准直镜头满足条件式:
6<TTL/ImgH<9;
其中,TTL表示准直镜头的光学总长,ImgH表示准直镜头的半像高。此条件限制了镜头系统的总长,并且保证了系统具有足够好的成像质量。
在一种实施方式中,本发明提供的准直镜头满足条件式:
TTL/f<1.0;
其中,TTL表示准直镜头的光学总长,f表示准直镜头的系统焦距。此条件限制了系统总长和系统焦距的比例关系,在保证系统长焦距的情况下,能达到系统小型化的目的。具体地,可以限定,准直镜头10的光学总长TTL小于3.2mm,且准直镜头的系统焦距f大于3.6mm,以保证更好的光学特性,更适合3D结构光的算法实现。
在一种实施方式中,第一透镜、第二透镜和第三透镜的各物侧面与像侧面均为非球面,借此可以获得较多的控制变数,以削减像差。
在一种实施方式中,准直镜头的光学总长小于3.2mm,利于准直镜头的小型化。
在一种实施方式中,还提供一种投影模组,包括上述任意一种实施方式的准直镜头,投影模组还包括光源以及衍射光学元件,光源发射的光束经准直镜头汇聚并由衍射光学元件扩束后向外投射出结构化图案光束。
本发明提供的准直镜头及投影模组由于采用三片塑胶镜片,镜头尺寸更小成本更低,且各镜片的折射率随温度的变化率分配合理,能够和镜片本身及结构件带来的热膨胀对焦距的影响相抵消,所以能够实现焦距稳定及适用于不同的温度场合;本发明提供的准直镜头能够达到温度每变化10℃,有效焦距变化量小于0.001mm,以致镜头投射光的角度不发生明显变化,不改变原有的光信息;且相比现有技术,在同样尺寸的激光发射器下,可以实现系统的焦距更大,视场角更小,从而更有利于3D结构光的算法实现,成本也更低。
在本发明的所有实施例中,准直镜头的各个镜片的相关参数如表1、表3、表5和表7所示,其中r表示光学曲面顶点的曲率半径,d表示光学表面间距(相邻的两个光学曲面顶点之间的距离),nd表示各个透镜的折射率,Vd表示各个透镜的阿贝数,用来衡量介质的光线色散程度。各实施例对应的光学特性如表5所示,其中,f表示准直镜头的焦距,TTL表示准直镜头的光学总长,NA表示数值孔径。
准直镜头的各个透镜的非球面参数如表2、表4、表6和表8所示,且本发明各个实施例中准直镜头的非球面表面形状均满足下列方程:
其中,z表示曲面离开曲面顶点在光轴方向的距离,c表示曲面顶点的曲率,k表示二次曲面系数,h表示光轴到曲面的距离,B、C、D、E、F、G、H分别表示四阶、六阶、八阶、十阶、十二阶、十四阶、十六阶曲面系数。
下面分多个实施例对本发明进行进一步的说明。在以下每个实施例中,准直镜头中的各个透镜的厚度、曲率半径有所不同,具体不同可参见各实施例中的参数表。
第一实施例
请参阅图1,本实施例提供的一种准直镜头10的结构示意图,设定激光发射器端为物侧S0,被测物体端为像侧S7,从物侧S0到像侧S7依次包括:第一透镜L1,第二透镜L2,第三透镜L3和光阑ST。
第一透镜L1具有正光焦度,第一透镜L1的物侧面S1为凸面且像侧面S2为凹面。
第二透镜L2具有负光焦度,第二透镜L2的物侧面S3和像侧面S4均为凹面。
第三透镜L3具有正光焦度,第三透镜L3的物侧面S5为凹面且像侧面S6为凸面。
光阑ST位于第三透镜L3与被测物体之间。各个透镜的光学中心位于同一直线上,且各个透镜均为塑胶材质。准直镜头10满足以下条件式:
(dn/dt)1<-30×10-6/℃;
(dn/dt)2<-30×10-6/℃;
(dn/dt)3<-30×10-6/℃;
其中,(dn/dt)1表示第一透镜L1在0~60℃范围内的折射率温度系数;(dn/dt)2表示第二透镜L2在0~60℃范围内的折射率温度系数;(dn/dt)3表示第三透镜L3在0~60℃范围内的折射率温度系数。
本实施例中的准直镜头10中各个镜片的相关参数如表1所示。
表1
表面序号 代号 表面类型 r d n<sub>d</sub> Vd
物面S0 球面 0.245
S1 第一透镜 非球面 0.700 0.482 1.640 23.529
S2 非球面 1.676 0.660
S3 第二透镜 非球面 -0.619 0.170 1.516 57.038
S4 非球面 1.060 0.833
S5 第三透镜 非球面 9.235 0.563 1.640 23.529
S6 非球面 -1.130 0.400
ST 光阑 球面 300.000
S7 像面 球面
本实施例的各透镜的非球面参数如表2所示。
表2
在本实施例中,图2是准直镜头在40℃,300mm像距成像时的场曲曲线图,图中x轴为场曲值,坐标单位为毫米,y轴为用物高定义的视场。图3是准直镜头在40℃,300mm像距成像时的畸变曲线图,图中x轴为畸变值,坐标单位为百分比,y轴为用物高定义的视场。图4为准直镜头在40℃,300mm像距成像时像点大小及形状的示意图,单位为微米,从左到右、从上到下,物高与像高均逐渐增大。
由于像点的数据范围越小,说明镜头性能越好,由图2至图4可以看出,本实施例中像差能被很好地校正。
第二实施例
本实施例的准直镜头20的结构示意图可参阅图5。本实施例与第一实施例的镜头结构图大抵相似,不同之处在于:各个镜片的相关参数不同。
本实施例中的准直镜头20中各个镜片的相关参数如表3所示。
表3
表面序号 表面类型 r d n<sub>d</sub> Vd
物面S0 球面 0.420
S1 第一透镜 非球面 0.646 0.395 1.640 23.529
S2 非球面 1.289 0.823
S3 第二透镜 非球面 -0.513 0.266 1.516 57.038
S4 非球面 14.889 0.657
S5 第三透镜 非球面 5.288 0.525 1.640 23.529
S6 非球面 -1.233 0.350
ST 光阑 球面 300.000
S7 像面 球面
本实施例的各透镜的非球面参数如表4所示。
表4
在本实施例中,图6是准直镜头在40℃,300mm像距成像时的场曲曲线图。图7是准直镜头在40℃,300mm像距成像时的畸变曲线图。图8为准直镜头在40℃,300mm像距成像时像点大小及形状的示意图。
由于像点的数据范围越小,说明镜头性能越好,由图6至图8可以看出,本实施例中的准直镜头20的像差能被很好地校正。
第三实施例
本实施例的准直镜头30的结构示意图可参阅图9,本实施例与第一实施例的镜头结构图大抵相似,不同之处在于:各个镜片的相关参数不同。
本实施例中的准直镜头30中各个镜片的相关参数如表5所示。
表5
表面序号 表面类型 r d n<sub>d</sub> Vd
物面S0 球面 0.250
S1 第一透镜 非球面 0.647 0.524 1.640 23.529
S2 非球面 1.412 0.592
S3 第二透镜 非球面 -0.726 0.170 1.640 23.529
S4 非球面 1.232 0.773
S5 第三透镜 非球面 21.774 0.641 1.640 23.529
S6 非球面 -1.054 0.400
ST 光阑 球面 300.000
S7 像面 球面
本实施例的各透镜的非球面参数如表6所示。
表6
在本实施例中,图10是准直镜头在40℃,300mm像距成像时的场曲曲线图。图11是准直镜头在40℃,300mm像距成像时的畸变曲线图。图12为准直镜头在40℃,300mm像距成像时像点大小及形状的示意图。
由于像点的数据范围越小,说明镜头性能越好,由图10至图12可以看出,本实施例中像差能被很好的校正。
第四实施例
本实施例的准直镜头40的结构示意图可参阅图13,本实施例与第一实施例的镜头结构图大抵相似,不同之处在于:各个镜片的相关参数不同。
本实施例中的准直镜头40中各个镜片的相关参数如表7所示。
表7
表面序号 表面类型 r d n<sub>d</sub> Vd
物面S0 球面 0.489
S1 第一透镜 非球面 0.663 0.428 1.640 23.529
S2 非球面 1.595 0.705
S3 第二透镜 非球面 -0.596 0.200 1.516 57.038
S4 非球面 2.063 0.703
S5 第三透镜 非球面 54.356 0.573 1.640 23.529
S6 非球面 -1.067 0.350
ST 光阑 球面 300.000
S7 像面 球面
本实施例的各透镜的非球面参数如表8所示。
表8
在本实施例中,图14是准直镜头在40℃,300mm像距成像时的场曲曲线图。图15是准直镜头在40℃,300mm像距成像时的畸变曲线图。图16为准直镜头在40℃,300mm像距成像时像点大小及形状的示意图。
由于像点的数据范围越小,说明镜头性能越好,由图14至图16可以看出,本实施例中像差能被很好的校正。
第一实施例至第四实施例及其对应的光学特性如表5所示。
表5
本发明提供的准直镜头由于各镜片的折射率随温度的变化率分配合理,能实现焦距稳定及适用于不同的温度场合,有利于3D结构光的算法实现。
第五实施例
如图17所示,本实施例提供一种投影模组100,包括上述任一实施例中的准直镜头(例如准直镜头10),投影模组100还包括光源60以及衍射光学元件50,由光源60发射的光束经准直镜头10汇聚并由衍射光学元件50扩束后向外投射出结构化图案光束,并向待测物体方向投射。
其中,光源60可以是可见光、不可见光等激光光源,例如垂直腔面发射激光器(VCSEL)或红外激光二极管发射的光作为光源等。
本发明提供的投影模组100包括准直镜头10,由于准直镜头10中各镜片的折射率随温度的变化率分配合理,能实现焦距稳定及适用于不同的温度场合。投影模组100工作方式如下:光源60发出的光经准直镜头10和衍射光学元件50后向待测物体方向投射;该投影光束在经过衍射光学元件50后向外发射出图案化的结构光,由接收模组接收来自待测物体反射的图案化的结构光信息,并计算物体的位置和深度等信息,进而复原整个三维空间。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

1.一种准直镜头,其特征在于,设定激光发射器端为物侧,被测物体端为像侧,沿光轴从所述物侧到所述像侧依次包括:
具有正光焦度的第一透镜,所述第一透镜的物侧面为凸面;
具有负光焦度的第二透镜,所述第二透镜的物侧面为凹面;
具有正光焦度的第三透镜,所述第三透镜的物侧面为凸面或近平面,像侧面为凸面;
光阑,所述光阑位于所述第三透镜与所述被测物体之间;所述第一透镜、所述第二透镜、所述第三透镜均为塑胶材质;
所述准直镜头满足以下条件式:
(dn/dt)1<-30×10-6/℃;
(dn/dt)2<-30×10-6/℃;
(dn/dt)3<-30×10-6/℃;
其中,(dn/dt)1表示所述第一透镜在0~60℃范围内的折射率温度系数;
(dn/dt)2表示所述第二透镜在0~60℃范围内的折射率温度系数;
(dn/dt)3表示所述第三透镜在0~60℃范围内的折射率温度系数。
2.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
4<f/r1<7;
其中,f表示所述准直镜头的系统焦距,r1表示所述第一透镜物侧面的曲率半径。
3.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
-0.7<r1/r6<0;
其中,r1表示所述第一透镜物侧面的曲率半径,r6表示所述第三透镜像侧面的曲率半径。
4.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
-1<f2/f1<0;
其中,f2表示所述第二透镜的焦距,f1表示所述第一透镜的焦距。
5.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
0<CT2/CT1<1;
其中,CT1表示所述第一透镜的中心厚度,CT2表示所述第二透镜的中心厚度。
6.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
0<CT/TD<0.6;
其中,CT表示所述第一透镜、所述第二透镜和所述第三透镜的中心厚度之和,TD表示所述准直镜头从所述第一透镜的物侧面到所述第三透镜的像侧面在光轴上的距离。
7.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
-1<r3/f<0;
其中,r3表示所述第二透镜物侧面的曲率半径,f表示所述准直镜头的系统焦距。
8.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
6<TTL/Img H<9;
其中,TTL表示所述准直镜头的光学总长,ImgH表示所述准直镜头的半像高。
9.如权利要求1所述的准直镜头,其特征在于,所述准直镜头满足条件式:
TTL/f<1.0;
其中,TTL表示所述准直镜头的光学总长,f表示所述准直镜头的系统焦距。
10.如权利要求1所述的准直镜头,其特征在于,所述第一透镜、所述第二透镜和所述第三透镜的各物侧面与像侧面均为非球面。
11.如权利要求1所述的准直镜头,其特征在于,所述准直镜头的光学总长小于3.2mm。
12.一种投影模组,其特征在于,包括如权利要求1-11任一项所述的准直镜头,所述投影模组还包括光源以及衍射光学元件,所述光源发射的光束经所述准直镜头汇聚并由所述衍射光学元件扩束后向外投射出结构化图案光束。
CN201811512730.4A 2018-12-11 2018-12-11 准直镜头及投影模组 Active CN109557650B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811512730.4A CN109557650B (zh) 2018-12-11 2018-12-11 准直镜头及投影模组
PCT/CN2019/113104 WO2020119279A1 (zh) 2018-12-11 2019-10-24 准直镜头及投影模组
US16/854,896 US11314062B2 (en) 2018-12-11 2020-04-22 Collimating lens, projecting module and mobile phone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811512730.4A CN109557650B (zh) 2018-12-11 2018-12-11 准直镜头及投影模组

Publications (2)

Publication Number Publication Date
CN109557650A true CN109557650A (zh) 2019-04-02
CN109557650B CN109557650B (zh) 2020-06-23

Family

ID=65869810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811512730.4A Active CN109557650B (zh) 2018-12-11 2018-12-11 准直镜头及投影模组

Country Status (3)

Country Link
US (1) US11314062B2 (zh)
CN (1) CN109557650B (zh)
WO (1) WO2020119279A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110275180A (zh) * 2019-06-27 2019-09-24 Oppo广东移动通信有限公司 准直镜头、激光模组、深度相机及电子装置
CN110579880A (zh) * 2019-09-29 2019-12-17 Oppo广东移动通信有限公司 一种近眼显示光学系统及近眼显示装置
WO2020119279A1 (zh) * 2018-12-11 2020-06-18 江西联益光学有限公司 准直镜头及投影模组
CN111766689A (zh) * 2020-07-20 2020-10-13 苏州中科全象智能科技有限公司 一种非球面大景深沙姆镜头
CN111812828A (zh) * 2020-09-14 2020-10-23 深圳市汇顶科技股份有限公司 红外准直镜头和红外镜头模组
CN111853699A (zh) * 2020-08-28 2020-10-30 广东烨嘉光电科技股份有限公司 一种大孔径的三片式透镜光学镜头
TWI757732B (zh) * 2020-05-05 2022-03-11 大立光電股份有限公司 攝像用光學透鏡組、取像裝置及電子裝置
CN114217426A (zh) * 2022-02-23 2022-03-22 江西联益光学有限公司 光学镜头
CN114420020A (zh) * 2021-12-15 2022-04-29 惠州星聚宇智能科技有限公司 光学投影系统、投影模组以及迎宾灯
CN116107066A (zh) * 2023-04-14 2023-05-12 江西联昊光电有限公司 光学镜头及近眼显示系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892398A (en) * 1987-11-18 1990-01-09 Minolta Camera Kabushiki Kaisha Triplet type objective with a diaphragm arranged behind the lens system
CN1499220A (zh) * 2002-11-06 2004-05-26 力捷电脑股份有限公司 具有可调变曲率的透镜系统及其曲率调变方法
JP2005308963A (ja) * 2004-04-20 2005-11-04 Canon Inc 変倍ファインダー
US20080180814A1 (en) * 2007-01-29 2008-07-31 Takashi Kawasaki Image pickup lens, image pickup apparatus and mobile terminal
CN102053341A (zh) * 2009-11-05 2011-05-11 大立光电股份有限公司 近红外线取像透镜组
US20170269340A1 (en) * 2016-02-19 2017-09-21 Almalence Inc. Collapsible imaging system having lenslet arrays for aberration correction
CN108279485A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 投影镜头
CN208092311U (zh) * 2018-03-09 2018-11-13 江西联益光学有限公司 准直镜头

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4760109B2 (ja) * 2005-04-22 2011-08-31 コニカミノルタオプト株式会社 撮像レンズ、撮像装置及び携帯端末
WO2009101928A1 (ja) * 2008-02-12 2009-08-20 Konica Minolta Opto, Inc. レンズユニット、撮像レンズ、撮像装置および携帯端末
CN105043725B (zh) * 2015-09-01 2017-10-27 凯迈(洛阳)测控有限公司 一种红外准直光学系统
JP6827299B2 (ja) * 2016-11-07 2021-02-10 京セラ株式会社 撮像レンズ
CN107505689B (zh) * 2017-09-15 2023-08-04 江西联创电子有限公司 投影镜头系统
CN114002811A (zh) * 2017-11-03 2022-02-01 玉晶光电(厦门)有限公司 光学透镜组
CN107861317B (zh) * 2017-12-19 2019-10-18 浙江舜宇光学有限公司 投影镜头
CN108318996B (zh) * 2018-03-09 2024-02-20 江西联益光学有限公司 准直镜头
CN109557650B (zh) * 2018-12-11 2020-06-23 江西联益光学有限公司 准直镜头及投影模组
CN111580252B (zh) * 2020-05-22 2022-04-22 玉晶光电(厦门)有限公司 光学成像镜头

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4892398A (en) * 1987-11-18 1990-01-09 Minolta Camera Kabushiki Kaisha Triplet type objective with a diaphragm arranged behind the lens system
CN1499220A (zh) * 2002-11-06 2004-05-26 力捷电脑股份有限公司 具有可调变曲率的透镜系统及其曲率调变方法
JP2005308963A (ja) * 2004-04-20 2005-11-04 Canon Inc 変倍ファインダー
US20080180814A1 (en) * 2007-01-29 2008-07-31 Takashi Kawasaki Image pickup lens, image pickup apparatus and mobile terminal
CN102053341A (zh) * 2009-11-05 2011-05-11 大立光电股份有限公司 近红外线取像透镜组
US20170269340A1 (en) * 2016-02-19 2017-09-21 Almalence Inc. Collapsible imaging system having lenslet arrays for aberration correction
CN108279485A (zh) * 2018-03-09 2018-07-13 浙江舜宇光学有限公司 投影镜头
CN208092311U (zh) * 2018-03-09 2018-11-13 江西联益光学有限公司 准直镜头

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020119279A1 (zh) * 2018-12-11 2020-06-18 江西联益光学有限公司 准直镜头及投影模组
US11314062B2 (en) 2018-12-11 2022-04-26 Jiangxi Lianyi Optics Co., Ltd. Collimating lens, projecting module and mobile phone
CN110275180A (zh) * 2019-06-27 2019-09-24 Oppo广东移动通信有限公司 准直镜头、激光模组、深度相机及电子装置
CN110579880A (zh) * 2019-09-29 2019-12-17 Oppo广东移动通信有限公司 一种近眼显示光学系统及近眼显示装置
TWI757732B (zh) * 2020-05-05 2022-03-11 大立光電股份有限公司 攝像用光學透鏡組、取像裝置及電子裝置
CN111766689A (zh) * 2020-07-20 2020-10-13 苏州中科全象智能科技有限公司 一种非球面大景深沙姆镜头
CN111766689B (zh) * 2020-07-20 2022-04-22 苏州中科全象智能科技有限公司 一种非球面大景深沙姆镜头
WO2022016757A1 (zh) * 2020-07-20 2022-01-27 苏州中科全象智能科技有限公司 沙姆镜头
CN111853699A (zh) * 2020-08-28 2020-10-30 广东烨嘉光电科技股份有限公司 一种大孔径的三片式透镜光学镜头
CN111853699B (zh) * 2020-08-28 2021-02-12 广东烨嘉光电科技股份有限公司 一种大孔径的三片式透镜光学镜头
CN111812828A (zh) * 2020-09-14 2020-10-23 深圳市汇顶科技股份有限公司 红外准直镜头和红外镜头模组
CN113296249A (zh) * 2020-09-14 2021-08-24 深圳市汇顶科技股份有限公司 红外准直镜头和红外镜头模组
CN111812828B (zh) * 2020-09-14 2021-05-25 深圳市汇顶科技股份有限公司 红外准直镜头和红外镜头模组
CN114420020A (zh) * 2021-12-15 2022-04-29 惠州星聚宇智能科技有限公司 光学投影系统、投影模组以及迎宾灯
CN114217426A (zh) * 2022-02-23 2022-03-22 江西联益光学有限公司 光学镜头
CN114217426B (zh) * 2022-02-23 2022-07-15 江西联益光学有限公司 光学镜头
CN116107066A (zh) * 2023-04-14 2023-05-12 江西联昊光电有限公司 光学镜头及近眼显示系统
CN116107066B (zh) * 2023-04-14 2023-10-20 江西联昊光电有限公司 光学镜头及近眼显示系统

Also Published As

Publication number Publication date
CN109557650B (zh) 2020-06-23
US11314062B2 (en) 2022-04-26
US20200249446A1 (en) 2020-08-06
WO2020119279A1 (zh) 2020-06-18

Similar Documents

Publication Publication Date Title
CN109557650A (zh) 准直镜头及投影模组
CN107505689B (zh) 投影镜头系统
CN108227149B (zh) 准直镜头
CN108318996B (zh) 准直镜头
CN107436484B (zh) 投影镜头
CN109031591B (zh) 投影镜头
CN109031593B (zh) 投影镜头
US10210289B2 (en) Method for designing three-dimensional freeform surface to be used in design of the reflective mirrors
CN104570340A (zh) 自由曲面成像系统的设计方法
CN207301461U (zh) 投影镜头系统
CN208092311U (zh) 准直镜头
CN105676430A (zh) 一种星敏感器光学成像系统
JP6952030B2 (ja) アサーマル光学アセンブリ
CN208013518U (zh) 准直镜头
CN208110175U (zh) 透镜系统、结构光投影模组及深度相机
JP2018531430A6 (ja) アサーマル光学アセンブリ
CN109212724B (zh) 广角投影镜头
CN207908819U (zh) 透镜系统、结构光投影模组及深度相机
CN110275180A (zh) 准直镜头、激光模组、深度相机及电子装置
CN207281378U (zh) 投影镜头
CN111273430B (zh) 三片式红外线波长投影镜片组
CN216646943U (zh) 一种透镜系统、投影模组以及3d相机
CN116088147A (zh) 准直镜头
CN106814412B (zh) 准直透镜
CN114924393A (zh) 红外投影镜头

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant